Science.gov

Sample records for high water solubility

  1. Water solubility in pyrope at high pressures

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Karato, S.-

    2006-12-01

    To address how much water is stored within the Earth's mantle, we need to understand the water solubility in the nominally anhydrous minerals. Much is known about olivine and pyroxene. Garnet is another important component, approaching 40% by volume in the transition zone. Only two studies on water solubility in pyrope at high-pressures exist which contradict each other. Lu and Keppler (1997) observed increase in water solubility in a natural pyrope up to 200 ppm wt of water, till 10 GPa. They concluded that the proton is located in the interstitial site. Withers et al. (1998) on the contrary, observed increasing water content in Mg-rich pyrope till 6 GPa, then sudden decrease of water, beyond detection, at 7 GPa. Based on infrared spectra, Withers et al. (1998), concluded hydrogarnet (Si^{4+} replaced by 4H+ to form O4H4) substitution in synthetic magnesium rich pyrope. They argued that at high pressure owing to larger volume, hydrogarnet substitution is unstable and water is expelled out of garnet. In transition zone conditions, however, majorite garnet seems to contain around 600-700 ppm wt of water (Bolfan-Casanova et al. 2000; Katayama et al. 2003). The cause for such discrepancy is not clear and whether garnet could store a significant amount of water at mantle condition is unconstrained. In order to understand the solubility mechanism of water in pyrope at high-pressure, we have conducted high- pressure experiments on naturally occurring single crystals of pyrope garnet (from Arizona, Aines and Rossman, 1984). To ascertain water-saturated conditions, we use olivine single-crystal as an internal standard. Preliminary results indicate that natural pyrope is capable of dissolving water at high-pressures, however, water preferentially enters olivine than in pyrope. We are undertaking systematic study to estimate the solubility of water in pyrope as a function of pressure. This will enable us to develop solubility models to understand the defect mechanisms

  2. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    PubMed

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  3. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    PubMed

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  4. One-Step Synthesis of Highly Water-Soluble Magnetite ColloidalNanosrystals

    SciTech Connect

    Ge, J.P.; Hu, Y.X.; Biasini, M.; Dong, C.L.; Guo, J.-H.; Beyermann, W.P.; Yin, Y.

    2007-03-05

    A high-temperature solution-phase hydrolysis approach has been developed for the synthesis of colloidal magnetite nanocrystals with well-controlled size and size distribution, high crystallinity, and high water solubility. The synthesis was accomplished by the hydrolysis and reduction of iron(III) cations in diethylene glycol with a rapidly injected solution of sodium hydroxide at an elevated temperature. The high reaction temperature allows for control over size and size distribution and yields highly crystalline products. The superior water solubility is achieved by using a polyelectrolyte, that is, poly(acrylic acid) as the capping agent, the carboxylate groups of which partially bind to the nanocrystal surface and partially extend into the surrounding water. The direct synthesis of water-soluble nanocrystals eliminates the need for additional surface modification steps which are usually required for treating hydrophobic nanocrystals produced in nonpolar solvents through the widely recognized pyrolysis route. The abundant carboxylate groups on the nanocrystal surface allow further modifications, such as bioconjugation, as demonstrated by linking cysteamine to the particle surface. The monodisperse, highly water-soluble, superparamagnetic, and biocompatible magnetite nanocrystals should find immediate important biomedical applications.

  5. Denatured mammalian protein mixtures exhibit unusually high solubility in nucleic acid-free pure water.

    PubMed

    Futami, Junichiro; Fujiyama, Haruna; Kinoshita, Rie; Nonomura, Hidenori; Honjo, Tomoko; Tada, Hiroko; Matsushita, Hirokazu; Abe, Yoshito; Kakimi, Kazuhiro

    2014-01-01

    Preventing protein aggregation is a major goal of biotechnology. Since protein aggregates are mainly comprised of unfolded proteins, protecting against denaturation is likely to assist solubility in an aqueous medium. Contrary to this concept, we found denatured total cellular protein mixture from mammalian cell kept high solubility in pure water when the mixture was nucleic acids free. The lysates were prepared from total cellular protein pellet extracted by using guanidinium thiocyanate-phenol-chloroform mixture of TRIzol, denatured and reduced total protein mixtures remained soluble after extensive dialysis against pure water. The total cell protein lysates contained fully disordered proteins that readily formed large aggregates upon contact with nucleic acids or salts. These findings suggested that the highly flexible mixtures of disordered proteins, which have fully ionized side chains, are protected against aggregation. Interestingly, this unusual solubility is characteristic of protein mixtures from higher eukaryotes, whereas most prokaryotic protein mixtures were aggregated under identical conditions. This unusual solubility of unfolded protein mixtures could have implications for the study of intrinsically disordered proteins in a variety of cells.

  6. Novel triclabendazole prodrug: A highly water soluble alternative for the treatment of fasciolosis.

    PubMed

    Flores-Ramos, Miguel; Ibarra-Velarde, Froylán; Jung-Cook, Helgi; Hernández-Campos, Alicia; Vera-Montenegro, Yolanda; Castillo, Rafael

    2017-02-01

    In this work we present the synthesis, aqueous solubility and stability, hydrolysis by alkaline phosphatase, and in vivo fasciolicidal activity in sheep of a highly water soluble phosphate salt prodrug of triclabendazole (MFR-5). The aqueous solubility of MFR-5 at pH 7 was 88,000-fold that of triclabendazole. MFR-5 showed excellent aqueous stability (>95% after 26h) at pH 7, making it ideal for developing pharmaceutical compositions in the form of solutions that can easily be hydrolyzed by the enzyme alkaline phosphatase (t=13.6s) to liberate the precursor compound. An aqueous solution of MFR-5 administered intramuscularly to sheep at concentrations of 4, 6 and 8mg/kg presented a fasciolicidal efficiency of 96.5%, 98.4% and 99.2%, respectively. In the in vivo experiments, MFR-5 reduced 100% the excretion of eggs in all of the above concentrations.

  7. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery.

    PubMed

    Weng, Qunhong; Wang, Binju; Wang, Xuebin; Hanagata, Nobutaka; Li, Xia; Liu, Dequan; Wang, Xi; Jiang, Xiangfen; Bando, Yoshio; Golberg, Dmitri

    2014-06-24

    Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble, and stable in physiological solutions and could be easily functionalized for effective drug deliveries are still challenging. Here, we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g., doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNCaP cancer cells than free drugs.

  8. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  9. A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability.

    PubMed

    Yang, Zhen; Zhao, Yuan; Wang, Chan; Song, Qijun; Pang, Qingfeng

    2017-05-01

    A water-soluble and highly phosphorescent cyclometallated iridium complex [(pq)2Ir(bpy-COOK)](+)Cl(-) (where pq=2-phenylquinoline, bpy-COOK= potassium 2,2'-bipyridine-4,4'-dicarboxylate) (Ir) has been synthesized and characterized. Its phosphorescence can be sensitively and selectively quenched by tryptophan through a photoinduced electron-transfer (PET) process. Furthermore, the phosphorescence of Ir is drastically increased upon binding with bovine serum albumin (BSA), and the enhanced signal is effectively quenched in the presence of Cu(2+). Thus, Ir can be used as a multifunctional chemosensor for tryptophan, BSA, and Cu(2+) determination as well as for cell imaging.

  10. Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles.

    PubMed

    Xiong, Jing; Wu, Xue-dong; Xue, Qun-ji

    2013-01-15

    Water-soluble and highly stable dispersions of copper nanoparticles were obtained using a biomolecule-assisted synthetic method. Dopamine was utilized as both reducing and capping agent in aqueous medium. The successful formation of DA-stabilized copper particles was demonstrated by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), Zeta potential measurement, and Fourier transform infrared spectroscopy (FT-IR). The mechanism of dopamine on the effective reduction and excellent stability of copper nanoparticles was also discussed. This facile biomolecule-assisted technique may provide a useful tool to synthesize other nanoparticles that have potential application in biotechnology.

  11. Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor

    NASA Astrophysics Data System (ADS)

    Choi, Bong Gill; Park, Hoseok; Yang, Min Ho; Jung, Young Mee; Lee, Sang Yup; Hong, Won Hi; Park, Tae Jung

    2010-12-01

    Graphene sheets have the potential for practical applications in electrochemical devices, but their development has been impeded by critical problems with aggregation of graphene sheets. Here, we demonstrated a facile and bottom-up approach for fabrication of DNA sensor device using water-soluble sulfonated reduced graphene oxide (SRGO) sheets via microwave-assisted sulfonation (MAS), showing enhanced sensitivity, reliability, and low detection limit. Key to achieving these performances is the fabrication of the SRGOs, where the MAS method enabled SRGOs to be highly dispersed in water (10 mg mL-1) due to the acidic sulfonated groups generated within 3 min of the functionalization reaction. The water-soluble SRGO-DNA (SRGOD) hybrids prepared by electrostatic interactions between a flat single layer of graphene sheets and DNAs are suitable for fabrication of electrical DNA sensor devices because of the unique electrical characteristics of SRGODs. The high sensing performance of SRGOD sensors was demonstrated with detection ofDNA hybridization using complementary DNAs, single base mismatched DNAs, and noncomplementary DNAs, with results showing higher sensitivity and lower detection limit than those of reduced graphene oxide-based DNA sensors. Simple and easy fabrication of DNA sensor devices using SRGODs is expected to provide an effective way for electrical detection ofDNA hybridization using miniature sensors without the labor-intensive labeling of the sensor and complex measurement equipment.Graphene sheets have the potential for practical applications in electrochemical devices, but their development has been impeded by critical problems with aggregation of graphene sheets. Here, we demonstrated a facile and bottom-up approach for fabrication of DNA sensor device using water-soluble sulfonated reduced graphene oxide (SRGO) sheets via microwave-assisted sulfonation (MAS), showing enhanced sensitivity, reliability, and low detection limit. Key to achieving these

  12. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  13. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  14. Solubility controls on aluminum in drinking water at relatively low and high pH.

    PubMed

    Kvech, Steve; Edwards, Marc

    2002-10-01

    Potential control of soluble aluminum in drinking water by formation of solids other than Al(OH)3 was examined. At pHs below 6.0, Al(+3) solids containing sulfate, silica or potassium are thermodynamically favored versus amorphous Al(OH)3; however, in this work no evidence could be obtained that solids other than Al(OH)3 would form in practice. At pHs above 9, aluminum and magnesium were discovered to form complex solid phases of approximate composition AlMg2(OH)7, AlMg2SiO2(OH)7 or Al(SiO2)2(OH)3 dependent on circumstance. Formation of these solids provide a mechanistic explanation for enhancements to precipitative softening obtained in practice by dosing Al(+3) salts; that is, improved flocculation/settling and removal of silica from water that interferes with calcium precipitation. The solids also maintain residual aluminum below regulatory guidelines at high pH > 9.5.

  15. High-temperature and high-pressure water solubility in ethylbenzene to 200°C and 1 kbar and the acetic acid effect

    NASA Astrophysics Data System (ADS)

    Guillaume, Damien; Tkachenko, Sergey; Dubessy, Jean; Pironon, Jacques

    2001-10-01

    Water solubility in hydrocarbon systems is of great interest for deep oil fields. A new autoclave has been designed to measure phase equilibria in water-hydrocarbon systems up to 400°C and 1.5 kbar. It has been applied for the measurement of water solubility in ethylbenzene with or without acetic acid to 200°C and 1 kbar in the two-phase field. Water solubility was measured by the Karl Fisher method. The acetic acid concentration was measured by FT-IR microspectroscopy. Both the experimental procedure and analytical techniques were validated by showing the consistency of our data with those of Heidman et al. ("High-temperature mutual solubilities of hydrocarbons and water," AIChE J.31, 376-384, 1995) along the liquid-liquid-vapor curve. At constant pressure, the solubility of water in ethylbenzene increases significantly with temperature. On the other hand, at constant temperature, the solubility of water is constant to 1 kbar at 100°C, and decreases slightly with pressure at 150 and 200°C. Data were regressed by the Krichevsky-Kasarnovsky equation to obtain estimates of the Henry's law constant and estimates of the molar volume of water at infinite dilution. Acetic acid increases the solubility of water in ethylbenzene and fractionates preferentially into the aqueous phase.

  16. High Throughput Identification, Purification and Structural Characterization of Water Soluble Protein Complexes in Desulfovibrio vulgaris

    SciTech Connect

    Dong,, Ming; Han, Bong-Gyoon; Liu, Hui-Hai; Malik, J.; Geller, Jil; Yang, Li; Choi, M.; Chandonia, John-Marc; Arbelaez, Pablo; Sterling, H. J.; Typke, Dieter; Shatsky, Max; Brenner, Steve; Fisher, Susan; Williams, Evan; Szakal, Evelin; Allen, S.; Hall, S. C.; Hazen, Terry; Witkowska, H. E.; Jin, Jiming; Glaeser, Robert; Biggin, Mark

    2010-05-17

    Our scheme for the tagless purification of water soluble complexes. 10 g of protein from a crude bacterial extract is first fractionated by ammonium sulfate precipitation and then by a series of chromatographic steps: anion exchange (IEX), hydrophobic interaction (HIC), and finally size exclusion (Gel Filtration). Fractions from the last chromatography step are trypsin digested and peptides labeled with iTRAQ reagents to allow multiplexing and quantitation during mass spectrometric analysis. Elution profiles of identified proteins are then subjected to clustering analysis.

  17. Fluorescent water-soluble organic aerosols in the High Arctic atmosphere

    PubMed Central

    Fu, Pingqing; Kawamura, Kimitaka; Chen, Jing; Qin, Mingyue; Ren, Lujie; Sun, Yele; Wang, Zifa; Barrie, Leonard A.; Tachibana, Eri; Ding, Aijun; Yamashita, Youhei

    2015-01-01

    Organic aerosols are ubiquitous in the earth’s atmosphere. They have been extensively studied in urban, rural and marine environments. However, little is known about the fluorescence properties of water-soluble organic carbon (WSOC) or their transport to and distribution in the polar regions. Here, we present evidence that fluorescent WSOC is a substantial component of High Arctic aerosols. The ratios of fluorescence intensity of protein-like peak to humic-like peak generally increased from dark winter to early summer, indicating an enhanced contribution of protein-like organics from the ocean to Arctic aerosols after the polar sunrise. Such a seasonal pattern is in agreement with an increase of stable carbon isotope ratios of total carbon (δ13CTC) from −26.8‰ to −22.5‰. Our results suggest that Arctic aerosols are derived from a combination of the long-range transport of terrestrial organics and local sea-to-air emission of marine organics, with an estimated contribution from the latter of 8.7–77% (mean 45%). PMID:25920042

  18. Water-soluble vitamins.

    PubMed

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were <6.5%. The concentrations of vitamins found in premixes with the method were comparable to the values declared. A disadvantage of the methods mentioned above is that sample composition has to be known in advance. According to European legislation, for example, foods might be fortified with riboflavin phosphate or thiamin phosphate, vitamers which are not included in the simultaneous separations described. Vitamin B2.--Viñas et al. elaborated an LC analysis of riboflavin vitamers in foods. Vitamin B2 can be found in nature as the free riboflavin, but in most biological materials it occurs predominantly in the form of 2 coenzymes, flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). Several methods usually involve the conversion of these coenzymes into free riboflavin before quantification of total riboflavin. According to the authors, there is growing interest to know flavin composition of foods. The described method separates the individual vitamers isocratically. Accuracy of the method is tested with 2 certified reference materials (CRMs). Vitamin B5.-Methods for the determination of vitamin B5 in foods are limited

  19. Synthesis of a highly water-soluble acacetin prodrug for treating experimental atrial fibrillation in beagle dogs.

    PubMed

    Liu, Hui; Wang, Ya-Jing; Yang, Lei; Zhou, Mei; Jin, Man-Wen; Xiao, Guo-Sheng; Wang, Yan; Sun, Hai-Ying; Li, Gui-Rong

    2016-05-10

    We previously reported that duodenal administration of the natural flavone acacetin can effectively prevent the induction of experimental atrial fibrillation (AF) in canines; however, it may not be used intravenously to terminate AF due to its poor water-solubility. The present study was to design a water-soluble prodrug of acacetin and investigate its anti-AF effect in beagle dogs. Acacetin prodrug was synthesized by a three-step procedure. Aqueous solubility, bioconversion and anti-AF efficacy of acacetin prodrug were determined with different methodologies. Our results demonstrated that the synthesized phosphate sodium salt of acacetin prodrug had a remarkable increase of aqueous solubility in H2O and clinically acceptable solution (5% glucose or 0.9% NaCl). The acacetin prodrug was effectively converted into acacetin in ex vivo rat plasma and liver microsome, and in vivo beagle dogs. Intravenous infusion of acacetin prodrug (3, 6 and 12 mg/kg) terminated experimental AF without increasing ECG QTc interval in beagle dogs. The intravenous LD50 of acacetin prodrug was 721 mg/kg in mice. Our preclinical study indicates that the synthesized acacetin prodrug is highly water-soluble and safe; it effectively terminates experimental AF in beagle dogs and therefore may be a promising drug candidate for clinical trial to treat patients with acute AF.

  20. water-soluble fluorocarbon coating

    NASA Technical Reports Server (NTRS)

    Nanelli, P.

    1979-01-01

    Water-soluble fluorocarbon proves durable nonpolluting coating for variety of substrates. Coatings can be used on metals, masonry, textiles, paper, and glass, and have superior hardness and flexibility, strong resistance to chemicals fire, and weather.

  1. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  2. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  3. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents.

    PubMed

    Kubota, N; Tatsumoto, N; Sano, T; Toya, K

    2000-03-10

    A simple and improved method of preparing highly soluble chitosan (half N-acetylated chitosan) was developed using a series of chitosan samples of low molecular weights, and the solubility of the half N-acetylated chitosan in water and organic solvents was investigated in detail. To reduce the molecular weight, chitosan was treated with NaBO3 under the condition that chitosan was homogeneously dissolved in aqueous acetic acid. Weight-average molecular weights of the obtained chitosan samples were determined using a size-exclusion chromatography system equipped with a low-angle laser light-scattering photometer. Each chitosan sample was then N-acetylated with acetic anhydride under the condition that chitosan was homogeneously dissolved in aqueous acetic acid again. The water solubility of the half N-acetylated chitosan thus prepared increased with decreasing molecular weight. From 1H NMR spectroscopy, it was suggested that the sequence of N-acetylglucosamine and glucosamine residues was random. The solubility of the half N-acetylated chitosan of low molecular weight was rather high even in aqueous dimethylacetamide and dimethylsulfoxide.

  4. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    GENG, Ming; DUAN, Zhenhao

    2010-10-01

    A thermodynamic model is presented to calculate the oxygen solubility in pure water (273-600 K, 0-200 bar) and natural brines containing Na +, K +, Ca 2+, Mg 2+, Cl -, SO 42-, over a wide range of temperature, pressure and ionic strength with or close to experimental accuracy. This model is based on an accurate equation of state to calculate vapor phase chemical potential and a specific particle interaction model for liquid phase chemical potential. With this approach, the model can not only reproduce the existing experimental data, but also extrapolate beyond the data range from simple aqueous salt system to complicated brine systems including seawater. Compared with previous models, this model covers much wider temperature and pressure space in variable composition brine systems. A program for this model can be downloaded from the website: http://www.geochem-model.org.

  5. Use of pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry for water soluble halides speciation in atmospheric particulate matter.

    PubMed

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moreda-Piñeiro, Antonio; Moscoso-Pérez, Carmen; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2012-11-15

    The feasibility of pressurized hot water extraction (PHWE) has been novelty investigated to speed up water soluble halide species (bromide, Br(-); bromate, BrO(3)(-); iodide, I(-) and iodate, IO(3)(-)) leaching from atmospheric particulate matter (PM(10) and PM(2.5)). Total bromine and iodine and total water soluble bromine and iodine have been assessed by inductively coupled plasma-mass spectrometry (ICP-MS). Water-soluble bromine and iodine species were also measured by ICP-MS after anion exchange high performance liquid chromatography (HPLC). Variables inherent to the pressurized hot water extraction process (temperature, modifier concentration, static time, pressure, number of cycles and dispersing agent mass) were fully studied. Results showed that the pressurized leaching procedure can be performed in 9 min (5 min for pre-heating, 2 min of static time, 1 min of purge time, and 1 min of end relief time). The use of diluted acetic acid as a modifier did not improve the target recoveries. Dispersing agent (diatomaceous earth) was not needed, which reduces the time for filling the cells. Water-soluble halides were reached under the following extraction conditions: extraction temperature of 100 °C, pressure of 1500 psi, static time of 2 min and 1 extraction cycle. Optimized HPLC conditions consisted of an isocratic elution with 175 mM ammonium nitrate plus 15% (v/v) methanol as mobile phase (optimum flow rate of at 1.5 mL min(-1)). Analytical performances, such as limits of detection and quantification, repeatability and analytical recoveries of the over-all procedure have been established. Results obtained show water soluble halides accounted for approximately 20.9±1.3 and 11.8±0.6% of the total bromine and total iodine, respectively. A 79 and 89% of bromine and iodine was non-water soluble, which may be organic non-water soluble species. Br(-) and IO(3)(-) were found to be the major species, and they accounted for 100% of the total water-soluble bromine and

  6. Bright, highly water-soluble triazacyclononane europium complexes to detect ligand binding with time-resolved FRET microscopy.

    PubMed

    Delbianco, Martina; Sadovnikova, Victoria; Bourrier, Emmanuel; Mathis, Gérard; Lamarque, Laurent; Zwier, Jurriaan M; Parker, David

    2014-09-26

    Luminescent europium complexes are used in a broad range of applications as a result of their particular emissive properties. The synthesis and application of bright, highly water-soluble, and negatively charged sulfonic- or carboxylic acid derivatives of para-substituted aryl-alkynyl triazacyclononane complexes are described. Introduction of the charged solubilizing moieties suppresses cellular uptake or adsorption to living cells making them applicable for labeling and performing assays on membrane receptors. These europium complexes are applied to monitor fluorescent ligand binding on cell-surface proteins with time-resolved Förster resonance energy transfer (TR-FRET) assays in plate-based format and using TR-FRET microscopy.

  7. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

    NASA Astrophysics Data System (ADS)

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-06-01

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation.

  8. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

    PubMed Central

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-01-01

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation. PMID:27354318

  9. Synthesis of water soluble graphene.

    PubMed

    Si, Yongchao; Samulski, Edward T

    2008-06-01

    A facile and scalable preparation of aqueous solutions of isolated, sparingly sulfonated graphene is reported. (13)C NMR and FTIR spectra indicate that the bulk of the oxygen-containing functional groups was removed from graphene oxide. The electrical conductivity of thin evaporated films of graphene (1250 S/m) relative to similarly prepared graphite (6120 S/m) implies that an extended conjugated sp (2) network is restored in the water soluble graphene.

  10. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1989-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  11. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  12. Water-soluble conductive polymers

    DOEpatents

    Aldissi, M.

    1988-02-12

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  13. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    SciTech Connect

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  14. Highly stable water-soluble platinum nanoparticles stabilized by hydrophilic N-heterocyclic carbenes.

    PubMed

    Baquero, Edwin A; Tricard, Simon; Flores, Juan Carlos; de Jesús, Ernesto; Chaudret, Bruno

    2014-11-24

    Controlling the synthesis of stable metal nanoparticles in water is a current challenge in nanochemistry. The strategy presented herein uses sulfonated N-heterocyclic carbene (NHC) ligands to stabilize platinum nanoparticles (PtNPs) in water, under air, for an indefinite time period. The particles were prepared by thermal decomposition of a preformed molecular Pt complex containing the NHC ligand and were then purified by dialysis and characterized by TEM, high-resolution TEM, and spectroscopic techniques. Solid-state NMR studies showed coordination of the carbene ligands to the nanoparticle surface and allowed the determination of a (13)C-(195)Pt coupling constant for the first time in a nanosystem (940 Hz). Additionally, in one case a novel structure was formed in which platinum(II) NHC complexes form a second coordination sphere around the nanoparticle.

  15. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging.

    PubMed

    Deng, Dawei; Cao, Jie; Qu, Lingzhi; Achilefu, Samuel; Gu, Yueqing

    2013-04-14

    Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient photoluminescence (PL) emissions can be tuned widely in the range of 525-625 nm by controlling the size and composition of the QDs with the PL quantum yields (QYs) of 15-30%. These highly luminescent ZAIS QDs are less toxic due to the absence of highly toxic cadmium, and can be versatilely modified by a DHLA-PEG-based ligand. Importantly, after being modified by tumor cell-specific targeting ligands (e.g., folate and RGD peptide), the PEGylated quaternary QDs show potential applications in tumor cell imaging as a promising alternative for Cd-based QDs.

  16. High-throughput liberation of water-soluble yeast content by irreversible electropermeation (HT-irEP).

    PubMed

    Zakhartsev, Maxim; Momeu, Carmen; Ganeva, Valentina

    2007-03-01

    The article describes a high-throughput method for the liberation of water-soluble cell contents by exploiting the phenomenon of irreversible membrane electropermeation (HT-irEP). The method is exemplified in recombinant proteins and plasmid liberation from yeast Saccharomyces cerevisiae on the detectable level. Obtained extracts are pure enough to be readily applied for further analytical analysis such as enzyme assay, PCR, and so on. From the same HT-irEP extract, one can measure activity of the target protein and perform amplification of the corresponding gene from the DNA vector by PCR for recombinant protein with intracellular expression. Therefore, the method is suitable for the high-throughput screening (HTS) of yeast libraries where extracellular expression of recombinant protein is problematic. The method can be easily automated and integrated into existing HTS systems.

  17. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies.

    PubMed

    Lee, Teng Huar; Wang, Jianjun; Wang, Chi-Hwa

    2002-10-30

    Composite double-walled microspheres with biodegradable poly(L-lactic acid) (PLLA) shells and poly(D,L-lactic-co-glycolic acid) (PLGA) cores were fabricated with highly water-soluble etanidazole entrapped within the core as solid crystals. This paper discusses the characterization, in vitro release and the effects of irradiation on this class of microsphere. Through the variation of polymer mass ratios, predictable shell and core dimensions could be fabricated and used to regulate the release rates. A direct and simple method was devised to determine the composition of the shell and core polymer based on the different solubilities of the polymer pair in ethyl acetate. A distribution theory based on solubility parameter explains why highly hydrophilic etanidazole has the tendency to be distributed consistently to the more hydrophilic polymer. Release profiles for normal double-walled samples have about 80% of drug released over 10 days after the initial time lag, while for irradiated double-walled samples, the sustained release lasted for more than 3 weeks. Although sustained release was short of the desired 6-8 weeks required for therapy, a low initial burst of less than 5% and time lags that can be manipulated, allows for administration of these microspheres together with traditional ones to generate pulsatile or new type of releases. The effects of irradiation were also investigated to determine the suitability of these double-walled microspheres as delivery devices to be used in conjunction with radiotherapy. Typical therapeutic dosage of 50 Gy was found to be too mild to have noticeable effects on the polymer and its release profiles, while, sterilization dosages of 25 kGy, lowered the glass transition temperatures and crystalline melting point, indirectly indicating a decrease in molecular weight. This accelerated degradation of the polymer, hence releasing the drug.

  18. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  19. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  20. Cross-linked high conductive membranes based on water soluble ionomer for high performance proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Guo, Xin; Zhang, Gang; Ni, Jing; Zhao, Chengji; Liu, Zhongguo; Zhang, Liyuan; Li, Mingyu; Xu, Shuai; Na, Hui

    2013-11-01

    In this paper, a series of proton exchange membranes prepared by “Click Reaction” are reported. The cross-linked membranes are based on water soluble sulfonated poly (ether ether ketone) containing dipropenyl groups (SDPEEK-nE/nH). Compared with self-crosslinked membranes (SDPEEK-nS), this “Click” cross-linked membranes using 1,2-Ethanedithiol and 1,6-Hexanedithiol as the cross-linker exhibit extremely reduced water uptake and swelling ratio. The lowest proton conductivity at 80 °C of the “Click” cross-linked membranes reaches to 0.168 S cm-1, and the highest methanol permeability of the “Click” cross-linked SDPEEK-8E is only 4.13 × 10-7 cm2 s-1, which is 5 times lower than that of Nafion 117 membrane. All the results imply that the cross-linked membranes with novel thiol cross-linker are promising alternative material for fuel cell application.

  1. Assessment of xanthan gum based sustained release matrix tablets containing highly water-soluble propranolol HCl.

    PubMed

    Ali, Atif; Iqbal, Muhammad; Akhtar, Naveed; Khan, Haji Muhamad Shoaib; Ullah, Aftab; Uddin, Minhaj; Khan, Muhammad Tahir

    2013-01-01

    The present study was carried out to develop oral sustained release tablets of propranolol HCl by different ratios of drug : matrix. Tablets were prepared by direct compression technique using xanthan gum and lactose. All the formulations (tablets) were evaluated for thickness, diameter, hardness, friability, weight variation, content of active ingredient, in vitro dissolution using USP dissolution apparatus-II and swelling index. In case of dissolution, an inverse relationship was noted between amount of xanthan gum and release rate of propranolol HCl and the drug release was gradually enhanced as the amount of the lactose increased. The direct release was observed between swelling index and xanthan gum concentration. Significant difference in different media was observed in release profile, indicating that propranolol HCI has better solubility in HCI buffer pH 1.2. Moreover, dissolution data at differing stirring speeds was also analyzed, indicating that the drug release profile was at 50 rpm comparative to 100 rpm. The kinetic treatment showed the best fitted different mathematical models (zero order, first order, Higuchi's, Hixson-Crowell and Korsmeyer Peppas model. Most of the formulations showed linearity in Higuchi's model. The drug release from these tablets was by Fickian diffusion and anomalous (non-Fickian) mechanisms.

  2. Highly sensitive visual detection of copper (II) using water-soluble azide-functionalized gold nanoparticles and silver enhancement.

    PubMed

    Zhang, Zhen; Li, Wenqing; Zhao, Qiuling; Cheng, Ming; Xu, Li; Fang, Xiaohong

    2014-09-15

    A high-sensitive method for the visual detection of copper ions in aqueous solution is developed. The method is based on copper ion-catalyzed 'click' reaction between the water-soluble azide-functionalized gold nanoparticles (AuNPs) and alkyne-modified glass slide. The PEG linker was employed as a stabilizing component along with the terminal azide group to keep the AuNPs stably dispersed in water without the assistance of any organic solvent. In the presence of copper ions, the AuNPs are 'clicked' on the slide, and the darkness of the AuNPs in the sample spot is promoted by silver enhancement process. Only a tiny amount of sample (10 μl) is needed with the detectable concentration down to 62 pM by the commonly used flatbed scanner, which is 2-3 orders of magnitude lower than those in previous reports. The selectivity relative to other potentially interfering ions and the applicability in real samples, human serum and tap water, have also been evaluated. Our method has a good potential in point-of-use applications and environment surveys.

  3. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  4. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.

    PubMed

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2016-01-14

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.

  5. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability.

    PubMed

    Cai, Zheng; Huang, Juan; Luo, Hui; Lei, Xiaolu; Yang, Zhaoxiang; Mai, Yang; Liu, Zhongqiu

    2013-07-01

    Gastrodin, a sedative drug, is a highly water-soluble phenolic glucoside with poor liposolubility but exhibits good oral bioavailability. The current study aims to investigate whether glucose transporters (GLTs) are involved in the intestinal absorption of gastrodin. The intestinal absorption kinetics of gastrodin was determined using the rat everted gut sac model, the Caco-2 cell culture model and the perfused rat intestinal model. In vivo pharmacokinetic studies using diabetic rats with high GLT expression were performed. Saturable intestinal absorption of gastrodin was observed in rat everted gut sacs. The apparent permeability (Papp) of gastrodin from the apical (A) to basolateral (B) side in Caco-2 cells was two-fold higher than that from B to A. Glucose or phlorizin, a sodium-dependent GLT (SGLT) inhibitor, reduced the absorption rates of gastrodin from perfused rat intestines. In vivo pharmacokinetic studies showed that the time of maximum plasma gastrodin concentration (Tmax) was prolonged from 28 to 72 min when orally co-administered with four times higher dose of glucose. However, the Tmax of gastrodin in diabetic rats was significantly lowered to 20 min because of the high intestinal SGLT1 level. In conclusion, our findings indicate that SGLT1 can facilitate the intestinal absorption of gastrodin.

  6. A Novel Proteomic Analysis of the Modifications Induced by High Hydrostatic Pressure on Hazelnut Water-Soluble Proteins

    PubMed Central

    Prieto, Nuria; Burbano, Carmen; Iniesto, Elisa; Rodríguez, Julia; Cabanillas, Beatriz; Crespo, Jesus F.; Pedrosa, Mercedes M.; Muzquiz, Mercedes; del Pozo, Juan Carlos; Linacero, Rosario; Cuadrado, Carmen

    2014-01-01

    Food allergies to hazelnut represent an important health problem in industrialized countries because of their high prevalence and severity. Food allergenicity can be changed by several processing procedures since food proteins may undergo modifications which could alter immunoreactivity. High-hydrostatic pressure (HHP) is an emerging processing technology used to develop novel and high-quality foods. The effect of HHP on allergenicity is currently being investigated through changes in protein structure. Our aim is to evaluate the effect of HHP on the protein profile of hazelnut immunoreactive extracts by comparative proteomic analysis with ProteomeLab PF-2D liquid chromatography and mass spectrometry. This protein fractionation method resolves proteins by isoelectric point and hydrophobicity in the first and second dimension, respectively. Second dimension chromatogram analyses show that some protein peaks present in unpressurized hazelnut must be unsolubilized and are not present in HHP-treated hazelnut extracts. Our results show that HHP treatment at low temperature induced marked changes on hazelnut water-soluble protein profile. PMID:28234319

  7. Biochemical synthesis of water soluble conducting polymers

    NASA Astrophysics Data System (ADS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  8. Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Ping; Chen, Hsiao-Chien; Wang, Ching-Chiung; Tsai, Po-Wei; Ho, Chia-Wen; Liu, Yu-Chuan

    2015-12-01

    Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water’s tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water’s fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte’s concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water’s fundamental activities via effective energy transfer.

  9. Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature

    PubMed Central

    Yang, Chih-Ping; Chen, Hsiao-Chien; Wang, Ching-Chiung; Tsai, Po-Wei; Ho, Chia-Wen; Liu, Yu-Chuan

    2015-01-01

    Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water’s tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water’s fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte’s concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water’s fundamental activities via effective energy transfer. PMID:26658304

  10. Development of an enteric coating formulation and process for tablets primarily composed of a highly water-soluble, organic acid.

    PubMed

    Crotts, G; Sheth, A; Twist, J; Ghebre-Sellassie, I

    2001-01-01

    The purpose of this study was to define coating conditions for the enteric coating of a highly water soluble, acidic tablet core. Acidic tablet cores containing a marker drug were separated into three groups and seal coated to coverage levels of 0% (uncoated, white), 1% (yellow), and 3% (tan) weight gains. By employing a 'color coding' scheme, the different seal coated tablets could be coated simultaneously to reduce the number of experiments and eliminate potential differences that may exist during separate coating processes. In addition, an allotment of each coded tablet type was sequentially numbered with a marker pen, weighed, and recorded in order to identify the precise level of enteric coating as well as to monitor the variability of a given coating operation. The tablets were coated with five Eudragit((R)) L30D-based enteric formulations containing different amounts of plasticizer (10-20 parts) and talc (10-50 parts). During each enteric coating process, a predetermined amount of labeled tablets were removed after attaining 6, 8, and 10% weight gains. The labeled tablets were re-weighed, sorted, and then tested using USP disintegration and dissolution methods. Weight gain measurements of individual tablets indicated low coating variability (6.2% RSD) during the enteric coating processes. Dissolution results revealed that all enteric coat formulations inhibited drug release for 2 h in 0.1 N HCl. In contrast, it was found that tablets without a seal coat failed the USP disintegration test. In addition, seal coated tablets exhibited ca. 1.5-5 fold greater drug release at most intermediate sampling time points in phosphate buffer, pH 6.8, than tablets without a seal coat, suggesting that the dissolution of the latter was delayed by the generation of an acidic microenvironment at the interface of the enteric coat/acidic tablet core. Prior to enteric coating an acidic, highly water soluble substrate, a seal coat barrier should be applied to prevent retardation in

  11. Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli.

    PubMed

    Xue, Cuihua; Jog, Sonali P; Murthy, Pushpalatha; Liu, Haiying

    2006-09-01

    Two facile, convenient, and versatile synthetic approaches are used to covalently attach carbohydrate residues to conjugated poly(p-phenylene)s (PPPs) for highly water-soluble PPPs bearing alpha-mannopyranosyl and beta-glucopyranosyl pendants (polymers A and B), which highly fluoresce in phosphate buffer (pH 7.0). The post-polymerization functionalization approach is to treat bromo-bearing PPP (polymer 1) with 1-thiolethyl-alpha-D-mannose tetraacetate or 1-thiol-beta-D-glucose tetraacetate in THF solution in the presence of K(2)CO(3) at room temperature through formation of thioether bridges, affording polymer 2a or 2b. The prepolymerization functionalization approach is to polymerize a well-defined sugar-carrying monomer, affording polymer 2a. Polymers 2a and 2b were deacetylated under Zemplén conditions in methanol and methylene chloride containing sodium methoxide, affording polymers A and B, respectively. The multivalent display of carbohydrates on the fluorescent conjugated glycopolymer overcomes the characteristic low binding affinity of the individual carbohydrates to their receptor proteins. Titration of concanavalin A (Con A) to alpha-mannose-bearing polymer A resulted in significant fluorescent quenching of the polymer with Stern-Volmer quenching constant of 4.5 x 10(7). Incubation of polymer A with Escherichia coli (E. coli) lead to formation of fluorescently stained bacterial clusters. Beta-glucose-bearing polymer B displayed no response to Con A and E. coli.

  12. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.

    PubMed

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2010-02-15

    Rapid and homogeneous mixing of the solvent and antisolvent is critical to achieve submicron drug particles by antisolvent precipitation technique. This work aims to develop a continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs with spironolactone as a model drug. Continuous antisolvent production of drug nanoparticles was carried out with a SMV DN25 static mixer comprising 6-18 mixing elements. The total flow rate ranged from 1.0 to 3.0 L/min while the flow rate ratio of solvent to antisolvent was maintained at 1:9. It is found that only 6 mixing elements were sufficient to precipitate the particles in the submicron range. Increasing the number of elements would further reduce the precipitated particle size. Increasing flow rate from 1.0 to 3.0 L/min did not further reduce the particle size, while higher drug concentrations led to particle size increase. XRD and SEM results demonstrated that the freshly precipitated drug nanoparticles are in the amorphous state, which would, in presence of the mixture of solvent and antisolvent, change to crystalline form in short time. The lyophilized spironolactone nanoparticles with lactose as lyoprotectant possessed good redispersibility and showed 6.6 and 3.3 times faster dissolution rate than that of lyophilized raw drug formulation in 5 and 10 min, respectively. The developed static mixing process exhibits high potential for continuous and large-scale antisolvent precipitation of submicron drug particles.

  13. Highly water-soluble mast cell stabiliser-encapsulated solid lipid nanoparticles with enhanced oral bioavailability.

    PubMed

    Patel, Ravi R; Chaurasia, Sundeep; Khan, Gayasuddin; Chaubey, Pramila; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-05-01

    Cromolyn sodium (CS), a mast cell stabiliser, is widely employed for the prevention and treatment of allergic conditions. However, high hydrophilicity and poor oral permeability hinder its oral clinical translation. Here, solid lipid nanoparticles (SLNs) have been developed for the purpose of oral bioavailability enhancement. The CS-SLNs were engineered by double emulsification method (W1/O/W2) and optimised by using Box-Behnken experimental design. The surface and solid-state characterisations revealed the presence of CS in an amorphous form without any interactions inside the spherical-shaped SLNs. The in-vitro release study showed an extended release up to 24 hr by diffusion controlled process. Ex-vivo and in-vivo intestinal permeation study showed ∼2.96-fold increase in permeability of CS by presentation as SLNs (p < 0.05). Further, in-vivo pharmacokinetic study exhibited ∼2.86-fold enhancements in oral bioavailability of CS by encapsulating inside SLNs, which clearly indicate that SLNs can serve as the potential therapeutic carrier system for oral delivery of CS.

  14. Water-soluble and highly fluorescent hybrids of multi-walled carbon nanotubes with uniformly arranged gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Renjia; Shi, Minmin; Chen, Xiaoqiang; Wang, Mang; Yang, Yang; Zhang, Xiaobin; Chen, Hongzheng

    2007-12-01

    Water-soluble hybrids of multi-walled carbon nanotubes (MWNTs) and gold nanoparticles (Au@MWNTs) were fabricated via the in situ solution method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS). An optoelectronic-active compound of N,N'-bi(2-mercaptoethyl)-perylene-3,4,9,10-tetracarboxylic diimide (MEPTCDI) was employed as interlinker and stabilizer for the formation of the Au@MWNTs hybrids. The size of Au nanoparticles in the hybrids can be controlled and decreased to a limited small range with high stability via this in situ fabrication approach. The hybrid formation mechanism was proposed by making comparison with other hybrids, employing various organic or organic groups as interlinkers, and was further demonstrated by TEM, ultraviolet-visible (UV-vis), and atomic absorption measurements. The optical properties of the Au@MWNTs hybrids were studied, and it was found that the hybrid exhibited strong visible luminescence under UV lamp irradiation, which might extend its potential applications to biological labeling, etc.

  15. Odorants with Multiple Oxygen-Containing Functional Groups and Other Odorants with High Water Solubility Preferentially Activate Posterior Olfactory Bulb Glomeruli

    PubMed Central

    Johnson, Brett A.; Arguello, Spart; Leon, Michael

    2008-01-01

    In past studies in which we mapped 2-deoxyglucose uptake evoked by systematically different odorant chemicals across the entire rat olfactory bulb, glomerular responses could be related to each odorant's particular oxygen-containing functional group. In the present study, we tested whether aliphatic odorants containing two such functional groups (esters, ketones, acids, alcohols, and ethers) would stimulate the combination of glomerular regions that are associated with each of the functional groups separately, or whether they would evoke unique responses in different regions of the bulb. We found that these very highly water-soluble molecules rarely evoked activity in the regions responding to the individual functional groups; instead, they activated posterior glomeruli located about halfway between the dorsal and ventral extremes in both the lateral and the medial aspects of the bulb. Additional highly water-soluble odorants, including very small molecules with single oxygenic groups, also strongly stimulated these posterior regions, resulting in a statistically significant correlation between posterior 2-deoxyglucose uptake and molecular properties associated with water solubility. By showing that highly water-soluble odorants stimulate a part of the bulb associated with peripheral and ventral regions of the epithelium, our results challenge a prevalent notion that such odorants would activate class I odorant receptors located in zone 1 of the olfactory epithelium, which projects to the dorsal aspect of the bulb. PMID:17366613

  16. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  17. Stearic acid and high molecular weight PEO as matrix for the highly water soluble metoprolol tartrate in continuous twin-screw melt granulation.

    PubMed

    Monteyne, Tinne; Adriaensens, Peter; Brouckaert, Davinia; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-15

    Granules with release-sustaining properties were developed by twin screw hot melt granulation (HMG) using a combination of stearic acid (SA) and high molecular weight polyethylene oxide (PEO) as matrix for a highly water soluble model drug, metoprolol tartrate (MPT). Earlier studies demonstrated that mixing molten SA and PEO resulted in hydrogen bond formation between hydroxyl groups of fatty acid molecules and ether groups in PEO chains. These molecular interactions might be beneficial in order to elevate the sustained release effect of drugs from a SA/PEO matrix. This study aims to investigate the continuous twin screw melt granulation technique to study the impact of a SA/PEO matrix on the dissolution rate of a highly water soluble drug (MPT). Decreasing the SA/PEO ratio improved the release-sustaining properties of the matrix. The solid state of the granules was characterized using differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and near infrared chemical imaging (NIR-CI) in order to understand the dissolution behavior. The results revealed a preferential interaction of the MPT molecules with stearic acid impeding the PEO to form hydrogen bonds with the stearic acid chains. However, this allowed the PEO chains to recrystallize inside the stearic acid matrix after granulation, hence, elevating the release-sustaining characteristics of the formulation.

  18. High-efficiency loading and controlled release of highly water-soluble drug, pravastatin sodium by use of cross-linked β-cyclodextrin

    PubMed Central

    Kumar, Yatendra; Philip, Betty; Pathak, Kamla

    2011-01-01

    Aim: The aim of the project was to develop cross-linked b-cyclodextrin (CL β-CD) microparticles for controlled delivery of a highly water-soluble drug. Materials and Methods: CL β-CD microparticles were prepared by emulsification phase separation technique using epichlorohydrin as a cross-linking reagent. The developed microparticles were compared with β-CD for their pharmacotechnical properties. A highly water-soluble model drug, pravastatin sodium (PS) was loaded within these hydrophobic microparticles by active drug loading method using nonionic surfactant Tween 80 as the loading facilitator. Results: Maximal drug fixation (216.8 mg/g beads) was observed in pH 4 at 20°C. In vitro release studies of PS-loaded CL β-CD microparticles in simulated gastric fluid and simulated intestinal fluid resulted in modified dissolution profiles. Modeling of release profiles confirmed controlled release (r2 = 0.9910) of PS from the cross-linked system. Conclusion: Controlled release CL β-CD microparticles PS that have the potential to enhance its therapeutic properties by offering the advantage of less frequent dosing and decreased fluctuations in the blood levels during the dosing interval were successfully developed. PMID:23071914

  19. Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment.

    PubMed

    Wang, Jian-Ping; Chen, Yong-Zhen; Yuan, Shi-Jie; Sheng, Guo-Ping; Yu, Han-Qing

    2009-12-01

    In this work, pulp mill wastewater was treated using a novel copolymer flocculant with a high water-solubility, which was synthesized through grafting (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) onto chitosan initiated by potassium persulphate. The experimental results demonstrate that the two main problems associated with the utilization of chitosan as a flocculant, i.e., low molecular weight and low water-solubility, were concurrently sorted out. The physicochemical properties of this flocculant were characterized with Fourier-transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy. Reaction parameters influencing the grafting percentage, such as temperature, reaction time, initiator concentration and monomer concentration, were optimized using an orthogonal array design matrix. With an increase in grafting percentage, the water-solubility of the flocculant was improved, and it became thoroughly soluble in water when the grafting percentage reached 236.4% or higher. Its application for the treatment of pulp mill wastewater indicates that it had an excellent flocculation capacity and that its flocculation efficiency was much better than that of polyacrylamide. The optimal conditions for the flocculation treatment of pulp mill wastewater were also obtained.

  20. Water-soluble dopamine-based polymers for photoacoustic imaging.

    PubMed

    Repenko, Tatjana; Fokong, Stanley; De Laporte, Laura; Go, Dennis; Kiessling, Fabian; Lammers, Twan; Kuehne, Alexander J C

    2015-04-11

    Here we present a facile synthetic method yielding a linear form of polydopamine via Kumada-coupling, which can be converted into water-soluble melanin, generating high contrast in photoacoustic imaging.

  1. Water-soluble pyrrolopyrrole cyanine (PPCy) NIR fluorophores.

    PubMed

    Wiktorowski, Simon; Rosazza, Christelle; Winterhalder, Martin J; Daltrozzo, Ewald; Zumbusch, Andreas

    2014-05-11

    Water-soluble derivatives of pyrrolopyrrole cyanines (PPCys) have been synthesized by a post-synthetic modification route. In highly polar media, these dyes are excellent NIR fluorophores. Labeling experiments show how these novel dyes are internalized into mammalian cells.

  2. Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography.

    PubMed

    Li, Aifeng; Xuan, Hongzhuan; Sun, Ailing; Liu, Renmin; Cui, Jichun

    2016-02-15

    In this study, a preparative separation method was developed for isolation of eleven polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin (MAR) coupled with preparative high performance liquid chromatography (PHPLC). Water-soluble fraction of Chinese propolis was first "prefractioned" using MAR, which yielded four subfractions. The four subfractions were then isolated by PHPLC with an isocratic elution of methanol-water. Finally, eleven polyphenols were purified from Chinese propolis including caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxy cinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin and galangin. The purities of the compounds were determined by HPLC and the chemical structures were confirmed by UV and NMR analysis. The method developed was simple, effective, rapid, scalable and economical, and it was a promising basis for large-scale preparation of multiple components from natural products.

  3. Nonlinear water waves with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  4. Relationships between octanol-water partition coefficient and aqueous solubility

    SciTech Connect

    Miller, M.M.; Waslk, S.P.; Huang, G.L.; Shiu, W.Y.; Mackay, D.

    1985-06-01

    The thermodynamic relationship between octanol-water partition coefficient and aqueous solubility is discussed in the light of recently measured data for highly hydrophobic chemicals. Experimental data indicate that the presence of dissolved octanol in water has little effect on the solubility of chemicals in water and that the presence of dissolved water in octanol has little effect on the solubility of chemicals in octanol. The activity coefficients of hydrophobic chemicals in aqueous solution and in octanol solution both increase with increased chemical molar volume. An approximately linear relationship between log activity coefficient and molar volume is suggested in both phases, a consequence of which is that a plot of log octanol-water partition coefficient vs. log liquid or subcooled liquid solubility has a slope of approximately -0.8. A molecular thermodynamic interpretation of the data is presented, and some environmental implications are discussed.

  5. Highly Water-soluble, Near-infrared Emissive BODIPY Polymeric Dye Bearing RGD Peptide Residues for Cancer Imaging

    PubMed Central

    Zhu, Shilei; Zhang, Jingtuo; Janjanam, Jagadeesh; Bi, Jianheng; Vegesna, Giri; Tiwari, Ashutosh; Luo, Fen-Tair; Wei, Jianjun

    2012-01-01

    Near-infrared emissive BODIPY polymeric dye bearing cancer-homing cyclic arginine-glycine-aspartic acid (RGD) peptide residues (polymer B) was prepared by post-polymerization functionalization of BODIPY polymeric dye bearing bromo groups through tetra(ethylene glycol tethered spacers (polymer A) with thiol-functionalized RGD cancer-homing peptide through thioether bonds under a mild basic condition. Polymer B possesses excellent water solubility, good photostability, biocompatibility and resistance to nonspecific interactions to normal endothelial cells, and can efficiently detect breast tumor cells through specific cooperative binding of cancer-homing RGD peptides to αVβ3 integrins of cancer cells while its parent polymer Awith outRGD residues fails to target cancer cells. PMID:23245906

  6. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    NASA Astrophysics Data System (ADS)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve

  7. Chromatographic determination of solubilities in superheated water.

    PubMed

    Jones, Neil; Clifford, Anthony A; Bartle, Keith D; Myers, Peter

    2010-10-01

    Superheated water (SHW) is an effective solvent for the extraction of a variety of environmental pollutants, but knowledge of the solubilities in water at elevated temperatures necessary to maximise the efficiency of the process is often lacking. Ambient temperature aqueous solubilities have been measured by reverse-phase HPLC from correlations with retention factors, k, but for poorly soluble organics the eluent must contain a proportion of organic modifier followed by extrapolation to pure water. The use of SHW as mobile phase allows direct determination of aqueous solubility from measurement of k on a modified HPLC system in which the eluent is cooled before detection to improve baseline stability. Alumina-bonded octadecylsilane columns were found to be more stable in SHW chromatography than their silica-bonded counterparts. To validate the procedure, measurements of k were made between 100 and 200°C for toluene and correlated with literature solubilities; the solubilities at 170°C of a number of related aromatics were then determined from their k-values.

  8. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: a simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples.

    PubMed

    Xu, Chen; Liu, Shu; Liu, Zhiqiang; Song, Fengrui; Liu, Shuying

    2013-09-02

    Superoxide anion radical (O2(˙-)) plays an important role in several human diseases. The xanthine/xanthine oxidase system is frequently utilized to produce O2(˙-). However, false positive results are easily got by using this system. The common spectrophotometric probes for O2(˙-) are nitroblue tetrazolium (NBT) and cytochrome c. Nevertheless, the application of NBT method is limited because of the water-insolubility of NBT formazan and the assay using cytochrome c lacks sensitivity and is not suitable for microplate measurement. We overcome these problems by using 1,2,3-trihydroxybenzene (pyrogallol) as O2(˙-)-generating system and a highly water-soluble tetrazolium salt, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt (WST-1) which can be reduced by superoxide anion radical to a stable water-soluble formazan with a high absorbance at 450 nm. The method is simple, rapid and sensitive. Moreover, it can be adapted to microplate format. In this study, the O2(˙-) scavenging activities of superoxide dismutase (SOD), L-ascorbic acid, N-acetyl-L-cysteine (NAC), albumin from human serum, flavonoids and herbal extracts were assessed by using this method. Meanwhile, the activities of tissue homogenates and serum were determined by using this validated method. This method, applicable to tissue homogenates, serum and herbal extracts, proved to be efficient for measuring O2(˙-) scavenging activities of biological and abiological samples.

  9. Water-Soluble Metallocene-Containing Polymers.

    PubMed

    Alkan, Arda; Wurm, Frederik R

    2016-09-01

    Metallocenes are organometallic compounds with reversible redox profiles and tunable oxidation and reduction potentials, depending on the metal and substituents at the cyclopentadienyl rings. Metallocenes have been introduced in macromolecules to combine the redox-activity with polymer properties. There are many examples of such hydrophobic polymer materials, but much fewer water-soluble examples are found scattered across the polymer literature. However, in terms of drug delivery and other biological applications, water solubility is essential. For this very reason, all the synthetic routes to water-soluble metallocene containing polymers are collected and discussed here. The focus is on neutral ferrocene- and ruthenocene-containing and charged cobaltocenium-containing macromolecules (i.e., symmetrical sandwich complexes). The synthetic protocols, self-assembly behavior, and other benefits of the obtained materials are discussed.

  10. Effects of high molecular weight water-soluble chitosan on in vitro fertilization and ovulation in mice fed a high-fat diet.

    PubMed

    Choi, Hee Gon; Kim, Jin Kyung; Kwak, Dong Hoon; Cho, Jung Ran; Kim, Ji Yeoun; Kim, Byung Jin; Jung, Kyu Yong; Choi, Bong Kyu; Shin, Min Kyo; Choo, Young Kug

    2002-04-01

    A high molecular weight water-soluble chitosan (WSC) with an average molecular weight of 300 kD and a deacethylation level of over 90% was produced using a simple multi-step membrane separation process. It is known that WSC prevents obesity induced by a high-fat diet. Consequently, this study investigated whether or not WSC improved the ovarian dysfunction caused by obesity in mice. The mice were fed a high density protein and lipid diet for 4 weeks, followed by the administration of WSC at 480 mg/kg body weight per day for 4 days. Thereafter, the changes in body weight, ovulation rate, in vivo and in vitro fertilization and embryonic development were measured. WSC markedly reduced the body weight of obese mice fed with a high-fat diet, but not in mice fed with a normal diet. WSC had significant effects on the ovulation rate, both the in vivo and in vitro fertilization rates and embryonic development. These results indicate an improvement in the ovarian and oviduct dysfunction caused by obesity, and suggest an adjustment in the internal secretions and metabolic functions.

  11. Pharmacological characterization of novel water-soluble cannabinoids.

    PubMed

    Martin, Billy R; Wiley, Jenny L; Beletskaya, Irina; Sim-Selley, Laura J; Smith, Forrest L; Dewey, William L; Cottney, Jean; Adams, Julia; Baker, James; Hill, David; Saha, Bijali; Zerkowski, John; Mahadevan, Anu; Razdan, Raj K

    2006-09-01

    Presently, there are numerous structural classes of cannabinoid receptor agonists, all of which require solubilization for experimental purposes. One strategy for solubilizing water-insoluble tetrahydrocannabinols is conversion of the phenolic hydroxyl to a morpholinobutyryloxy substituent. The hydrochloride salts of these analogs are water-soluble and active in vivo when administered in saline. The present investigation demonstrated that hydrochloride salts of numerous substituted butyryloxy esters are water-soluble and highly potent. The substitutions include piperidine, piperazine, and alkyl-substituted amino moieties. It was also discovered that incorporation of a nitrogenous moiety in the alkyl side chain increased the pharmacological potency of tetrahydrocannabinol. For example, an analog containing a pyrazole in the side chain (O-2545) was found to have high affinity and efficacy at cannabinoid 1 (CB(1)) and CB(2) receptors, and when dissolved in saline, it was highly efficacious when administered either intravenously or intracerebroventricularly to mice. A series of carboxamido and carboxylic acid amide analogs exhibited high pharmacological potency, but their hydrochloride salts were not water-soluble. On the other hand, incorporation of imidazoles into the terminus of the side chain led to water-soluble hydrochloride salts that were highly potent when administered in saline to laboratory animals. It is now possible to conduct cannabinoid research with agonists that are water-soluble and thus obviating the need of solubilizing agents.

  12. Solubility of carbohydrates in heavy water.

    PubMed

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water.

  13. Combined Measurement of 6 Fat-Soluble Vitamins and 26 Water-Soluble Functional Vitamin Markers and Amino Acids in 50 μL of Serum or Plasma by High-Throughput Mass Spectrometry.

    PubMed

    Midttun, Øivind; McCann, Adrian; Aarseth, Ove; Krokeide, Marit; Kvalheim, Gry; Meyer, Klaus; Ueland, Per M

    2016-11-01

    Targeted metabolic profiling characterized by complementary platforms, multiplexing and low volume consumption are increasingly used for studies using biobank material. Using liquid-liquid extraction, we developed a sample workup suitable for quantification of 6 fat- and 26 water-soluble biomarkers. 50 μL of serum/plasma was mixed with dithioerythritol, ethanol, and isooctane/chloroform. The organic layer was used for analysis of the fat-soluble vitamins all-trans retinol (A), 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, α-tocopherol (E), γ-tocopherol (E), and phylloquinone (K1) by LC-MS/MS. The remaining aqueous fraction was mixed with ethanol, water, pyridine, and methylchloroformate (in toluene) to derivatize the water-soluble biomarkers. The resulting toluene layer was used for GC-MS/MS analysis of alanine, α-ketoglutarate, asparagine, aspartic acid, cystathionine, total cysteine, glutamic acid, glutamine, glycine, histidine, total homocysteine, isoleucine, kynurenine, leucine, lysine, methionine, methylmalonic acid, ornithine, phenylalanine, proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine. Isotope-labeled internal standards were used for all analytes. Chromatographic run times for the LC-MS/MS and GC-MS/MS were 4.5 and 11 min, respectively. The limits of detection (LOD) for the low-concentration analytes (25-hydroxyvitamin D2, 25-hydroxyvitamin D3, and phylloquinone) were 25, 17, and 0.33 nM, respectively, while all other analytes demonstrated sensitivity significantly lower than endogenous concentrations. Recoveries ranged from 85.5-109.9% and within- and between-day coefficients of variance (CVs) were 0.7-9.4% and 1.1-17.5%, respectively. This low-volume, high-throughput multianalyte assay is currently in use in our laboratory for quantification of 32 serum/plasma biomarkers in epidemiological studies.

  14. Computational study of phosphatase activity in soluble epoxide hydrolase: high efficiency through a water bridge mediated proton shuttle.

    PubMed

    De Vivo, Marco; Ensing, Bernd; Klein, Michael L

    2005-08-17

    Recently, a new branch of fatty acid metabolism has been opened by the novel phosphatase activity found in the N-terminal domain of the, hence bifunctional, soluble epoxide hydrolase (sEH). Importantly, this finding has also provided a new site for drug targeting in sEH's activity regulation. Classical MD and hybrid Car-Parrinello QM/MM calculations have been performed to investigate the reaction mechanism of the phosphoenzyme intermediate formation in the first step of the catalysis. The results support a concerted multi-event reaction mechanism: (1) a dissociative in-line nucleophilic substitution for the phosphoryl transfer reaction; (2) a double proton transfer involved in the formation of a good leaving group in the transition state. The presence of a water bridge in the substrate/enzyme complex allowed an efficient proton shuttle, showing its key role in speeding up the catalysis. The calculated free energy of the favored catalytic pathway is approximately 19 kcal/mol, in excellent agreement with experimental data.

  15. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.

    PubMed

    Zhang, Wenjin; Chen, Guanjiao; Wang, Jian; Ye, Bang-Ce; Zhong, Xinhua

    2009-10-19

    Applications of water-dispersible near-infrared (NIR)-emitting quantum dots (QDs) have been hampered by their instability and low photoluminescence (PL) efficiencies. In this paper, water-soluble highly luminescent NIR-emitting QDs were developed through constructing CdTe/CdSe/ZnS core/shell/shell nanostructure. The CdTe/CdSe type-II structure yields the QDs with NIR emission. By varying the size of CdTe cores and the thickness of the CdSe shell, the emission wavelength of the obtained nanostructure can span from 540 to 825 nm. In addition, the passivation of the ZnS shell with a substantially wide bandgap confines the excitons within the CdTe/CdSe interface and isolates them from the solution environment and consequently improves the stability of the nanostructure, especially in aqueous media. An effective shell-coating route was developed for the preparation of CdTe/CdSe core/shell nanostructures by selecting capping reagents with a strong coordinating capacity and adopting a low temperature for shell deposition. An additional ZnS shell was deposited around the outer layer of CdTe/CdSe QDs to form the core/shell/shell nanostructure through the decomposition of single molecular precursor zinc diethyldithiocarbamate in the crude CdTe/CdSe reaction solution. The water solubilization of the initially oil-soluble CdTe/CdSe/ZnS QDs was achieved through ligand replacement by 3-mercaptopropionic acid. The as-prepared water-soluble CdTe/CdSe/ZnS QDs possess PL quantum yields as high as 84% in aqueous media, which is one of the best results for the luminescent semiconductor nanocrystals.

  16. Water-soluble constituents of dill.

    PubMed

    Ishikawa, Toru; Kudo, Masato; Kitajima, Junichi

    2002-04-01

    From the water-soluble portion of the methanol extract of dill (fruit of Anethum graveolens L.), which has been used as a spice and medicine, thirty-three compounds, including a new monoterpenoid, six new monoterpenoid glycosides, a new aromatic compound glucoside and a new alkyl glucoside were obtained. Their structures were clarified by spectral investigation.

  17. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  18. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  19. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  20. Correlation of octanol/water solubility ratios and partition coefficients

    SciTech Connect

    Pinsuwan, S.; Li, A.; Yalkowsky, S.H.

    1995-05-01

    The partition coefficient between octanol and water in an important physicochemical parameter for characterizing the lipophilicity or hydrophobicity of a compound and it is used in many fields, especially in the environmental and pharmaceutical sciences. The octanol/water solubility ratio (S{sub o}/S{sub W}) was found to be highly correlated with the octanol/water partition coefficient (K{sub ow}) of 82 pharmaceutically and environmentally relevant compounds. The solubility ratio gives comparable estimates to that of the group contribution (log P(calcd)) method for estimating the partition coefficient of the compounds used in this study.

  1. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    PubMed Central

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  2. Fluorite solubility equilibria in selected geothermal waters

    USGS Publications Warehouse

    Nordstrom, D.K.; Jenne, E.A.

    1977-01-01

    Calculation of chemical equilibria in 351 hot springs and surface waters from selected geothermal areas in the western United States indicate that the solubility of the mineral fluorite, CaF2, provides an equilibrium control on dissolved fluoride activity. Waters that are undersaturated have undergone dilution by non-thermal waters as shown by decreased conductivity and temperature values, and only 2% of the samples are supersaturated by more than the expected error. Calculations also demonstrate that simultaneous chemical equilibria between the thermal waters and calcite as well as fluorite minerals exist under a variety of conditions. Testing for fluorite solubility required a critical review of the thermodynamic data for fluorite. By applying multiple regression of a mathematical model to selected published data we have obtained revised estimates of the pK (10,96), ??Gof (-280.08 kcal/mole), ??Hof (-292.59 kcal/mole), S?? (16.39 cal/deg/mole) and CoP (16.16 cal/deg/mole) for CaF2 at 25??C and 1 atm. Association constants and reaction enthalpies for fluoride complexes with boron, calcium and iron are included in this review. The excellent agreement between the computer-based activity products and the revised pK suggests that the chemistry of geothermal waters may also be a guide to evaluating mineral solubility data where major discrepancies are evident. ?? 1977.

  3. Characterization of Soluble Organics in Produced Water

    SciTech Connect

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion-selective electrodes and inductively

  4. Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers

    PubMed Central

    Carson, Daniel; Jiang, Yonghou; Woodrow, Kim

    2015-01-01

    Objectives Sustained release of small molecule hydrophilic drugs at high doses remains difficult to achieve from electrospun fibers and limits their use in clinical applications. Here we investigate tunable release of several water-soluble anti-HIV drugs from electrospun fibers fabricated with blends of two biodegradable polyesters. Methods Drug-loaded fibers were fabricated by electrospinning using ratios of PCL and PLGA. Fiber morphology was imaged using SEM, and DSC was used to measure thermal properties. HPLC was used to measure drug loading and release from fibers. Cytotoxicity and antiviral activity of drug-loaded fibers were measured in an in vitro cell culture assay. Results We show programmable release of hydrophilic antiretroviral drugs loaded up to 40 wt%. Incremental tuning of highly-loaded drug fibers within 24 hours or >30 days was achieved by controlling the ratio of PCL and PLGA. Fiber compositions containing higher PCL content yielded greater burst release whereas fibers with higher PLGA content resulted in greater sustained release kinetics. We also demonstrated that our drug-loaded fibers are safe and can sustain inhibition of HIV in vitro. Conclusions These data suggest that we were able to overcome current limitations associated with sustained release of small hydrophilic drugs at clinically relevant doses. We expect that our system represents an effective strategy to sustain delivery of water-soluble molecules that will benefit a variety of biomedical applications. PMID:26286184

  5. Soaking Hay in Water to Reduce Soluble Carbohydrate Concentrations Prior to Horse Feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Administering high concentrations of fructan to horses has resulted in laminitis. Cool season grasses accumulate fructan, which is estimated as the difference between water soluble carbohydrates (WSC; sucrose, fructose, glucose, fructans) and ethanol soluble carbohydrates (ESC; sucrose, fructose, gl...

  6. Water-Soluble Polyphosphazenes and Their Hydrogels

    DTIC Science & Technology

    1994-05-18

    T IC 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(E E L L 87. PERFORMING ORGANIZATION Department of Chemistry MAY 3 119M4. REPORT NUMBER The...THEIR HYDROGELS by Harry R. Allcock Prepared for Publication in ACS Symposium Series Department of Chemistry The Pennsylvania State University...Polyphophaunes Chart I shows six different polyphosphazenes that are soluble in water. All of them were synthesized in our labomory via variants of the chemistry

  7. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    NASA Astrophysics Data System (ADS)

    Aydınlı, Bahattin; Tin c̡er, Teoman

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60°C and they became clearer at a higher grafting level. In the second run of DSC some Tg values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  8. Water-soluble titanium alkoxide material

    DOEpatents

    Boyle, Timothy J.

    2010-06-22

    A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.

  9. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug.

    PubMed

    Lakshman, Jay P; Cao, Yu; Kowalski, James; Serajuddin, Abu T M

    2008-01-01

    Formulation of active pharmaceutical ingredients (API) in high-energy amorphous forms is a common strategy to enhance solubility, dissolution rate and, consequently, oral bioavailability of poorly water-soluble drugs. Amorphous APIs are, however, susceptible to recrystallization and, therefore, there is a need to physically stabilize them as solid dispersions in polymeric carriers. Hot melt extrusion has in recent years gained wide acceptance as a method of choice for the preparation of solid dispersions. There is a potential that the API, the polymer or both may degrade if excessively high temperature is needed in the melt extrusion process, especially when the melting point of the API is high. This report details a novel method where the API was first converted to an amorphous form by solvent evaporation and then melt-extruded with a suitable polymer at a drug load of at least 20% w/w. By this means, melt extrusion could be performed much below the melting temperature of the drug substance. Since the glass transition temperature of the amorphous drug was lower than that of the polymer used, the drug substance itself served as the plasticizer for the polymer. The addition of surfactants in the matrix enhanced dispersion and subsequent dissolution of the drug in aqueous media. The amorphous melt extrusion formulations showed higher bioavailability than formulations containing the crystalline API. There was no conversion of amorphous solid to its crystalline form during accelerated stability testing of dosage forms.

  10. Spectroscopic and Photochemical Properties of Water-Soluble Fullerenol

    EPA Science Inventory

    Fullerenol, a hydroxylated form of C60-fullerene, is of potential environmental and biological significance due to its buckyball structure, hydroxyl groups and high water solubility. Although fullerenol is known to be an efficient triplet photosensitizer, little is known about it...

  11. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method.

    PubMed

    Zu, Yuangang; Wu, Weiwei; Zhao, Xiuhua; Li, Yong; Zhong, Chen; Zhang, Yin

    2014-12-30

    This study selected γ-cyclodextrin (γ-CD) as the inclusion material and prepared inclusion complex of taxifolin-γ-CD by the emulsion solvent evaporation and the freeze drying combination method to achieve the improvement of the solubility and oral bioavailability of taxifolin. We selected ethyl acetate as the oil phase, deionized water as the water phase. The taxifolin emulsion was prepared using adjustable speed homogenate machine in the process of this experiment, whose particle size was related to the concentration of taxifolin solution, the volume ratio of water phase to oil phase, the speed and time of homogenate. We knew through the single-factor test that, the optimum conditions were: the concentration of taxifolin solution was 40 mg/ml, the volume ratio of water phase to oil phase was 1.5, the speed of homogenate was 5,000 rpm, the homogenate time was 11 min. Taxifolin emulsion with a MPS of 142.5 nm was obtained under the optimum conditions, then the high-concentration taxifolin solution (3mg/ml) was obtained by the rotary evaporation process. Finally, the inclusion complex of taxifolin-γ-CD was prepared by vacuum freeze-dry. The characteristics of the inclusion complex of taxifolin-γ-CD were analyzed using SEM, FTIR, XRD, DSC, and TG. The FTIR results analyzed the interaction of taxifolin and γ-CD and determined the molecular structure of the inclusion complex of taxifolin-γ-CD. The analysis results of XRD, DSC and TG indicated that the inclusion complex of taxifolin-γ-CD was obtained and showed significantly different characteristics with taxifolin. In addition, dissolving capability test, antioxidant capacity test, solvent residue test were also carried out. The experimental datas showed that the solubility of inclusion complex of taxifolin-γ-CD at 25°C and 37°C were about 18.5 times and 19.8 times of raw taxifolin, the dissolution rate of inclusion complex of taxifolin-γ-CD were about 2.84 times of raw taxifolin, the bioavailability of

  12. Optimization of Amide-Based Inhibitors of Soluble Epoxide Hydrolase with Improved Water Solubility

    PubMed Central

    Kim, In-Hae; Heirtzler, Fenton R.; Morisseau, Christophe; Nishi, Kosuke; Tsai, Hsing-Ju; Hammock, Bruce D.

    2006-01-01

    Soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. 1,3-Disubstituted ureas with a polar group located on the fifth atom from the carbonyl group of urea function are active inhibitors of sEH both in vitro and in vivo. However, their limited solubility in water and relatively high melting point lead to difficulties in formulating the compounds and poor in vivo efficacy. To improve these physical properties, the effect of structural modification of the urea pharmacophore on the inhibition potencies, water solubilities, octanol/water partition coefficients (log P), and melting points of a series of compounds was evaluated. For murine sEH, no loss of inhibition potency was observed when the urea pharmacophore was modified to an amide function, while for human sEH 2.5-fold decreased inhibition was obtained in the amide compounds. In addition, a NH group on the right side of carbonyl group of the amide pharmacophore substituted with an adamantyl group (such as compound 14) and a methylene carbon present between the adamantyl and amide groups were essential to produce potent inhibition of sEH. The resulting amide inhibitors have 10–30-fold better solubility and lower melting point than the corresponding urea compounds. These findings will facilitate synthesis of sEH inhibitors that are easier to formulate and more bioavailable. PMID:15887969

  13. Benzene solubility in water: A reassessment

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2006-09-01

    It is shown that the results of molecular dynamics simulations on the hydration thermodynamics of benzene at room temperature [Schravendijk and van der Vegt, J. Chem. Theory Comput. 1 (2005) 643] are in line with a former theoretical analysis [Graziano and Lee, J. Phys. Chem. B 105 (2001) 10367]. In fact: (a) the benzene-water van der Waals interaction energy proves to be larger in magnitude than the work of cavity creation and is able to account for the experimental finding that the hydration of benzene is a spontaneous process under the Ben-Naim standard conditions around room temperature; (b) the weak benzene-water H-bonds do not provide a significant contribution to benzene solubility in water because the favorable enthalpic component is almost entirely compensated for by an unfavorable entropic component. This enthalpy-entropy compensation occurs because the H-bonding potential of benzene is not strong.

  14. Analysis of sample of highly water-soluble Th-symmetric fullerenehexamalonic acid C66(COOH)12 by ion-chromatography and capillary electrophoresis.

    PubMed

    Cerar, Janez; Pompe, Matevz; Gucek, Marjan; Cerkovnik, Janez; Skerjanc, Joze

    2007-10-26

    Ion chromatography (IC) was used to establish isomer purity of the highly water-soluble sample of fullerenehexamalonic acid, Th-symmetric hexakis-adduct C66(COOH)12. Sharp and symmetric peaks were obtained by IC using 1.0 M potassium hydroxide as eluent and applying gradient elution program. The identity of the two largest peaks in the chromatogram was assigned to Th-C66(COOH)12 and C66H(COOH)11. The developed IC procedure can be used for the semi-quantitative determination of the extent of the partial decarboxylation of the sample. As an alternative analytical technique, a CE procedure was introduced and its performance against IC was compared for this particular case.

  15. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder:. Part I. Grafting conditions and grafting yield

    NASA Astrophysics Data System (ADS)

    Aydinli, Bahattin; Tinçer, Teoman

    2001-02-01

    Monomers of some water-soluble polymers; acrylic acid, methacrylic acid, acrylamide, N, N -dimethyl acrylamide and 1-vinyl-2 pyrrolidone, were grafted on ultra-high molecular weight polyethylene (UHMWPE) powders by a direct grafting method in an aqueous medium in air. Inhibition of homopolymerisation was achieved by adding various concentrations of Fe 2+ or Cu 2+ ions. It was found that the degree of grafting increases linearly with dose till a gelation state is reached, and varies between 40 and 12% depending on the monomer. Four million molecular weight UHMWPE gave a higher per cent grafting than a 6 million counterpart for the monomers used, with the exception of acrylic acid monomer grafting.

  16. Ice nucleation by water-soluble macromolecules

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.

    2015-04-01

    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.

  17. Molecular connectivity. II: Relationship to water solubility and boiling point.

    PubMed

    Hall, L H; Kier, L B; Murray, W J

    1975-12-01

    The connectivity index, easily computed by arithmetic and based upon the degree of connectedness at each vertex in the molecular skeleton, is shown to give highly significant correlations with water solubility of branched, cyclic, and straight-chain alcohols and hydrocarbons as well as with boiling points of alcohols. These correlations are superior to those based on well-founded theory relating to solvent cavity surface area. An empirical modification to the connectivity index gave an improved correlation for both solubilities and boiling points.

  18. Solubility of magnesium carbonate in natural waters

    USGS Publications Warehouse

    Wells, R.C.

    1915-01-01

    (1) Under atmospheric conditions it appears possible to attain practically the same state in a solution saturated with MgCO33H2O, whether one starts with a solution containing an excess of magnesium bicarbonate or with the pure trihydrate and water, but the adjustment occurs very slowly. The solution finally contains 0.36 g. magnesium and 1.01 g. carbon dioxide per liter at 20??. (2) The solubility found for magnesite, however, is much smaller, viz., 0.02 g. magnesium and 0.07 g. carbon dioxide per liter. (3) Certain natural waters, freely exposed to the atmosphere, appear to be supersaturated with respect to magnesite but none approaches very closely to the point of saturation of the trihydrate MgCO3.3H2O.

  19. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  20. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  1. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    PubMed

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P

    2016-06-28

    RAFT solution polymerization of N-(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA63-PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in Mn with increasing PNMEP DP. A gradual increase in Mw/Mn was also observed when targeting higher DPs. However, this problem could be minimized (Mw/Mn < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylate impurity causing light branching, rather than an intrinsic side reaction such as chain transfer to polymer. Kinetic studies confirmed that the RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both (1)H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA63-PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather

  2. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers

    PubMed Central

    2016-01-01

    RAFT solution polymerization of N-(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA63–PNMEPx diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in Mn with increasing PNMEP DP. A gradual increase in Mw/Mn was also observed when targeting higher DPs. However, this problem could be minimized (Mw/Mn < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylate impurity causing light branching, rather than an intrinsic side reaction such as chain transfer to polymer. Kinetic studies confirmed that the RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA63–PNMEPx particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather

  3. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats.

    PubMed

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-10-02

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake-probably by promoting a feeling of satiety in rats to decrease their feeding behavior.

  4. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats

    PubMed Central

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-01-01

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior. PMID:27706095

  5. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides

    NASA Astrophysics Data System (ADS)

    Briz, Verónica; Sepúlveda-Crespo, Daniel; Diniz, Ana Rita; Borrego, Pedro; Rodes, Berta; de La Mata, Francisco Javier; Gómez, Rafael; Taveira, Nuno; Muñoz-Fernández, Mª Ángeles

    2015-08-01

    The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.

  6. A dose-finding study with a novel water-soluble formulation of paclitaxel for the treatment of malignant high-grade solid tumours in dogs.

    PubMed

    von Euler, H; Rivera, P; Nyman, H; Häggström, J; Borgå, O

    2013-12-01

    A new formulation of water-soluble paclitaxel (Paccal® Vet) has been developed for canine cancer patients, without the need for pre-medication (traditionally required in non-water-soluble paclitaxel formulations). The objective of the study was to determine a clinically safe and efficacious dose of Paccal Vet and to estimate progression-free and overall survival and to evaluate single-dose pharmacokinetics in tumour-bearing dogs. A positive risk:benefit ratio was established for Paccal Vet administered at 150 mg m(-2) intravenous (IV) for three or more treatment cycles. Preliminary efficacy was demonstrated by best objective response rate (86%), median time to response (14 days) and median progression-free survival (131 days). Paccal Vet was associated with expected adverse events (AE) (e.g. myelosuppression), however the majority were transient, clinically silent and manageable. This is the first clinical report of a water-soluble formulation of paclitaxel suggesting successful administration and being safely used without pre-medication in dogs.

  7. Synthesis and characterization of high molecular weight water-soluble polymers to study the role of extensional viscosity in polymeric drag reduction

    NASA Astrophysics Data System (ADS)

    Cowan, Martin E.

    Several high molecular weight water-soluble acrylamide copolymers identified as efficient drag reducers have been synthesized, characterized, and examined for drag reduction effectiveness. Commercially supplied poly(ethylene oxide) polymers of varying molecular weight were also characterized and studied for comparison. The resistance to polymer extension was measured using a screen extensional rheometer allowing for the local extensional viscosity of each polymer to be quantified. Copolymer composition was determined using 13C NMR. Dilute solution properties and molecular weights were determined from zero shear intrinsic viscosity measurements and multi-angle laser light scattering experiments respectively. Molecular weights ranged from 0.55 to 4.3 million grams per mole. Drag reduction measurements were performed using a rotating disk instrument. Drag reduction data were analyzed by several theoretical models. The best correlation was found using the energy model of Walsh. Empirically, drag reduction was found to be directly related to the local extensional viscosity of each polymer sample. A model is presented explaining drag reduction in terms of increased local viscosity leading to decreased turbulence characterized with a decreased local Reynolds number. Molecular weight was found to be the most important molecular parameter of the polymers studied with polymers of greater molecular weight showing superior drag reduction properties.

  8. Novel water soluble NIR dyes: does charge matter?

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Beckford, Garfield; Daube, Alison

    2012-03-01

    Near-Infrared (NIR) dyes are used as reporters, probes or markers in the biological and medical field. NIR dyes can be useful for investigating and characterizing biomolecular interactions or imaging which is possible because biological mammalian tissue has a low absorption window in the NIR region. Biomolecules such as proteins are known to bind to NIR dyes. Upon binding NIR dyes often exhibit spectral changes that can be used for characterizing the binding event. Serum albumins may be responsible for in vivo transport of NIR dyes. Studying this binding event can be useful when correlated to in vivo behavior of the NIR dye. The studies presented here use spectroscopic methods to investigate how NIR dyes that may be used in imaging, biological or bioanalytical applications bind to proteins, such as serum albumins. Our research group systematically synthesized several NIR dyes that have varying hydrophobicity, chromophore size and charge. During these investigations we developed novel NIR cyanine fluorophores having varying aqueous solubility and a variety of net charges. The binding properties of the carbocyanines change when charged or hydrophobic moieties are systematically varied. One of the properties we put a special emphasis on is what we call residual hydrophobicity of the NIR dye molecule which is defined as the unmasked (by the charged moieties) hydrophobicity of the molecule. Residual hydrophobicity may be responsible for binding the otherwise highly water soluble NIR dye to hydrophobic pockets of biomolecules. High residual hydrophobicity of a highly water soluble dye can be disadvantageous during biological, medical or similar applications.

  9. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere.

    PubMed

    Mede, Ralf; Klein, Moritz; Claus, Ralf A; Krieck, Sven; Quickert, Stefanie; Görls, Helmar; Neugebauer, Ute; Schmitt, Michael; Gessner, Guido; Heinemann, Stefan H; Popp, Jürgen; Bauer, Michael; Westerhausen, Matthias

    2016-01-04

    [Mn(CO)5Br] reacts with cysteamine and 4-amino-thiophenyl with a ratio of 2:3 in refluxing tetrahydrofuran to the complexes of the type [{(OC)3Mn}2(μ-SCH2CH2NH3)3]Br2 (1, CORM-EDE1) and [{(OC)3Mn}2(μ-SC6H4-4-NH3)3]Br2 (2, CORM-EDE2). Compound 2 precipitates during refluxing of the tetrahydrofuran solution as a yellow solid whereas 1 forms a red oil that slowly solidifies. Recrystallization of 2 from water yields the HBr-free complex [{(OC)3Mn}2(μ-S-C6H4-4-NH2)2(μ-SC6H4-4-NH3)] (3). The n-propylthiolate ligand (which is isoelectronic to the bridging thiolate of 1) leads to the formation of the di- and tetranuclear complexes [(OC)4Mn(μ-S-nPr)2]2 and [(OC)3Mn(μ-S-nPr)]4. CORM-EDE1 possesses ideal properties to administer carbon monoxide to biological and medicinal tissues upon irradiation (photoCORM). Isolated crystalline CORM-EDE1 can be handled at ambient and aerobic conditions. This complex is nontoxic, highly soluble in water, and indefinitely stable therein in the absence of air and phosphate buffer. CORM-EDE1 is stable as frozen stock in aqueous solution without any limitations, and these stock solutions maintain their CO release properties. The reducing dithionite does not interact with CORM-EDE1, and therefore, the myoglobin assay represents a valuable tool to study the release kinetics of this photoCORM. After CO liberation, the formation of MnHPO4 in aqueous buffer solution can be verified.

  10. Radiometric method for determining solubility of organic solvents in water

    SciTech Connect

    Lo, J.M.; Tseng, C.L.; Yang, J.Y.

    1986-06-01

    Cobalt-60 labeled cobalt(III) pyrrolidinecarbodithioate (/sup 60/Co(PDC)/sub 3/) has a peculiar stability during storage in organic solvent and when its organic solution is shaken with an aqueous solution containing different acids or ions. Using these characteristics, the authors have attempted to use /sup 60/Co(PDC)/sub 3/ as a radioagent for determining solubilities of various organic solvents in water. The radioagent was first dissolved in the organic solvent under investigation before pure water was added. The solution mixture was shaken vigorously in order to let the organic phase contact with water sufficiently. Some of the organic solvent would dissolve in water after shaking, resulting in volume reduction of the organic phase. However, the radioagent was found not to accompany the organic solvent molecules going into water; i.e., all the radioactivity of /sup 60/Co(PDC)/sub 3/ would be retained in the organic phase. Solubility of the organic solvent in water therefore can be calculated from the value of the volume change of the organic phase divided by the water volume. Direct measurement of a small change in volume of organic phase with high accuracy is generally very difficult; alternatively, the authors have measured the specific activities of /sup 60/Co(PDC)/sub 3/ (cpm/mL) in the original and the final organic solutions, and the counting results were used to estimate the decrease in volume of the organic phase. Several commonly used organic solvents were selected to test the applicability of the proposed radiometric method. The solubilities of the organic solvents selected for this study range from very small values (10/sup -4/) to relatively large values (10/sup -2/), 6 references, 1 table.

  11. Leaching behavior of water-soluble carbohydrates from almond hulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 58% of the dry matter content of the hulls from the commercial almond (Prunus dulcis (Miller) D.A. Webb) is soluble in warm water (50-70°C) extraction. The water-soluble extractables include useful amounts of fermentable sugars (glucose, fructose, sucrose), sugar alcohols (inositol and sorbito...

  12. Which Starch Fraction is Water-Soluble, Amylose or Amylopectin?

    ERIC Educational Resources Information Center

    Green, Mark M.; And Others

    1975-01-01

    A survey of 22 popular organic chemistry textbooks showed that only four correctly stated that of the two components of starch, amylopectin is the water-soluble, and amylose is the water-insoluble. (MLH)

  13. Effect of Cyclodextrin Types and Co-Solvent on Solubility of a Poorly Water Soluble Drug

    PubMed Central

    Charumanee, Suporn; Okonogi, Siriporn; Sirithunyalug, Jakkapan; Wolschann, Peter; Viernstein, Helmut

    2016-01-01

    The aim of the study was to investigate the solubility of piroxicam (Prx) depending on the inclusion complexation with various cyclodextrins (CDs) and on ethanol as a co-solvent. The phase-solubility method was applied to determine drug solubility in binary and ternary systems. The results showed that in systems consisting of the drug dissolved in ethanol–water mixtures, the drug solubility increased exponentially with a rising concentration of ethanol. The phase solubility measurements of the drug in aqueous solutions of CDs, β-CD and γ-CD exhibited diagrams of AL-type, whereas 2,6-dimethyl-β-CD revealed AP-type. The destabilizing effect of ethanol as a co-solvent was observed for all complexes regardless of the CD type, as a consequence of it the lowering of the complex formation constants. In systems with a higher concentration of ethanol, the drug solubility was increased in opposition to the decreasing complex formation constants. According to this study, the type of CDs played a more important role on the solubility of Prx, and the use of ethanol as a co-solvent exhibited no synergistic effect on the improvement of Prx solubility. The Prx solubility was increased again due to the better solubility in ethanol. PMID:27763573

  14. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  15. The effect of dietary water soluble carbohydrate to nitrogen ratio on nitrogen partitioning and isotopic fractionation of lactating goats offered a high-nitrogen diet.

    PubMed

    Cheng, L; Edwards, G R; Dewhurst, R J; Nicol, A M; Pacheco, D

    2016-05-01

    The objective of this study was to investigate the relationship between nitrogen (N) partitioning and isotopic fractionation in lactating goats consuming diets with a constant high concentration of N and increasing levels of water soluble carbohydrate (WSC). Eight lactating goats were offered four different ratios of WSC : N in the diet. A two-period incomplete cross-over design was used, with two goats assigned to each treatment in each period. N balance measurements were conducted, with measurement of feed N intake and total output of N in milk, faeces and urine. Treatment, period and infusion effects were tested using general ANOVA; the relationships between variables were analysed by linear regression. Dietary treatment and period had significant effects on dry matter (DM) intake (g/day). DM digestibility (g/kg DM) and N digestibility (g/kg N) increased as the ratio of WSC : N increased in the diet. No treatment effect was observed on milk urea N concentration (g/l) or urinary excretion of purine derivatives (mM/day). Although dietary treatment and period had significant effects on N intake, the change of N intake was small; no effect was observed for N partitioning among faeces, milk and urine. Milk, plasma and faeces were enriched in 15N compared with feed, whilst urine was depleted in 15N relative to feed. No significant relationship was established between N partitioning and isotopic fractionation. This study failed to confirm the potential to use N isotopic fractionation as an indicator of N partitioning in dairy goats when diets provided N in excess to requirements, most likely because the range of milk N output/N intake and urinary N output/N intake were narrow.

  16. Moisture sorption kinetics for water-soluble substances. IV: Studies with mixtures of solids.

    PubMed

    Kontny, M J; Zografi, G

    1985-02-01

    This paper extends earlier work from this laboratory concerning the sorption kinetics of water vapor on deliquescent water-soluble substances to mixtures of these solids. A theoretical model, based on heat transport control, excellently predicted a priori the rate of water uptake by a variety of binary mixtures of alkali halides and sugars. The rates for mixtures containing highly water-soluble quaternary ammonium salts, as either one or both of the components, were less successfully predicted as the combined water solubilities of the two components increased. It is concluded that water-soluble deliquescent substances, normally encountered in pharmaceutical dosage forms, rapidly form saturated aqueous solutions in the aqueous film formed as water vapor uptake proceeds, and that the water uptake rate can be predicted a priori from known and experimentally determinable parameters using the heat transport model.

  17. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers.

    PubMed

    Roberts, Aled D; Zhang, Haifei

    2013-04-15

    A generic method is described to form poorly water-soluble drug nanoparticles within water-soluble porous polymer by solvent evaporation. The simple dissolution of porous polymer with drug nanoparticles results in stable aqueous drug nanoparticle suspension under the optimized conditions. The porous polymers were prepared by freeze-drying aqueous solutions of polyvinyl alcohol, polyethylene glycol, and a surfactant. They were then used as scaffolds for the formation of nanoparticles by initially soaking them in an organic drug solution, followed with removing the solvent via evaporation under ambient conditions. This process was optimized for an antifungal drug griseofulvin, before being translated to anticonvulsant carbamazepine and antineoplastic paclitaxel via a similar procedure, with an aim to improve the loading of drug nanoparticles. By varying certain process parameters a degree of control over the particle size and surface charge could be attained, as well as the drug to stabilizer ratio (drug payload). Noticeably, aqueous paclitaxel nanoparticles (500 nm) were prepared which used the equivalent of 46% less stabilizer than the formulation Taxol.

  18. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER (FEAC307)

    SciTech Connect

    Klasson, KT

    2001-03-20

    Oil production is shifting from ''shallow'' wells (0-650 ft water depth) to off-shore, deep-water operations (>2,600 ft.). Production from these operations is now approaching 20%. By 2007, it is projected that as much as 70% of the U.S. oil production will be from deep-water operations. The crude oil from these deep wells is more polar, thus increasing the amount of dissolved hydrocarbons in the produced water. Early data from Gulf of Mexico (GOM) wells indicate that the problem with soluble organics will increase significantly as deep-water production increases. Existing physical/chemical treatment technologies used to remove dispersed oil from produced water will not remove dissolved organics. GOM operations are rapidly moving toward design of high-capacity platforms that will require compact, low-cost, efficient treatment processes to comply with current and future water quality regulations. This project is an extension of previous research to improve the applicability of ozonation and will help address the petroleum industry-wide problem of treating water containing soluble organics. The goal of this project is to maximize oxidation of water-soluble organics during a single-pass operation. The project investigates: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Industrial collaborators include Chevron, Shell, Phillips, BP Amoco, Statoil, and Marathon Oil through a joint project with the Petroleum Environmental Research Forum (PERF). The research and demonstration program consists of three phases: (1) Laboratory testing in batch reactors to compare effectiveness of organics destruction using corona discharge ozone generation methods with hydrogen peroxide generated sonochemically and to evaluate the enhancement of destruction by UV light and micro

  19. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate.

    PubMed

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-20

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650-680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  20. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    NASA Astrophysics Data System (ADS)

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650–680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  1. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    PubMed Central

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-01-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650–680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult. PMID:27644545

  2. The removal of kaolinite suspensions by acid-soluble and water-soluble chitosans.

    PubMed

    Chung, Ying-Chien; Wu, Li-Chun; Chen, Chih-Yu

    2013-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This research compared the coagulant performance of acid-soluble chitosan with water-soluble chitosan and with coagulant mixtures of chitosan and aluminium sulfate (alum). We also assessed the coagulant performance of chitosan and poly-aluminium chloride (PAC) to remove kaolinite from turbid water. In addition, we evaluated their respective coagulation efficiencies under different coagulant concentrations, degrees of turbidity (NTU) and pH levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants in order to illustrate major factors affecting kaolinite coagulation. The optimal concentrations of acid- versus water- soluble chitosan required to remove kaolinite from a 300 NTU suspension were 4.0 and 10.0 mg/l, respectively-with individual efficiencies of 79.3 and 92.4%, in that order. Optimum concentrations ofwater-soluble chitosan demonstrated a broader range than that of acid-soluble chitosan. In addition, it is of note that chitosan/alum and chitosan/PAC water-soluble coagulant mixtures demonstrated much wider ranges of optimal concentrations for turbidity reduction than either alum or PAC alone. Moreover, our water-soluble chitosan coagulant mixtures produced denser floc with elevated settling velocities that favour cost savings relevant to both installation and operational expenses. Based on our observations of these noteworthy performances, we confidently propose that a coagulant mixture with a 1:1 mass ratio of chitosan and alum presents a remarkably more cost-effective alternative to the use of chitosan alone in water treatment systems.

  3. The Exochelins of Pathogenic Mycobacteria: Unique, Highly Potent, Lipid- and Water-Soluble Hexadentate Iron Chelators with Multiple Potential Therapeutic Uses

    PubMed Central

    Horwitz, Lawrence D.

    2014-01-01

    Abstract Significance: Exochelins are lipid- and water-soluble siderophores of Mycobacterium tuberculosis with unique properties that endow them with exceptional pharmacologic utility. Exochelins can be utilized as probes to decipher the role of iron in normal and pathological states, and, since they rapidly cross cell membranes and chelate intracellular iron with little or no toxicity, exochelins are potentially useful for the treatment of a number of iron-dependent pathological phenomena. Recent Advances: In animal models, exochelins have been demonstrated to have promise for the treatment of transfusion-related iron overload, restenosis after coronary artery angioplasty, cancer, and oxidative injury associated with acute myocardial infarction and transplantation. Critical Issues: To be clinically effective, iron chelators should be able to rapidly enter cells and chelate iron at key intracellular sites. Desferri-exochelins, and other lipid-soluble chelators, can readily cross cell membranes and remove intracellular free iron; whereas deferoxamine, which is lipid insoluble, cannot do so. Clinical utility also requires that the chelators be nontoxic, which, we hypothesize, includes the capability to prevent iron from catalyzing free radical reactions which produce •OH or other reactive oxygen species. Lipid-soluble iron chelators currently available for clinical application are bidentate (deferiprone) or tridentate (desferasirox) molecules that do not block all six sites on the iron molecule capable of catalyzing free radical reactions. In contrast, desferri-exochelins are hexadentate molecules, and by forming a one-to-one binding relationship with iron, they prevent free radical reactions. Future Directions: Clinical studies are needed to assess the utility of desferri-exochelins in the treatment of iron-dependent pathological disorders. Antioxid. Redox Signal. 21, 2246–2261. PMID:24684595

  4. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer.

    PubMed

    He, Zhicai; Wu, Hongbin; Cao, Yong

    2014-02-01

    This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells.

  5. Water solubility in rhyolitic silicate melts at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ryan, Amy; Russell, Kelly; Nichols, Alexander; Porritt, Lucy; Friedlander, Elizabeth

    2014-05-01

    High temperature (900-1100 °C) experiments have been conducted to measure the solubility of water in a rhyolitic melt at atmospheric pressure (1 atm) and to quantify the magnitude of retrograde solubility at low pressure. Individual cores (1 cm x 1 cm) of crystal- and bubble-free rhyolitic obsidian from Hrafntinnugryggur, Krafla (Iceland) were held in a furnace at 900-1100 °C for 0.25 to 20 hours. During this time, the uniform bubble-free cores vesiculate to produce variably swollen bubble-rich run products. The volume change in each core reflects the volume of bubbles produced in each experiment and depends on the experimental temperature and the time held at that temperature. The run product volumes for isothermal experiments (e.g., 950 °C) increase non-linearly with increasing time (e.g., 0.18 cm3 at 1.5 h, 0.96 cm3 at 12.5 h) until reaching a maximum value, after which the volume does not change appreciably. We take this plateau in the isothermal volume:time curve as coinciding with the 1 atm. solubility limit for the rhyolite at this temperature. With increasing temperature, the slope and final horizontal plateaus of the volume:time curves increase such that samples from the higher temperature suites vesiculate more, as well as more rapidly (e.g., 0.85 cm3 after 0.5 hours, 1.78 cm3 after 1 hour at 1100 °C). The variations in the maximum volume of bubbles produced for each temperature constrain the retrograde solubility of water in the melt at 1 atm. Fourier transform infrared spectroscopy (FTIR) analyses of the residual water content of the glass in the starting material and in the most vesiculated sample from each temperature suite shows a decrease in the water content of the glass from an initial 0.114 wt% (σ 0.013) to 0.098 wt% (σ 0.010), 0.087 wt% (σ 0.009), 0.093 wt% (σ 0.008), 0.090 wt% (σ 0.006) and 0.108 wt% (σ 0.010) for 900 °C, 950 °C, 1000 °C, 1050 °C and 1100 °C respectively. This change in the solubility of water at different

  6. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    PubMed Central

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471

  7. Water-soluble vitamin levels in extended hours hemodialysis.

    PubMed

    Coveney, Natalie; Polkinghorne, Kevan R; Linehan, Leanne; Corradini, AnnMarie; Kerr, Peter G

    2011-01-01

    Patients on extended hours (>15 h/week) hemodialysis may be at a higher risk of deficiency of water-soluble vitamins than conventional (≤15 h/week) hemodialysis patients due to their increased weekly hours of dialysis. We compared serum levels of the water-soluble vitamins in a group of extended and conventional hours hemodialysis patients. Predialysis serum levels of vitamin C, vitamin B12, thiamine, pyridoxine, and folate were measured in 52 patients: 26 extended group and 26 conventional group. Information on patient's intake of vitamin supplements and dialysis regimen was obtained. Data were log transformed due to the skewed distribution of the results. Median vitamin C levels were significantly lower in the extended group (0.30 vs. 1.14 mg/dL, P<0.001), with 7 patients having a level <0.18 mg/dL. Thiamine levels were also lower in the extended group (median 211 vs. 438.5 nmol/L, P=0.0005). However, extended patients had higher levels of pyridoxine (23.2 vs. 11.1 ng/mL, P=0.03). Vitamin B12 and folate levels were not significantly different between the groups. There was significant variability in vitamin supplement prescription in both groups, and dietary data were not obtained. This study showed a high incidence of vitamin C deficiency in extended hours hemodialysis patients, suggesting that supplementation is warranted. It also supports an ongoing role for multivitamin supplementation in conventional hemodialysis patients.

  8. Water soluble organic constituents in Arctic aerosols and snow pack

    SciTech Connect

    Li, Shaomeng ); Winchester, J.W. )

    1993-01-08

    Eight water-soluble organic anions were measured in 70 aerosol samples and 10 snow samples at Barrow, Alaska in March-April, 1989. The ranking of the ions in aerosols according to total (coarse + fine aerosol) median concentrations was acetate (44 ng m[sup [minus]3]), oxalate (27), benzoate (23), formate (22), propionate (6), methanesulfonate (5), lactate (4), and pyruvate (4). When added up, the median organic anion mass was 156 ng m[sup [minus]3]. The organic anions/nssSO[sub 4][sup =] mass ratio had a median of 0.18 and 0.07 in the coarse (>1 [mu]m) and fine (<1 [mu]m) size fractions, respectively, but can be very high on occasions. On average, the organic anions made up more than 10% of the water-soluble aerosol mass. A similar ranking in concentration was also found for the organic ions in the snow pack samples. The organic anion/nssSO[sub 4][sup =] mass ratio in these samples was >0.5, substantially higher than in aerosols. 18 refs., 2 tabs.

  9. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    PubMed

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B

    2013-08-05

    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.

  10. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil.

    PubMed

    Nahrgang, Jasmine; Dubourg, Paul; Frantzen, Marianne; Storch, Daniela; Dahlke, Flemming; Meador, James P

    2016-11-01

    Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.

  11. Water soluble cations and the fluvial history of Mars

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1975-01-01

    The electrical conductivity and water soluble Na, K, Ca, and Mg of aqueous solutions of terrestrial soils and finely divided igneous and metamorphic rocks were determined. Soils from dry terrestrial basins with a history of water accumulation as well as soils from the topographic lows of valleys accumulated water soluble cations, particularly Na and Ca. These soils as a group can be distinguished from the rocks or a second group of soils (leached upland soils and soils from sites other than the topographic lows of valleys) by significant differences in their mean electrical conductivity and water-soluble Na + Ca content. Similar measurements on multiple samples from the surface of Mars, collected by an automated long-range roving vehicle along a highlands-to-basin transect at sites with morphological features resembling dry riverlike channels, are suggested to determine the fluvial history of the planet.

  12. Mineralization of sparsely water-soluble polycyclic aromatic hydrocarbons in a water table fluctuation zone

    SciTech Connect

    Holman, H.Y.N.; Tsang, Y.W.; Holman, W.R.

    1999-06-01

    The mineralization potential of sparsely water-soluble polycyclic aromatic hydrocarbons (PAHs) within a highly diesel-contaminated water table fluctuation zone (WTFZ) was investigated using core-scale column microcosms. Experimental conditions mimicked overall seasonal changes in water and oxygen content at the site. During the first aerobic winter, PAH mineralization rates in the freshly contaminated soil were fastest for contaminant [{sup 14}C]-naphthalene which was the least hydrophobic and most water-soluble. Lowering the water table nearly doubled the mineralization rates of all [{sup 14}C]PAHs studied. During the oxygen-poor summer, all mineralization rates were insignificant and failed to respond to water table changes. Neither a return to water-saturated aerobic (winter) conditions nor lowering the water table under aerobic conditions induced detectable mineralization of [{sup 14}C]-naphthalene, but lowering the water table did markedly hasten the still slow mineralization of [{sup 14}C]phenanthrene and [{sup 14}C]anthracene. The time-dependent mineralization behavior and its response to water table fluctuations were explicable in terms of microbial responses to the changing oxygen content and depleting mineral nutrients.

  13. In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FT-ICR MS and GC×GC-TOFMS.

    PubMed

    Choi, Jung Hoon; Ryu, Jijeong; Jeon, Sodam; Seo, Jungju; Yang, Yung-Hun; Pack, Seung Pil; Choung, Sungwook; Jang, Kyoung-Soon

    2017-03-05

    Airborne particulate matter consisting of ionic species, salts, heavy metals and carbonaceous material is one of the most serious environmental pollutants owing to its impacts on the environment and human health. Although elemental and organic carbon compounds are known to be major components of aerosols, information on the elemental composition of particulate matter remains limited because of the broad range of compounds involved and the limits of analytical instruments. In this study, we investigated water-soluble and -insoluble organic compounds in fine (PM2.5) airborne particles collected during winter in Korea to better understand the elemental compositions and distributions of these compounds. To collect ultra-high-resolution mass profiles, we analyzed water-soluble and -insoluble organic compounds, extracted with water and dichloromethane, respectively, using an ultra-high-resolution 15 T Fourier transform ion cyclotron resonance (15T FT-ICR) mass spectrometer in positive ion mode (via both electrospray ionization [ESI] and atmospheric pressure photoionization [APPI] for water-extracts and via APPI for dichloromethane-extracts). In conjunction with the FT-ICR mass spectrometry (MS) data, subsequent two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) data were used to identify potentially hazardous organic components, such as polycyclic aromatic hydrocarbons. This analysis provided information on the sources of ambient particles collected during winter season and partial evidence of contributions to the acidity of organic content in PM2.5 particles. The compositional and structural features of water-soluble and -insoluble organic compounds from PM2.5 particles are important for understanding the potential impacts of aerosol-carried organic substances on human health and global ecosystems in future toxicological studies.

  14. Potentiometric analysis of water soluble cutting fluid-metal combinations

    SciTech Connect

    Kelley, E.E.

    1991-12-01

    The results of corrosion studies conducted by the University of Kansas under Contract G257763 for Allied-Signal Inc., Kansas City Division (KCD), are given. These potentiometric studies evaluate the corrosivity of two water soluble cutting fluids at varying concentrations on samples of 304 stainless steel, 6061-T6 aluminum, and beryllium copper. This testing serves two purposes: (1) to develop effective test procedures adaptable to existing KCD corrosion measurement equipment for corrosion analysis of cutting fluid-metals combinations, and (2) to understand the relative corrosiveness of the varying water soluble cutting fluids on different metals. The tests used were adapted from the American Society of Testing Materials (ASTM). Future testing will identify polarization techniques for establishing corrosion rates which will be used in evaluating both water soluble cutting fluids and other aqueous solutions used at KCD.

  15. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+ , F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42- , K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals

  16. Antioxidant Properties of Water-Soluble Gum from Flaxseed Hulls

    PubMed Central

    Bouaziz, Fatma; Koubaa, Mohamed; Barba, Francisco J.; Roohinejad, Shahin; Chaabouni, Semia Ellouz

    2016-01-01

    Soluble flaxseed gum (SFG) was extracted from flax (Linum usitatissimum) hulls using hot water, and its functional groups and antioxidant properties were investigated using infrared spectroscopy and different antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), reducing power capacity, and β-carotene bleaching inhibition assay), respectively. The antioxidant capacity of SFG showed interesting DPPH radical-scavenging capacity (IC50 SFG = 2.5 mg·mL−1), strong ABTS radical scavenging activity (% inhibition ABTS = 75.6% ± 2.6% at 40 mg·mL−1), high reducing power capacity (RPSFG = 5 mg·mL−1), and potent β-carotene bleaching inhibition activity (IC50 SFG = 10 mg·mL−1). All of the obtained results demonstrate the promising potential use of SFG in numerous industrial applications, and a way to valorize flaxseed hulls. PMID:27490574

  17. Antioxidant Properties of Water-Soluble Gum from Flaxseed Hulls.

    PubMed

    Bouaziz, Fatma; Koubaa, Mohamed; Barba, Francisco J; Roohinejad, Shahin; Chaabouni, Semia Ellouz

    2016-08-02

    Soluble flaxseed gum (SFG) was extracted from flax (Linum usitatissimum) hulls using hot water, and its functional groups and antioxidant properties were investigated using infrared spectroscopy and different antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), reducing power capacity, and β-carotene bleaching inhibition assay), respectively. The antioxidant capacity of SFG showed interesting DPPH radical-scavenging capacity (IC50 SFG = 2.5 mg·mL(-1)), strong ABTS radical scavenging activity (% inhibition ABTS = 75.6% ± 2.6% at 40 mg·mL(-1)), high reducing power capacity (RPSFG = 5 mg·mL(-1)), and potent β-carotene bleaching inhibition activity (IC50 SFG = 10 mg·mL(-1)). All of the obtained results demonstrate the promising potential use of SFG in numerous industrial applications, and a way to valorize flaxseed hulls.

  18. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    EPA Science Inventory

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  19. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  20. [Lead compound optimization strategy (3)--Structure modification strategies for improving water solubility].

    PubMed

    Li, Zeng; Wang, Jiang; Zhou, Yu; Liu, Hong

    2014-09-01

    Water solubility is an essential physical chemistry property of organic small molecule drug and is also a very important issue in drug discovery. Good water solubility often leads to a good drug potency and pleasant pharmacokinetic profiles. To improve water solubility, structure modification is a straight and effective way based on the theory of water solubility. This review summarized valid structure modification strategies for improving water solubility including salt formation, polar group introduction, liposolubility reduction, conformation optimization and prodrug.

  1. Water in Oil Emulsions: A New System for Assembling Water-soluble Chlorophyll-binding Proteins with Hydrophobic Pigments.

    PubMed

    Bednarczyk, Dominika; Noy, Dror

    2016-03-21

    Chlorophylls (Chls) and bacteriochlorophylls (BChls) are the primary cofactors that carry out photosynthetic light harvesting and electron transport. Their functionality critically depends on their specific organization within large and elaborate multisubunit transmembrane protein complexes. In order to understand at the molecular level how these complexes facilitate solar energy conversion, it is essential to understand protein-pigment, and pigment-pigment interactions, and their effect on excited dynamics. One way of gaining such understanding is by constructing and studying complexes of Chls with simple water-soluble recombinant proteins. However, incorporating the lipophilic Chls and BChls into water-soluble proteins is difficult. Moreover, there is no general method, which could be used for assembly of water-soluble proteins with hydrophobic pigments. Here, we demonstrate a simple and high throughput system based on water-in-oil emulsions, which enables assembly of water-soluble proteins with hydrophobic Chls. The new method was validated by assembling recombinant versions of the water-soluble chlorophyll binding protein of Brassicaceae plants (WSCP) with Chl a. We demonstrate the successful assembly of Chl a using crude lysates of WSCP expressing E. coli cell, which may be used for developing a genetic screen system for novel water-soluble Chl-binding proteins, and for studies of Chl-protein interactions and assembly processes.

  2. A soluble copper-bipyridine water-oxidation electrocatalyst.

    PubMed

    Barnett, Shoshanna M; Goldberg, Karen I; Mayer, James M

    2012-05-06

    The oxidation of water to O(2) is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper-bipyridine-hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8-13.3 shows large, irreversible currents, indicative of catalysis. The production of O(2) is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2'-bipyridine)Cu(OH)(2) and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s(-1).

  3. Solubilization of poorly water-soluble drugs using solid dispersions.

    PubMed

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  4. Water soluble dendronized iron oxide nanoparticles.

    PubMed

    Daou, T J; Pourroy, G; Greneche, J M; Bertin, A; Felder-Flesch, D; Begin-Colin, S

    2009-06-21

    The grafting of pegylated dendrons on 9(2) nm and 39(5) nm iron oxide nanoparticles in water, through a phosphonate group as coupling agent has been successfully achieved and its mechanism investigated, with a view to produce biocompatible magnetic nano-objects for biomedical applications. Grafting has been demonstrated to occur by interaction of negatively charged phosphonate groups with positively charged groups and hydroxyl at the iron oxide surface. The isoelectric point of the suspension of dendronized iron oxide nanoparticles is shifted towards lower pH as the amount of dendron increases. It reaches 4.7 for the higher grafting rate and for both particle size. Thus, the grafting of molecules using a phosphonate group allows stabilizing electrostatically the suspensions at physiological pH, a prerequisite for biomedical applications. Moreover the grafting step has been shown to preserve the magnetic properties of iron oxide nanoparticles due to super-super exchange interactions through the phosphonate group.

  5. Dissolution Model of Multiple Species: Leaching of Highly Soluble Minerals

    NASA Astrophysics Data System (ADS)

    Moreno, Luis; Ordóñez, Javier I.; Cisternas, Luis A.

    2017-03-01

    Dissolution of multi-species from a solid matrix is widely extended in different processes such as leaching of minerals; however, its modeling is often focused on a single species. A model for the simultaneous dissolution of soluble species was developed, which considers different solubilities and dissolution rates and considers that particle collapses when the rapidly soluble species is depleted. The collapsed matter is formed by inert material and a fraction of the soluble species with lower dissolution rate that has not dissolved yet. The model is applied to the leaching of a water-soluble mineral (caliche) with two soluble species dissolving simultaneously with different rates. Measured outlet concentrations of nitrate and magnesium were used to validate the model. Results showed that the model reproduced adequately the leaching of species with rapid and intermediate dissolution rate. Effect of the operating and kinetic parameters on the leaching process is also shown using the actual conditions of heap leaching for caliche mineral.

  6. Water-soluble constituents of cumin: monoterpenoid glucosides.

    PubMed

    Ishikawa, Toru; Takayanagi, Tomomi; Kitajima, Junichi

    2002-11-01

    From the water-soluble portion of the methanol extract of cumin (fruit of Cuminum cyminum L.), which has been used as a spice and medicine since antiquity, sixteen monoterpenoid glucosides, including twelve new compounds, were isolated. Their structures were clarified by spectral investigation.

  7. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water.

  8. Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1).

    PubMed

    Brough, Chris; Miller, Dave A; Keen, Justin M; Kucera, Shawn A; Lubda, Dieter; Williams, Robert O

    2016-02-01

    Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%. Polymer grades were chosen with variation in molecular weight and degree of hydroxylation to determine the effects on performance. Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, size exclusion chromatography, and dissolution testing were used to characterize the amorphous dispersions. An in vivo pharmacokinetic study in rats was also conducted to compare the selected formulation to current market formulations of ITZ. The 4-88 grade of PVAL was determined to be effective at enhancing solubility and bioavailability of itraconazole.

  9. Morphological Analysis and Solubility of Lead Particles: Effect of Phosphates and Implications to Drinking Water (Presentation)

    EPA Science Inventory

    Describe lead synthesis experiments conduced to model the impact of water quality on lead particles and solubility Develop a model system that can be used for lead solubility studies Understand how phosphates impact morphology and solubility transformations with time

  10. Some physicochemical aspects of water-soluble mineral flotation.

    PubMed

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation.

  11. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  12. A water-soluble ESIPT fluorescent probe with high quantum yield and red emission for ratiometric detection of inorganic and organic palladium.

    PubMed

    Gao, Tang; Xu, Pengfei; Liu, Meihui; Bi, Anyao; Hu, Pengzhi; Ye, Bin; Wang, Wei; Zeng, Wenbin

    2015-05-01

    A novel fluorescent probe with a high quantum yield (0.41), large Stokes shifts (255 nm), and red emission (635 nm) was designed to detect all typical oxidation states of palladium species (0, +2, +4) by palladium-mediated terminal propargyl ethers cleavage reaction in water solution without any organic media. The probe showed a high selectivity and excellent sensitivity for palladium species, with a detection as low as 57 nM (6.2 μg L(-1)).

  13. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    PubMed

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  14. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    PubMed

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  15. Characteristics of the behavior of the water-soluble fraction of oil in model experiments

    SciTech Connect

    Mikhailova, L.V.

    1987-01-01

    In connection with the characteristics of the behavior of petroleum products in water, when conducting toxicological investigations, the highly sensitive radiotracer technique is used which permits judging the concentration of hydrocarbons based on radioactivity (RA) in a small volume of water. A method of labeling water-soluble components of oil with radioactive iodine-131 is discussed. The authors extracted the water-soluble fraction of crude oil (WSFO) with chloroform and labeled it with radioactive iodine-131, obtaining (/sup 131/I)WSFO, which was then introduced into a vessel with water and into the bottom sediments for conducting model experiments. The RA was determined sixfold. The dynamics of petroleum hydrocarbons in the water-WSFO system are discussed, as well as in the water-sediment-WSFO system and in the water-sediment-animals-WSFO system.

  16. Speciation and water soluble fraction of iron in aerosols from various sources

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kurisu, M.; Uematsu, M.

    2015-12-01

    Iron (Fe) is an essential micronutrient and has been identified as a limiting factor for phytoplankton growth in high-nitrate low-chlorophyll (HNLC) regions of the ocean. In the North Pacific, three sources of iron (Fe) transported via. atmosphere can be suggested: (i) mineral dust from East Asia, (ii) anthropogenic Fe, and (iii) aerosols from volcanic origin. Considering these different sources, Fe can be found and transported in a variety of chemical forms, both water-soluble and -insoluble. It is generally believed that only the soluble fraction of Fe can be considered as bioavailable for phytoplankton. To assess the biogeochemical impact of the atmospheric input, attempt was made to determine Fe species by X-ray absorption spectroscopy (XAS) and its water solubility, in particular to compare the three sources. Iron species, chemical composition, and soluble Fe concentration in aerosol collected at Tsukuba (Japan) through a year were investigated to compare the contributions of mineral dust and anthropogenic components. It was found that the concentration of soluble Fe in aerosol is correlated with those of sulfate and oxalate which originate from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. XAS analysis showed that main Fe species in aerosols in Tsukuba were illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, soluble Fe fraction is closely correlated with that of Fe(III) sulfate. In spite of supply of high concentrations of Fe in mineral dust from East Asia, it was found that anthropogenic fraction is important due to its high water solubility by the presence of Fe(III) sulfate. Marine aerosol samples originated from volcanic ash were collected in the western North Pacific during KH-08-2 cruise (August, 2008). XAS analysis suggested that Fe species of volcanic ashes changed during the long-range transport, while dissolution experiment showed that Fe solubility of the marine aerosol is larger than

  17. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    SciTech Connect

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  18. Solubility effects in waste-glass/demineralized-water systems

    SciTech Connect

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  19. Water-soluble sacrificial layers for surface micromachining.

    PubMed

    Linder, Vincent; Gates, Byron D; Ryan, Declan; Parviz, Babak A; Whitesides, George M

    2005-07-01

    This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining. Water-soluble polymers have two attractive characteristics for this application: 1) They can be deposited conveniently by spin-coating, and the solvent removed at a low temperature (95-150 degrees C), and 2) the resulting layer can be dissolved in water; no corrosive reagents or organic solvents are required. This technique is therefore compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micromachining processes. The carboxylic acid groups of one polymer-poly(acrylic acid) (PAA)-can be transformed by reversible ion-exchange from water-soluble (Na+ counterion) to water-insoluble (Ca2+ counterion) forms. The use of PAA and dextran polymers as sacrificial materials is a useful technique for the fabrication of microstructures: Examples include metallic structures formed by the electrodeposition of nickel, and freestanding, polymeric structures formed by photolithography.

  20. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    NASA Astrophysics Data System (ADS)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  1. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    PubMed

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  2. Wax encapsulation of water-soluble compounds for application in foods.

    PubMed

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  3. Molecularly designed water soluble, intelligent, nanosize polymeric carriers.

    PubMed

    Pişkin, Erhan

    2004-06-11

    Intelligent polymers, also referred as "stimuli-responsive polymers" undergo strong property changes (in shape, surface characteristics, solubility, etc.) when only small changes in their environment (changes in temperature, pH, ionic strength light, electrical and magnetic field, etc.). They have been used in several novel applications, drug delivery systems, tissue engineering scaffolds, bioseparation, biomimetic actuators, etc. The most popular member of these type of polymers is poly(N-isopropylacrylamide) (poly(NIPA)) which exhibits temperature-sensitive character, in which the polymer chains change from water-soluble coils to water-insoluble globules in aqueous solution as temperature increases above the lower critical solution temperature (LCST) of the polymer. Copolymerization of NIPA with acrylic acid (AAc) allows the synthesis of both pH and temperature-responsive copolymers. This paper summarizes some of our related studies in which NIPA and its copolymers were synthesized and used as intelligent carriers in diverse applications.

  4. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites.

    PubMed

    Dai, Haiyang; Hong, Bikai; Xu, Zhifeng; Ma, Lian; Chen, Yaowen; Xiao, Yeyu; Wu, Renhua

    2013-08-05

    Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.

  5. Organic compounds in hot-water-soluble fractions from water repellent soils

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes < C20) were extracted through desorption of complex colloids stabilized as micelles in dissolved organic carbon (DOC). Water repellency was completely eliminated by hot water under high pressure. The molecular composition of HWSC can play a critical role in stabilization and destabilization of soil organic matter (SOM), particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  6. Minimalist design of water-soluble cross-[beta] architecture

    SciTech Connect

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    2010-08-13

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.

  7. Efficient synthesis of readily water-soluble sulfonic Acid carbamates.

    PubMed

    Idzik, Krzysztof R; Nödler, Karsten; Licha, Tobias

    2015-04-16

    A series of various readily water-soluble carbamates were synthesized with good yields. These compounds are useful chemical tracers for assessing the cooling progress in a georeservoir during geothermal power plant operation. Acylation of primary amines was carried out as well as using a solution of sodium bicarbonate and without the presence of salt. Products were characterized by 1H-NMR and 13C-NMR. Purity was confirmed through elemental analysis.

  8. Water-soluble adjuvant obtained from Bacterionema matruchotii.

    PubMed Central

    Nitta, T; Okumura, S; Tanabe, M J; Nakano, M

    1978-01-01

    The adjuvant effect of a butanol-extracted water-soluble adjuvant (bu-WSA) obtained from Bacterionemia matruchotii, a gram-positive oral bacteria, was studied on the antibody response at the plaque-forming cell (PFC) level in murine spleens. Intraperitoneal injection of Bu-WSA caused significant increase in direct PFC numbers in spleens 1 to 3 days after the antigenic stimulation with sheep erythrocytes (SRBC). Injection of 100 to 800 microgram of Bu-WSA was effective, and 400 microgram of Bu-WSA seemed to be the optimum for induction of the adjuvant effect. The adjuvant effect was strongest when Bu-WSA was injected at the same time as the SRBC, but some effect was still observed when Bu-WSA was injected 7 days before or 1 day after the immunization. The adjuvant effect of Bu-WSA was greatest at high dose of antigen. The mice injected with Bu-WSA at the time of priming SRBC and then immunized with trinitrophenylated SRBC showed greater anti-trinitrophenyl PFC response than controls without the injection of Bu-WSA. These findings suggest that a part of the adjuvant effect of Bu-WSA depends on thymic cell function and another part does not. PMID:352955

  9. [Relationship of resistance to diseases and water-soluble amino acids in Konjac leaves].

    PubMed

    Chen, Yongbo; Jiang, Qiaolong

    2008-05-01

    Reversed-phase high performance liquid chromatography was used to analyze water-soluble amino acids in the normal Amorphophallus Konjac, Amorphophallus albus, Amorphophallus bulbifer, and the soft rot Amorphophallus Konjac, to determine the relationship of the different soft-rot resistant Konjac varieties and the proportion and content of the multiple water-soluble amino acids. The results showed that there are remarkable differences in the content and proportion of water-soluble amino acids in different resistant varieties and the same variety of normal and diseased leaves of Amorphophallus. In this study, the bank of fingerprint 15 chromatogram was established and can be used to analyze the related characteristic peaks and the resistance of Amorphophallus.

  10. In vivo absorption comparison of nanotechnology-based silybin tablets with its water-soluble derivative.

    PubMed

    Xu, Di; Ni, Rui; Sun, Wei; Li, Luk Chiu; Mao, Shirui

    2015-04-01

    In this study, the in vivo oral absorption of a nanocrystal tablet formulation of a BCS II poorly water-soluble drug was compared with that of its water-soluble salt form. Silybin is used as the model drug, and its nanosuspension was prepared by high-pressure homogenization. Effect of process and formulation parameters on properties of the nansuspensions was investigated. Dried powder of the nanosuspension was prepared by spray drying and used for preparing tablets. A pharmacokinetic study was performed in Beagle dogs to compare the absorption for tablets of silybin nanocrystals and silybin meglumine. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was determined. X-ray powder diffraction results indicated that silybin existed in a crystalline state after homogenization. In vivo absorption study in rats showed that the peroral absorption of silybin was enhanced remarkably by decreasing particle size. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was comparable with that of the commercially available tablet of the water-soluble salt form of silybin. In conclusion, it is possible to increase the bioavailability of poorly soluble drugs by preparing its water-soluble derivative.

  11. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relatively water soluble are more likely to be widely distributed by the hydrologic cycle than those which... 40 Protection of Environment 31 2010-07-01 2010-07-01 true TSCA water solubility: Generator column... TESTING REQUIREMENTS Product Properties Test Guidelines § 799.6786 TSCA water solubility: Generator...

  12. Photochemistry within a water-soluble organic capsule.

    PubMed

    Ramamurthy, Vaidhyanathan

    2015-11-17

    Photochemistry along with life as we know it originated on earth billions of years ago. Supramolecular Photochemistry had its beginning when plants that sustain life began transforming water into oxygen by carrying out light initiated reactions within highly organized assemblies. Prompted by the efforts of J. Priestly (photosynthesis), F. Sestini, S. Cannizaro, and C. Liebermann (solid-state photochemistry of santonin, quinones, and cinnamic acid), orderly scientific investigations of the link between light absorption by matter and molecules and the chemical and physical consequences began in the mid-1700s. By 1970 when Molecular Photochemistry had matured, it was clear that controlling photochemical reactions by conventional methods of varying reaction parameters like temperature and pressure would be futile due to the photoreactions' very low activation energies and enthalpies. During the last 50 years, the excited state behavior of molecules has been successfully manipulated with the use of confining media and weak interactions between the medium and the reactant molecule. In this context, with our knowledge from experimentation with micelles, cyclodextrins (CD), cucurbitruils (CB), calixarenes (CA), Pd nanocage, crystals, and zeolites as media, we began about a decade ago to explore the use of a new water-soluble synthetic organic cavitand, octa acid (OA) as a reaction container. The uniqueness of OA as an organic cavitand lies in that two OA molecules form a closed hydrophobic capsule to encapsulate water-insoluble guest molecule(s). The ability to include a large number of guest molecules in OA has provided an opportunity to examine the excited state chemistry of organic molecules in a hydrophobic, confined environment. OA distinguishes itself from the well-known cavitands CD and CB by its active reaction cavity absorbing UV-radiation between 200 and 300 nm and serving as energy, electron, and hydrogen donor. The freedom of guest molecules in OA, between that

  13. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    SciTech Connect

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  14. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    PubMed Central

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2011-01-01

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N',N'-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N',N'-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N',N'-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays. PMID:18671388

  15. Predicting the solubility of pesticide compounds in water using QSPR methods

    NASA Astrophysics Data System (ADS)

    Deeb, Omar; Goodarzi, Mohammad

    2010-01-01

    Pesticide contamination of surface water and groundwater due to agricultural activities has been of concern for a long time. Water solubility indicates the tendency of a pesticide to be removed from soil by runoff or irrigation and to reach surface water and indicates the tendency to precipitate at the soil surface. The experimental procedures determining the solubility in water of pesticides are always time-consuming and expensive, and it is difficult to accurately distinguish species with similar physicochemical properties. A highly effective tool depending on a quantitative structure-property relationship (QSPR) can be utilised to predict solubility in water for those pesticide compounds with no literature values. QSPR models were developed using multiple linear regression, partial least squares and neural networks analyses. Following the removal of a small number of outliers, linear and non-linear QSPR models to predict the solubility of pesticide compounds in water were developed for the relevant descriptors. Consistent with experimental studies, the results obtained offer excellent regression models having good prediction ability.

  16. Water-soluble pesticides in finished water of community water supplies

    USGS Publications Warehouse

    Coupe, R.H.; Blomquist, J.D.

    2004-01-01

    Although considerable data have been published on the occurrence and distribution of pesticides in surface water, there is little information from full-scale studies on how pesticides in source water are affected by the treatment process. In this pilot study, source water and finished (treated) water samples were collected from 12 community water systems (CWSs) across the United States and analyzed for water-soluble pesticides. The facilities were selected in part because they relied on surface water as their source water and their supplies were considered vulnerable to pesticide contamination. A treatment plant's, ability to remove or degrade a pesticide has been shown to be dependent on numerous variables, including surface water characteristics, pH, oxidant type, contact time, and operational procedures. Among the 12 CWSs tracked by this research, the treatment processes effectiveness varied significantly. Although some pesticides in the source water were removed by treatment, others passed through the treatment process and into the distribution system. Future study is needed to examine exactly how the treatment process within each of the participating systems affected pesticide concentration. None of the pesticides, analyzed in this research were found at concentrations above standards set by the US Environmental Protection Agency for treated water. However, this work should serve as a wake-up call for treatment personnel and facility managers: If their source water is contaminated with pesticides, then the treatment process may not be completely effective at removing these pesticides from the water. - MPM.

  17. Synthesis and anticancer properties of water-soluble zinc ionophores.

    PubMed

    Magda, Darren; Lecane, Philip; Wang, Zhong; Hu, Weilin; Thiemann, Patricia; Ma, Xuan; Dranchak, Patricia K; Wang, Xiaoming; Lynch, Vincent; Wei, Wenhao; Csokai, Viktor; Hacia, Joseph G; Sessler, Jonathan L

    2008-07-01

    Several water-solubilized versions of the zinc ionophore 1-hydroxypyridine-2-thione (ZnHPT), synthesized as part of the present study, have been found both to increase the intracellular concentrations of free zinc and to produce an antiproliferative activity in exponential phase A549 human lung cancer cultures. Gene expression profiles of A549 cultures treated with one of these water-soluble zinc ionophores, PCI-5002, reveal the activation of stress response pathways under the control of metal-responsive transcription factor 1 (MTF-1), hypoxia-inducible transcription factor 1 (HIF-1), and heat shock transcription factors. Additional oxidative stress response and apoptotic pathways were activated in cultures grown in zinc-supplemented media. We also show that these water-soluble zinc ionophores can be given to mice at 100 micromol/kg (300 micromol/m(2)) with no observable toxicity and inhibit the growth of A549 lung and PC3 prostate cancer cells grown in xenograft models. Gene expression profiles of tumor specimens harvested from mice 4 h after treatment confirmed the in vivo activation of MTF-1-responsive genes. Overall, we propose that water-solubilized zinc ionophores represent a potential new class of anticancer agents.

  18. CCN activity of multi-component organic particles: The role of the water solubility distribution

    NASA Astrophysics Data System (ADS)

    Rastak, Narges; Riipinen, Ilona; Pandis, Spyros

    2014-05-01

    Introduction Interactions of atmospheric aerosol particles with the ambient water vapour determine to a large extent the influence that aerosols have on climate. To pin down the climate effects of aerosol particles on clouds and climate it is thus necessary to know how much they absorb water at sub-saturated conditions and at which conditions they can activate as CCN and form cloud droplets. The solubility in water is one of the key properties governing the water-absorption and CCN activation behaviour of aerosol particles. Organic constituents contribute a large fraction (20-90%, depending on the environment) of atmospheric submicron particulate mass which is the part of the aerosol size distribution that typically dominates the CCN numbers. Atmospheric organic compounds have a wide range of solubilities, spanning from practically insoluble material to highly water soluble compounds (e.g. Raymond and Pandis 2003). To accurately predict the water content and CCN activation of atmospheric OA information on the dissolution behaviour and aqueous phase interactions of these complex mixtures is needed. We investigate the dissolution behaviour of complex organic mixtures and their CCN activity using a theoretical framework (Solubility Basis Set, SBS) representing the mixture components with a continuous distribution of solubilities, similar to the VBS (Donahue et al., 2006). Method In this study we consider a monodisperse population of spherical aerosol particles consisting of an internal mixture of organic compounds. When exposed to water vapour, these particles grow reaching a thermodynamic equilibrium between the water vapour and the particle phase. The wet particle is allowed to consist of maximum two phases: the insoluble organic phase and the aqueous phase. The compositions of the organic and aqueous phases are determined on one hand by the equilibrium between the aqueous phase and the water vapour, and on the other hand by the equilibrium of the aqueous phase with

  19. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    SciTech Connect

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-05-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p'-DDT,2,4,5,2',5'-PCB, 2,4,4'-PCB, 1,2,3,-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. The K/sub dom/ values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment. 41 references, 6 figures, 3 tables.

  20. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process.

    PubMed

    Park, Junsung; Cho, Wonkyung; Cha, Kwang-Ho; Ahn, Junhyun; Han, Kang; Hwang, Sung-Joo

    2013-01-30

    Telmisartan is a biopharmaceutical classification system (BCS) class II drug that has extremely low water solubility but is freely soluble in highly alkalized solutions. Few organic solvents can dissolve telmisartan. This solubility problem is the main obstacle achieving the desired bioavailability. Because of its unique characteristics, the supercritical anti-solvent (SAS) process was used to BCS class II drug in a variety of ways including micronization, amorphization and solid dispersion. Solid dispersions were prepared using hydroxypropylmethylcellulose/polyvinylpyrrolidone (HPMC/PVP) at 1:0.5, 1:1, and 1:2 weight ratios of drug to polymer, and pure telmisartan was also treated using the SAS process. Processed samples were characterized for morphology, particle size, crystallinity, solubility, dissolution rate and polymorphic stability. After the SAS process, all samples were converted to the amorphous form and were confirmed to be hundreds nm in size. Solubility and dissolution rate were increased compared to the raw material. Solubility tended to increase with increases in the amount of polymer used. However, unlike the solubility results, the dissolution rate decreased with increases in polymer concentration due to gel layer formation of the polymer. Processed pure telmisartan showed the best drug release even though it had lower solubility compared to other solid dispersions; however, because there were no stabilizers in processed pure telmisartan, it recrystallized after 1 month under severe conditions, while the other solid dispersion samples remained amorphous form. We conclude that after controlling the formulation of solid dispersion, the SAS process could be a promising approach for improving the solubility and dissolution rate of telmisartan.

  1. An organic soluble lipase for water-free synthesis of biodiesel.

    PubMed

    Zhao, Xueyan; El-Zahab, Bilal; Brosnahan, Ryan; Perry, Justin; Wang, Ping

    2007-12-01

    Lipase AK was modified with short alkyl chains to form a highly organic soluble enzyme and was used to catalyze the synthesis of biodiesel from soybean oil in organic media. The effects of several key factors including water content, temperature, and solvent were examined for the solubilized enzyme in comparison with several other commercially available lipases. Whereas native lipases showed no activity in the absence of water, the organic soluble lipase demonstrated reaction rates of up to 33 g-product/g-enzyme h. The biocatalyst remains soluble in the biodiesel product, and therefore, there is no need to be removed because it is expected to be burned along with the diesel in combustion engines. This provides a promising one-pot mix-and-use strategy for biodiesel production.

  2. Developing soluble polymers for high-throughput synthetic chemistry.

    PubMed

    Spanka, Carsten; Wentworth, Paul; Janda, Kim D

    2002-05-01

    Soluble polymers have emerged as viable alternatives to resin supports across the broad spectrum of high-throughput organic chemistry. As the application of these supports become more widespread, issues such as broad-spectrum solubility and loading are becoming limiting factors and therefore new polymers are required to overcome such limitations. This article details the approach made within our group to new soluble polymer supports and specifically focuses on parallel libraries of block copolymers, de novo poly(styrene-co-chloromethylstyrene), PEG- stealth stars, and substituted poly(norbornylene)s.

  3. Evidence of carcinogenicity in humans of water-soluble nickel salts

    PubMed Central

    2010-01-01

    Background Increased risks of nasal cancer and lung cancer in nickel refiners have been investigated scientifically and discussed since they were detected in the 1930s. Nickel compounds are considered to be the main cause of the cancer excess. Parts of the nickel producing industry and their consultants oppose the classification of water-soluble nickel salts as human carcinogens, and argue that the risk in exposed workers should be ascribed to other occupational exposures and smoking. Discussion Respiratory cancer risks in Welsh, Finnish, and Norwegian nickel refiners add to the evidence of carcinogenicity of water-soluble nickel. In Norwegian refiners, the first epidemiological study in 1973 identified high risks of lung cancer and nasal cancer among long-term electrolysis workers. Risk analyses based on exposure estimates developed in the 1980s supported the view that water-soluble nickel compounds were central in the development of cancer. Recently, new exposure estimates were worked out for the same cohort based on personal monitoring of total nickel and chemical determination of four forms of nickel. Additional data have been collected on life-time smoking habits, and on exposure to arsenic, asbestos, sulphuric acid mists, cobalt, and occupational lung carcinogens outside the refinery. After adjustment for these potential confounding exposures in case-control analyses, the risk pattern added to the evidence of an important role of water-soluble nickel compounds as causes of lung cancer. These Norwegian cancer studies rely on national Cancer Registry data, considered close to complete from 1953 onwards; and on National Population Register data continuously updated with mortality and emigration. Canadian mortality studies--perceived to offer the strongest support to the industry position not to recognise carcinogenicity of water-soluble nickel--appear to suffer from limitations in follow-up time, loss to follow-up, absence of risk analysis with individual

  4. Wood-plastic composite using water soluble monomer

    NASA Astrophysics Data System (ADS)

    Khan, Mubarak A.; Ali, K. M. Idriss

    Wood-plastic composite (WPC) has been prepared with simul using acrylamide (AM), a water soluble monomer, in place of styrene (ST) and butylmethacrylate (BA). The highest polymer loading (PL) is achieved with AM along with the highest tensile strengths (TS) among the three bulk monomers studied. Effect of urea, NVP and TMPTA has been investigated in these systems. Co-additive (urea) has played a significant role in presence of NVP and TMPTA with AM compared to ST and BA systems. Methanol, water and water/methanol mixtures have been used as swelling agents in order to study their effect on PL and T f values. TS loss due to the weathering effect is minimum with the WPC, particularly if prepared with swelling agent methanol.

  5. Synthesis and properties of water-soluble asterisk molecules.

    PubMed

    Menger, Fredric M; Azov, Vladimir A

    2002-09-18

    An asterisk is comprised of six semirigid arms projecting from a benzene nucleus. In the case at hand, asterisks were synthesized with one, two, or three aromatic rings (connected by sulfur atoms) in each of the six arms. A phosphomonoester at the termini of each arm solubilized the asterisks in water. The colloidal properties of these amphiphilic molecules were investigated by UV-vis and fluorescence spectroscopy, calorimetry, light scattering, surface tensiometry, and pulse-gradient spin-echo NMR. Solubility, solubilization, metal binding, and micelle "seeding" experiments were also carried out. Chain-conformation and supramolecular assembly into remarkable molecular "scrolls" were investigated by X-ray analysis and electron microscopy, respectively. One of the more interesting properties of the asterisks is that they remain monomeric in water despite having as many as 19 hydrophobic aromatic rings exposed to the water. The reasons for this behavior, and the possibility of exploiting it for constructing enzyme models free from aggregation equilibria, are discussed.

  6. Isolation, purification and physicochemical characterization of water-soluble Bacillus thuringiensis melanin.

    PubMed

    Aghajanyan, Armen E; Hambardzumyan, Artur A; Hovsepyan, Anichka S; Asaturian, Rafael A; Vardanyan, Andranik A; Saghiyan, Ashot A

    2005-04-01

    Melanins are widely used in medicine, pharmacology, cosmetics and other fields. Although several technologies for the purification of water-insoluble dioxyphenylalanine (DOPA) melanins have been described, a source of water-soluble melanin is highly desirable. Here we describe an effective procedure for the isolation and purification of water-soluble melanin using the culture medium of Bacillus thuringiensis subsp. galleriae strain K1. Water-soluble melanin from this organism has an isoelectric point (pI=3.0-3.2) and was purified optimally by adsorbtion using the IA-1r resin and elution as a concentrated solution. The purified melanin obtained exhibited a similar infra-red absorbtion spectrum to synthetic melanin and contained quinolic and phenolic structures and an amino acid content of around 20% after acid hydrolysis. The molecular weight of the purified melanin determined by SDS-PAGE was 4 kDa and the electromagnetic spin resonance spectrum of the purified microbial melanin was a slightly asymmetric singlet without hyperfine structure with about 7 Gauss width of the line between points of the maximum incline and g=2.006. The concentration of paramagnetic centers in melanin is 0.21x10(18) spin/g. The results obtained provide a rapid, simple and inexpensive method for the large scale purification of water soluble melanin that may have widespread applications.

  7. Nanosizing: a formulation approach for poorly-water-soluble compounds.

    PubMed

    Merisko-Liversidge, Elaine; Liversidge, Gary G; Cooper, Eugene R

    2003-02-01

    Poorly-water-soluble compounds are difficult to develop as drug products using conventional formulation techniques and are frequently abandoned early in discovery. The use of media milling technology to formulate poorly-water-soluble drugs as nanocrystalline particles offers the opportunity to address many of the deficiencies associated with this class of molecules. NanoCrystal Technology is an attrition process wherein large micron size drug crystals are media milled in a water-based stabilizer solution. The process generates physically stable dispersions consisting of nanometer-sized drug crystals. Nanocrystalline particles are a suitable delivery system for all commonly used routes of administration, i.e. oral, injectable (IV, SC, and IM) and topical applications. In addition, aqueous dispersions of nanoparticles can be post-processed into tablets, capsules, fast-melts and lyophilized for sterile product applications. The technology has been successfully incorporated into all phases of the drug development cycle from identification of new chemical entities to refurbishing marketed products for improving their performance and value.

  8. Water-soluble constituents from aerial roots of Ficus microcarpa.

    PubMed

    Ouyang, M-A; Kuo, Y-H

    2006-01-01

    Three new water-soluble constituents [ficuscarpanoside B (1), (7E,9Z)-dihydrophaseic acid 3-O-beta-D-glucopyranoside (4) and ficuscarpanic acid (6)] and the natural product 2,2'-dihydroxyl ether (7) have been isolated, together with three known compounds [(7S,8R)-syringoylglycerol (2), (7S,8R)-syringoylglycerol-7-O-beta-D-glucopyranoside (3) and icariside D2 (5)] from the aerial roots of Ficus microcarpa. Identification of their structures was achieved by 1D and 2D NMR experiments, including 1H-1H COSY, NOESY, HMQC and HMBC methods and FAB mass spectral data.

  9. Wettability, water sorption and water solubility of seven silicone elastomers used for maxillofacial prostheses.

    PubMed

    Hulterström, Anna Karin; Berglund, Anders; Ruyter, I Eystein

    2008-01-01

    The wettability, water sorption and solubility of silicone elastomers used for maxillofacial prostheses were studied. The hypothesis was, that a material that has absorbed water would show an increase in the wettability and thus also the surface free energy of the material. Seven silicone elastomers, both addition- and condensation type polymers, were included. Five specimens of each material were subjected to treatment according to ISO standards 1567:1999 and 10477: 2004 for water sorption and solubility. The volumes of the specimens were measured according to Archimedes principle. The contact angle was measured with a contact angle goniometer at various stages of the sorption/solubility test. Wettability changed over the test period, but not according to theory. The addition type silicones showed little or no sorption and solubility, but two of the condensation type polymers tested had a significant sorption and solubility. This study showed that condensation type polymers may show too large volumetric changes when exposed to fluids, and therefore should no longer be used in prosthetic devices. The results of this study also suggests that it might be of interest to test sorption and solubility of materials that are to be implanted, since most of the materials had some solubility.

  10. Antioxidant Activity of Water-soluble Polysaccharides from Brasenia schreberi

    PubMed Central

    Xiao, Huiwen; Cai, Xueru; Fan, Yijun; Luo, Aoxue

    2016-01-01

    Objective: In order to investigate the antioxidant activities of polysaccharides (BPL-1 and BPL-2), one of the most important functional constituents in Brasenia schreberi was isolated from the external mucilage of B. schreberi (BPL-1) and the plant in vivo (BPL-2). This paper examines the relationship between the content of sulfuric radicals and uronic acid in BPL and the antioxidant activity of BPL. Materials and Methods: The free radicals, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and 1,1-diphnyl-2-picrylhydrazyl (DPPH-), were used to determine the antioxidant activity of BPL. The Fourier-transform infrared spectroscopy of BPL-1 and BPL-2 revealed typical characteristics of polysaccharides. Results: The two sample types had different contents. This was proved by their different adsorption peak intensities. The IC50 values of BPL-1 (31.189 mg/ml) and BPL-2 (1.863 mg/ml) showed significant DPPH radical scavenging activity. Based on the quantification of ABTS radical scavenging, the IC50 value of BPL-1 (5.460 mg/ml) was higher than that of BPL-2 (0.239 mg/ml). Therefore, in terms of the reducing power, the IC50 value of BPL-1 was too high to determine, and the IC50 value of BPL-2 was found to be 50.557 mg/ml. Hence, the antioxidant activity and total reducing power were high, and they were greater in BPL-2 than in BPL-1. In addition, BPL-2 was found to have more sulfuric radicals and uronic acid than BPL-1. Conclusion: The contents of sulfuric radicals and uronic acid are significantly correlated to the antioxidant activity and reducing power of BPL; the more sulfuric radicals and uronic acid, the more antioxidant activity and reducing power BPL has. SUMMARY The water-soluble crude polysaccharides obtained from the external mucilage and the Brasenia schreberi plant in vivo were confirmed to have high contents of sulfuric radicals and uronic acidBoth BPL-1 and BPL-2 exhibited antioxidative activity and reducing power, and their antioxidative

  11. Quantitative determination of arsenobetaine, the major water-soluble arsenical in three species of crab, using high pressure liquid chromatography and an inductively coupled argon plasma emission spectrometer as the arsenic-specific detector

    SciTech Connect

    Francesconi, K.A.; Micks, P.; Stockton, R.A.; Irgolic, K.J.

    1985-01-01

    The major water-soluble arsenic compound in the Alaskan king crab, the Alaskan snow crab, and the Dungeness crab was identified as arsenobetaine by HPLC/ICP analysis. This technique is suitable for the identification and quantitative determination of naturally occurring organic arsenic compounds in purified and partially purified extracts from biota.

  12. Water-soluble vitamin deficiencies in complicated peptic ulcer patients soon after ulcer onset in Japan.

    PubMed

    Miyake, Kazumasa; Akimoto, Teppei; Kusakabe, Makoto; Sato, Wataru; Yamada, Akiyoshi; Yamawaki, Hiroshi; Kodaka, Yasuhiro; Shinpuku, Mayumi; Nagoya, Hiroyuki; Shindo, Tomotaka; Ueki, Nobue; Kusunoki, Masafumi; Kawagoe, Tetsuro; Futagami, Seiji; Tsukui, Taku; Sakamoto, Choitsu

    2013-01-01

    We investigated over time whether contemporary Japanese patients with complicated peptic ulcers have any water-soluble vitamin deficiencies soon after the onset of the complicated peptic ulcers. In this prospective cohort study, fasting serum levels of water-soluble vitamins (vitamins B1, B2, B6, B12, C, and folic acid) and homocysteine were measured at 3 time points (at admission, hospital discharge, and 3 mo after hospital discharge). Among the 20 patients who were enrolled in the study, 10 consecutive patients who completed measurements at all 3 time points were analyzed. The proportion of patients in whom any of the serum water-soluble vitamins that we examined were deficient was as high as 80% at admission, and remained at 70% at discharge. The proportion of patients with vitamin B6 deficiency was significantly higher at admission and discharge (50% and 60%, respectively, p<0.05) than at 3 mo after discharge (10%). In conclusion, most patients with complicated peptic ulcers may have a deficiency of one or more water-soluble vitamins in the early phase of the disease after the onset of ulcer complications, even in a contemporary Japanese population.

  13. Self-assembly of water-soluble nanocrystals

    DOEpatents

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  14. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils.

    PubMed

    McClements, David Julian; Henson, Lulu; Popplewell, L Michael; Decker, Eric Andrew; Choi, Seung Jun

    2012-01-01

    Beverage emulsions containing flavor oils that have a relatively high water-solubility are unstable to droplet growth due to Ostwald ripening. The aim of this study was to improve the stability of model beverage emulsions to this kind of droplet growth by incorporating poorly water-soluble triglyceride oils. High pressure homogenization was used to prepare a series of 5 wt% oil-in-water emulsions stabilized by modified starch that had different lipid phase compositions (orange oil : corn oil). Emulsions prepared using only orange oil as the lipid phase were highly unstable to droplet growth during storage, which was attributed to Ostwald ripening resulting from the relatively high water-solubility of orange oil. Droplet growth could be effectively inhibited by incorporating ≥ 10% corn oil into the lipid phase prior to homogenization. In addition, creaming was also retarded because the lipid phase density was closer to that of the aqueous phase density. These results illustrate a simple method of improving the physical stability of orange oil emulsions for utilization in the food, beverage, and fragrance industries.

  15. A novel injectable water-soluble amphotericin B-arabinogalactan conjugate.

    PubMed

    Falk, R; Domb, A J; Polacheck, I

    1999-08-01

    New, stable, highly water-soluble, nontoxic polysaccharide conjugates of amphotericin B (AmB) are described. AmB was conjugated by a Schiff-base reaction with oxidized arabinogalactan (AG). AG is a highly branched natural polysaccharide with unusual water solubility (70% in water). A high yield of active AmB was obtained with the conjugates which were similarly highly water soluble and which could be appropriately formulated for injection. They showed comparable MICs for Candida albicans and Cryptococcus neoformans (MICs, 0.1 to 0.2 microg/ml). The reduced AmB conjugate, which was synthesized at pH 11 for 48 h at 37 degrees C, was nonhemolytic and was much safer than conventional micellar AmB-deoxycholate. It was the least toxic AmB-AG conjugate among those tested with mice (maximal tolerated dose, 50 mg/kg of body weight), and histopathology indicated no damage to the liver or kidneys. This conjugate, similarly to the liposomal formulation (AmBisome), was more effective than AmB-deoxycholate in prolonging survival. It was more effective than both the liposomal and the deoxycholate formulations in eradicating yeast cells from target organs. The overall results suggest that after further development of the AmB-AG conjugate, it may be a potent agent in the treatment of fungal infections.

  16. A Novel Injectable Water-Soluble Amphotericin B-Arabinogalactan Conjugate

    PubMed Central

    Falk, Rama; Domb, Abraham J.; Polacheck, Itzhack

    1999-01-01

    New, stable, highly water-soluble, nontoxic polysaccharide conjugates of amphotericin B (AmB) are described. AmB was conjugated by a Schiff-base reaction with oxidized arabinogalactan (AG). AG is a highly branched natural polysaccharide with unusual water solubility (70% in water). A high yield of active AmB was obtained with the conjugates which were similarly highly water soluble and which could be appropriately formulated for injection. They showed comparable MICs for Candida albicans and Cryptococcus neoformans (MICs, 0.1 to 0.2 μg/ml). The reduced AmB conjugate, which was synthesized at pH 11 for 48 h at 37°C, was nonhemolytic and was much safer than conventional micellar AmB-deoxycholate. It was the least toxic AmB-AG conjugate among those tested with mice (maximal tolerated dose, 50 mg/kg of body weight), and histopathology indicated no damage to the liver or kidneys. This conjugate, similarly to the liposomal formulation (AmBisome), was more effective than AmB-deoxycholate in prolonging survival. It was more effective than both the liposomal and the deoxycholate formulations in eradicating yeast cells from target organs. The overall results suggest that after further development of the AmB-AG conjugate, it may be a potent agent in the treatment of fungal infections. PMID:10428922

  17. Evaluation of ISO 4049: water sorption and water solubility of resin cements.

    PubMed

    Müller, Johannes A; Rohr, Nadja; Fischer, Jens

    2017-04-01

    The aim of this study was to evaluate the water sorption and solubility test design of ISO 4049 for resin cements. Sorption and solubility of six dual-curing resin cements [RelyX Unicem 2 Automix (RUN), Multilink Speed CEM (MLS), Panavia SA Plus (PSA), RelyX Ultimate (RUL), Multilink Automix (MLA), and Panavia V5 (PV5)] were analyzed by storage in distilled water after dual-curing. In addition, sorption and solubility during thermal cycling were assessed with self-cured and dual-cured specimens. After water storage, all cements revealed sorption in the range of 30 μg mm(-3) except for PV5, for which sorption was markedly lower (mean ± SD = 20.8 ± 0.4 μg mm(-3) ). Solubility values were negative for RUN and RUL (-2.1 ± 0.08 μg mm(-3) and -1.9 ± 0.13 μg mm(-3) , respectively). All other cements attained positive values in the range of 0.4-0.8 μg mm(-3) . Thermal cycling effects were more pronounced. The assessment of water sorption according to ISO 4049 provides reliable results. Solubility results must be interpreted with care because absorbed water may distort the values.

  18. The uptake and solubility of water in quartz at elevated pressure and temperature

    NASA Astrophysics Data System (ADS)

    Gerretsen, J.; Paterson, M. S.; McLaren, A. C.

    1989-02-01

    The uptake of water in quartz at 1.5 GPa total pressure, 1173 K and high water fugacity, over times up to 24 h, has been investigated using a newly developed assembly to prevent microcracking. It is found that the uptake is small, and below the detectability of the presently used technique of infrared spectroscopy and serial sectioning. This observation reflects either a low value for the diffusivity or the solubility or a combination of both, and is in agreement with the observations of Kronenberg et al. (1986) and Rovetta et al. (1986). It brings into question the interpretation of the early experiments on water weakening by Griggs and Blacic (1964) and the recent estimates of the solubility and diffusivity by Mackwell and Paterson (1985). Rults of a combined T.E.M., light-scattering and infrared-spectroscopy investigation of ‘wet’ synthetic quartz before and after heating at 0.1, 300 and 1500 MPa total pressure and 1173 K, strongly suggest that the water in ‘wet’ quartz is mainly in the form of H2O in inclusions, consistent with the solubility being low, possibly less than 100 H/106Si. From these observations, water-containing inclusions appear to play a major role in the plasticity of quartz, while any role of water in solid solution remains to be clarified.

  19. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles

    NASA Astrophysics Data System (ADS)

    Wais, Ulrike; Jackson, Alexander W.; He, Tao; Zhang, Haifei

    2016-01-01

    During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.

  20. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles.

    PubMed

    Wais, Ulrike; Jackson, Alexander W; He, Tao; Zhang, Haifei

    2016-01-28

    During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.

  1. Microautoradiography of Water-Soluble Compounds in Plant Tissue after Freeze-Drying and Pressure Infiltration with Epoxy Resin

    PubMed Central

    Vogelmann, Thomas C.; Dickson, Richard E.

    1982-01-01

    It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible. Images Fig. 2 PMID:16662542

  2. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    PubMed

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.

  3. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    SciTech Connect

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  4. Biological activities of water-soluble fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Mashino, T.

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  5. Reactivity of Metal Ions Bound to Water-Soluble Polymers

    SciTech Connect

    Sauer, N.N.; Watkins, J.G.; Lin, M.; Birnbaum, E.R.; Robison, T.W.; Smith, B.F.; Gohdes, J.W.; McDonald, J.G.

    1999-06-29

    The intent of this work is to determine the effectiveness of catalysts covalently bound to polymers and to understand the consequences of supporting the catalysts on catalyst efficiency and selectivity. Rhodium phosphine complexes with functional groups for coupling to polymers were prepared. These catalyst precursors were characterized using standard techniques including IR, NMR, and elemental analysis. Studies on the modified catalysts showed that they were still active hydrogenation catalysts. However, tethering of the catalysts to polyamines gave systems with low hydrogenation activity. Analogous biphasic systems were also explored. Phosphine ligands with a surfactant-like structure have been synthesized and used to prepare catalytically active complexes of palladium. The palladium complexes were utilized in Heck-type coupling reactions (e.g. coupling of iodobenzene and ethyl acrylate to produce ethyl cinnamate) under vigorously stirred biphasic reaction conditions, and were found to offer superior performance over a standard water-soluble palladium catalyst under analogous conditions.

  6. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  7. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins.

    PubMed

    Zhang, Yan; Zhang, Jieqiong; Sheng, Wei; Wang, Shuo; Fu, Tong-Jen

    2016-05-15

    The effects of dry and moist heat, autoclave sterilization and high-pressure treatment on the biochemical characteristics and immunological properties of almond proteins were investigated. Changes in the solubility and immunoreactivity of almond proteins extracted from treated almond flour were evaluated using a total protein assay, indirect competitive inhibition enzyme-linked immunosorbent assay (IC-ELISA), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Almond proteins were stable during dry-heat treatment at temperatures below 250°C. Dry heat at 400°C, boiling, autoclave sterilization and high-pressure treatment in the presence of water at ⩾ 500 MPa greatly reduced the solubility and immunoreactivity of almond proteins. SDS-PAGE revealed that the protein profiles of almond flour samples treated under these conditions also changed significantly. The synergistic effects of heat, pressure and the presence of water contributed to significant changes in solubility and immunoreactivity of almond proteins.

  8. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.

    PubMed

    Tolonen, Lasse K; Bergenstråhle-Wohlert, Malin; Sixta, Herbert; Wohlert, Jakob

    2015-04-02

    The insolubility of cellulose in ambient water and most aqueous systems presents a major scientific and practical challenge. Intriguingly though, the dissolution of cellulose has been reported to occur in supercritical water. In this study, cellulose solubility in ambient and supercritical water of varying density (0.2, 0.7, and 1.0 g cm(-3)) was studied by atomistic molecular dynamics simulations using the CHARMM36 force field and TIP3P water. The Gibbs energy of dissolution was determined between a nanocrystal (4 × 4 × 20 anhydroglucose residues) and a fully dissociated state using the two-phase thermodynamics model. The analysis of Gibbs energy suggested that cellulose is soluble in supercritical water at each of the studied densities and that cellulose dissolution is typically driven by the entropy gain upon the chain dissociation while simultaneously hindered by the loss of solvent entropy. Chain dissociation caused density augmentation around the cellulose chains, which improved water-water bonding in low density supercritical water whereas the opposite occurred in ambient and high density supercritical water.

  9. Fat-soluble and water-soluble vitamin contents of breast milk from Japanese women.

    PubMed

    Sakurai, Takayuki; Furukawa, Miyako; Asoh, Miyuki; Kanno, Takahiro; Kojima, Tadashi; Yonekubo, Akie

    2005-08-01

    To determine the concentrations of fat-soluble and water-soluble vitamins in the maternal milk of Japanese women, we collected human milk samples from more than 4,000 mothers living throughout Japan between December 1998 and September 1999, and defined as group A the 691 samples among these that met the following conditions: breast milk of mothers who were under 40 y of age, who did not smoke habitually and/or use vitamin supplements, and whose babies showed no symptoms of atopy and had birth weights of 2.5 kg or more. We then analyzed the contents of vitamins individually. Large differences were observed among the contents of individual human milk samples. The mean contents of each component were as follows: vitamin A, 159.0 +/- 95.2 IU/100 mL; vitamin E, 0.325 +/- 0.165 alpha-TE mg/100mL; vitamin D3 (cholecalciferol), 8.0 +/- 10.7 ng/100mL; vitamin B1 (thiamin), 12.3 +/- 3.2 microg/100 mL; vitamin B2, 38.4 +/- 12.7 microg/100 mL; vitamin B6, 5.7 +/- 2.5 microg/100 mL; vitamin B12, 0.04 +/- 0.02 microg/100 mL; vitamin C, 5.1 +/- 1.9 mg/100 mL; biotin, 0.50 +/- 0.23 microg/100 mL; choline, 9.2 +/- 1.8 mg/100 mL; folic acid, 6.2 +/- 2.9 microg/100 mL; inositol, 12.6 +/- 3.6 mg/100 mL; niacin (nicotinamide), 32.9 +/- 20.4 microg/100 mL and pantothenic acid, 0.27 +/- 0.09 mg/100 mL. The concentrations of derivatives and/or related compounds of vitamin A (retinol, beta-carotene), vitamin E (alpha-, beta-, gamma-, and delta-tocopherol), and B2 (riboflavin, FMN, and FAD) were determined separately. The contents of each were found to vary greatly as the duration of lactation increased. The present results indicate that it is necessary to evaluate individual differences in human milk in order to perform valid research regarding infant formula.

  10. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  11. Morphological Analysis and Solubility of Lead Particles: Effect of Phosphates and Implications to Drinking Water Distribution

    EPA Science Inventory

    Objective • Describe lead synthesis experiments conduced to model the impact of water quality on lead particles and solubility • Develop a model system that can be used for lead solubility studies • Understand the how phosphates impact the morphology and solubility transfo...

  12. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and the aqueous solubility of organic liquids. Journal of Organic Chemistry 33:347-350 (1968). (3... with the solute, i.e., the organic compound whose solubility is to be determined. When water (the... for determining the aqueous solubility of organic compounds that was initially developed by May et...

  13. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water; brines; minerals taken in solution. (a) In mining or prospecting deposits of sodium, potassium or other minerals soluble in water, all wells, shafts, prospecting holes and other openings shall be... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Minerals soluble in water;...

  14. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... water; brines; minerals taken in solution. (a) In mining or prospecting deposits of sodium, potassium or other minerals soluble in water, all wells, shafts, prospecting holes and other openings shall be... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Minerals soluble in water;...

  15. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... water; brines; minerals taken in solution. (a) In mining or prospecting deposits of sodium, potassium or other minerals soluble in water, all wells, shafts, prospecting holes and other openings shall be... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Minerals soluble in water;...

  16. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid chromatography (HPLC), gas chromatography (GC), or any other suitable analytical procedure. A... chromatography for determining aqueous solubilities and octanol-water partition coefficients of...

  17. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women.

    PubMed

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-06-01

    Little information is available to estimate water-soluble vitamin intakes from urinary vitamins and their metabolite contents as possible nutritional markers. Determination of the relationships between the oral dose and urinary excretion of water-soluble vitamins in human subjects contributes to finding valid nutrition markers of water-soluble vitamin intakes. Six female Japanese college students were given a standard Japanese diet in the first week, the same diet with a synthesized water-soluble vitamin mixture as a diet with approximately onefold vitamin mixture based on Dietary Reference Intakes (DRIs) for Japanese in the second week, with a threefold vitamin mixture in the third week, and a sixfold mixture in the fourth week. Water-soluble vitamins and their metabolites were measured in the 24-h urine collected each week. All urinary vitamins and their metabolite levels except vitamin B(12) increased linearly in a dose-dependent manner, and highly correlated with vitamin intake (r=0.959 for vitamin B(1), r=0.927 for vitamin B(2), r=0.965 for vitamin B(6), r=0.957 for niacin, r=0.934 for pantothenic acid, r=0.907 for folic acid, r=0.962 for biotin, and r=0.952 for vitamin C). These results suggest that measuring urinary water-soluble vitamins and their metabolite levels can be used as good nutritional markers for assessing vitamin intakes.

  18. Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug

    PubMed Central

    Mohsin, Kazi; Alamri, Rayan; Ahmad, Ajaz; Raish, Mohammad; Alanazi, Fars K; Hussain, Muhammad Delwar

    2016-01-01

    Background Self-nanoemulsifying drug delivery systems (SNEDDS) have become a popular formulation option as nanocarriers for poorly water-soluble drugs. The objective of this study was to investigate the factor that can influence the design of successful lipid formulation classification system (LFCS) Type III SNEDDS formulation and improve the oral bioavailability (BA) of fenofibrate. Materials and methods LFCS Type III SNEDDS were designed using various oils, water-soluble surfactants, and/or cosolvents (in considering the polarity of the lipids) for the model anticholesterol drug, fenofibrate. The developed SNEDDS were assessed visually and by measurement of the droplet size. Equilibrium solubility of fenofibrate in the SNEDDS was conducted to find out the maximum drug loading. Dynamic dispersion studies were carried out (1/100 dilution) in water to investigate how much drug stays in solution after aqueous dispersion of the formulation. The BA of SNEDDS formulation was evaluated in the rat. Results The results from the characterization and solubility studies showed that formulations containing mixed glycerides were highly efficient SNEDDS as they had higher solubility of the drug and produced nanosized droplets. The dispersion studies confirmed that SNEDDS (containing polar mixed glycerides) can retain >98% drug in solution for >24 hours in aqueous media. The in vivo pharmacokinetics parameters of SNEDDS formulation in comparison with pure drug showed significant increase in Cmax and AUC0–t, ~78% and 67%, respectively. The oral BA of fenofibrate from SNEDDS in rats was ~1.7-fold enhanced as compared with the BA from pure drug. Conclusion Fenofibrate-loaded LFCS Type III SNEDDS formulations could be a potential oral pharmaceutical product for administering the poorly water-soluble drug, fenofibrate, with an enhanced oral BA. PMID:27366063

  19. Assembly of water-soluble chlorophyll-binding proteins with native hydrophobic chlorophylls in water-in-oil emulsions.

    PubMed

    Bednarczyk, Dominika; Takahashi, Shigekazu; Satoh, Hiroyuki; Noy, Dror

    2015-03-01

    The challenges involved in studying cofactor binding and assembly, as well as energy- and electron transfer mechanisms in the large and elaborate transmembrane protein complexes of photosynthesis and respiration have prompted considerable interest in constructing simplified model systems based on their water-soluble protein analogs. Such analogs are also promising templates and building blocks for artificial bioinspired energy conversion systems. Yet, development is limited by the challenge of introducing the essential cofactors of natural proteins that are highly water-insoluble into the water-soluble protein analogs. Here we introduce a new efficient method based on water-in-oil emulsions for overcoming this challenge. We demonstrate the effectiveness of the method in the assembly of native chlorophylls with four recombinant variants of the water-soluble chlorophyll-binding protein of Brassicaceae plants. We use the method to gain new insights into the protein-chlorophyll assembly process, and demonstrate its potential as a fast screening system for developing novel chlorophyll-protein complexes.

  20. Antimalarial activity of new water-soluble dihydroartemisinin derivatives.

    PubMed

    Lin, A J; Klayman, D L; Milhous, W K

    1987-11-01

    The usefulness of sodium artesunate (3), a water-soluble derivative of artemisinin (1), is impaired by its poor stability in aqueous solution. To overcome the ease of hydrolysis of the ester group in 3, a new series of derivatives of dihydroartemisinin (2) was prepared in which the solubilizing moiety, which contains a carboxylate group, is joined to dihydroartemisinin by an ether rather than an ester linkage. The new derivatives were prepared in good yield by treatment of dihydroartemisinin with an appropriate alcohol under boron trifluoride etherate catalysis at room temperature. All major condensation products are the beta isomer. Hydrolysis of the esters with 2.5% KOH/MeOH gave the corresponding potassium salts, which were converted to free acids (8b-d) by acidification. The derivatives were tested in vitro against two clones of human malaria, Plasmodium falciparum D-6 (Sierra Leone clone) and W-2 (Indochina clone). No cross-resistance to the antimalarial agents mefloquine, chloroquine, pyrimethamine, sulfadoxine, and quinine was observed. In general, the new compounds are more effective against the W-2 than the D-6 strain. Esters (5a-d) possess activity comparable to that of the parent compounds 1 and 2; however, conversion of the esters to their corresponding carboxylates (7a-d) or acids (8b-d), with the exception of artelinic acid (8d), drastically decreases the antimalarial activities in both cell lines. Artelinic acid, which is both soluble and stable in 2.5% K2CO3 solution, possesses superior in vivo activity against Plasmodium berghei than artemisinin or artesunic acid.

  1. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    PubMed Central

    Solanki, Shailendra Singh; Soni, Love Kumar; Maheshwari, Rajesh Kumar

    2013-01-01

    In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug), by making blends (keeping total concentrations 40% w/v, constant) of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide); water-soluble solids (PEG-4000, PEG-6000); and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600). Aqueous solubility of drug in case of selected blends (12 blends) ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml). The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol) was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs. PMID:26555989

  2. Effect Of Pressure On The Temperature Dependence Of Water Solubility In Forsterite

    NASA Astrophysics Data System (ADS)

    Bali, E.; Bolfan-Casanova, N.; Koga, K.

    2005-12-01

    Water storage capacity of the upper mantle largely depends on water solubility in mantle olivine. Realistic models must take into account the simultaneous effects of variables such as pressure, temperature, iron content and silica activity. Previous experimental studies have shown that the water solubility in olivine increases with increasing water fugacity up to 12 GPa at 1100°C. Water incorporation in olivine was also observed to increase with increasing temperature and increasing iron content at 0.3 GPa, however the temperature dependence was not studied at higher pressures. Interestingly, the only high-pressure data available, that is for wadsleyite and ringwoodite, show that their water solubility decreases with increasing temperature. The goal of this study is to determine the dependence of water maximum concentration on temperature at pressures higher than 0.3 GPa. We performed experiments at 3 and 6 GPa, and temperatures ranging from 1000 to 1400°C in the MgO-SiO2-H2O system using a multi-anvil apparatus. The olivine and orthopyroxene molar ratio was 1 to 1 in the starting material with 5 wt% H2O. The samples were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The mineralogical assemblage consisted of olivine+orthopyroxene+fluid at temperatures below 1250°C both at 3 and 6 GPa and olivine+melt+/-orthopyroxene at higher temperatures. At 3 GPa, above 1325°C orthopyroxene was missing from the assemblage, whereas in case of the 6 GPa experiments it was present even at higher temperatures. This indicates a change in fluid composition from 3 to 6 GPa. Preliminary data using unpolarized FTIR measurements, but comparing same orientations, indicate that water solubility in olivine at 6 GPa decreases with increasing temperature. This observation agrees with the results on wadsleyite and ringwoodite, but contradict the results of the existing low-pressure data. The explaination we propose for the change in temperature

  3. Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots.

    PubMed

    Song, Zhiping; Lin, Tianran; Lin, Lihua; Lin, Sen; Fu, Fengfu; Wang, Xinchen; Guo, Liangqia

    2016-02-18

    Stimuli-responsive photoluminescent (PL) materials have been widely used as fluorescent ink for data security applications. However, traditional fluorescent inks are limited in maintaining the secrecy of information because the inks are usually visible by naked eyes either under ambient light or UV-light illumination. Here, we introduced metal-free water-soluble graphitic carbon nitride quantum dots (g-CNQDs) as invisible security ink for information coding, encryption, and decryption. The information written by the g-CNQDs is invisible in ambient light and UV light, but it can be readable by a fluorescence microplate reader. Moreover, the information can be encrypted and decrypted by using oxalic acid and sodium bicarbonate as encryption reagent and decryption reagent, respectively. Our findings provide new opportunities for high-level information coding and protection by using water-soluble g-CNQDs as invisible security ink.

  4. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    PubMed Central

    Caldera, Fabrizio; Cavalli, Roberta; Mele, Andrea; Punta, Carlo; Melone, Lucio; Castiglione, Franca; Rossi, Barbara; Ferro, Monica; Crupi, Vincenza; Majolino, Domenico; Venuti, Valentina

    2014-01-01

    Summary A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material. PMID:25550720

  5. Physico-chemical qualification of a universal portable sampler for aerosols and water-soluble gases

    NASA Astrophysics Data System (ADS)

    Roux, Jean-Maxime; Sarda-Estève, Roland

    2015-10-01

    Developing a universal portable air sampler based on electrostatic precipitation. The challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a portable device. Electrostatic precipitation is an efficient and gentle method to collect airborne microorganisms and preserve their cultivability. But the collection of toxic gases required is not possible in such a device. The collection of such gases requires a liquid into which they have to be solubilized. Two concepts are being evaluated. The first one is based on electrospray. The goal is to investigate the collection efficiency of water-soluble gases. The second concept is based on the semi-humid electrostatic precipitator. Their high collection efficiencies for particles were already demonstrated. In the present study they are both tested with water-soluble gases. Concentrations are measured in the liquid solution by Ion Chromatography and in the gas phase by Proton Transfer Reaction Mass Spectrometry.

  6. Water-soluble polymer exfoliated graphene: as catalyst support and sensor.

    PubMed

    Wang, Haibo; Xia, Baoyu; Yan, Ya; Li, Nan; Wang, Jing-Yuan; Wang, Xin

    2013-05-09

    In this paper, we obtained various water-soluble polymer functionalized graphene in dimethyl sulfoxide under ultrasonication. The atomic force microscope analysis and control experiment shows the water-soluble polymer is the crucial part to help solvent molecules separate interlayer. Such polymer/graphene exhibits high conductivity and tunable surface property, as confirmed by the selected area electron diffraction and Raman and electrochemical impedance spectroscopy. As a result, a catalyst based on polyvinyl pyrrolidone (PVP)/graphene shows better methanol oxidation performance than that based on PVP/reduced graphene oxide. By changing to another polymer, poly(4-vinylpyridine)/graphene shows a stable and reversible response to pH, and demonstrates its potential for sensor application.

  7. Synthesis, Characterization and Application of Water-soluble Gold and Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    The term `nanotechnology' has emerged as a buzzword since the last few decades. It has found widespread applications across disciplines, from medicine to energy. The synthesis of gold and silver nanoclusters has found much excitement, due to their novel material properties. Seminal work by various groups, including ours, has shown that the size of these clusters can be controlled with atomic precision. This control gives access to tuning the optical and electronic properties. The majority of nanoclusters reported thus far are not water soluble, which limit their applications in biology that requires water-solubility. Going from organic to aqueous phase is by no means a simple task, as it is associated with many challenges. Their stability in the presence of oxygen, difficulty in characterization, and separation of pure nanoclusters are some of the major bottlenecks associated with the synthesis of water-soluble gold nanoclusters. Water-soluble gold nanoclusters hold great potential in biological labeling, bio-catalysis and nano-bioconjugates. To overcome this problem, a new ligand with structural rigidity is needed. After considering various possibilities, we chose Captopril as a candidate ligand. In my thesis research, the synthesis of Au25 nanocluster capped with captopril has been reported. Captopril-protected Au25 nanocluster showed significantly higher thermal stability and enhanced chiroptical properties than the Glutathione-capped cluster, which confirms our initial rationale, that the ligand is critical in protecting the nanocluster. The optical absorption properties of these Au25 nanoclusters are studied and compared to the plasmonic nanoparticles. The high thermal stability and solubility of Au25 cluster capped with Captopril motivated us to explore this ligand for the synthesis of other gold clusters. Captopril is a chiral molecule with two chiral centers. The chiral ligand can induce chirality to the overall cluster, even if the core is achiral

  8. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    PubMed

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  9. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility

    NASA Astrophysics Data System (ADS)

    Zappoli, S.; Andracchio, A.; Fuzzi, S.; Facchini, M. C.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Molnár, Á.; Mészáros, E.; Hansson, H.-C.; Rosman, K.; Zebühr, Y.

    A chemical mass balance of fine aerosol (<1.5 μm AED) collected at three European sites was performed with reference to the water solubility of the different aerosol classes of components. The sampling sites are characterised by different pollution conditions and aerosol loading in the air. Aspvreten is a background site in central Sweden, K-puszta is a rural site in the Great Hungarian Plain and San Pietro Capofiume is located in the polluted Po Valley, northern Italy. The average fine aerosol mass concentration was 5.9 μg m -3 at the background site Aspvreten, 24 μg m -3 at the rural K-puszta and 38 μg m -3 at the polluted site San Pietro Capofiume. However, a similarly high soluble fraction of the aerosol (65-75%) was measured at the three sites, while the percentage of water soluble organic species with respect to the total soluble mass was much higher at the background site (ca. 50%) than at the other two sites (ca. 25%). A very high fraction (over 70%) of organic compounds in the aerosol consisted of polar species. The presence of water soluble macromolecular compounds was revealed in the samples from K-puszta and San Pietro Capofiume. At both sites these species accounted for between ca. 20-50% of the water soluble organic fraction. The origin of the compounds was tentatively attributed to biomass combustion.

  10. Water-soluble triscyclometalated organoiridium complex: phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging.

    PubMed

    Fan, Yuanpeng; Zhao, Jingyi; Yan, Qifan; Chen, Peng R; Zhao, Dahui

    2014-03-12

    Two water-soluble triscyclometalated organoiridium complexes, 1 and 2, with polar side chains that form nanoparticles emitting bright-red phosphorescence in water were synthesized. The optimal emitting properties are related to both the triscyclometalated structure and nanoparticle-forming ability in aqueous solution. Nonlinear optical properties are also observed with the nanoparticles. Because of their proper cellular uptake in addition to high emission brightness and effective two-photon absorbing ability, cell imaging can be achieved with nanoparticles of 2 bearing quaternary ammonium side chains at ultra-low effective concentrations using NIR incident light via the multiphoton excitation phosphorescence process.

  11. Simultaneous Rapid Determination of the Solubility and Diffusion Coefficients of a Poorly Water-Soluble Drug Based on a Novel UV Imaging System.

    PubMed

    Lu, Yan; Li, Mingzhong

    2016-01-01

    The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly.

  12. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.

    PubMed

    Koh, Ilsoo; López, Alejandro; Pinar, Ana B; Helgason, Benedikt; Ferguson, Stephen J

    2015-11-01

    Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties.

  13. Solubility prediction of carbon dioxide in water by an iterative equation of state/excess Gibbs energy model

    NASA Astrophysics Data System (ADS)

    Suleman, H.; Maulud, A. S.; Man, Z.

    2016-06-01

    The solubility of carbon dioxide in water has been predicted extensively by various models, owing to their vast applications in process industry. Henry's law has been widely utilized for solubility prediction with good results at low pressure. However, the law shows large deviations at high pressure, even when adjusted to pressure correction and improved conditions. Contrarily, equations of state/excess Gibbs energy models are a promising addition to thermodynamic models for prediction at high pressure non-ideal equilibria. These models can efficiently predict solubilities at high pressures, even when the experimental solubilities are not corroborated. Hence, these models work iteratively, utilizing the mathematical redundancy of local composition excess Gibbs energy models. In this study, an iterative form of Linear Combination of Vidal and Michelsen (LCVM) mixing rule has been used for prediction of carbon dioxide solubility in water, in conjunction with UNIFAC and translated modified Peng- Robinson equation of state. The proposed model, termed iterative LCVM (i-LCVM), predicts carbon dioxide solubility in water for a wide range of temperature (273 to 453 K) and pressure (101.3 to 7380 kPa). The i-LCVM shows good agreement with experimental values and predicts better than Henry's law (53% improvement).

  14. One-step synthesis and antibacterial property of water-soluble silver nanoparticles by CGJ bio-template

    NASA Astrophysics Data System (ADS)

    Zhu, Zi-Chun; Wu, Qing-Sheng; Chen, Ping; Yang, Xiao-Hong

    2011-10-01

    In this article, a new synthetic method of nanoparticles with fresh Chinese gooseberry juice (CGJ) as bio-template was developed. One-step synthesis of highly water-soluble silver nanoparticles at room temperature without using any harmful reducing agents and special capping agent was fulfilled with this method. In the process, the products were obtained by adding AgNO3 to CGJ, which was used as reducing agent, capping agent, and the bio-template. The products of silver nanoparticles with diameter of 10-30 nm have strong water solubility and excellent antibiotic function. With the same concentration 0.047 μg mL-1, the antibacterial effect of water-soluble silver particles by fresh CGJ was 53%, whereas only 27% for silver nanoparticles synthesized using the template method of fresh onion inner squama coat (OISC). The excellent water solubility of the products would enable them have better applications in the bio-medical field. The synthetic method would also have potential application in preparing other highly water-soluble particles, because of its simple apparatus, high yield, mild conditions, and facile operation.

  15. Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution.

    PubMed

    Moribe, Kunikazu; Makishima, Takashi; Higashi, Kenjirou; Liu, Nan; Limwikrant, Waree; Ding, Wuxiao; Masuda, Mitsutoshi; Shimizu, Toshimi; Yamamoto, Keiji

    2014-07-20

    Hydrocortisone (HC), a poorly water-soluble drug, was encapsulated within organic nanotubes (ONTs), which were formed via the self-assembly of N-{12-[(2-α,β-d-glucopyranosyl) carbamoyl]dodecanyl}-glycylglycylglycine acid. The stability of the ONTs was evaluated in ten organic solvents, of differing polarities, by field emission transmission electron microscopy. The ONTs maintained their stable tubular structure in the highly polar solvents, such as ethanol and acetone. Furthermore, solution-state (1)H-NMR spectroscopy confirmed that they were practically insoluble in acetone at 25°C (0.015 mg/mL). HC-loaded ONTs were prepared by solvent evaporation using acetone. A sample with a 3/7 weight ratio of HC/ONT was analyzed by powder X-ray diffraction, which confirmed the presence of a halo pattern and the absence of any crystalline HC peak. HC peak broadening, observed by solid-state (13)C-NMR measurements of the evaporated sample, indicated the absence of HC crystals. These results indicated that HC was successfully encapsulated in ONT as an amorphous state. Improvements of the HC dissolution rate were clearly observed in aqueous media at both pH 1.2 and 6.8, probably due to HC amorphization in the ONTs. Phenytoin, another poorly water-soluble drug, also showed significant dissolution improvement upon ONT encapsulation. Therefore, ONTs can serve as an alternative pharmaceutical excipient to enhance the bioavailability of poorly water-soluble drugs.

  16. Solid Lipid Nanoparticles of a Water Soluble Drug, Ciprofloxacin Hydrochloride

    PubMed Central

    Shah, M.; Agrawal, Y. K.; Garala, K.; Ramkishan, A.

    2012-01-01

    The aim of this study was to understand and investigate the relationship between experimental factors and their responses in the preparation of ciprofloxacin hydrochloride based solid lipid nanoparticles. A quadratic relationship was studied by developing central composite rotatable design. Amount of lipid and drug, stirring speed and stirring time were selected as experimental factors while particle size, zeta potential and drug entrapment were used as responses. Prior to the experimental design, a qualitative prescreening study was performed to check the effect of various solid lipids and their combinations. Results showed that changing the amount of lipid, stirring speed and stirring time had a noticeable influence on the entrapment efficiencies and particle size of the prepared solid lipid nanoparticles. The particle size of a solid lipid nanoparticle was in the range of 159-246 nm and drug encapsulation efficiencies were marginally improved by choosing a binary mixture of physically incompatible solid lipids. Release of ciprofloxacin hydrochloride from solid lipid nanoparticle was considerably slow, and it shows Higuchi matrix model as the best fitted model. Study of solid lipid nanoparticle suggested that the lipid based carrier system could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release for water soluble actives. PMID:23716872

  17. Water-soluble reaction products from ozonolysis of grasses

    SciTech Connect

    Morrison, W.H. III; Akin, D.E. )

    1990-03-01

    Ozone has been used to pretreat agricultural byproducts with the aim of increasing nutritive value for ruminants. However, not all treatments with ozone result in enhanced digestibility, suggesting reaction products from ozone treatment of plants might inhibit rumen microbial activity. Coastal Bermuda grass (Cynodon dactylon L. Pers.) (CBG) and Kentucky-31 tall fescue (Festuca arundinacea Schreb.) (K-31) were treated with ozone and the water-soluble products determined. The following acids were identified: caproic, levulinic, p-hydroxybenzoic, vinillic, azelaic, and malonic. In addition, vanillin and p-hydroxybenzaldehyde were also identified. Ozone treatment of the cell walls of CBG produced mainly p-hydroxybenzoic acid, vanillic acid, azelaic acid, p-hydroxybenzaldehyde, and vanillin. Ozone treatment of K-31 cell walls produced levulinic acid in addition to those products found from CBG cell walls. The production of vanillin and p-hydroxybenzaldehyde, which have been shown to be especially toxic to rumen microorganisms, offers an explanation for the negative affects of ozone treatment on forage.

  18. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part III: Preparation of compression moulded films, and water-uptake and morphological studies

    NASA Astrophysics Data System (ADS)

    Aydınlı, Bahattin; Tinçer, Teoman

    2001-10-01

    Compression moulded films were obtained from PAA, PMAA, PAAm, PNDAAm and PVP radiation grafted ultrahigh molecular weight polyethylene (UHMWPE) powders. Mechanical properties and water-uptake of PVP and PNDAAm grafted UHMWPE were found to be distinctly better than PAA, PMAA and PAAm ones. The former group showed almost complete melting and flow during compression moulding compared with the latter group. Hence, the mechanical properties of this group were found to be better than the others. Important parameters affecting the film formation appeared as H-bonding ability and also the compatibility between grafting polymer and UHMWPE. Per cent water-uptake of films increase with the grafting level and approaches 30% at most for all types of films except PMAA one. High per cent water-uptake results of PAA and PAAm cases should be taken cautiously due to incomplete flowing during compression in film preparation. SEM analysis revealed incomplete melting and flow for the case of PAA, PMAA and PAAm-co-UHMWPE resulting in pores and holes in the final films while homogeneous films were obtained for the case of PVP and PNDAAm.

  19. Adsorption of soluble oil from water to graphene.

    PubMed

    Wang, Na; Zhang, Yuchang; Zhu, Fuzhen; Li, Jingyi; Liu, Shuaishuai; Na, Ping

    2014-05-01

    The toxicity of soluble oil to the aquatic environment has started to attract wide attention in recent years. In the present work, we prepare graphene according to oxidation and thermal reduction methods for the removal of soluble oil from the solution. Characterization of the as-prepared graphene are performed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and contact angle analysis. The adsorption behavior of soluble oil on graphene is examined, and the obtained adsorption data are modeled using conventional theoretical models. Adsorption experiments reveal that the adsorption rate of soluble oil on graphene is notably fast, especially for the soluble diesel oil, which could reach equilibrium within 30 min, and the kinetics of adsorption is perfectly consistent with a pseudo-second-order model. Furthermore, it is determined that the adsorption isotherm of soluble diesel oil with graphene fit the Freundlich model best, and graphene has a very strong adsorption capacity for soluble diesel oil in the solution. These results demonstrate that graphene is the material that provided both good adsorptive capacity and good kinetics, implying that it could be used as a promising sorbent for soluble oil removal from wastewater.

  20. An investigation on dispersion and stability of water-soluble fullerenol (C60OH) in water via UV-Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Najafi, Abolhassan

    2017-02-01

    An investigation on dispersion, stability, and agglomeration of water-soluble fullerenol in water was studied via UV-Vis spectroscopy. The results showed that the dispersion quality and stability of water-soluble fullerenol commenced decreasing after 150 h (more than six days) of solution preparation time. Furthermore, increasing the fullerenol concentration in water (Cfullerenol) showed promotion of the agglomeration in lower residence time. Considering the results of DLS and HRTEM micrographs, an average particle size of the fullerenol in the solution was measured to be ∼150 nm after a residence of 2 months highlighting its high agglomeration tendency even at low concentration.

  1. Solubility of Naproxen in Polyethylene Glycol 200 + Water Mixtures at Various Temperatures

    PubMed Central

    Panahi-Azar, Vahid; Soltanpour, Shahla; Martinez, Fleming; Jouyban, Abolghasem

    2015-01-01

    The solubility of naproxen in binary mixtures of polyethylene glycol 200 (PEG 200) + water at the temperature range from 298.0 K to 318.0 K were reported. The combinations of Jouyban-Acree model + van’t Hoff and Jouyban-Acree model + partial solubility parameters were used to predict the solubility of naproxen in PEG 200 + water mixtures at different temperatures. Combination of Jouyban-Acree model with van’t Hoff equation can be used to predict solubility in PEG 200 + water with only four solubility data in mono-solvents. The obtained solubility calculation errors vary from ~ 17 % up to 35 % depend on the number of required input data. Non-linear enthalpy-entropy compensation was found for naproxen in the investigated solvent system and the Jouyban−Acree model provides reasonably accurate mathematical descriptions of the thermodynamic data of naproxen in the investigated binary solvent systems. PMID:26664370

  2. Solubility of Aragonite in Aqueous Fluids at High Pressure and High Temperature

    NASA Astrophysics Data System (ADS)

    Facq, Sébastien; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Sverjensky, Dimitri

    2014-05-01

    Deep crustal and mantle aqueous fluids play a crucial role in geologic processes occurring in the Earth's interior, especially at high PT conditions. Dissolved carbon appears to be a major element constituting these aqueous fluids, occurring under the form of molecular species (CO2, CO, CH4), ionic species such as carbonate or bicarbonate ions or some more complex organic compounds [1]. However, the nature and the content of the chemical species constituting these C-bearing aqueous fluids may strongly be affected by the environmental geologic conditions such as the pressure and the temperature range. If fluid speciation and solubility of carbonate minerals are well characterized at HT and relatively low pressure, less is evident at pressure above 2 GPa where experimental challenges make trickier speciation and solubility measurements. Thanks to recent advances in theoretical aqueous geochemistry [1-3], combined experimental and theoretical efforts allow now the investigation of speciation and solubility of carbonate minerals with pure water at higher PT conditions than previously feasible [4]. However, direct measurements of solubility of carbonate minerals at HP-HT conditions are still needed to help to the development of quantitative models of carbon transport by aqueous fluids in subduction zones and validate existing aqueous speciation model. In this study, we present recent X-ray fluorescence measurements and thermodynamic model of solubility of carbonate in aqueous fluids at pressure up to 5 GPa. The amount of dissolved aragonite in the fluid has been measured from the intensity of the Ca K-lines at the ESRF-ID27 using an externally-heated membrane-type diamond anvil cell and an incident monochromatic focused X-Ray beam at 20 keV. The combination of the XRF data on dissolution of CaCO3mineral combined to previous speciation results permits now to calculate the solubility KS of aragonite a pressure in excess of 2 GPa. [1] Manning, C. E. et al., Review in

  3. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.

    PubMed

    Li, Ting-Ting; Zhao, Wei-Liang; Chen, Yong; Li, Fu-Min; Wang, Chuan-Jun; Tian, Yong-Hua; Fu, Wen-Fu

    2014-10-20

    Two mononuclear ruthenium complexes [Ru(H2tcbp)(isoq)2] (1) and [Ru(H2tcbp)(pic)2] (2) (H4tcbp=4,4',6,6'-tetracarboxy-2,2'-bipyridine, isoq=isoquinoline, pic=4-picoline) are synthesized and fully characterized. Two spare carboxyl groups on the 4,4'-positions are introduced to enhance the solubility of 1 and 2 in water and to simultaneously allow them to tether to the electrode surface by an ester linkage. The photochemical, electrochemical, and photoelectrochemical water oxidation performance of 1 in neutral aqueous solution is investigated. Under electrochemical conditions, water oxidation is conducted on the deposited indium-tin-oxide anode, and a turnover number higher than 15,000 per water oxidation catalyst (WOC) 1 is obtained during 10 h of electrolysis under 1.42 V vs. NHE, corresponding to a turnover frequency of 0.41 s(-1). The low overpotential (0.17 V) of electrochemical water oxidation for 1 in the homogeneous solution enables water oxidation under visible light by using [Ru(bpy)3](2+) (P1) (bpy=2,2'-bipyridine) or [Ru(bpy)2(4,4'-(COOEt)2-bpy)](2+) (P2) as a photosensitizer. In a three-component system containing 1 or 2 as a light-driven WOC, P1 or P2 as a photosensitizer, and Na2S2O8 or [CoCl(NH3)5]Cl2 as a sacrificial electron acceptor, a high turnover frequency of 0.81 s(-1) and a turnover number of up to 600 for 1 under different catalytic conditions are achieved. In a photoelectrochemical system, the WOC 1 and photosensitizer are immobilized together on the photoanode. The electrons efficiently transfer from the WOC to the photogenerated oxidizing photosensitizer, and a high photocurrent density of 85 μA cm(-2) is obtained by applying 0.3 V bias vs. NHE.

  4. Development of micellar reactive oxygen species assay for photosafety evaluation of poorly water-soluble chemicals.

    PubMed

    Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Onoue, Satomi

    2013-09-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety assessment; however, the phototoxic potential of some chemicals cannot be evaluated because of their limited aqueous solubility. The present study was undertaken to develop a new micellar ROS (mROS) assay system for poorly water-soluble chemicals using a micellar solution of 0.5% (v/v) Tween 20 for solubility enhancement. In repeated mROS assay, intra- and inter-day precisions (coefficient of variation) were found to be below 11%, and the Z'-factors for singlet oxygen and superoxide suggested a large separation band between positive and negative standards. The ROS and mROS assays were applied to 65 phototoxins and 18 non-phototoxic compounds for comparative purposes. Of all 83 chemicals, 25 were unevaluable in the ROS assay due to poor solubility, but only 2 were in the mROS assay. Upon mROS assay on these model chemicals, the individual specificity was 76.5%, and the positive and negative predictivities were found to be 93.9% and 86.7%, respectively. The mROS assay provided 2 false negative predictions, although negative predictivity for the ROS assay was found to be 100%. Considering the pros and cons of these assays, strategic combined use of the ROS and mROS assays might be efficacious for reliable photosafety assessment with high applicability and predictivity.

  5. Lipid-soluble and water-soluble beta-blockers. Comparison of the central nervous system depressant effect.

    PubMed

    Gengo, F M; Huntoon, L; McHugh, W B

    1987-01-01

    The sedative effects of a relatively lipid-soluble and a water-soluble beta-blocker were compared in 20 male hypertensives, 30 to 60 years old. In a blinded, randomized, crossover study, critical flash fusion frequency and computerized Stroop Word Test were used to assess psychomotor function parameters during a drug-free control day and then following 14 days of either metoprolol, 150 mg daily, or atenolol, 100 mg daily, treatment. Both drugs caused subtle but significant reductions in both parameters of sedation (critical flash fusion frequency and computerized Stroop Word Testing). Sedation was significantly related to serum concentrations of both drugs. The maximum drug-induced change was 17.2% +/- 9% for metoprolol and 19.6% +/- 3% for atenolol. The duration of effect was six hours after atenolol and two hours after metoprolol. Blood pressure control for all patients was similar during both treatment phases. These results demonstrate that relative lipid solubility does not reliably predict the neurologic effects of beta-blockers. The intensity of drug-induced sedation was similar, but the water-soluble agent produced a longer duration of sedative activity.

  6. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    PubMed Central

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554

  7. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-12-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites.

  8. Detection of a Water Soluble Component of the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Cody, G.; Flynn, G. J.; Jacobsen, C.; Keller, L. P.; Nakamura, K.; Zolensky, M.

    2005-01-01

    The Tagish Lake meteorite is a highly carbonaceous meteorite, with a carbon content of approximately 5% by weight [1]. Its composition and mineralogy suggest it lies between a CI1 and CM2 chondrite [2]. Part of the meteorite [the pristine fraction] was collected from the ice on Tagish Lake within one week of its landfall on Jan. 18, 2000 and this sample is considered to be the most pristine meteorite samples collected to date with regard to organic terrestrial contamination. It has been reported that only 100 ppm of the organic matter in the Tagish Lake meteorite is water soluble [3]. greater absorbance in the sigma bonding region between 290-300 eV suggesting that the soluble material contains more CH/CH2/CH3 bonds than the microtomed piece.

  9. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility.

    PubMed

    Larraufie, Marie-Helene; Yang, Wan Seok; Jiang, Elise; Thomas, Ajit G; Slusher, Barbara S; Stockwell, Brent R

    2015-11-01

    Introducing a reactive carbonyl to a scaffold that does not otherwise have an electrophilic functionality to create a reversible covalent inhibitor is a potentially useful strategy for enhancing compound potency. However, aldehydes are metabolically unstable, which precludes the use of this strategy for compounds to be tested in animal models or in human clinical studies. To overcome this limitation, we designed ketone-based functionalities capable of forming reversible covalent adducts, while displaying high metabolic stability, and imparting improved water solubility to their pendant scaffold. We tested this strategy on the ferroptosis inducer and experimental therapeutic erastin, and observed substantial increases in compound potency. In particular, a new carbonyl erastin analog, termed IKE, displayed improved potency, solubility and metabolic stability, thus representing an ideal candidate for future in vivo cancer therapeutic applications.

  10. Application of hot melt extrusion for poorly water-soluble drugs: limitations, advances and future prospects.

    PubMed

    Lu, Ming; Guo, Zhefei; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Pan, Xin; Wu, Chuanbin

    2014-01-01

    Hot melt extrusion (HME) is a powerful technology to enhance the solubility and bioavailability of poorly water-soluble drugs by producing amorphous solid dispersions. Although the number of articles and patents about HME increased dramatically in the past twenty years, there are very few commercial products by far. The three main obstacles limiting the commercial application of HME are summarized as thermal degradation of heat-sensitive drugs at high process temperature, recrystallization of amorphous drugs during storage and dissolving process, and difficulty to obtain products with reproducible physicochemical properties. Many efforts have been taken in recent years to understand the basic mechanism underlying these obstacles and then to overcome them. This article reviewed and summarized the limitations, recent advances, and future prospects of HME.

  11. The vascular response observation by the monitoring of the photosensitizer, oxygen, and blood flow during the high intensity pulsed excitation photodynamic therapy 1h after water-soluble photosensitizer intravenous injection

    NASA Astrophysics Data System (ADS)

    Hakomori, S.; Matsuo, H.; Arai, T.

    2008-02-01

    We investigated the correlation between the therapeutic effect by early irradiation Photodynamic Therapy (PDT) and vascular response. The early irradiation PDT has been proposed by our group. This PDT protocol is that pulse laser irradiates to tumors 1 h after intravenous injection of water-soluble photosensitizer. The intact layer appeared over the well treated layer, when the early irradiation PDT was performed at rat prostate subcutaneous tumors with high intensity pulse laser (over 1 MW/cm2 in peak intensity) and Talaporfin sodium. In order to clarify the phenomenon mechanism, we monitored blood volume, surface temperature, photosensitizer amount, and oxygen saturation during the PDT. The rat prostate subcutaneous tumor was irradiated with excimer dye laser light at 1 h after the intravenous injection. The photosensitizer dose wa 2.0 mg/kg, and the pulse energy density was 2.5 mJ/cm2 (low intensity) or 10 mJ/cm2 (high intensity). Under the low intensity pulsed PDT, the fluorescence amount was decreasing gently during the irradiation, and the blood volume and oxygen saturation started decreasing just after the irradiation. Under the hgh intensity pulsed PDT, the fluorescence amount was decreaased rapidly for 20 s after the irradiation started. The blood volume and oxygen saturation were temporally decreased during the irradiation, and recovered at 48 hrs after the irradiation. According to these results, under the low intensity pulsed PDT, the blood vessel located near the surface started closing just after the irradiation. On the other hand, under the high intensity pulsed PDT the blood vessel was closing for 20 s after the irradiation started, moreover, the blood flow recovered at 48 hrs after the irradiation. We concluded that the vascular response depended on the pulse energy density, and then the therapeutic effect was attributed to the difference of the vascular response. In other words, the surface intact layer could be considered to be induced the

  12. Aggregation of phospholipid vesicles by water-soluble polymers.

    PubMed Central

    Meyuhas, D; Nir, S; Lichtenberg, D

    1996-01-01

    Water-soluble polymers such as dextran and polyethylene glycol are known to induce aggregation and size growth of phospholipid vesicles. The present study addresses the dependence of these processes on vesicle size and concentration, polymer molecular weight, temperature, and compartmentalization of the vesicles and polymers, using static and dynamic light scattering. Increasing the molecular weight of the polymers resulted in a reduction of the concentration of polymer needed for induction of aggregation of small unilamellar vesicles. The aggregation was fully reversible (by dilution), within a few seconds, up to a polymer concentration of at least 20 wt %. At relatively low phosphatidylcholine (PC) concentrations (up to approximately 1 mM), increasing the PC concentration resulted in faster kinetics of aggregation and reduced the threshold concentration of polymer required for rapid aggregation (CA). At higher PC concentrations, CA was only slightly dependent on the concentration of PC and was approximately equal to the overlapping concentration of the polymer (C*). The extent of aggregation was similar at 37 and 4 degrees C. Aggregation of large unilamellar vesicles required a lower polymer concentration, probably because aggregation occurs in a secondary minimum (without surface contact). In contrast to experiments in which the polymers were added directly to the vesicles, dialysis of the vesicles against polymer-containing solutions did not induce aggregation. Based on this result, it appears that exclusion of polymer from the hydration sphere of vesicles and the consequent depletion of polymer molecules from clusters of aggregated vesicles play the central role in the induction of reversible vesicle aggregation. The results of all the other experiments are consistent with this conclusion. PMID:8913598

  13. Water soluble vitamin E (TMG) as a radioprotector.

    PubMed

    Nair, Cherupally Krishnan K; Devi, Pathirissery Uma; Shimanskaya, R; Kunugita, N; Murase, Hironobu; Gu, Yeun-Hwa; Kagiya, Tsutomu V

    2003-12-01

    Tocopherol monoglucoside (TMG), a water soluble derivative of vitamin E offers protection against deleterious effects of ionizing radiation, both under in vivo and in vitro conditions, to biological systems. TMG was found to be a potent antioxidant and an effective free radical scavenger. It forms a phenoxyl radical similar to trolox upon reaction with various one-electron oxidants. TMG protected DNA from radiation-induced strand breaks. It also protected thymine glycol formation induced by gamma-radiation. Gamma-radiation-induced loss of viability of EL-tumor cells and peroxidation of lipids in microsomal and mitochondrial membranes were prevented by TMG. TMG was nontoxic to mice when administered orally up to 7.0 g/kg body weight. The LD50 dose of TMG for ip administration in mice was 1.15 g/kg body wt. In rats, following oral and ip administration of TMG, the absorption (distribution) half lives were 5.8 and 3.0 min respectively and elimination half lives were 6.7 and 3.1 min respectively. Embryonic mortality resulting from exposure of pregnant mice to ionizing radiation (2 Gy) was reduced by 75% by ip administration of TMG (0.6 g/kg, body wt) prior to irradiation. TMG offered protection to mice against whole body gamma-radiation-induced lethality and weight loss. The LD50(30) of mice increased from 6 to 6.72 Gy upon post irradiation administration of a single dose of TMG (0.6 g/kg, body wt) by ip.

  14. Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jeslin J.; Kondeti, Vighneswara Siva Santosh Kumar; Bruggeman, Peter J.; Kortshagen, Uwe R.

    2016-03-01

    Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton’s reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs.

  15. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  16. Water-soluble chelating polymers for removal of actinides from wastewater

    SciTech Connect

    Jarvinen, G.D.

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  17. Chemical Characteristics of Water-Soluble Ions in Particulate Matter in Three Metropolitan Areas in the North China Plain

    PubMed Central

    Dao, Xu; Wang, Zhen; Lv, Yibing; Teng, Enjiang; Zhang, Linlin; Wang, Chao

    2014-01-01

    PM2.5 and PM10 samples were collected simultaneously in each season in Beijing, Tianjin and Shijiazhuang to identify the characteristics of water-soluble ion compositions in the North China Plain. The water-soluble ions displayed significant seasonal variation. The dominant ions were NO3−, SO42−, NH4+ and Cl−, accounting for more than 90% and 86% to the mass of total water-soluble ions in PM2.5 and PM10, respectively. The anion/cation ratio indicated that the ion acidity of each city varied both between sites and seasonally. Over 50% of the ion species were enriched in small particles ≤1 µm in diameter. The [NO3−]/[SO42−] ratio indicated that vehicles accounted for the majority of the particulate pollution in Beijing. Shijiazhuang, a city highly reliant on coal combustion, had a higher SO42− concentration. PMID:25437210

  18. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  19. Water soluble and heat resistant polymers by free radical polymerization of lactic acid-based monomers

    NASA Astrophysics Data System (ADS)

    Tanaka, Hitoshi; Kibayashi, Tatsuya; Niwa, Miki

    2013-08-01

    Tactic heat resistant polymer was prepared by free radical polymerization of lactic acid-based monomers, i.e. chiral 2-isopropyl-5-methylene-1,3-dioxolan-4-ones (1). The polymerization of 1 proceeded smoothly without ring-opening to give a polymer with high isotacticity (mm) of 29.7~100% and glass transition temperature (Tg) of 172~213°C. 1 also showed high reactivity in the copolymerization with styrene and methyl methacrylate, and the incorporation of 1 unit in the copolymer structure increased Tg of each polymer. In addition, hydrolysis of poly(1) produced a new type of water soluble poly(lactic acid), i.e. poly(α-hydroxy acrylate), and poly(α-hydroxy acrylate-co-divinyl benzene) hydrogel absorbed water as high as 1000 times of the original polymer weight.

  20. Circumvention of Taxol-Resistance in Human Breast Cancers by Improved Water Soluble Taxanes

    DTIC Science & Technology

    2001-10-01

    portion is 13- glucan including a-1,4 and 13-1,3 glucosidic linkages with branched chains including 1->3, 1-->4, and 1-> 6 bonds, with branches at 3- and 6...hypothesized. Most of the antitumor polysaccharides have a basic [3- glucan structure with 13-1,3-linkages in the main chain and 3-1,6-branch points, with...relatively short branches. Glucans with high molecular weight and water solubility seem to have the greatest antitumor activity, with some exceptions

  1. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo

    NASA Astrophysics Data System (ADS)

    Larson, Daniel R.; Zipfel, Warren R.; Williams, Rebecca M.; Clark, Stephen W.; Bruchez, Marcel P.; Wise, Frank W.; Webb, Watt W.

    2003-05-01

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

  2. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.

    PubMed

    Larson, Daniel R; Zipfel, Warren R; Williams, Rebecca M; Clark, Stephen W; Bruchez, Marcel P; Wise, Frank W; Webb, Watt W

    2003-05-30

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

  3. Early outgassing of Mars supported by differential water solubility of iodine and xenon

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1991-01-01

    The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.

  4. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-07

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction.

  5. Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events.

    PubMed

    Wang, Daoyuan; Griffin, Deirdre E; Parikh, Sanjai J; Scow, Kate M

    2016-10-01

    Biochar amendments to soil have been promoted as a low cost carbon (C) sequestration strategy as well as a way to increase nutrient retention and remediate contaminants. If biochar is to become part of a long-term management strategy, it is important to consider its positive and negative impacts, and their trade-offs, on soil organic matter (SOM) and soluble C under different hydrological conditions such as prolonged drought or frequent wet-dry cycles. A 52-week incubation experiment measuring the influence of biochar on soil water soluble C under different soil moisture conditions (wet, dry, or wet-dry cycles) indicated that, in general, dry and wet-dry cycles increased water soluble C, and biochar addition further increased release of water soluble C from native SOM. Biochar amendment appeared to increase transformation of native SOM to water soluble C, based on specific ultraviolet absorption (SUVA) and C stable isotope composition; however, the increased amount of water soluble C from native SOM is less than 1% of total biochar C. The impacts of biochar on water soluble C need to be carefully considered when applying biochar to agricultural soil.

  6. The solubility of elemental mercury in water between 30 and 210{degrees}C

    SciTech Connect

    Mroczek, E.K.

    1994-01-20

    The solubility of elemental mercury (Hg{sup 0}) at temperatures between 30 and 210°C was determined by direct sampling of mercury saturated water contained in a fixed volume stainless steel autoclave. The temperature dependence of the solubility was best represented by the equation

  7. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE... Development (OECD) Laboratory Intercomparison Testing, Part I, 1979, appeared to be dependent on the chemicals... low-soluble chemicals. A general test guideline for the determination of the solubility in water...

  8. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE... Development (OECD) Laboratory Intercomparison Testing, Part I, 1979, appeared to be dependent on the chemicals... low-soluble chemicals. A general test guideline for the determination of the solubility in water...

  9. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE... Development (OECD) Laboratory Intercomparison Testing, Part I, 1979, appeared to be dependent on the chemicals... low-soluble chemicals. A general test guideline for the determination of the solubility in water...

  10. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE... Development (OECD) Laboratory Intercomparison Testing, Part I, 1979, appeared to be dependent on the chemicals... low-soluble chemicals. A general test guideline for the determination of the solubility in water...

  11. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties.

    PubMed

    Rizzello, C G; Losito, I; Gobbetti, M; Carbonara, T; De Bari, M D; Zambonin, P G

    2005-07-01

    Water-soluble extracts of 9 Italian cheese varieties that differed mainly for type of cheese milk, starter, technology, and time of ripening were fractionated by reversed-phase fast protein liquid chromatography, and the antimicrobial activity of each fraction was first assayed toward Lactobacillus sakei A15 by well-diffusion assay. Active fractions were further analyzed by HPLC coupled to electrospray ionization-ion trap mass spectrometry, and peptide sequences were identified by comparison with a proteomic database. Parmigiano Reggiano, Fossa, and Gorgonzola water-soluble extracts did not show antibacterial peptides. Fractions of Pecorino Romano, Canestrato Pugliese, Crescenza, and Caprino del Piemonte contained a mixture of peptides with a high degree of homology. Pasta filata cheeses (Caciocavallo and Mozzarella) also had antibacterial peptides. Peptides showed high levels of homology with N-terminal, C-terminal, or whole fragments of well known antimicrobial or multifunctional peptides reported in the literature: alphaS1-casokinin (e.g., sheep alphaS1-casein (CN) f22-30 of Pecorino Romano and cow alphaS1-CN f24-33 of Canestrato Pugliese); isracidin (e.g., sheep alphaS1-CN f10-21 of Pecorino Romano); kappacin and casoplatelin (e.g., cow kappa-CN f106-115 of Canestrato Pugliese and Crescenza); and beta-casomorphin-11 (e.g., goat beta-CN f60-68 of Caprino del Piemonte). As shown by the broth microdilution technique, most of the water-soluble fractions had a large spectrum of inhibition (minimal inhibitory concentration of 20 to 200 microg/mL) toward gram-positive and gram-negative bacterial species, including potentially pathogenic bacteria of clinical interest. Cheeses manufactured from different types of cheese milk (cow, sheep, and goat) have the potential to generate similar peptides with antimicrobial activity.

  12. Cyanide antidotes for mass casualties: water-soluble salts of the dithiane (sulfanegen) from 3-mercaptopyruvate for intramuscular administration.

    PubMed

    Patterson, Steven E; Monteil, Alexandre R; Cohen, Jonathan F; Crankshaw, Daune L; Vince, Robert; Nagasawa, Herbert T

    2013-02-14

    Current cyanide antidotes are administered by IV infusion, which is suboptimal for mass casualties. Therefore, in a cyanide disaster, intramuscular (IM) injectable antidotes would be more appropriate. We report the discovery of the highly water-soluble sulfanegen triethanolamine as a promising lead for development as an IM injectable cyanide antidote.

  13. Value Added Processing of Peanut Meal: Enzymatic Hydrolysis to Improve Functional and Nutritional Properties of Water Soluble Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Value added applications are needed for peanut meal, which is the high protein byproduct of commercial peanut oil production. Peanut meal dispersions were hydrolyzed with alcalase, flavourzyme and pepsin in an effort to improve functional and nutritional properties of the resulting water soluble ex...

  14. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis.

    PubMed

    Forster, A; Hempenstall, J; Tucker, I; Rades, T

    2001-09-11

    The aim of this study was to determine the miscibility of drug and excipient to predict if glass solutions are likely to form when drug and excipient are melt extruded. Two poorly water-soluble drugs, indomethacin and lacidipine, were selected along with 11 excipients (polymeric and non-polymeric). Estimation of drug/excipient miscibility was performed using a combination of the Hoy and Hoftzyer/Van Krevelen methods for Hansen solubility parameter calculation. Miscibility was experimentally investigated with differential scanning calorimetry (DSC) and hot stage microscopy (HSM). Studies were performed at drug/excipient ratios, 1:4, 1:1 and 4:1. Analysis of the glass transition temperature (T(g)) was performed by quench cooling drug/excipient melts in the DSC. Differences in the drug/excipient solubility parameters of <7.0 MPa(1/2) were predicted to indicate significant miscibility and, therefore, glass solution formation on melt extrusion. In comparison, differences of >10 MPa(1/2) were expected to indicate a lack of miscibility and not form glass solutions when melt extruded. Experimentally, miscibility was shown by changes in drug/excipient melting endotherms and confirmed by HSM investigations. Experimental results were in agreement with solubility parameter predictions. In addition, drug/excipient combinations predicted to be largely immiscible often exhibited more than one T(g) upon reheating in the DSC. Melt extrusion of miscible components resulted in amorphous solid solution formation, whereas extrusion of an "immiscible" component led to amorphous drug dispersed in crystalline excipient. In conclusion, combining calculation of Hansen solubility parameters with thermal analysis of drug/excipient miscibility can be successfully applied to predict formation of glass solutions with melt extrusion.

  15. Protein extraction and 2-DE of water- and lipid-soluble proteins from bovine pericardium, a low-cellularity tissue.

    PubMed

    Griffiths, Leigh G; Choe, Leila; Lee, Kelvin H; Reardon, Kenneth F; Orton, E Christopher

    2008-11-01

    Bovine pericardium (BP) is an important biomaterial used in the production of glutaraldehyde-fixed heart valves and tissue-engineering applications. The ability to perform proteomic analysis on BP is useful for a range of studies, including investigation of immune rejection after implantation. However, proteomic analysis of fibrous tissues such as BP is challenging due to their relative low-cellularity and abundance of extracellular matrix. A variety of methods for tissue treatment, protein extraction, and fractionation were investigated with the aim of producing high-quality 2-DE gels for both water- and lipid-soluble BP proteins. Extraction of water-soluble proteins with 3-(benzyldimethylammonio)-propanesulfonate followed by n-dodecyl beta-D-maltoside extraction and ethanol precipitation for lipid-soluble proteins provided the best combination of yield, spot number, and resolution on 2-DE gels (Protocol E2). ESI-quadrupole/ion trap or MALDI-TOF/TOF MS protein identifications were performed to confirm bovine origin and appropriate subcellular prefractionation of resolved proteins. Twenty-five unique, predominantly cytoplasmic bovine proteins were identified from the water-soluble fraction. Thirty-two unique, predominantly membrane bovine proteins were identified from the lipid-soluble fraction. These results demonstrated that the final protocol produced high-quality proteomic data from this important tissue for both cytoplasmic and membrane proteins.

  16. Nanostructural difference of water-soluble pectin and chelate-soluble pectin among ripening stages and cultivars of Chinese cherry.

    PubMed

    Lai, Shaojuan; Chen, Fusheng; Zhang, Lifen; Yang, Hongshun; Deng, Yun; Yang, Bao

    2013-03-01

    Nanostructure of water-soluble pectin (WSP) and chelate-soluble pectin (CSP) of two Chinese cherry (Prunus pseudocerasus L.) cultivars (soft cultivar 'Caode' and crisp cultivar 'Bende') with two different ripening stages were characterised using atomic force microscopy. Both cultivars shared some common values of chain widths for WSP or CSP, and both pectins shared several values of chain widths including 37, 55 and 61 nm. The results indicate that different cultivars shared similar components of pectin, and cultivar textural difference might be related to the interaction between pectin and other cherry components or the dissociation of pectin. During ripening, the wide WSP and CSP gradually dissociate in width. The results demonstrated that the changes of WSP and CSP of Chinese cherry in widths were a dissociation process.

  17. Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers.

    PubMed

    Li, Jianshu; Xiao, Huining; Li, Jiehua; Zhong, YinPing

    2004-07-08

    This study was designed to synthesize, characterize and investigate the drug inclusion property of a series of novel cationic beta-cyclodextrin polymers (CPbetaCDs). Proposed water-soluble polymers were synthesized from beta-cyclodextrin (beta-CD), epichlorohydrin (EP) and choline chloride (CC) through a one-step polymerization procedure by varying molar ratio of EP and CC to beta-CD. Physicochemical properties of the polymers were characterized with colloidal titration, nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and aqueous solubility determination. The formation of naproxen/CPbetaCDs inclusion complexes was confirmed by NMR and fourier transform infrared spectroscopy (FT-IR). Cationic beta-CD polymers showed better hemolytic activities than parent beta-CD and neutral beta-CD polymer in hemolysis test. The morphological study of erythrocytes revealed a cell membrane invagination induced by the cationic groups. The effects of molecular weight and charge density of the polymers on their inclusion and release performance of naproxen were also investigated through phase-solubility and dissolution studies. It was found that the cationic beta-CD polymers with high molecular weight or low charge density exhibited better drug inclusion and dissolution abilities.

  18. Water soluble nanocurcumin extracted from turmeric challenging the microflora from human oral cavity.

    PubMed

    Gopal, Judy; Muthu, Manikandan; Chun, Se-Chul

    2016-11-15

    Water soluble nanocurcumin prepared from commercial turmeric powders was compared against ethanol extracted curcumin particles. The oral microflora from five different human volunteers was collected and the efficacy of solvent extracted curcumin versus water extracted nanocurcumin was demonstrated. Nanocurcumin activity against oral microflora confirms its antimicrobial potency. Confocal laser scanning microscopic results revealed the enhanced entry of nanocurcumin particles into microbial cells. The nanosized nature of nanocurcumin appears to have led to increased cellular interaction and thereby efficient destruction of microbial cells in the mouth. In addition, solubility of nanocurcumin is also believed to be a crucial factor behind its successful antimicrobial activity. This study proves that the bioactivity of a compound is greatly influenced by its solubility in water. This work recommends the use of water soluble nanocurcumin (extracted from turmeric) as potent substitute for curcumin in dental formulations.

  19. Polyoxometalate-directed assembly of water-soluble AgCl nanocubes.

    PubMed

    Neyman, Alevtina; Wang, Yifeng; Sharet, Shelly; Varsano, Neta; Botar, Bogdan; Kögerler, Paul; Meshi, Louisa; Weinstock, Ira A

    2012-02-21

    "Out-of-pocket" association of Ag(+) to the tetradentate defect site of mono-vacant Keggin and Wells-Dawson polyoxometalate (POM) cluster-anions is used to direct the formation of water-soluble AgCl nanocubes.

  20. Water-soluble and fluorescent dendritic perylene bisimides for live-cell imaging.

    PubMed

    Gao, Baoxiang; Li, Hongxia; Liu, Hongmei; Zhang, Licui; Bai, Qianqian; Ba, Xinwu

    2011-04-07

    We prepared dendritic perylene bisimide probes with triblock structures: perylene bisimides fluorescence cores, branched oligo(glutamic acid)s and polyethylene glycol chains. These probes showed good water solubility, low cytotoxicity and strong fluorescence in live cells.

  1. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative

    PubMed Central

    Várkuti, Boglárka H.; Képiró, Miklós; Horváth, István Ádám; Végner, László; Ráti, Szilvia; Zsigmond, Áron; Hegyi, György; Lenkei, Zsolt; Varga, Máté; Málnási-Csizmadia, András

    2016-01-01

    Blebbistatin is a commonly used molecular tool for the specific inhibition of various myosin II isoforms both in vitro and in vivo. Despite its popularity, the use of blebbistatin is hindered by its poor water-solubility (below 10 micromolar in aqueous buffer) and blue-light sensitivity, resulting in the photoconversion of the molecule, causing severe cellular phototoxicity in addition to its cytotoxicity. Furthermore, blebbistatin forms insoluble aggregates in water-based media above 10 micromolar with extremely high fluorescence and also high adherence to different types of surfaces, which biases its experimental usage. Here, we report a highly soluble (440 micromolar in aqueous buffer), non-fluorescent and photostable C15 amino-substituted derivative of blebbistatin, called para-aminoblebbistatin. Importantly, it is neither photo- nor cytotoxic, as demonstrated on HeLa cells and zebrafish embryos. Additionally, para-aminoblebbistatin bears similar myosin II inhibitory properties to blebbistatin or para-nitroblebbistatin (not to be confused with the C7 substituted nitroblebbistatin), tested on rabbit skeletal muscle myosin S1 and on M2 and HeLa cells. Due to its drastically improved solubility and photochemical feature, as well as lack of photo- or cytotoxicity, para-aminoblebbistatin may become a feasible replacement for blebbistatin, especially at applications when high concentrations of the inhibitor or blue light irradiation is required. PMID:27241904

  2. Preparative scale and convenient synthesis of a water-soluble, deep cavitand.

    PubMed

    Mosca, Simone; Yu, Yang; Rebek, Julius

    2016-08-01

    Cavitands are established tools of supramolecular chemistry and molecular recognition, and they are finding increasing application in sensing and sequestration of physiologically relevant molecules in aqueous solution. The synthesis of a water-soluble, deep cavitand is described. The route comprises six (linear) steps from commercially available precursors, and it relies on the fourfold oligomeric cyclization reaction of resorcinol with 2,3-dihydrofuran that leads to the formation of a shallow resorcinarene framework; condensation with aromatic panels, which deepens the hydrophobic binding cavity; construction of rigid urea functionalities on the upper rim; and the introduction of the water-solubilizing methylimidazolium groups on the lower rim. Late intermediates of the synthesis can be used in the preparation of congener cavitands with different properties and applications, and a sample of such a synthetic procedure is included in this protocol. Emphasis is placed on scaled-up reactions and on purification procedures that afford materials in high yield and avoid chromatographic purification. This protocol provides improvements over previously described procedures, and it enables the preparation of sizable amounts of deep cavitands: 7 g of a water-soluble cavitand can be prepared from resorcinol in 13 working days.

  3. Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains

    DOE PAGES

    Bailey, Vanessa L.; Smith, A. P.; Tfaily, Malak; ...

    2017-01-11

    Spatial isolation of soil organic carbon (SOC) in different sized pores may be a mechanism by which otherwise labile carbon (C) could be protected in soils. When soil water content increases, the hydrologic connectivity of soil pores also increases, allowing greater transport of SOC and other resources from protected locations, to microbially colonized locations more favorable to decomposition. The heterogeneous distribution of specialized decomposers, C, and other resources throughout the soil indicates that the metabolism or persistence of soil C compounds is highly dependent on short-distance transport processes. The objective of this research was to characterize the complexity of Cmore » in pore waters held at weak and strong water tensions (effectively soil solution held behind coarse- and fine-pore throats, respectively) and evaluate the microbial decomposability of these pore waters. We saturated intact soil cores and extracted pore waters with increasing suction pressures to sequentially sample pore waters from increasingly fine pore domains. Ultrahigh resolution mass spectrometry of the SOC was used to profile the major biochemical classes (i.e., lipids, proteins, lignin, carbohydrates, and condensed aromatics) of compounds present in the pore waters; some of these samples were then used as substrates for growth of Cellvibrio japonicus (DSMZ 16018), Streptomyces cellulosae (ATCC® 25439™), and Trichoderma reseei (QM6a) in 7 day incubations. The soluble C in finer pores was more complex than the soluble C in coarser pores, and the incubations revealed that the more complex C in these fine pores is not recalcitrant. The decomposition of this complex C led to greater losses of C through respiration than the simpler C from coarser pore waters. Our research suggests that soils that experience repeated cycles of drying and wetting may be accompanied by repeated cycles of increased CO2 fluxes that are driven by i) the transport of C from protected pools into

  4. Water-soluble and solid-state speciation of phosphorus in stabilized sewage sludge.

    PubMed

    Huang, Xiao-Lan; Shenker, Moshe

    2004-01-01

    Three chemicals, ferrous sulfate (Fe-sul), calcium oxide (CaO), and aluminum sulfate (alum), were used to stabilize phosphorus (P) in fresh, anaerobically digested sewage sludge (FSS). The chemically stabilized sludge materials and biosolids compost (BSC) were compared with the FSS with respect to water-soluble phosphorus (WSP) content in its inorganic (WSP(i)) and organic (WSP(o)) forms as well as water-soluble organic carbon (DOC). Solid-state P speciation was further probed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS). Water-soluble P was effectively controlled by a wide range of Fe-sul or CaO additions to the sludge (Ca to P ratio = 3.47-17.72, Fe to P ratio = 1.01-16.53), but by only a narrow range (Al to P ratio = 1.04-2.87) of alum addition. The WSP content in the BSC was also depressed, but to a lesser extent. The pH in the treated sludge ranged from 3.0 to 12.5 and served as a key factor to control P chemistry. No correlation was observed between DOC and WSP(o). No crystallized Ca-P minerals were detected in the CaO-stabilized sludge, but brushite crystallization seemed to be obtained by low addition of Fe-sul and alum. Variscite and strengite crystallization was obtained following high addition of Fe-sul or alum, as detected by XRD and SEM-EDXS. Adsorption of P by newly formed Fe-hydroxide seems to play an important role in the Fe-sul-stabilized sludge. We concluded that administration of the tested chemicals at the proper rate can effectively reduce the hazard of P release and leaching from sludge.

  5. Water-soluble undenatured type II collagen ameliorates collagen-induced arthritis in mice.

    PubMed

    Yoshinari, Orie; Shiojima, Yoshiaki; Moriyama, Hiroyoshi; Shinozaki, Junichi; Nakane, Takahisa; Masuda, Kazuo; Bagchi, Manashi

    2013-11-01

    Earlier studies have reported the efficacy of type II collagen (C II) in treating rheumatoid arthritis (RA). However, a few studies have investigated the ability of the antigenic collagen to induce oral tolerance, which is defined as active nonresponse to an orally administered antigen. We hypothesized that water-soluble undenatured C II had a similar effect as C II in RA. The present study was designed to examine the oral administration of a novel, water-soluble, undenatured C II (commercially known as NEXT-II) on collagen-induced arthritis (CIA) in mice. In addition, the underlying mechanism of NEXT-II was also identified. After a booster dose (collagen-Freund's complete adjuvant), mice were assigned to control CIA group, or NEXT-II treatment group, to which saline and NEXT-II were administered, respectively. The arthritis index in the NEXT-II group was significantly lower compared with the CIA group. Serum IL-6 levels in the NEXT-II group were significantly lower compared with the CIA group, while serum IL-2 level was higher. Furthermore, oral administration of NEXT-II enhanced the proportion of CD4+CD25+T (Treg) cells, and gene expressions of stimulated dendritic cells induced markers for regulatory T cells such as forkhead box p3 (Foxp3), transforming growth factor (TGF)-β1, and CD25. These results demonstrated that orally administered water-soluble undenatured C II (NEXT-II) is highly efficacious in the suppression of CIA by inducing CD4+CD25+ Treg cells.

  6. The role of lipid-based drug delivery systems for enhancing solubility of highly selective antiviral agent acyclovir.

    PubMed

    Kazi, Mohsin; Al-Amri, Khalid A; Alanazi, Fars K

    2017-05-01

    The study aimed to improve the aqueous solubility and dissolution rate of acyclovir (ACV) using self-emulsifying lipid formulations (SEDDS/SMEDDS). ACV was formulated in various SEDDS/SMEDDS using wide ranges of oils (mono-/di-/triglycerides), nonionic surfactants and water-soluble cosolvents with the aid of phase behavior studies. The drug solubility was determined in anhydrous, 10% and 99% diluted formulations. Drug precipitation and release profiles of the SEDDS/SMEDDS were also investigated. The ACV was highly soluble in the formulations containing high concentration of hydrophilic materials. The addition of propylene glycol (PG) significantly enhanced the drug solubility. In addition, with only 1% 0.1 M HCl, the drug solubility improved 10-fold higher without any precipitation. In the dissolution studies, the representative SEDDS/SMEDDS showed superior release profiles (>90% ACV released) than marketed Zovirax® suspension (<26% released). Formulations containing water-soluble cosolvent (e.g. PG), were the most suitable systems for ACV due to the extensive drug solubilization and release profile.

  7. Peracetylated sugar derivatives show high solubility in liquid and supercritical carbon dioxide.

    PubMed

    Potluri, Vijay K; Xu, Jianhang; Enick, Robert; Beckman, Eric; Hamilton, Andrew D

    2002-07-11

    [structure: see text] Acetylated sugars derivatives exhibit high solubility in liquid and supercritical carbon dioxide (scCO(2)). Peracetylated sorbitol and beta-D-galactose are soluble under mild conditions in scCO(2), high pressures are required to dissolve peracetylated beta-cyclodextrin, and peracetoxyalkyl chains impart CO(2)-solubility to amides.

  8. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    PubMed

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  9. Lubrication of starch in ionic liquid-water mixtures: Soluble carbohydrate polymers form a boundary film on hydrophobic surfaces.

    PubMed

    Yakubov, Gleb E; Zhong, Lei; Li, Ming; Boehm, Michael W; Xie, Fengwei; Beattie, David A; Halley, Peter J; Stokes, Jason R

    2015-11-20

    Soluble starch polymers are shown to enhance the lubrication of ionic liquid-water solvent mixtures in low-pressure tribological contacts between hydrophobic substrates. A fraction of starch polymers become highly soluble in 1-ethyl-3-methylimidazolium acetate (EMIMAc)-water solvents with ionic liquid fraction ≥60wt%. In 65wt% EMIMAc, a small amount of soluble starch (0.33wt%) reduces the boundary friction coefficient by up to a third in comparison to that of the solvent. This low-friction is associated with a nanometre thick film (ca. 2nm) formed from the amylose fraction of the starch. In addition, under conditions where there is a mixture of insoluble starch particles and solubilised starch polymers, it is found that the presence of dissolved amylose enhances the lubrication of starch suspensions between roughened substrates. These findings open up the possibility of utilising starch biopolymers, as well as other hydrocolloids, for enhancing the performance of ionic liquid lubricants.

  10. Solubility of silicon in hcp-iron at high pressure

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.

    2012-12-01

    The Earth's outer core is believed to be composed of liquid iron alloy with one or more light elements (e.g., Birch 1952; Poirier 1994). Although a number of elements lighter than iron, including hydrogen, carbon, oxygen, silicon, and sulfur, have been considered by various researchers as potential light elements in the Earth's core, silicon is one of the most attractive candidates for the light element in the core (e.g., Takafuji et al. 2005; Sakai et al. 2006; Ozawa et al. 2008, 2009, Wood et al., 2008). The Earth's inner core is considered to consist mainly of a solid iron-nickel alloy. However, multiple experimental studies revealed that the inner core is also less dense than pure iron, indicating the presence of light components in the inner core (e.g., Jephcoat and Olson 1987; Mao et al. 1998; Lin et al. 2005; Badro et al. 2007). If silicon is indeed a major light element in the liquid outer core, the maximum amount of silicon that can be incorporated in the solid inner core during inner-core solidification is limited by the solubility of silicon in solid iron at the pressure of the inner core boundary. Therefore the phase relations of iron-silicon alloys, especially the solubility of silicon in solid iron at high pressure and temperature, are the key to understanding the composition, structure, and crystallization of the inner core. The phase relations of iron-silicon alloys at high pressure have been extensively studied using a multi-anvil apparatus (Zhang and Guyot 1999; Dobson et al. 2002; Kuwayama and Hirose 2004) and a diamond-anvil cell with in-situ x-ray diffraction measurements (Lin et al. 2002; Lin et al. 2003; Dubrovinsky et al. 2003; Hirao et al. 2004; Asanuma et al. 2008, Lin et al 2009, Kuwayama et al. 2009). Below 200 GPa, the solubility of silicon in solid hcp-iron has been well studied. Solid hcp-iron can contain at least ~10 wt% Si at low temperature, but it decomposed to iron-rich hcp phase and silicon-rich bcc phase at high temperature

  11. Detergents as probes of hydrophobic binding cavities in serum albumin and other water-soluble proteins.

    PubMed Central

    Kragh-Hansen, U; Hellec, F; de Foresta, B; le Maire, M; Møller, J V

    2001-01-01

    As an extension of our studies on the interaction of detergents with membranes and membrane proteins, we have investigated their binding to water-soluble proteins. Anionic aliphatic compounds (dodecanoate and dodecylsulfate) were bound to serum albumin with high affinity at nine sites; related nonionic detergents (C12E8 and dodecylmaltoside) were bound at seven to eight sites, many in common with those of dodecanoate. The compounds were also bound in the hydrophobic cavity of beta-lactoglobulin, but not to ovalbumin. In addition to the generally recognized role of the Sudlow binding region II of serum albumin (localized at the IIIA subdomain) in fatty acid binding, quenching of the fluorescence intensity of tryptophan-214 by 7,8-dibromododecylmaltoside and 12-bromododecanoate also implicate the Sudlow binding region I (subdomain IIA) as a locus for binding of aliphatic compounds. Our data document the usefulness of dodecyl amphipathic compounds as probes of hydrophobic cavities in water-soluble proteins. In conjunction with recent x-ray diffraction analyses of fatty acid binding as the starting point we propose a new symmetrical binding model for the location of nine high-affinity sites on serum albumin for aliphatic compounds. PMID:11371462

  12. P2O5 assisted green synthesis of multicolor fluorescent water soluble carbon dots.

    PubMed

    Babar, Dipak Gorakh; Sonkar, Sumit Kumar; Tripathi, Kumud Malika; Sarkar, Sabyasachi

    2014-03-01

    A low cost synthesis of multicolor fluorescent carbon dots (C-dots) from edible sugars is described here. Common sugars like dextrose, lactose or maltose in aqueous medium gets dehydrated using phosphorus pentoxide (P2O5). The reaction is facile and completed within few minutes to form insoluble carbon (C-dots) mostly having the graphitic (G-band, Raman) sp2 hybridized carbon atoms (C-atoms). This insoluble carbon on oxidative treatment with nitric acid produced disordered sp3 (D-band retaining G-band, Raman) hybridized C-atoms, originated from the graphitic pool with sp2 hybridized C-atoms. This high density assimilation of self passivated "surfacial defects" become emissive during electronic transitions. Surfacial defects due to high degree of electrophilic carboxylation create the water soluble version of multicolor fluorescent C-dots as "water soluble fluorescent carbon dots" (wsFCDs). wsFCDs being itself self-passivated imposes the tunable multicolor emission throughout the visible spectrum without having any external coating and surface passivation and could be used as multicolor fluorescent probe especially in the emerging field of optical bio-imaging.

  13. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    PubMed

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications.

  14. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    SciTech Connect

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  15. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    NASA Astrophysics Data System (ADS)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  16. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  17. Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry.

    PubMed

    Nguyen, K L; Lewis, D M; Jolly, M; Robinson, J

    2004-11-01

    The steps of the standard method to determine soluble aluminium concentration are filtering, followed by acidifying, then analysing with the atomic absorption spectrophotometer (AAS). When applied to alkaline humic water, acidification gives rise to the formation of humic acid as a brown particulate matter. Of the total soluble aluminium in the original water, 49-61% forms complexes with the particulate humic acid upon acidification. Although the AAS is capable of detecting the binding aluminium, the particulate nature of humic acid easily induces inaccurate readings as a result of the non-uniform distribution of the particulate matter. A more precise analysis of soluble aluminium concentration of alkaline humic water is shown to be achievable in basicified solutions instead. Basicified solutions keep humic acid in the soluble form; hence maintain the homogeneity of the sample.

  18. Removal of chromium from aqueous solution by complexation-ultrafiltration using a water-soluble macroligand.

    PubMed

    Aliane, A; Bounatiro, N; Cherif, A T; Akretche, D E

    2001-06-01

    A process for purifying waste waters containing heavy and toxic metal such as chromium has been studied. A batch complexation-ultrafiltration process was used to concentrate and recover chromium from sulphate solution. As the chromium ions are too small to be retained by the filter, they are first complexed with a water-soluble macroligand (polyethylene-imine). Factors affecting the rejection rate and permeate flux such as pH, concentration ligand, chloride and sulphate concentration, membrane pore size, applied pressure and extraction factor were investigated. Best operating conditions can be obtained in order to achieve high levels of removal (> 95%). Then, decomplexation is obtained so that metal can be separated from macroligand by a second ultrafiltration plant to reuse the macroligand.

  19. Hydrogen-Bonding-Induced Fluorescence: Water-Soluble and Polarity-Independent Solvatochromic Fluorophores.

    PubMed

    Okada, Yohei; Sugai, Masae; Chiba, Kazuhiro

    2016-11-18

    Fluorophores with emission wavelengths that shift depending on their hydrogen-bonding microenvironment in water would be fascinating tools for the study of biological events. Herein we describe the design and synthesis of a series of water-soluble solvatochromic fluorophores, 2,5-bis(oligoethylene glycol)oxybenzaldehydes (8-11) and 2,5-bis(oligoethylene glycol)oxy-1,4-dibenzaldehydes (14-17), based on a push-pull strategy. Unlike typical examples in this class of fluorophores, the fluorescence properties of these compounds are independent of solvent polarity and become fluorescent upon intermolecular hydrogen-bonding, exhibiting high quantum yields (up to ϕ = 0.55) and large Stokes shifts (up to 134 nm). Furthermore, their emission wavelengths change depending on their hydrogen-bonding environment. The described fluorophores provide a starting point for unprecedented applications in the fields of chemical biology and medicinal chemistry.

  20. Water-soluble aminocurdlan derivatives by chemoselective azide reduction using NaBH4.

    PubMed

    Zhang, Ruoran; Edgar, Kevin J

    2015-05-20

    Water-solubility can often enhance the utility of polysaccharide derivatives, for example in pharmaceutical and biomedical applications. Synthesis of water-soluble aminopolysaccharides, particularly those bearing other sensitive functional groups, can be a challenging endeavor. Curdlan is a bioactive β-1,3-glucan with considerable promise for biomedical applications. Aminocurdlans are intriguing target molecules for study of, for example, their interactions with the proteins that form tight junctions between enterocytes. Herein we report the preparation of two water-soluble 6-aminocurdlans starting from 6-bromo-6-deoxycurdlan. The 6-bromide was first displaced by nucleophilic substitution with sodium azide in dimethyl sulfoxide. The O-2 groups were acylated with hydrophilic oligo (ethylene oxide) esters, so as to enhance aqueous solubility. The resultant 6-azido-6-deoxy-2,4-di-O-trioxadecanoylcurdlan was then treated with excess sodium borohydride to reduce the azide; unexpectedly, the water-soluble product proved to be the amide, 6-trioxadecanamido-6-deoxycurdlan. Regioselectivity and degree of substitution (DS) of those derivatives were characterized by means of (1)H NMR, (13)C NMR and FTIR-spectroscopy, elemental analysis, and titration. Alternatively, direct borohydride reduction of the parent 6-azido-6-deoxycurdlan afforded 6-amino-6-deoxycurdlan that was also water-soluble.

  1. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    DOEpatents

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  2. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery.

    PubMed

    Chen, Ying; Liu, Yong; Yao, Yongchao; Zhang, Shiyong; Gu, Zhongwei

    2017-03-22

    With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.

  3. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells.

    PubMed

    Kasuga, Jun; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Seasonal changes in the accumulation of soluble sugars in extracellular freezing cortical parenchyma cells and deep supercooling xylem parenchyma cells in Japanese white birch (Betula platyphylla var. japonica) were compared to identify the effects of soluble sugars on the mechanism of deep supercooling, which keeps the liquid state of water in cells under extremely low temperatures for long periods. Soluble sugars in both tissues were analyzed by high-performance liquid chromatography (HPLC), and the concentrations of sugars in cells were estimated by histological observation of occupancy rates of parenchyma cells in each tissue. Relative and equilibrium melting points of parenchyma cells were measured by differential thermal analysis and cryoscanning electron microscopy, respectively. In both xylem and cortical parenchyma cells, amounts of sucrose, raffinose and stachyose increased in winter, but amounts of fructose and glucose exhibited little change throughout the entire year. In addition, no sugars were found to be specific for either tissue. Combined results of HPLC analyses, histological observation and melting point analyses confirmed that the concentration of sugars was much higher in xylem cells than in cortical cells. It is thought that the higher concentration of soluble sugars in xylem cells may contribute to facilitation of deep supercooling in xylem cells by depressing the nucleation temperature.

  4. Anticoccidial efficacy of drinking water soluble diclazuril on experimental and field coccidiosis in broiler chickens.

    PubMed

    El-Banna, H A; El-Bahy, M M; El-Zorba, H Y; El-Hady, M

    2005-08-01

    Prophylactic and curative capacity of water soluble formulation of Diclazuril (Diclosol 1%) and feed additive form (Clinacox, 0.5%) were tested against Eimeria infection in broiler chickens. Such testing was performed both experimentally and in the field. Toltrazuril (Baycox, 2.5%) was used as reference control drug. Water soluble formulation of Diclazuril induced a marked inhibitory effect on the different stages of the parasite life cycle in experimentally infected treated birds especially when applied on the day when blood first appeared in the faeces [fifth day post-infection (d.p.i.)] as well as on the second day of blood dropping (6 d.p.i.). Both tested dosage levels of Diclazuril water soluble formulation in drinking water (5 and 10 ppm) showed the same effect in controlling coccidial infection and reducing the total oocyst numbers, lesion and faecal scores. Moreover, there was no significant difference in the efficacy of water soluble form of Diclazuril and the reference control drug (Toltrazuril, 25 ppm). In addition, testing the water soluble formulation (5 ppm) in naturally infected poultry farm (20,000 birds), showed the same anticoccidial effect observed when using Toltrazuril, as a treatment for coccidiosis. In conclusion, addition of Diclazuril at the dose of 5 ppm in the drinking water of naturally coccidia infected bird induced the same effect as 25 ppm of Toltrazuril as a treatment for coccidiosis in chickens.

  5. In vitro release of a water-soluble agent from low viscosity biodegradable, injectable oligomers.

    PubMed

    Sharifpoor, Soroor; Amsden, Brian

    2007-03-01

    Low-molecular-weight poly(epsilon-caprolactone-co-1,3-trimethylene carbonate) and poly(1,3-trimethylene carbonate) are potential vehicles for the regio-specific delivery of water-soluble agents. In this paper, the characteristics and the mechanism governing the in vitro release of a model water-soluble drug, vitamin B12, from these polymer vehicles were determined. The loading of vitamin B12 was kept to 1 w/w%. The oligomers examined ranged from amorphous, high viscosity to crystalline but low viscosity. The oligomers did not degrade appreciably in vitro. The total fraction of vitamin B12 released increased as the crystallinity of the oligomers decreased, reaching nearly total release only for the completely amorphous oligomers. The rate of release was fastest for the amorphous oligomers and dependent on their viscosity. Inclusion of a more osmotically active agent, trehalose, into the vitamin B12 particles through co-lyophilization resulted in enhanced total fraction released and a faster release rate. The results are consistent with an osmotically driven release mechanism.

  6. Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells.

    PubMed

    Zheng, Lingling; Ma, Yingzhuang; Xiao, Lixin; Zhang, Fengyan; Wang, Yuanhao; Yang, Hongxing

    2017-04-11

    Interfacial materials play a critical role in photoelectric conversion properties as well as the anomalous hysteresis phenomenon of the perovskite solar cells (PSCs). In this article, a water-soluble polythiophene PTEBS was employed as a cathode interfacial material for PSCs. Efficient energy level aligning and improved film morphology were obtained due to an ultrathin coating of PTEBS. Better ohmic contact between the perovskite layer and the cathode also benefits the charge transport and extraction of the device. Moreover, less charge accumulation at the interface weakens the polarization of the perovskite resulting in a relatively quick response of the modified device. The ITO/PTEBS/CH3NH3PbI3/spiro-MeOTAD/Au cells by an all low-temperature process achieved power conversion efficiencies of up to 15.4% without apparent hysteresis effect. Consequently, the utilization of this water-soluble polythiophene is a practical approach for the fabrication of highly efficient, large-area, and low-cost PSCs and compatible with low-temperature solution process, roll-to-roll manufacture, and flexible application.

  7. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    PubMed

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-05

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins.

  8. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida.

    PubMed

    Faramarzi, Mohammad A; Brandl, Helmut

    2006-06-01

    A few Pseudomonas species are able to form hydrocyanic acid (HCN), particularly when grown under glycine-rich conditions. In the presence of metals, cyanide can form water-soluble metal complexes of high chemical stability. We studied the possibility to mobilize metals as cyanide complexes from solid minerals using HCN-forming microorganisms. Pseudomonas plecoglossicida was cultivated in the presence of copper- and nickel-containing solid minerals. On powdered elemental nickel, fast HCN generation within the first 12 h of incubation was observed and water-soluble tetracyanaonickelate was formed. Cuprite, tenorite, chrysocolla, malachite, bornite, turquoise, millerite, pentlandite as well as shredded electronic scrap was also subjected to a biological treatment. Maximum concentrations of cyanide-complexed copper corresponded to a solubilization of 42% and 27% when P. plecoglossicida was grown in the presence of cuprite or tenorite, respectively. Crystal system, metal oxidation state and mineral hydrophobicity might have a significant influence on metal mobilization. However, it was not possible to allocate metal mobilization to a single mineral property. Cyanide-complexed gold was detected during growth on manually cut circuit boards. Maximum dicyanoaurate concentration corresponded to a 68.5% dissolution of the total gold added. These findings represent a novel type of microbial mobilization of nickel and copper from solid minerals based on the ability of certain microbes to form HCN.

  9. Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury

    PubMed Central

    Liu, Hui; Yang, Lei; Wu, Hui-Jun; Chen, Kui-Hao; Lin, Feng; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2016-01-01

    The morbidity and mortality of patients with ischemic cardiomyopathy resulted from ischemia/reperfusion injury are very high. The present study investigates whether our previously synthesized water-soluble phosphate prodrug of acacetin was cardioprotective against ischemia/reperfusion injury in an in vivo rat model. We found that intravenous administration of acacetin prodrug (10 mg/kg) decreased the ventricular arrhythmia score and duration, reduced ventricular fibrillation and infarct size, and improved the impaired heart function induced by myocardial ischemia/reperfusion injury in anesthetized rats. The cardioprotective effects were further confirmed with the parent compound acacetin in an ex vivo rat regional ischemia/reperfusion heart model. Molecular mechanism analysis revealed that acacetin prevented the ischemia/reperfusion-induced reduction of the anti-oxidative proteins SOD-2 and thioredoxin, suppressed the release of inflammation cytokines TLR4, IL-6 and TNFα, and decreased myocyte apoptosis induced by ischemia/reperfusion. Our results demonstrate the novel evidence that acacetin prodrug confer significant in vivo cardioprotective effect against ischemia/reperfusion injury by preventing the reduction of endogenous anti-oxidants and the release of inflammatory cytokines, thereby inhibiting cardiomyocytes apoptosis, which suggests that the water-soluble acacetin prodrug is likely useful in the future as a new drug candidate for treating patients with acute coronary syndrome. PMID:27819271

  10. ZnS:Cu,Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications.

    PubMed

    Ma, Lun; Chen, Wei

    2010-09-24

    Cu(2+) and Co(2+) co-doped zinc sulfide water-soluble nanoparticles (ZnS:Cu,Co) were prepared and their afterglow luminescence was observed and reported for the first time. The nanoparticles have a cubic zinc blende structure with average sizes of about 4 nm as determined by high-resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD). In the photoluminescence, two emission peaks are observed at 470 and 510 nm. However, in the afterglow, only one peak is observed at around 525 nm. The blue emission at 470 nm is from surface states and the green emission at 525 nm is from Cu(2+). This means that Cu(2+) is responsible for the afterglow from the nanoparticles, while the co-doping of Co(2+) is critical for the afterglow because no afterglow could be seen without co-doping with Co(2+). The successful observation of the afterglow from water-soluble nanoparticles may open up new applications of afterglow phosphors in biological imaging, detection and treatment.

  11. ZnS:Cu,Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Chen, Wei

    2010-09-01

    Cu2 + and Co2 + co-doped zinc sulfide water-soluble nanoparticles (ZnS:Cu,Co) were prepared and their afterglow luminescence was observed and reported for the first time. The nanoparticles have a cubic zinc blende structure with average sizes of about 4 nm as determined by high-resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD). In the photoluminescence, two emission peaks are observed at 470 and 510 nm. However, in the afterglow, only one peak is observed at around 525 nm. The blue emission at 470 nm is from surface states and the green emission at 525 nm is from Cu2 + . This means that Cu2 + is responsible for the afterglow from the nanoparticles, while the co-doping of Co2 + is critical for the afterglow because no afterglow could be seen without co-doping with Co2 + . The successful observation of the afterglow from water-soluble nanoparticles may open up new applications of afterglow phosphors in biological imaging, detection and treatment.

  12. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  13. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    PubMed

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc.

  14. Solubility of KF and NaCl in water by molecular simulation

    NASA Astrophysics Data System (ADS)

    Sanz, E.; Vega, C.

    2007-01-01

    The solubility of two ionic salts, namely, KF and NaCl, in water has been calculated by Monte Carlo molecular simulation. Water has been modeled with the extended simple point charge model (SPC/E), ions with the Tosi-Fumi model and the interaction between water and ions with the Smith-Dang model. The chemical potential of the solute in the solution has been computed as the derivative of the total free energy with respect to the number of solute particles. The chemical potential of the solute in the solid phase has been calculated by thermodynamic integration to an Einstein crystal. The solubility of the salt has been calculated as the concentration at which the chemical potential of the salt in the solution becomes identical to that of the pure solid. The methodology used in this work has been tested by reproducing the results for the solubility of KF determined previously by Ferrario et al. [J. Chem. Phys. 117, 4947 (2002)]. For KF, it was found that the solubility of the model is only in qualitative agreement with experiment. The variation of the solubility with temperature for KF has also been studied. For NaCl, the potential model used predicts a solubility in good agreement with the experimental value. The same is true for the hydration chemical potential at infinite dilution. Given the practical importance of solutions of NaCl in water the model used in this work, whereas simple, can be of interest for future studies.

  15. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  16. Influence of water solubility, phase equilibria, and capillary pressure on methane occurrence in sediments

    SciTech Connect

    Claypool, G.E.

    1996-12-31

    Microbial methane is generated in rapidly accumulating marine sediments (>40 m/my) where pore waters are deficient in dissolved oxygen and sulfate. Based on indirect geochemical evidence, microbial methane generation is largely confined to depths of between 10 and 1000 meters beneath the sea floor. Under shelf conditions (water depth <200 m), methane concentrations can exceed solubility in pore water and accumulate as free gas, or escape the sediment as bubbles, or be oxidized in surface sediments. Under some deeper-water conditions of continental slope and rise sediments, more of the methane can be retained and buried because of increased solubility, and because methane in excess of solubility can be stabilized as methane hydrate. Few direct measurements of methane concentration in subsurface pore waters have been made. However, methane-water phase transitions (gas-water contacts, base of gas hydrate reflector) on seismic records can be used with methane solubility relationships to estimate gas contents of sediments. Comparison of various environments shows a relatively narrow range of dissolved methane contents. In marine sediments, free gas (and methane hydrate) is stable only in contact with methane-saturated pore water. Finer-grained sediments can be supersaturated with respect to a gas (and gas hydrate?) phase because of capillary pressure inhibition of bubble (or hydrate?) formation. The amount of methane dissolved in marine sediment pore water is necessarily larger than that present as gas hydrate.

  17. Influence of water solubility, phase equilibria, and capillary pressure on methane occurrence in sediments

    SciTech Connect

    Claypool, G.E. )

    1996-01-01

    Microbial methane is generated in rapidly accumulating marine sediments (>40 m/my) where pore waters are deficient in dissolved oxygen and sulfate. Based on indirect geochemical evidence, microbial methane generation is largely confined to depths of between 10 and 1000 meters beneath the sea floor. Under shelf conditions (water depth <200 m), methane concentrations can exceed solubility in pore water and accumulate as free gas, or escape the sediment as bubbles, or be oxidized in surface sediments. Under some deeper-water conditions of continental slope and rise sediments, more of the methane can be retained and buried because of increased solubility, and because methane in excess of solubility can be stabilized as methane hydrate. Few direct measurements of methane concentration in subsurface pore waters have been made. However, methane-water phase transitions (gas-water contacts, base of gas hydrate reflector) on seismic records can be used with methane solubility relationships to estimate gas contents of sediments. Comparison of various environments shows a relatively narrow range of dissolved methane contents. In marine sediments, free gas (and methane hydrate) is stable only in contact with methane-saturated pore water. Finer-grained sediments can be supersaturated with respect to a gas (and gas hydrate ) phase because of capillary pressure inhibition of bubble (or hydrate ) formation. The amount of methane dissolved in marine sediment pore water is necessarily larger than that present as gas hydrate.

  18. Assessing Junior High Students' Understanding of Density and Solubility.

    ERIC Educational Resources Information Center

    Gennaro, Eugene D.

    1981-01-01

    Three density questions were administered to 290 ninth-grade students to assess their understanding of this concept. Found two-thirds of students understand displacement and/or density concepts. Three solubility questions were administered to 385 ninth-graders to assess understandings of solubility. Found students have difficulty with some aspects…

  19. C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies

    SciTech Connect

    GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

    2000-01-26

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  20. Formation mechanisms of water-soluble organic compounds in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Huang, Xiaofeng

    Water-soluble organic compounds (WSOCs) are abundant in atmospheric aerosols, typically accounting for 20˜80% of particulate organic matter mass. Due to their affinity for water, WSOCs play an active role in aerosol-water interaction, and thus influence hygroscopic properties of aerosols, which in turn affect cloud formation processes and earth's radiation balance. Despite their abundance and significance, the sources of WSOCs are not well understood. Some primary sources (e.g., biomass burning) are known to emit WSOCs. It is also known from smog chamber experiments that photochemical oxidation of volatile organic compounds lead to less volatile oxygenated compounds that reside in the aerosol phase and are water-soluble because of the presence of polar functional groups. More recent work points to in-cloud/fog processes as a potentially important source for WSOCs. Work in this thesis aims to improve our understanding of the sources and formation mechanisms of WSOCs in atmospheric aerosols. Multiple approaches have been taken, including field measurements and controlled laboratory experiments. The thesis consists of the following four parts: (1) The formation mechanism of the most abundant WSOC species, oxalate, was investigated by synthesizing field measurement data obtained by our group and those available in the literature. Our measurements of aerosol sulfate and oxalate across a wide geographical span in the East Asia region, up to Beijing in the north and down to Hong Kong in the south, indicated that the two species were highly correlated. This good correlation was also found in measurements made elsewhere in the world by other researchers. Through a detailed analysis of factors influencing ambient oxalate, it can be argued that a common dominant formation pathway, likely in-cloud processing, explains the close tracking of the two chemically distinct species. This result also highlights the potential importance of in-cloud processing as a pathway leading to

  1. Super fast detection of latent fingerprints with water soluble CdTe quantum dots.

    PubMed

    Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun

    2013-03-10

    A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development.

  2. Water-soluble extracts from defatted sesame seed flour show antioxidant activity in vitro.

    PubMed

    Ben Othman, Sana; Katsuno, Nakako; Kanamaru, Yoshihiro; Yabe, Tomio

    2015-05-15

    Defatted white and gold sesame seed flour, recovered as a byproduct after sesame oil extraction, was extracted with 70% ethanol to obtain polar-soluble crude extracts. The in vitro antioxidant activity of the extract was evaluated by DPPH free radical scavenging activity and oxygen radical absorbing capacity (ORAC). The polar-soluble crude extracts of both sesame seed types exhibited good antioxidant capacity, especially by the ORAC method with 34,720 and 21,700 μmol Trolox equivalent/100g of white and gold sesame seed extract, respectively. HPLC, butanol extraction, and UPLC-MS analyses showed that different compounds contributed to the antioxidant activity of the polar-soluble crude extracts. Sesaminol glycosides were identified in the butanol-soluble fractions; whereas, purified water-soluble fraction contained ferulic and vanillic acids. This study shows that hydrophilic antioxidants in the purified water-soluble fraction contributed to the antioxidant activity of white and gold sesame seed polar-soluble crude extracts.

  3. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.

    PubMed

    Yi, Tao; Wan, Jiangling; Xu, Huibi; Yang, Xiangliang

    2008-08-07

    The objective of this work was the development of a controlled release system based on self-microemulsifying mixture aimed for oral delivery of poorly water-soluble drugs. HPMC-based particle formulations were prepared by spray drying containing a model drug (nimodipine) of low water solubility and hydroxypropylmethylcellulose (HPMC) of high viscosity. One type of formulations contained nimodipine mixed with HPMC and the other type of formulations contained HPMC and nimodipine dissolved in a self-microemulsifying system (SMES) consisting of ethyl oleate, Cremophor RH 40 and Labrasol. Based on investigation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction, differences were found in the particle structure between both types of formulations. In vitro release was performed and characterized by the power law. Nimodipine release from both types of formulations showed a controlled release profile and the two power law parameters, n and K, correlated to the viscosity of HPMC. The parameters were also influenced by the presence of SMES. For the controlled release solid SMES, oil droplets containing dissolved nimodipine diffused out of HPMC matrices following exposure to aqueous media. Thus, it is possible to control the in vitro release of poorly soluble drugs from solid oral dosage forms containing SMES.

  4. Salinity impacts on water solubility and N-octanol/water partition coefficients of selected pesticides and oil constituents.

    PubMed

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-03-06

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, there is limited data available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. Pesticides atrazine, fipronil, bifenthrin, cypermethrin, as well as crude oil constituents dibenzothiophene as well as 3 of its alkyl derivatives all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (KOW ) was measured in both distilled-deionized water as well as artificial seawater (3.2%). All compounds had diminished solubility and increased KOW values in artificial seawater as compared to distilled-deionized water. A linear correlation curve estimated salinity may increase the log KOW value 2.6% per one log unit increase in distilled water (R(2)  = 0.97). Salinity appears to generally decrease the water solubility and increase partitioning potential. Environmental fate estimates based upon these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when conducting exposure estimates for marine organisms. This article is protected by copyright. All rights reserved.

  5. Water-soluble BODIPY-based fluorescent probe for mitochondrial imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sui, Binglin; Tang, Simon; Woodward, Adam W.; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    A new mitochondrial targeting fluorescent probe is designed, synthesized, characterized, and investigated. The probe is composed of three moieties, a BODIPY platform working as the fluorophore, two triphenylphosphonium (TPP) groups serving as mitochondrial targeting moiety, and two long highly hydrophilic polyethylene glycol (PEG) chains to increase its water solubility and reduce its cytotoxicity. As a mitochondria-selective fluorescent probe, the probe exhibits a series of desirable advantages compared with other reported fluorescent mitochondrial probes. It is readily soluble in aqueous media and emits very strong fluorescence. Photophysical determination experiments show that the photophysical properties of the probe are independent of solvent polarity and it has high quantum yield in various solvents examined. The probe also has good photostability and pH insensitivity over a broad pH range. Results obtained from cell viability tests indicate that the cytotoxicity of the probe is very low. Confocal fluorescence microscopy colocalization experiments reveal that this probe possesses excellent mitochondrial targeting ability and it is suitable for imaging mitochondria in living cells.

  6. Operation of the Oxide Washer for Water-Washing Solubles out of Impure Pu Oxide

    SciTech Connect

    Dodson, K E; Close, W L; Krikorian, O H; Summers III, H V

    2006-01-30

    An evaluation has been made for using the Oxide Washer to wash water-soluble materials out of impure Pu oxide. It is found that multiple washes are needed to reduce the water-soluble materials to very low levels in the impure Pu oxides. The removal of the wash water from the Oxide Washer is accompanied by particulates of the impure Pu oxide, which subsequently need to be filtered out. In spite of the additional filtration needed, the overall level of manpower required for processing is still only about one third of that for an all-manual operation.

  7. IUPAC-NIST Solubility Data Series. 93. Potassium Sulfate in Water

    NASA Astrophysics Data System (ADS)

    Eysseltová, Jitka; Bouaziz, Roger

    2012-03-01

    The solubility data for potassium sulfate in water are reviewed. All data were critically examined for their reliability. The best values were selected on the basis of critical evaluations and presented in tabular form. Fitting equations and plots are also provided. The quantities, units, and symbols used are in accord with IUPAC recommendations. The original data have been reported and, if necessary, transferred into the units and symbols recommended by IUPAC. The literature on solubility data was researched through 2010.

  8. Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis

    NASA Astrophysics Data System (ADS)

    Mourdikoudis, Stefanos; Chirea, Mariana; Altantzis, Thomas; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Silva, Fernando; Bals, Sara; Liz-Marzán, Luis M.

    2013-05-01

    Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m2 g-1) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements.Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m2 g-1) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  9. Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery.

    PubMed

    Wang, Dong-an; Narang, Ajit S; Kotb, Malak; Gaber, A Osama; Miller, Duane D; Kim, Sung Wan; Mahato, Ram I

    2002-01-01

    A novel water-soluble lipopolymer was synthesized by linking cholesteryl chloroformate to the secondary amino groups of branched poly(ethylenimine) (PEI) of 1,800 and 10,000 Da. Conjugation through PEI secondary amines gives this newly synthesized lipopolymer (abbreviated as PEI-Chol) special advantage over our previously synthesized lipopolymers, which utilized the primary amino groups for conjugation, as the primary amino groups have a significant role in DNA condensation. Also, significantly, only one cholesterol molecule was grafted onto each PEI molecule (confirmed by (1)H NMR and MALDI-TOF mass spectrometry), leaving enough space for the steric interactions of the PEI's primary amines with the DNA. The PEI-Chol lipopolymer was characterized for the critical micellar concentration (cmc), buffer capacity, DNA condensation (by band retardation and circular dichroism), in vitro transfection efficiency, and cell viability. The cmcs of PEI-Chol 1,800 and PEI-Chol 10,000 were 496.6 and 1,330.5 microg/mL, respectively. The acid-base titration indicated high buffering capacity of the polymers around the pH range of 5-7, which indicated their potential for buffering in the acidic pH environment of the endosomes. The band retardation studies indicated that efficient condensation of the plasmid DNA could be achieved using these lipopolymers. The circular dichroism spectra indicated a change in DNA conformation and adoption of lower energy state upon condensation with these lipopolymers when an N/P ratio of 2.5/1 or above was formulated. The mean particle size of these complexes was in the range 110-205 nm, except for the complexes prepared using PEI of 1,800 Da, which had a mean particle size of 384 +/- 300 nm. The zeta potential of DNA complexes prepared using PEI-Chol 1,800, PEI-Chol 10,000 and PEI of 1,800, 10,000, and 25,000 Da at an N/P ratio of 15/1 was in the range 23-30 mV and was dependent on the N/P ratios. The in vitro transfection of PEI

  10. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    DOEpatents

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  11. DETERMINATION OF THE SOLUBILITY OF NEON IN WATER AND EXTRACTED HUMAN FAT.

    DTIC Science & Technology

    coefficient (alpha) for neon in water, olive oil , and extracted human fat. Essentially, the method consists of a double extraction of sample material that...observed Bunsen absorption coefficients supply new information on the solubility of neon in human fatty material, olive oil , and water. (Author)

  12. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    PubMed

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  13. Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug.

    PubMed

    Li, X N; Guo, H X; Heinamaki, J

    2010-05-01

    Zein is an alcohol soluble protein of corn origin that exhibits hydrophobic properties. Pseudolatexes are colloidal dispersions containing spherical solid or semisolid particles less than 1 microm in diameter and can be prepared from any existing thermoplastic water-insoluble polymer. The novel plasticized film-coating pseudolatex of zein was studied in formulation of sustained-release tablets containing very water-soluble drug. Film formation of plasticized aqueous dispersion was compared with film forming properties of plasticized organic solvent system (ethanol) of zein. The water vapor permeability (WVP), water uptake and erosion, and moisture sorption were evaluated with free films. The tablets containing metoprolol tartrate as a model drug were used in pan-coating experiments. Aqueous film coatings plasticized with PEG 400 exhibited very low water uptake. No significant difference in WVP, moisture sorption and erosion were found between aqueous films and organic solvent-based films of zein plasticized with PEG 400. The atomic force microscopy (AFM) images on microstructure of films showed that colloidal particle size of zein in the aqueous films was smaller than that observed in the solvent-based films. In addition, the aqueous-based films were more compact and smoother than the respective solvent-based films. The aqueous zein-coated tablets containing very water-soluble drug (metoprolol tartrate) exhibited clear sustained-release dissolution profiles in vitro, while the respective solvent-based film-coated tablets showed much faster drug release. Furthermore, aqueous zein-coated tablets had lower water absorption at high humidity conditions. In conclusion, the plasticized aqueous dispersion (pseudolatex) of zein can be used for moisture resistant film coating of sustained-release tablets containing very water-soluble drug.

  14. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life

    PubMed Central

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-01-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. PMID:27501943

  15. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    PubMed

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity.

  16. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    SciTech Connect

    Reilly, Sean Douglas

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  17. Phase transfer of hydrophobic QDs for water-soluble and biocompatible nature through silanization

    SciTech Connect

    Yang, Ping; Zhou, Guangjun

    2011-12-15

    Graphical abstract: A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots with a small hydrodynamic diameter (less than 10 nm) via silanization. Highlights: Black-Right-Pointing-Pointer A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). Black-Right-Pointing-Pointer The control of ligand exchange plays an important role to retain high fluorescence quantum yields. Black-Right-Pointing-Pointer The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. Black-Right-Pointing-Pointer The QD phase transfer by silanization is a well-established method for generating biocompatible QDs. -- Abstract: A novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). The silanization of the QDs was carried out by using partially hydrolyzed tetraethyl orthosilicate (TEOS) to replace organic ammine or tri-n-octylphosphine oxide on the surface of the QDs. The partially hydrolyzed 3-mercaptopropyltrimethoxysilane attached to the hydrolyzed TEOS layer on the QDs prevented the QDs from agglomeration when the QDs were transferred into water. The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. The SiO{sub 2}-coated QDs exhibited the same absorption and photoluminescence (PL) spectra as those of initial QDs in organic solvents. The SiO{sub 2}-coated QDs preserved PL intensities, is colloidally stable over a wide pH range (pH 6-11). Because the mean diameter of amphiphilic polymer-coated QDs was almost 2 times of that of functional SiO{sub 2}-coated QDs, the QD phase transfer by silanization is a well-established method for generating biocompatible QDs.

  18. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug.

    PubMed

    Puri, Vibha; Dantuluri, Ajay K; Kumar, Mahesh; Karar, N; Bansal, Arvind K

    2010-05-12

    The present study compares energetics of wetting behavior of crystalline and amorphous forms of a poorly water soluble drug, celecoxib (CLB) and attempts to correlate it to their surface molecular environment. Wettability and surface free energy were determined using sessile drop contact angle technique and water vapor sorption energetics was measured by adsorption calorimetry. The surface chemistry was elucidated by X-ray photoelectron spectroscopy (XPS) and crystallographic evaluation. The two solid forms displayed distinctly different wetting with various probe liquids and in vitro dissolution media. The crystalline form surface primarily exhibited dispersive surface energy (47.3mJ/m(2)), while the amorphous form had a slightly reduced dispersive (45.2mJ/m(2)) and a small additional polar (4.8mJ/m(2)) surface energy. Calorimetric measurements, revealed the amorphous form to possess a noticeably high differential heat of absorption, suggesting hydrogen bond interactions between its polar energetic sites and water molecules. Conversely, the crystalline CLB form was found to be inert to water vapor sorption. The relatively higher surface polarity of the amorphous form could be linked to its greater oxygen-to-fluorine surface concentration ratio of 1.27 (cf. 0.62 for crystalline CLB), as determined by XPS. The crystallographic studies of the preferred cleavage plane (020) of crystalline CLB further supported its higher hydrophobicity. In conclusion, the crystalline and amorphous forms of CLB exhibited disparate surface milieu, which in turn can have implications on the surface mediated events.

  19. Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate.

    PubMed

    Horváth, Henrietta; Papp, Gábor; Szabolcsi, Roland; Kathó, Ágnes; Joó, Ferenc

    2015-09-21

    Molecular hydrogen, obtained by water electrolysis or photocatalytic water splitting, can be used to store energy obtained from intermittent sources such as wind and solar power. The storage and safe transportation of H2 , however, is an open and central question in such a hydrogen economy. Easy-to-synthesize, water-soluble iridium-N-heterocyclic carbene-phosphine (Ir(I) -NHC-phosphine) catalysts show unprecedented high catalytic activity in dehydrogenation of aqueous sodium formate. Fast reversible generation and storage of hydrogen can be achieved with these catalysts by a simple decrease or increase in the hydrogen pressure, respectively.

  20. Nanosuspensions of poorly water soluble drugs prepared by top-down technologies.

    PubMed

    Zhang, Xin; Li, Luk Chiu; Mao, Shirui

    2014-01-01

    In recent years, nanosuspensions have been accepted as a valuable drug delivery system for poorly water-soluble drugs. Topdown and bottom-up technologies are the two main approaches for generating nanosuspensions. Several products manufactured by the top-down technologies have been successfully commercialized demonstrating that the processing features of the technologies are adaptable to industrial scale operation and meeting high pharmaceutical quality control standards. Nanosuspensions of poorly soluble drugs have shown to achieve dramatic improvements on the in vivo performance of the drugs including the enhancement of bioavailability and elimination of food effect when administered orally. This review will focus on the preparation of nanosuspensions by the top-down technologies. The influence of drug physicochemical properties on the nanosuspension forming process and the subsequent conversion into a dry powder form will be discussed with proposed mechanisms. In addition, the criteria for selection of stabilizers will be reviewed. The characteristics of drugs and stabilizers as well as their interaction effects on the redispersion properties of a dry powder prepared from a nanosuspension will be highlighted. The different administration routes of nanosuspensions are also presented with their potential therapeutic benefits.

  1. Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods.

    PubMed

    Erös, Dániel; Kéri, György; Kövesdi, István; Szántai-Kis, Csaba; Mészáros, György; Orfi, László

    2004-02-01

    ADME/Tox computational screening is one of the most hot topics of modern drug research. About one half of the potential drug candidates fail because of poor ADME/Tox properties. Since the experimental determination of water solubility is time-consuming also, reliable computational predictions are needed for the pre-selection of acceptable "drug-like" compounds from diverse combinatorial libraries. Recently many successful attempts were made for predicting water solubility of compounds. A comprehensive review of previously developed water solubility calculation methods is presented here, followed by the description of the solubility prediction method designed and used in our laboratory. We have selected carefully 1381 compounds from scientific publications in a unified database and used this dataset in the calculations. The externally validated models were based on calculated descriptors only. The aim of model optimization was to improve repeated evaluations statistics of the predictions and effective descriptor scoring functions were used to facilitate quick generation of multiple linear regression analysis (MLR), partial least squares method (PLS) and artificial neural network (ANN) models with optimal predicting ability. Standard error of prediction of the best model generated with ANN (with 39-7-1 network structure) was 0.72 in logS units while the cross validated squared correlation coefficient (Q(2)) was better than 0.85. These values give a good chance for successful pre-selection of screening compounds from virtual libraries, based on the predicted water solubility.

  2. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    PubMed

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents.

  3. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation.

    PubMed

    Lee, Ji-Soo; Hong, Da Young; Kim, Eun Suh; Lee, Hyeon Gyu

    2017-03-08

    The aims of this study were to improve the water solubility and antimicrobial activity of milk thistle silymarin by nanoencapsulation and to assess the functions of silymarin nanoparticle-containing film as an antimicrobial food-packaging agent. Silymarin nanoparticles were prepared using water-soluble chitosan (WCS) and poly-γ-glutamic acid (γ-PGA). As the WCS and silymarin concentrations increased, particle size and polydispersity index (PDI) significantly increased. Nanoencapsulation significantly improved the water solubility of silymarin 7.7-fold. Antimicrobial activity of silymarin was effectively improved when silymarin was entrapped within the nanocapsule compared to when it was not entrapped. Films incorporating silymarin nanoparticles had better antimicrobial activity than films incorporating free silymarin. The results suggest that silymarin nanoparticles have applications in antimicrobial food additives and food packing.

  4. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    PubMed

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  5. Effect of addition of water-soluble chitin on amylose film.

    PubMed

    Suzuki, Shiho; Shimahashi, Katsumasa; Takahara, Junichi; Sunako, Michihiro; Takaha, Takeshi; Ogawa, Kozo; Kitamura, Shinichi

    2005-01-01

    Amylose films blended with chitosan, which were free from additives such as acid, salt, and plasticizer, were prepared by casting mixtures of an aqueous solution of an enzymatically synthesized amylose and that of water-soluble chitin (44.1% deacetylated). The presence of a small amount of chitin (less than 10%) increased significantly the permeability of gases (N2, O2, CO2, C2H4) and improved the mechanical parameters of amylose film; particularly, the elastic modulus and elongation of the blend films were larger than those of amylose or chitin films. No antibacterial activity was observed with either amylose or water-soluble chitin films. But amylose films having a small amount of chitin showed strong antibacterial action, suggesting a morphological change in water-soluble chitin on the film surface by blending with amylose molecule. These facts suggested the presence of a molecular complex of amylose and chitosan.

  6. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    PubMed

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  7. Dynamic light scattering studies on adsorption of water-soluble associative polymers on colloidal surfaces

    SciTech Connect

    Ou-Yang, H.D.; Gao, Z.; Dewalt, L.

    1993-12-31

    Water-soluble associative polymers (AP) are widely used in latex paint as thickeners. Aside from networking, AP has the ability to form bridging between latex particles. The interest here is to understand the bridging phenomena in detail using dynamic light scattering. The authors use PEO chains capped symmetrically on both ends with C{sub 16}H{sub 33} or C{sub 20}H{sub 41} hydrophobes in aqueous polystyrene latex suspensions. Below the onset of bridging flocculation, transient latex pairs can exist during which rapid chain transfer between colloidal surfaces can be observed. This paper will address the kinetics of this chain transfer as a function of temperature. At high AP concentrations, non-equilibrium states of the absorbed chain can occur because chain transfer is prevented by dense polymeric brush formed on the colloidal surface and separation of polydisperse AP can be achieved.

  8. Tribology and Removal Rate Characteristics of Chemical Mechanical Planarization Pads Containing Water Soluble Particles

    NASA Astrophysics Data System (ADS)

    Charns, L.; Philipossian, A.

    2006-07-01

    Novel non-porous pads incorporating different amounts of embedded water soluble particles (WSP) have been characterized and compared to a conventional porous pad for interlayer dielectric (ILD) chemical mechanical planarization (CMP) applications. Removal rate results indicated that polishing with WSP pads was Prestonian in nature (similar to conventional porous pads). A decrease in removal rate at high combinations of pressure and velocity was observed during in-situ conditioning with WSP pads. This anomalous behavior was most likely due to the alternatively feeding and starving the wafer of slurry during in-situ conditioning since doubling the flow rate resolved the problem. The anomalous behavior, however, was not observed when conditioning was performed ex-situ. Frictional analysis indicated that polishing with WSP pads proceeded via boundary lubrication like the other porous pads with concentrically grooved surface geometries.

  9. Water-soluble NHC-Cu catalysts: applications in click chemistry, bioconjugation and mechanistic analysis.

    PubMed

    Díaz Velázquez, Heriberto; Ruiz García, Yara; Vandichel, Matthias; Madder, Annemieke; Verpoort, Francis

    2014-12-14

    Copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and terminal alkynes (CuAAC), better known as "click" reaction, has triggered the use of 1,2,3-triazoles in bioconjugation, drug discovery, materials science and combinatorial chemistry. Here we report a new series of water-soluble catalysts based on N-heterocyclic carbene (NHC)-Cu complexes which are additionally functionalized with a sulfonate group. The complexes show superior activity towards CuAAC reactions and display a high versatility, enabling the production of triazoles with different substitution patterns. Additionally, successful application of these complexes in bioconjugation using unprotected peptides acting as DNA binding domains was achieved for the first time. Mechanistic insight into the reaction mechanism is obtained by means of state-of-the-art first principles calculations.

  10. Toxicity of creosote water-soluble fractions generated from contaminated sediments to the bay mysid.

    PubMed

    Padma, T V; Hale, R C; Roberts, M H; Lipcius, R N

    1999-02-01

    Creosote, a globally used wood preservative, is a complex mixture consisting primarily of aromatic organic compounds (ACs). Creosote-derived ACs can persist for decades in aquatic sediments. Natural and anthropogenic activities may result in dissolution and resuspension of sediment-associated ACs. These processes were mimicked by generating a water-soluble fraction (WSF) from creosote-contaminated sediment (ERS) collected from a polluted site. The epibenthic mysid Mysidopsis bahia was exposed to five sublethal concentrations of WSF for 7 days. The WSF significantly decreased dry weight gain and proportion of gravid females (EC50=15 microgram/liter total identified ACs). Chemical analysis indicated that high-molecular-weight ACs (more than three aromatic rings) dominated the ERS, but were undetected in the WSF. Low-molecular-weight ACs (fewer than three aromatic rings) dominated the WSF. Compositional differences can thus result from fractionation processes and affect environmental fate and toxicity of the mixture.

  11. Water-soluble Hantzsch ester as switch-on fluorescent probe for efficiently detecting nitric oxide

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Li; Liu, Fu-Tao; Ding, Ai-Xiang; Ma, Su-Fang; He, Lan; Lin, Lan; Lu, Zhong-Lin

    2016-12-01

    A water soluble Hantzsch ester derivative of coumarin, DHPS, was synthesized and successfully applied in the fluorescent sensing nitric oxide (NO) in aqueous solution. The fluorescence of probe DHPS is extremely weak, while its fluorescence was greatly switched on upon the addition of NO solution and showed high selectivity and sensitivity to NO. The limitation of the detection was calculated to be 18 nM. The NO-induced aromatization of dihydropyridine in DHPS to pyridine derivative (PYS) proved to be the switching mechanism for the fluorescent sensing process, which was confirmed through spectra characterization and computation study. Cytotoxicity assay demonstrated both DHPS and PYS are biocompatible, the DHPS was successfully applied to track the endogenously produced NO in the RAW 264.7 cells.

  12. Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures.

    PubMed

    Giordano, F; Bettini, R; Donini, C; Gazzaniga, A; Caira, M R; Zhang, G G; Grant, D J

    1999-11-01

    The peculiar solubility behavior of propylparaben (propyl ester of 4-hydroxybenzoic acid) in aqueous solution, when tested separately and together with methyl-, ethyl-, and butyl-parabens, has been investigated in detail. The results clearly indicate that the decrease in solubility (approximately 50% compared to the solubility value of propylparaben alone) is typical of those mixtures containing also ethylparaben, as demonstrated by solubility experiments on binary, ternary, and quaternary mixtures of the parabens. Phase diagrams of all the six binaries show that propylparaben and ethylparaben are the only pair that form almost ideal solid solutions near the melting temperatures. Moreover, phase-solubility analysis shows that propylparaben and ethylparaben, at room temperature, can also form solid solutions whose solubility is related to the composition of the solid phase at equilibrium. To achieve an independent confirmation of the possible solid solution formation that supports the above interpretation of the solubility behavior, the crystal structures of the four parabens have been examined and isostructurality has been found to exist only between ethylparaben and propylparaben. Powder X-ray diffraction has also been performed on ethylparaben, propylparaben, and their solid solutions obtained by recrystallization from water. The progressive shift of distinctive diffraction peaks with phase composition clearly indicates that propylparaben and ethylparaben form substitutional solid solutions. The small value (<1) of the disruption index provides thermodynamic support for substitutional solid solutions based on isostructural crystals.

  13. Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells.

    PubMed

    Chen, Jie; Wanming, Da; Zhang, Dawei; Liu, Qing; Kang, Jiuhong

    2005-01-01

    Curcumin (Cur) is a promising antioxidant and anticancer drug, but several recent studies indicate that Cur exerts its anticancer activity through promoting reactive oxygen species (ROS) generation. In the present study, concentration-dependent regulation of Cur on cell proliferation, viability and ROS generation, and effect of water-soluble antioxidants ascorbic acid (ASA), N-acetyl-cysteine (NAC) and reduced glutathione (GSH) on the antioxidant and anticancer activity of Cur were investigated in human myeloid leukemia cells (HL-60 cells). We found that although Cur concentration- and time-dependently decreased the proliferation and viability of cells, its effect on ROS generation (as indicated by the level of malondialdehyde, MDA) varied with its concentrations. I.e., low concentrations of Cur diminished the ROS generation, while high Cur promoted it. Combined with the opposite effect of 50 microM H2O2 on low or high Cur-induced MDA alteration, cell proliferation arrest and cell death, these results proved that low Cur exerted its anticancer activity through diminishing ROS generation in HL-60 cells, while high Cur through promoting ROS generation. Further studies showed that all water-soluble antioxidants ASA, NAC and GSH significantly enhanced both the antioxidant and the anticancer activity of low Cur. Considering that the extra accumulation of ROS is harmful to normal cells, the data presented here indicate that instead of using high doses, combining low doses of Cur with water-soluble antioxidants is a better strategy for us to improve the anticancer activity of Cur.

  14. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities

    PubMed Central

    Kurnia, Kiki A.; Sintra, Tânia E.; Neves, Catarina M. S. S.; Shimizu, Karina; Lopes, José N. Canongia; Gonçalves, Fernando; Ventura, Sónia P. M.; Freire, Mara G.; Santos, Luís M. N. B. F.; Coutinho, João A. P.

    2014-01-01

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs. PMID:25119425

  15. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    PubMed

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac(®) 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac(®) 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac(®)40). The resulting finer composite powders (sub-100μm) based on GranuLac(®) 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles.

  16. Design and synthesis of monofunctionalized, water-soluble conjugated polymers for biosensing and imaging applications.

    PubMed

    Traina, Christopher A; Bakus, Ronald C; Bazan, Guillermo C

    2011-08-17

    Water-soluble conjugated polymers with controlled molecular weight characteristics, absence of ionic groups, high emission quantum yields, and end groups capable of selective reactions of wide scope are desirable for improving their performance in various applications and, in particular, fluorescent biosensor schemes. The synthesis of such a structure is described herein. 2-Bromo-7-iodofluorene with octakis(ethylene glycol) monomethyl ether chains at the 9,9'-positions, i.e., compound 4, was prepared as the reactive premonomer. A high-yielding synthesis of the organometallic initiator (dppe)Ni(Ph)Br (dppe = 1,2-bis(diphenylphosphino)ethane) was designed and implemented, and the resulting product was characterized by single-crystal X-ray diffraction techniques. Polymerization of 4 by (dppe)Ni(Ph)Br can be carried out in less than 30 s, affording excellent control over the average molecular weight and polydispersity of the product. Quenching of the polymerization with [2-(trimethylsilyl)ethynyl]magnesium bromide yields silylacetylene-terminated water-soluble poly(fluorene) with a photoluminescence quantum efficiency of 80%. Desilylation, followed by copper-catalyzed azide-alkyne cycloaddition reaction, yields a straightforward route to introduce a wide range of specific end group functionalities. Biotin was used as an example. The resulting biotinylated conjugated polymer binds to streptavidin and acts as a light-harvesting chromophore to optically amplify the emission of Alexa Fluor-488 chromophores bound onto the streptavidin. Furthermore, the biotin end group makes it possible to bind the polymer onto streptavidin-functionalized cross-linked agarose beads and thereby incorporate a large number of optically active segments.

  17. Influence of chemical and mechanical polishing on water sorption and solubility of denture base acrylic resins.

    PubMed

    Rahal, Juliana Saab; Mesquita, Marcelo Ferraz; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antonio Arruda

    2004-01-01

    Influence of polishing methods on water sorption and solubility of denture base acrylic resins was studied. Eighty samples were divided into groups: Classico (CL), and QC 20 (QC) - hot water bath cured; Acron MC (AC), and Onda Cryl (ON) - microwave cured; and submitted to mechanical polishing (MP) - pumice slurry, chalk powder, soft brush and felt cone in a bench vise; or chemical polishing (CP) - heated monomer fluid in a chemical polisher. The first desiccation process was followed by storage in distilled water at 37 +/- 1 degrees C for 1 h, 1 day, 1, 2, 3 and 4 weeks. Concluding each period, water sorption was measured. After the fourth week, a second desiccation process was done to calculate solubility. Data were submitted to analysis of variance, followed by Tukey test (pwater sorption (%) and solubility (%), respectively, were: CL-MP: 1.92 and 0.02; CL-CP: 1.98 and 0.52; QC-MP: 2.31 and -0.05; QC-CP: 2.32 and 0.25; AC-MP: 2.45 and -0.07; AC-CP: 2.43 and 0.41; ON-MP: 2.32 and -0.06; ON-CP: 2.34 and 0.27. Mechanical polishing promoted significantly lower solubility of acrylic resins; initially, water sorption values were higher for chemically polished samples, however, after 4 weeks all groups were similar.

  18. Understanding the impact of media viscosity on dissolution of a highly water soluble drug within a USP 2 mini vessel dissolution apparatus using an optical planar induced fluorescence (PLIF) method.

    PubMed

    Stamatopoulos, Konstantinos; Batchelor, Hannah K; Alberini, Federico; Ramsay, John; Simmons, Mark J H

    2015-11-10

    In this study, planar induced fluorescence (PLIF) was used for the first time to evaluate variability in drug dissolution data using Rhodamine-6G doped tablets within small volume USP 2 apparatus. The results were compared with tablets contained theophylline (THE) drug for conventional dissolution analysis. The impact of hydrodynamics, sampling point, dissolution media viscosity and pH were investigated to note effects on release of these two actives from the hydrophilic matrix tablets. As expected mixing performance was poor with complex and reduced velocities at the bottom of the vessel close to the tablet surface; this mixing became even worse as the viscosity of the fluid increased. The sampling point for dissolution can affect the results due to in-homogenous mixing within the vessel; this effect is exacerbated with higher viscosity dissolution fluids. The dissolution profiles of RH-6G measured via PLIF and THE measured using UV analysis were not statistically different demonstrating that RH-6G is an appropriate probe to mimic the release profile of a highly soluble drug. A linear correlation was accomplished between the release data of the drug and the dye (R(2)>0.9). The dissolution profile of the dye, obtained with the analysis of the PLIF images, can be used in order to evaluate how the viscosity and the mixing performance of USP 2 mini vessel affect the interpretation of the dissolution data of the targeted drug.

  19. Determination of the design space of the HPLC analysis of water-soluble vitamins.

    PubMed

    Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y

    2013-06-01

    Analysis of water-soluble vitamins has been tremendously approached through the last decades. A multitude of HPLC methods have been reported with a variety of advantages/shortcomings, yet, the design space of HPLC analysis of these vitamins was not defined in any of these reports. As per the food and drug administration (FDA), implementing the quality by design approach for the analysis of commercially available mixtures is hypothesized to enhance the pharmaceutical industry via facilitating the process of analytical method development and approval. This work illustrates a multifactorial optimization of three measured plus seven calculated influential HPLC parameters on the analysis of a mixture containing seven common water-soluble vitamins (B1, B2, B6, B12, C, PABA, and PP). These three measured parameters are gradient time, temperature, and ternary eluent composition (B1/B2) and the seven calculated parameters are flow rate, column length, column internal diameter, dwell volume, extracolumn volume, %B (start), and %B (end). The design is based on 12 experiments in which, examining of the multifactorial effects of these 3 + 7 parameters on the critical resolution and selectivity, was carried out by systematical variation of all these parameters simultaneously. The 12 basic runs were based on two different gradient time each at two different temperatures, repeated at three different ternary eluent compositions (methanol or acetonitrile or a mixture of both). Multidimensional robust regions of high critical R(s) were defined and graphically verified. The optimum method was selected based on the best resolution separation in the shortest run time for a synthetic mixture, followed by application on two pharmaceutical preparations available in the market. The predicted retention times of all peaks were found to be in good match with the virtual ones. In conclusion, the presented report offers an accurate determination of the design space for critical resolution in the

  20. Determination of water-soluble ions in soils from the dry valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Bustin, R.

    1981-08-01

    The soil chemistry of the dry valleys of Antarctica was studied. These valleys furnish a terrestrial analog for the surface of Mars. The abundance of the water-soluble ions magnesium, calcium, potassium, sodium chloride, and nitrate in soil samples was determined. All samples examined contained water-soluble salts reflecting the aridity of the area. Movement of salts to low-lying areas was verified. Upward ionic migration was evident in all core samples. Of all cations observed, sodium showed the greatest degree of migration.

  1. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot-micelles.

    SciTech Connect

    Brinker, C. Jeffrey; Bunge, Scott D.; Gabaldon, John; Fan, Hongyou; Scullin, Chessa; Leve, Erik W.; Wilson, Michael C.; Tallant, David Robert; Boyle, Timothy J.

    2005-04-01

    We report a simple, rapid approach to synthesize water-soluble and biocompatible fluorescent quantum dot (QD) micelles by encapsulation of monodisperse, hydrophobic QDs within surfactant/lipid micelles. Analyses of UV-vis and photo luminescence spectra, along with transmission electron microscopy, indicate that the water-soluble semiconductor QD micelles are monodisperse and retain the optical properties of the original hydrophobic QDs. The QD micelles were shown to be biocompatible and exhibited little or no aggregation when taken up by cultured rat hippocampal neurons.

  2. Water Soluble Single-Walled Carbon Nanotubes Inhibit Stimulated Endocytosis in Neurons

    PubMed Central

    Malarkey, Erik B.; Reyes, Reno C.; Zhao, Bin; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically-functionalized water soluble single-walled carbon nanotube (SWNT) graft copolymers to inhibit endocytosis. The graft copolymers were prepared by the functionalization of SWNTs with poly-ethylene glycol. When added to the culturing medium, these functionalized water soluble SWNTs were able to increase the length of various neuronal processes, neurites, as previously reported. Here we have determined that SWNTs are able to block stimulated membrane endocytosis in neurons, which could then explain the previously noted extended neurite length. PMID:18759491

  3. Pharmaceutical solid dispersion technology: a strategy to improve dissolution of poorly water-soluble drugs.

    PubMed

    Kumar, Shobhit; Gupta, Satish K

    2013-08-01

    Oral bioavailability is the major problem when a poorly water-soluble active agent is delivered via oral route. To overcome such problems, solid dispersion systems have been demonstrated in literature to enhance the dissolution property of poorly water-soluble drugs. In the present review, the important aspects to be considered during preparation of solid dispersion systems viz., properties of polymer and preparation techniques of solid dispersion which affect the dissolution rate are discussed. Formulation and evaluation techniques for solid dispersions have been described. The final section of article highlights the recent patents and studies related to solid dispersion systems.

  4. Determination of water-soluble ions in soils from the dry valleys of Antarctica

    NASA Technical Reports Server (NTRS)

    Bustin, R.

    1981-01-01

    The soil chemistry of the dry valleys of Antarctica was studied. These valleys furnish a terrestrial analog for the surface of Mars. The abundance of the water-soluble ions magnesium, calcium, potassium, sodium chloride, and nitrate in soil samples was determined. All samples examined contained water-soluble salts reflecting the aridity of the area. Movement of salts to low-lying areas was verified. Upward ionic migration was evident in all core samples. Of all cations observed, sodium showed the greatest degree of migration.

  5. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review

    SciTech Connect

    Taylor, K.C.; Nasr-El-Din, H.A.

    1995-11-01

    Water-soluble hydrophobically associating polymers are reviewed with particular emphasis on their application in improved oil recovery (IOR). These polymers are very similar to conventional water-soluble polymers used in IOR, except that they have a small number of hydrophobic groups incorporated into the polymer backbone. At levels of incorporation of less than 1 mol%, these hydrophobic groups can significantly change polymer performance. These polymers have potential for use in mobility control, drilling fluids and profile modification. This review includes synthesis, characterization, stability, rheology and flow in porous media of associating polymers in IOR are also examined. 100 refs., 2 tabs.

  6. Solubility of water in lunar basalt at low pH2O

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Brett, A.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2017-03-01

    We report the solubility of water in Apollo 15 basaltic "Yellow Glass" and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H2/CO2 gas mixtures that spanned ∼8 orders of magnitude in fO2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW-3.0, to IW+4.8) and ∼4 orders of magnitude in pH2/pH2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69-425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <∼4 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 11; (5) Secondary ion mass spectrometry (SIMS) analyses of water in iron-rich glasses equilibrated under variable fO2 conditions may be strongly influenced by matrix effects, even when the concentration of water in the glasses is low; and (6) Our results can be used to constrain the entrapment pressure of lunar melt inclusions and the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads. We find that the most water-rich melt inclusion of Hauri et al. (2011) would be in equilibrium with a vapor with pH2O ∼ 3 bar and pH2 ∼ 8 bar. We constrain the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads to be 0.0005 bar and 0.0011 bar respectively. We calculate that batch degassing of lunar magmas containing initial volatile contents of 1200 ppm H2O (dissolved primarily as hydroxyl) and 4-64 ppm C would produce enough vapor to reach the critical vapor

  7. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    DTIC Science & Technology

    1983-09-01

    low on the basis of comparison to the dynamic headspace analysis data (Table IV.) The best estimates of the levels of aromatic hydrocarbons appear to...0.2 0.1 a determined by dynamic headspace analysis (see Table 3). bincludes ethylbenzene and xylenes. 6 Table III. Chemical Composition of the Water

  8. Supercritical fluid particle design for poorly water-soluble drugs (review).

    PubMed

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  9. Impact of gypsum applied to grass buffer strips on reducing soluble p in surface water runoff.

    PubMed

    Watts, D B; Torbert, H A

    2009-01-01

    The threat of P transport from land applied manure has resulted in water quality concerns. Research was conducted to evaluate gypsum as a soil amendment applied to grass buffer strips for reducing soluble P in surface runoff. A simulated concentrated flow was created in an established tall fescue (Festuca arundinacea Schreb.) pasture. Poultry litter (PL) was applied at a rate of 250 kg N ha(-1) to the upper 3.05 m of each plot, while gypsum was applied at rates of 0, 1, 3.2, and 5.6 Mg ha-1to the lower 1.52 m of the plot functioning as a grass buffer strip. Two 30-min runoff events ( approximately 4 L min(-1)) were conducted, immediately after PL application and 4 wk later to determined soluble P concentration in the surface water samples. The greatest concentration of soluble P was in the runoff event occurring immediately after the PL application. Gypsum applied to grass buffer strips was effective in reducing soluble P concentrations (32-40%) in surface runoff, while the untreated buffer strip was somewhat effective in reducing soluble P (18%). No significant differences were observed between gypsum rates, suggesting that land managers would achieve the greatest benefit from the lowest application rate (1Mgha(-1)). In the second runoff event, although concentrations of soluble P in the surface water runoff were greatly reduced, the effect of gypsum had disappeared. Thus, these results show that gypsum is most effective in reducing the initial P losses from PL application when applied to grass buffer strips. The information obtained from this study may be useful in aiding land managers in developing management practices that reduce soluble P loss at the edge of a field.

  10. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  11. Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke

    PubMed Central

    Vitória, Lívia Andrade; Aguiar, Thaiane Rodrigues; Santos, Poliana Ramos Braga; Cavalcanti, Andrea Nóbrega

    2013-01-01

    Aim. To evaluate the effect of cigarette smoke on water sorption and solubility of four adhesive systems. Materials and Methods. Sixteen disks of each adhesive system were prepared (Adper Scotchbond Multipurpose Adhesive (SA); Adper Scotchbond Multipurpose Adhesive System (Adhesive + Primer) (SAP); Adper Single Bond Plus (SB); Adper Easy One (EO)). Specimens were desiccated until a constant mass was obtained and divided into two groups (n = 8). One-half of the specimens were immersed in deionized water, while the other half were also immersed, but with daily exposure to tobacco smoke. After 21 days, disks were measured again and stored in desiccators until constant mass was achieved. Data were calculated according to ISO specifications and statistically analyzed. Results. The tobacco smoke only significantly affected the water sorption and solubility of EO. There were significant differences in both analyses among materials tested. The SB exhibited the highest water sorption, followed by EO, which demonstrated significantly higher solubility values than SB. The SA and SAP showed low water sorption and solubility, and there were no significant differences between the two. Conclusion. Regardless of smoke exposure, both simplified adhesive systems presented an inferior performance that could be related to the complex mixture of components in such versions. PMID:23984078

  12. Improved method for estimating water solubility from octanol/water partition coefficient

    SciTech Connect

    Meylan, W.; Howard, P.; Boethling, R.

    1994-12-31

    Water solubility (wsol) is a critical property in risk assessments for chemicals. It is often necessary to estimate wsol because measured values are unavailable. However, the most widely used estimation methods predict wsol from the logarithm of the octanol/water partition coefficient (log K{sub ow}), via regression equations based on approximately 200 (or fewer) measured values of log K{sub ow}. The overall accuracy of these correlations is only about {+-} one order of magnitude. To update and enhance existing wsol estimation methods, the authors first collected 3,000+ measured values from a variety of sources. The range of chemical structures represented by this data set is much greater than for the older regressions. They then investigated the accuracy of wsol/log K{sub ow} correlations for the entire data set and for various chemical classes, as well as the importance of melting point (mp) to the estimate. The results of this investigation include a new regression equation for estimating wsol. This method has been encoded in a computer program that is compatible with other programs in the Estimation Programs Interface (EPI), a program used by OPPT to estimate key properties and fate parameters for existing and Premanufacture Notice (PMN) chemicals. To estimate wsol the user can enter a measured value of log K{sub ow}, or allow the program to estimate log K{sub ow} from the chemical`s SMILES notation.

  13. EPR and Structural Characterization of Water-Soluble Mn(2+)-Doped Si Nanoparticles.

    PubMed

    Atkins, Tonya M; Walton, Jeffrey H; Singh, Mani P; Ganguly, Shreyashi; Janka, Oliver; Louie, Angelique Y; Kauzlarich, Susan M

    2017-01-26

    Water-soluble poly(allylamine) Mn(2+)-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM(-1) s(-1) and r2 relaxivity of 32.7 ± 4.7 mM(-1) s(-1) where the concentration is in mM of Mn(2+). Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM(-1) s(-1) and r2 relaxivity of 1078.5 ± 1.9 mM(-1) s(-1). X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn(2+) in these NP's. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP's.

  14. EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles

    PubMed Central

    2016-01-01

    Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM–1 s–1 and r2 relaxivity of 32.7 ± 4.7 mM–1 s–1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM–1 s–1 and r2 relaxivity of 1078.5 ± 1.9 mM–1 s–1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP’s. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP’s. PMID:28154618

  15. Quantitative oral dosing of water soluble and lipophilic contaminants in the Japanese medaka (Oryzias latipes).

    PubMed

    Schultz, I R; Reed, S; Pratt, A; Skillman, A D

    2007-02-01

    Quantitative oral dosing in fish can be challenging, particularly with water soluble contaminants, which can leach into the aquarium water prior to ingestion. We applied a method of bioencapsulation using newly hatched brine shrimp (Artemia franciscana) nauplii to study the toxicokinetics of five chlorinated and brominated halogenated acetic acids (HAAs), which are drinking water disinfection by-products. These results are compared to those obtained in a previous study using a polybrominated diphenyl ether (PBDE-47), a highly lipophilic chemical. The HAAs and PBDE-47 were bioencapsulated using freshly hatched A. franciscana nauplii after incubation in concentrated solutions of the study chemicals for 18 h. Aliquots of the brine shrimp were quantitatively removed for chemical analysis and fed to individual fish that were able to consume 400-500 nauplii in less than 5 min. At select times after feeding, fish were euthanized and the HAA or PBDE-47 content determined. The absorption of HAAs was quantitatively similar to previous studies in rodents: rapid absorption with peak body levels occurring within 1-2 h, then rapidly declining with elimination half-life of 0.3-3 h depending on HAA. PBDE-47 was more slowly absorbed with peak levels occurring by 18 h and very slowly eliminated with an elimination half-life of 281 h.

  16. Quantitative oral dosing of water soluble and lipophilic contaminants in the Japanese medaka (Oryzias latipes)

    SciTech Connect

    Schultz, Irv; Reed, Stacey M.; Pratt, Amanda V.; Skillman, Ann D.

    2007-02-01

    Quantitative oral dosing in fish can be challenging, particularly with water soluble contaminants, which can leach into the aquarium water prior to ingestion. We applied a method of bioencapsulation using newly hatched brine shrimp (Artemia franciscana) nauplii to study the toxicokinetics of five chlorinated and brominated halogenated acetic acids (HAAs), which are drinking water disinfection by-products. These results are compared to those obtained in a previous study using a polybrominated diphenyl ether (PBDE-47), a highly lipophilic chemical. The HAAs and PBDE-47 were bioencapsulated using freshly hatched A. franciscana nauplii after incubation in concentrated solutions of the study chemicals for 18 h. Aliquots of the brine shrimp were quantitatively removed for chemical analysis and fed to individual fish that were able to consume 400–500 nauplii in less than 5min. At select times after feeding, fish were euthanized and the HAA or PBDE-47 content determined. The absorption of HAAs was quantitatively similar to previous studies in rodents: rapid absorptionwith peak body levels occurringwithin 1–2 h, then rapidly declining with elimination half-life of 0.3–3 h depending on HAA. PBDE-47 was more slowly absorbed with peak levels occurring by 18 h and very slowly eliminated with an elimination half-life of 281 h.

  17. Selectivity differences of water-soluble vitamins separated on hydrophilic interaction stationary phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2013-06-01

    In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water.

  18. Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent.

    PubMed

    Wuister, Sander F; de Mello Donegá, Celso; Meijerink, Andries

    2004-08-25

    Luminescence temperature antiquenching (LTAQ) is observed for water-soluble CdTe quantum dots (QDs) capped with aminoethanethiol (AET). The efficient exciton emission (quantum efficiency of approximately 40% at 300 K) is quenched almost completely as the QD solutions are cooled to below 230 K and is fully recovered around 270 K upon warming up to room temperature (LTAQ). Temperature-dependent lifetime measurements show that the quenching rate is high, resulting in an on/off behavior. No LTAQ is observed for CdTe QDs capped with aminoundecanethiol (AUT). The LTAQ is explained by the influence of solvent freezing on the surface of the QD core. Freezing of the solvation water molecules surrounding the QD will induce strain in the capping shell, due to the interaction between water and the charged heads of the capping molecules. Short carbon chains (AET) will propagate the strain to the QD surface, creating surface quenching states, whereas long and flexible chains (AUT) will dissipate the strain, thus avoiding surface distortion. Freezing-point depression by the addition of methanol results in a lowering of the transition temperature. Additional support is provided by the size dependence of the LTAQ: smaller particles, with higher local ionic strength due to a higher density of charged NH(3)(+) surface groups, experience a lower transition temperature due to stronger local freezing-point depression.

  19. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  20. The effects of fire temperatures on water soluble heavy metals.

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (<300-400°C) released in water higher contents of Al3+ than unburned sample, especially in Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem

  1. Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods.

    PubMed

    Di Stasio, Francesco; Grim, Joel Q; Lesnyak, Vladimir; Rastogi, Prachi; Manna, Liberato; Moreels, Iwan; Krahne, Roman

    2015-03-18

    Core-shell CdSe/CdS nanocrystals are a very promising material for light emitting applications. Their solution-phase synthesis is based on surface-stabilizing ligands that make them soluble in organic solvents, like toluene or chloroform. However, solubility of these materials in water provides many advantages, such as additional process routes and easier handling. So far, solubilization of CdSe/CdS nanocrystals in water that avoids detrimental effects on the luminescent properties poses a major challenge. This work demonstrates how core-shell CdSe/CdS quantum dot-in-rods can be transferred into water using a ligand exchange method employing mercaptopropionic acid (MPA). Key to maintaining the light-emitting properties is an enlarged CdS rod diameter, which prevents potential surface defects formed during the ligand exchange from affecting the photophysics of the dot-in-rods. Films made from water-soluble dot-in-rods show amplified spontaneous emission (ASE) with a similar threshold (130 μJ/cm(2)) as the pristine material (115 μJ/cm(2)). To demonstrate feasibility for lasing applications, self-assembled microlasers are fabricated via the "coffee-ring effect" that display single-mode operation and a very low threshold of ∼10 μJ/cm(2). The performance of these microlasers is enhanced by the small size of MPA ligands, enabling a high packing density of the dot-in-rods.

  2. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  3. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    PubMed

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  4. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  5. Purification of water-soluble bone-inductive protein from bovine demineralized bone matrix.

    PubMed

    Yoshimura, Y; Hirano, A; Nishida, M; Kawada, J; Horisaka, Y; Okamoto, Y; Matsumoto, N; Yamashita, K; Takagi, T

    1993-05-01

    The water-soluble fraction containing bone-inductive activity was purified from guanidine-hydrochloride extracts of bovine demineralized bone. The purification steps include ultrafiltration, dialysis, affinity chromatography on heparin-Sepharose and gel chromatography on Sephacryl S-200. Combination of these steps was proven to be an effective and rapid method for the purification of this protein. Subcutaneous implantation of the water-soluble protein with type I collagen was carried out in the thorax of rats. When alkaline phosphatase activity and calcium content in implants were used as indices for purification, the water-soluble bone-inductive protein was purified > 600-fold according to the enzyme activity and 64-fold according to the calcium content. A morphological examination revealed that many chondrocyte and osteoblast cells were seen in the location of the implanted material. Sodium dodecyl sulfate/gel electrophoresis of the protein produced in this way under non-reducing conditions revealed four protein bands of 18, 16, 14 and 11 kDa. None of the separated bands had any biological activity. This result suggests that the water-soluble bone-inductive activity depends on an associated form of various proteins in the range of 18 to 11 kDa.

  6. CORAL: QSPR model of water solubility based on local and global SMILES attributes.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy

    2013-01-01

    Water solubility is an important characteristic of a chemical in many aspects. However experimental definition of the endpoint for all substances is impossible. In this study quantitative structure-property relationships (QSPRs) for negative logarithm of water solubility-logS (mol L(-1)) are built up for five random splits into the sub-training set (≈55%), the calibration set (≈25%), and the test set (≈20%). Simplified molecular input-line entry system (SMILES) is used as the representation of the molecular structure. Optimal SMILES-based descriptors are calculated by means of the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). These one-variable models for water solubility are characterized by the following average values of the statistical characteristics: n(sub_train)=725-763; n(calib)=312-343; n(test)=231-261; r(sub_train)(2)=0.9211±0.0028; r(calib)(2)=0.9555±0.0045; r(test)(2)=0.9365±0.0073; s(sub_train)=0.561±0.0086; s(calib)=0.453±0.0209; s(test)=0.520±0.0205. Thus, the reproducibility of statistical quality of suggested models for water solubility confirmed for five various splits.

  7. Water-soluble inhibitor on microbiologically influenced corrosion in diesel pipeline.

    PubMed

    Muthukumar, N; Maruthamuthu, S; Palaniswamy, N

    2006-12-01

    The effect of water-soluble corrosion inhibitor on the growth of bacteria and its corrosion inhibition efficiency were investigated. Corrosion inhibition efficiency was studied by rotating cage test and flow loop techniques. The nature of biodegradation of corrosion inhibitor was also analyzed by using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and Gas chromatography and mass spectrometer (GC-MS). The bacterial isolates (Serratia marcescens ACE2, Bacillus cereus ACE4) have the capacity to degrade the aromatic and aliphatic hydrocarbon present in the corrosion inhibitor. The degraded products of corrosion inhibitor and bacterial activity determine the electrochemical behaviour of API 5LX steel. The influence of bacterial activity on degradation of corrosion inhibitor and its influence on corrosion of API 5LX have been evaluated by employing weight loss techniques and electrochemical studies. The main finding of this paper is that the water-soluble corrosion inhibitor is consumed by the microbial action, which contributes to the decrease in inhibitor efficiency. The present study also emphasis the importance of evaluation of water-soluble corrosion inhibitor in stagnant model (flow loop test) and discusses the demerits of the water-soluble corrosion inhibitors in petroleum product pipeline.

  8. Simultaneous Determination of Water Soluble Vitamins in Dietary Supplements and Fortified Foods by LC-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work in our laboratory has focused on development of LC methods with diode array and/or mass spectrometry (ms) detection for the simultaneous determination in supplement tablets and fortified foods of several water-soluble vitamins (WSV) including: thiamin, niacin, pyridoxine, pantothenic ac...

  9. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000)...

  10. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    PubMed

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement.

  11. Inactivation of Enterobacter sakazakii by Water-soluble Muscadine Seed Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot and cold water-soluble muscadine (Vitis rotundifolia) seed extracts and their polar and polyphenol fractions from two Muscadine cultivars (‘Ison’, purple and ‘Carlos’, bronze) were investigated for their inhibition of Enterobacter sakazakii. The heat treatment on each seed extract not only incre...

  12. Antioxidative activity of water soluble polysaccharide in pumpkin fruits (Cucurbita maxima Duchesne).

    PubMed

    Nara, Kazuhiro; Yamaguchi, Akira; Maeda, Naomi; Koga, Hidenori

    2009-06-01

    We evaluated the antioxidative activity of a water soluble polysaccharide fraction (WSP) from pumpkin fruits (Cucurbita maxima Duchesne). In the WSP, DPPH radical scavenging and superoxide dismutase-like activity increased depending on the total sugar content. Furthermore, the WSP can serve as an inhibitor of ascorbic acid oxidation. The efficacy was also affected by the total sugar content.

  13. Role of protein solubility in water-holding capacity of broiler breast meat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role muscle protein denaturation plays in determining water-holding capacity (WHC) in broiler breast meat is not well understood. Alterations in muscle protein solubility due to postmortem pH and temperature decline can be used as indicators of protein denaturation. In order to determine the i...

  14. Thermodynamics-based mathematical model for solubility prediction of glibenclamide in ethanol-water mixtures.

    PubMed

    Shakeel, Faiyaz; Alanazi, Fars K; Alsarra, Ibrahim A; Haq, Nazrul

    2014-09-01

    Temperature-dependent solubility data of glibenclamide (GBN) in various ethanol-water mixtures is not reported in literature so far. Therefore, the aim of this study was to determine the mole fraction solubility of GBN in various ethanol-water mixtures at the temperature range of 293.15 to 318.15 K. The solubility of GBN was determined by reported shake flask method and the experimental data was fitted in thermodynamics-based modified Apelblat model. The solubility of GBN was found to be increased with increase in temperature and mass fraction of ethanol in ethanol-water mixtures. The experimental data of GBN was well correlated with the modified Apelblat model at each temperature range with correlation coefficient of 0.9940-1.0000. The relative absolute deviation (AD) was found to be less than 0.1% except in pure ethanol and water. The positive values of enthalpies and entropies for GBN dissolution indicated that its dissolution is endothermic and an entropy-driven process.

  15. Water-soluble constituents of caraway: carvone derivatives and their glucosides.

    PubMed

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-01-01

    Nine monoterpenoids related to carvone and seven glucosides were isolated from the water-soluble portion of the methanolic extract of the caraway (fruit of Carum carvi L.), and their structures were clarified by spectral investigation. Among them, eight monoterpenoids and six glucosides were new.

  16. Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.

    PubMed

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-10-01

    From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.

  17. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  18. Synthesis and photophysical properties of water-soluble sulfonato-Salen-type Schiff bases and their applications of fluorescence sensors for Cu2+ in water and living cells.

    PubMed

    Zhou, Li; Cai, Peiying; Feng, Yan; Cheng, Jinghui; Xiang, Haifeng; Liu, Jin; Wu, Di; Zhou, Xiangge

    2012-07-20

    A series of water-soluble sulfonato-Salen-type ligands derived from different diamines including 1,2-ethylenediamine (Et-1-Et-4), 1,2-cyclohexanediamine (Cy-1 and Cy-2), 1,2-phenylenediamine (Ph-1-Ph-3 and PhMe-1-PhMe-4), and dicyano-1,2-ethenediamine (CN-1) has been designed and prepared. Sulfonate groups of ligands ensure good stability and solubility in water without affecting their excited state properties. These ligands exhibit strong UV/Vis-absorption and blue, green, or orange fluorescence. Time-dependent-density functional theory calculations have been undertaken to reveal the influence of ligand nature, especially sulfonate groups, on the frontier molecular orbitals. Since their fluorescence is selectively quenched by Cu(2+), the sulfonato-Salen-type ligands can be used as highly selective and sensitive turn-off fluorescence sensors for the detection of Cu(2+) in water and fluorescence imaging in living cells.

  19. Permeability assessment of poorly water-soluble compounds under solubilizing conditions: the reciprocal permeability approach.

    PubMed

    Katneni, Kasiram; Charman, Susan A; Porter, Christopher J H

    2006-10-01

    The objective of this study was to develop a general method to assess the intestinal permeability of poorly water-soluble drugs where low-aqueous drug solubility requires conduct of experiments under solubilizing experimental conditions. The permeability (Papp) of diazepam (DIA) was assessed across excised rat jejunum in the absence (Pappcontrol) and presence (Pappuncorr) of polysorbate-80 (PS-80). The micellar association constant (Ka) of DIA, estimated via equilibrium solubility studies, was used to correct Pappuncorr data and obtain an estimate of the true permeability coefficient (Pappcorr). An alternate approach was also developed (the reciprocal permeability approach) to allow direct estimation of Pappcorr without the need for independent estimation of Ka. The approach was further examined experimentally using a range of model drugs. DIA Pappcorr values obtained using the Ka from equilibrium solubility studies deviated from Papp(control) values, especially at PS-80 concentrations above 0.1% w/v. In contrast, data obtained using the reciprocal permeability method were consistent with Pappcontrol across the PS-80 concentration range. Similar trends were observed with propranolol (PRO), antipyrine (ANT), naproxen (NAP), and cinnarizine (CIN). The reciprocal permeability approach therefore provides a simple and accurate method by which the permeability of poorly water-soluble compounds may be estimated under solubilizing conditions.

  20. Sorption and solubility of ofloxacin and norfloxacin in water-methanol cosolvent.

    PubMed

    Peng, Hongbo; Li, Hao; Wang, Chi; Zhang, Di; Pan, Bo; Xing, Baoshan

    2014-05-01

    Prediction of the properties and behavior of antibiotics is important for their risk assessment and pollution control. Theoretical calculation was incorporated in our experimental study to investigate the sorption of ofloxacin (OFL) and norfloxacin (NOR) on carbon nanotubes and their solubilities in water, methanol, and their mixture. Sorption for OFL and NOR decreased as methanol volume fractions (fc) increased. But the log-linear cosolvency model could not be applied as a general model to describe the cosolvent effect on OFL and NOR sorption. We computed the bond lengths of possible hydrogen bonds between solute and solvent and the corresponding interaction energies using Density Functional Theory. The decreased OFL solubility with increased fc could be attributed to the generally stronger hydrogen bond between OFL and H2O than that between OFL and CH3OH. Solubility of NOR varied nonmonotonically with increasing fc, which may be understood from the stronger hydrogen bond of NOR-CH3OH than NOR-H2O at two important sites (-O18 and -O21). The interaction energies were also calculated for the solute surrounded by solvent molecules at all the possible hydrogen bond sites, but it did not match the solubility variations with fc for both chemicals. The difference between the simulated and real systems was discussed. Similar sorption but different solubility of NOR and OFL from water-methanol cosolvent suggested that sorbate-solvent interaction seems not control their sorption.

  1. Superhydrophilic molecularly imprinted polymers based on a water-soluble functional monomer for the recognition of gastrodin in water media.

    PubMed

    Ji, Wenhua; Zhang, Mingming; Wang, Daijie; Wang, Xiao; Liu, Jianhua; Huang, Luqi

    2015-12-18

    In this study, the first successfully developed superhydrophilic molecularly imprinted polymers (MIPs) for gastrodin recognition have been described. MIPs were prepared via the bulk polymerization process in an aqueous solution using alkenyl glycosides glucose (AGG) as the water-soluble functional monomer. The non-imprinted polymers (NIPs) were also synthesized using the same method without the use of the template. The dynamic water contact angles and photographs of the dispersion properties confirmed that the molecularly imprinted polymers displayed excellent superhydrophilicity. The results demonstrated that the MIPs exhibited high selectivity and an excellent imprinting effect. A molecularly imprinted solid phase extraction (MISPE) method was established. Optimization of various parameters affecting MISPE was investigated. Under the optimized conditions, a wide linear range (0.001-100.0μgmL(-1)) and low limits of detection (LOD) and quantification (LOQ) (0.03 and 0.09ngmL(-1), respectively) were achieved. When compared with the NIPs, higher recoveries (90.5% to 97.6%) of gastrodin with lower relative standard deviations values (below 6.4%) using high performance liquid chromatography were obtained at three spiked levels in three blank samples. These results demonstrated one efficient, highly selective and environmentally-friendly MISPE technique with excellent reproducibility for the purification and pre-concentration of gastrodin from an aqueous extract of Gastrodia elata roots.

  2. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  3. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    PubMed Central

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M.A.; Palmans, Anja R.A.; Pavan, Giovanni M.; Meijer, E.W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers. PMID:25698667

  4. Fate of water-insoluble and water-soluble dichlorobenzidine-based pigments in Fisher 344 rats.

    PubMed

    Decad, G M; Snyder, C D; Mitoma, C

    1983-03-01

    The fate of two water-insoluble (WI) dichlorobenzidine-based pigments, chlorodiane blue (CDB) and pigment yellow 12 (PY12), and of their sulfonated water-soluble (WS) analogs was studied in male Fischer 344 rats. Water-soluble analogs of chlorodiane blue and pigment yellow 12 were synthesized in order to study the effect of water solubility on the absorption and metabolism of dichlorobenzidine-based pigments. [14C]WI-CBD, [14C]WI-PY12, and the water-soluble analogs [14C]WS-CDB and [14C]WS-PY12 were administered by gastric intubation or dermal application at doses of 1.24-2.65 mumol/kg. Neither [14C]WI-CDB nor [14C]WI-[Y12 could be detected in any tissue at time points up to 1 d. The entire dose was accounted for in the feces after oral administration, and at the application site after dermal administration. Water-insoluble CDB is a component of a photoconductor (Weaver, 1981). Approximately 4.1% of [14C]CDB was observed and located primarily in the urine and liver after oral administration, but no detectable amount was absorbed after dermal application. Metabolites of [14C]WS-CDB identified in the urine were 3,3'-dichlorobenzidine diacetate, 3.3'-dichlorobenzidine and its glucuronide conjugate, and 3,3'-dichlorobenzidine monacetate and its glucuronide conjugate. Only 0.02% of [14C]WS-PY12 was absorbed after oral administration. Thus, some degree of water solubility was prerequisite for even a small amount of absorption or metabolism in vivo.

  5. Occurrence of selected volatile organic compounds and soluble pesticides in Texas public water-supply source waters, 1999-2001

    USGS Publications Warehouse

    Mahler, Barbara June; Canova, Michael G.; Gary, Marcus O.

    2002-01-01

    During 1999–2001, the U.S. Geological Survey, in cooperation with the Texas Natural Resource Conservation Commission, collected samples of untreated water from 48 public water-supply reservoirs and 174 public water-supply wells. The samples were analyzed for volatile organic compounds (VOCs) and soluble pesticides; in addition, well samples were analyzed for nitrite plus nitrate and tritium. This fact sheet summarizes the findings of the source-water sampling and analyses. Both VOCs and pesticides were detected much more frequently in surface water than in ground water. The only constituent detected at concentrations exceeding the maximum contaminant level for drinking water was nitrate. These results will be used in the Texas SourceWater Assessment Program to evaluate the susceptibility of public water-supply source waters to contamination.

  6. [Water-soluble eumelanin as a PCR-inhibitor and a simple method for its removal].

    PubMed

    Yoshii, T; Tamura, K; Taniguchi, T; Akiyama, K; Ishiyama, I

    1993-08-01

    It has been confirmed that water-soluble eumelanins often extracted together with DNAs from natural black hairs act as an inhibitor of Taq DNA polymerase in the polymerase chain reaction (PCR). In the present investigation, an attempt to amplify the non-coding 333-bp region of mitochondrial DNA (mt333DNA) produced the following results: 1) Water-soluble preparations made from chemically synthesized melanin (Sigma products), as well as natural black eumelanins, inhibited the PCR amplification of mt333DNA at concentrations of more than 2 micrograms/ml. 2) Quantitative measurement of Taq DNA polymerase-catalyzed DNA synthesis in terms of the amount of [alpha-32P] dCMP incorporated into activated calf thymus DNA showed that both of the water-soluble melanins had the same inhibition activity as represented by the sigmoidal curve derived from a quadratic equation of melanin concentration. This observation suggested that Taq DNA polymerase combined with two molecules of melanin to form an inactivated complex. 3) Melanins did not appear to affect either the thermostability of Taq DNA polymerase at 94 degrees C, or the step of primer-annealing to template DNAs. On the other hand, we established a simple and useful method for removal of water-soluble eumelanins contaminating DNA preparations from hairs. The method was based on the adsorption of melanins to Bio-Gel. When a Bio-Gel P-60 minicolumn was equilibrated with 10 mM sodium acetate buffer, pH 4.2, water-soluble melanins were completely adsorpted to it whereas DNAs passed through, although the melanins showed incomplete adsorption to the gel when it was equilibrated with TE (10 mM Tris-HCl, pH 7.5, 0.1 mM EDTA).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

    PubMed

    Brough, Chris; Williams, R O

    2013-08-30

    Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.

  8. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    PubMed

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.

  9. Measured elemental carbon by thermo-optical transmittance analysis in water-soluble extracts from diesel exhaust, woodsmoke, and ambient particulate samples.

    PubMed

    Wallén, Anna; Lidén, Göran; Hansson, Hans-Christen

    2010-01-01

    Elemental carbon has been proposed as a marker of diesel particulate matter. The objective of this study was to investigate if water-soluble carbonaceous compounds could be responsible for positive bias of elemental carbon using NIOSH Method 5040 with a thermo-optical carbon transmittance analyzer. Filter samples from eight different aerosol environments were used: pure diesel exhaust fume with a high content of elemental carbon, pure diesel exhaust fume with a low content of elemental carbon, pure biodiesel exhaust fume, pure woodsmoke, an urban road tunnel, an urban street canyon, an urban background site, and residential woodburning in an urban area. Part of each filter sample was analyzed directly with a thermo-optical carbon analyzer, and another part was extracted with water. This water-soluble extract was filtered to remove particles, spiked onto filter punches, and analyzed with a thermo-optical transmittance carbon analyzer. The ratio of elemental carbon in the water-soluble extract to the particulate sample measurement was 18, 12, and 7%, respectively, for the samples of pure woodsmoke, residential woodburning, and urban background. Samples with diesel particulate matter and ambient samples with motor exhaust detected no elemental carbon in the water-soluble extract. Since no particles were present in the filtered water-soluble extract, part of the water-soluble organic carbon species, existing or created during analysis, are misclassified as elemental carbon with this analysis. The conclusion is that in measuring elemental carbon in particulate aerosol samples with thermo-optical transmittance analysis, woodsmoke, and biomass combustion samples show a positive bias of elemental carbon. The water-soluble EC could be used as a simple method to indicate other sources, such as wood or other biomass combustion aerosol particles.

  10. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kilbane, J.J. II; Jackowski, K.

    1991-12-31

    Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this paper, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbonsulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbonsulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from watersoluble coal-derived material with treatment times as brief as 24 hours is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does, however, result in increases in the hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass.

  11. Synthesis of water soluble glycosides of pentacyclic dihydroxytriterpene carboxylic acids as inhibitors of α-glucosidase.

    PubMed

    Xu, Jiancong; Nie, Xuliang; Hong, Yanping; Jiang, Yan; Wu, Guoqiang; Yin, Xiaoli; Wang, Chunrong; Wang, Xiaoqiang

    2016-04-07

    A series of compounds were synthesized by glycosylation of maslinic acid (MA) and corosolic acid (CA) with monosaccharides and disaccharides, and the structures of the derivatives were elucidated by standard spectroscopic methods including (1)H NMR, (13)C NMR and HRMS. The α-glucosidase inhibitory activities of all the novel compounds were evaluated in vitro. The solubility and inhibitory activity of α-glucosidase assays showed that the bis-disaccharide glycosides of triterpene acids possessed higher water solubility and α-glucosidase inhibitory activities than the bis-monosaccharide glycosides. Among these compounds, maslinic acid bis-lactoside (8e, IC50 = 684 µM) and corosolic acid bis-lactoside (9e, IC50 = 428 µM) had the best water solubility, and 9e exhibited a better inhibitory activity than acarbose (IC50 = 478 µM). However, most of glycosylated derivatives possessed lower inhibitory activities than the parent compounds, although their water solubility was enhanced obviously. Moreover, the kinetic inhibition studies indicated that 9e was a non-competitive inhibitor, and structure-activity relationships of the derivatives are also discussed.

  12. Effects of nanosuspension formulations on transport, pharmacokinetics, in vivo targeting and efficacy for poorly water-soluble drugs.

    PubMed

    Wang, Yancai; Miao, Xiaoqing; Sun, Lin; Song, Ju; Bi, Chao; Yang, Xiao; Zheng, Ying

    2014-01-01

    A surprisingly large proportion of new chemical entities (NCE) is emerging from the drug discovery pipeline, and many active components extracted from herbal medicines are water insoluble, which represents a great challenge for their development. Nanosuspensions, which are submicron colloidal dispersions of pure drug particles that are stabilised by a small percentage of the excipients, could dramatically enhance the saturated solubility, dissolution rate and adhesion of drug particles to cell membranes. Nanosuspensions are the most suitable for drugs that require high dosing or have limited administrative volume. After 20 years of development, several oral products and one injectable product are commercially available. The aim of this review is to fill the gap between rational formulation designs and the in vivo performance of poorly water-soluble drug nanosuspensions. Specifically, this review will correlate characteristics of nanosuspension formulations, including drug property, particle size, crystallinity, stabiliser and surface property, with their transport, pharmacokinetics, bioactivity and toxicity after delivery by different administration routes. The elucidation of the mechanisms of targeted drug delivery, cellular transport and internalisation of nanosuspensions are also reviewed to interpret the in vivo performance of these nanosuspensions. Moreover, the recent application of nanosuspensions for poorly water-soluble herbal medicines is highlighted.

  13. Simultaneous determination of water-soluble vitamins in beverages and dietary supplements by LC-MS/MS.

    PubMed

    Kakitani, Ayano; Inoue, Tomonori; Matsumoto, Keiko; Watanabe, Jun; Nagatomi, Yasushi; Mochizuki, Naoki

    2014-01-01

    An LC-MS/MS method was developed for the simultaneous determination of 15 water-soluble vitamins that are widely used as additives in beverages and dietary supplements. This combined method involves the following simple pre-treatment procedures: dietary supplement samples were prepared by centrifugation and filtration after an extraction step, whereas beverage samples were diluted prior to injection. Chromatographic analysis in this method utilised a multi-mode ODS column, which provided reverse-phase, anion- and cation-exchange capacities, and therefore improved the retention of highly polar analytes such as water-soluble vitamins. Additionally, the multi-mode ODS column did not require adding ion pair reagents to the mobile phase. We optimised the chromatographic separation of 15 water-soluble vitamins by adjusting the mobile phase pH and the organic solvent. We also conducted an analysis of a NIST Standard Reference Material (SRM 3280 Multi-vitamin/Multi-element tablets) using this method to verify its accuracy. In addition, the method was applied to identify the vitamins in commercial beverages and dietary supplements. By comparing results with the label values and results obtained by official methods, it was concluded that the method could be used for quality control and to compose nutrition labels for vitamin-enriched products.

  14. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability.

    PubMed

    Chen, Lingli; Bai, Guangling; Yang, Rui; Zang, Jiachen; Zhou, Ting; Zhao, Guanghua

    2014-04-15

    Carotenoids may play a number of potential health benefits for human. However, their use in food industry is limited mostly because of their poor water-solubility and low thermal stability. Ferritins are widely distributed in nature with a shell-like structure which offers a great opportunity to improve the water-solubility and thermal stability of the carotenoids by encapsulation. In this work, recombinant human H-chain ferritin (rHuHF) was prepared and used to encapsulate β-carotene, a typical compound among carotenoids, by taking advantage of the reversible dissociation and reassembly characteristic of apoferritin in different pH environments. Results from high-performance liquid chromatography (HPLC), UV/Vis spectroscopy and transmission electron microscope (TEM) indicated that β-carotene molecules were successfully encapsulated within protein cages with a β-carotene/protein molar ratio of 12.4-1. Upon such encapsulation, these β-carotene-containing apoferritin nanocomposites were water-soluble. Interestingly, the thermal stability of the β-carotene encapsulated within apoferritin nanocages was markedly improved as compared to free β-carotene. These new properties might be favourable to the utilisation of β-carotene in food industry.

  15. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    PubMed

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  16. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Aggarwal, Shankar G.; Singh, Khem; Gupta, Prabhat K.; Kawamura, Kimitaka

    2009-10-01

    Day- and nighttime aerosol samples were collected at an urban site in New Delhi, India, in winter 2006-2007. They were studied for low molecular weight dicarboxylic acids and related compounds, as well as total water-soluble organic carbon (TWSOC). High concentrations of diacids (up to 6.03 μg m-3), TWSOC, and OC were obtained, which are substantially higher than those previously observed at other urban sites in Asia. Daytime TWSOC/OC ratio (37%) was on average higher than that in nighttime (25%). In particular, more water-soluble OC (M-WSOC) to TWSOC ratio in daytime (50%) was twice higher than in nighttime (27%), suggesting that aerosols in New Delhi are photochemically more processed in daytime to result in more water-soluble organic compounds. Oxalic acid (C2) was found as the most abundant dicarboxylic acid, followed by succinic (C4) and malonic (C3) acids. Contributions of C2 to M-WSOC were greater (av. 8%) in nighttime than daytime (av. 3%). Positive correlations of C2 with malic acid (hC4), glyoxylic acid (ωC2), and relative humidity suggest that secondary production of C2 probably in aqueous phase is important in nighttime via the oxidation of both longer-chain diacids and ωC2. C2 also showed a positive correlation with potassium (K+) in nighttime, suggesting that the enhanced C2 concentrations are associated with biomass/biofuel burning. More tight, positive correlation between less water-soluble OC (L-WSOC) and K+ was found in both day- and nighttime, suggesting that L-WSOC, characterized by longer chain and/or higher molecular weight compounds, is significantly influenced by primary emissions from biomass/biofuel burning.

  17. New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols.

    PubMed

    Rastogi, Neeraj; Oakes, Michelle M; Schauer, James J; Shafer, Martin M; Majestic, Brian J; Weber, Rodney J

    2009-04-01

    A prototype instrument has been developed for online analysis of water-soluble Fe(II) (WS_Fe(II)) in atmospheric aerosols using a particle-into-liquid-sampler (PILS), which concentrates particles into a small flow of purified water, coupled with a liquid waveguide capillary cell (LWCC) and absorbance spectrophotometryto detect iron-ferrozine colored complexes. The analytical method is highly precise (<3% RSD), and the overall measurement uncertainty and limit of detection for the complete PILS-LWCC system are estimated at 12% and 4.6 ng m(-3), respectively. The online measurements compared well with those of 24 h integrated filter samples collected at two different sampling sites (n=27, R2 = 0.82, slope 0.90 +/- 0.08, and intercept 3.08 +/- 1.99 ng m(-3)). In urban Atlanta, fine particle WS_Fe(II) concentrations measured every 12 min exhibited large variability, ranging from below the detection limit (4.6) to 370 ng m(-3) during a 24 day period in June 2008. This instrument provides new capabilities for investigating the sources and atmospheric processing of fine particle WS_Fe(II) and may prove useful in studies ranging from effects of particle WS_Fe(II) on human health to effects of particle WS_Fe(II) on atmospheric chemistry and ocean biogeochemistry.

  18. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas; Alb, Alina; Mitchell, Brian S.; Grayson, Scott M.; Fink, Mark J.

    2015-01-01

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC "click" reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  19. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    SciTech Connect

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

    2013-03-16

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

  20. Electrospun water-soluble polymer nanofibers for the dehydration and storage of sensitive reagents

    NASA Astrophysics Data System (ADS)

    Dai, Minhui; Senecal, Andre; Nugen, Sam R.

    2014-06-01

    The ability to preserve and deliver reagents remains an obstacle for the successful deployment of self-contained diagnostic microdevices. In this study we investigated the ability of bacteriophage T7 to be encapsulated and preserved in water soluble nanofibers. The bacteriophage T7 was added to mixtures of polyvinylpyrrolidone and water and electrospun onto a grounded plate. Trehalose and magnesium salts were added to the mixtures to determine their effect on the infectivity of the bacteriophage following electrospinning and during storage. The loss of T7 infectivity was determined immediately following electrospinning and during storage using agar overlay plating and plaque counting. The results indicate that the addition of magnesium salts protects the bacteriophage during the relatively violent and high voltage electrospinning process, but is not as effective as a protectant during storage of the dried T7. Conversely, the addition of trehalose into the electrospinning mix has little effect on the electrospinning, but a more significant role as a protectant during storage.

  1. Effect of a water soluble derivative of alpha-tocopherol on radiation response of Saccharomyces cerevisiae.

    PubMed

    Singh, R K; Verma, N C; Kagiya, V T

    2001-12-01

    The radioprotection conferred by a highly water soluble glucose derivative of alpha-tocopherol, namely, 2-(alpha-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol (TMG) in Saccharomyces cerevisiae was studied. Cells grown in standard YEPD-agar medium and irradiated in the presence of TMG showed a concentration dependent higher survival up to 10 mM of TMG in comparison to cells irradiated in distilled water. Treatment of TMG to cells given either before or immediately after irradiation but not during irradiation, had no effect on their radiation response. S. cerevisiae strain LP1383 (rad52) which is defective in recombination repair showed enhanced radioresistance only when subjected to irradiation in presence of TMG. Cells of rad52 strain grown in the medium containing TMG showed a radiation response similar to that of cells grown in the medium without TMG. The nature of TMG dependent enhanced radioresistance was studied by scoring the mutations in the strain D-7, which behaved like wild type strain in complete medium, at trp and ilv loci. Our study indicated that TMG confers radioresistance in S. cerevisiae possibly by two mechanisms viz. (i), by eliminating radiation induced reactive free radicals when the irradiation is carried out in the presence of TMG and (ii), by activating an error prone repair process involving RAD52 gene, when the cells are grown in the medium containing TMG.

  2. Anti-cariogenic properties of a water-soluble extract from cacao.

    PubMed

    Ito, Kyoko; Nakamura, Yuko; Tokunaga, Takahisa; Iijima, Daisuke; Fukushima, Kazuo

    2003-12-01

    The addition of a water-soluble extract from cacao-extracted powder (CEPWS) to a cariogenic model food, a white chocolate-like diet that contains 35% sucrose, significantly reduced caries scores in SPF rats infected with Streptococcus sobrinus 6715, compared to control rats fed a white chocolate-like diet. CEPWS markedly inhibited water-insoluble glucan (WIG) synthesis through crude glucosyltransferases (GTFs) from Streptococcus sobrinus B13N in vitro. GTF-inhibitor(s) in CEPWS was prepared through three-step fractionation, and was termed CEPWS-BT, which is a high molecular weight (>10 kDa) heat-stable matrix of sugar, protein, and polyphenol. When the inhibitory effect of CEPWS-BT on glucan synthesis was examined using the purified GTF-I, GTF-T, and GTF-U enzymes from S. sobrinus B13N, significant reduction in GTF-I and GTF-T activity as a result of adding CEPWS-BT at low concentrations was observed. These results suggest that the addition of CEPWS to cariogenic food could be useful in controlling dental caries.

  3. Direct atmospheric deposition of water-soluble nitrogen to the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Talbot, R. W.

    2000-12-01

    Measurements were made at New Castle, New Hampshire, on the shore of the Gulf of Maine from 1994 to 1997 to assess direct atmospheric deposition of water-soluble nitrogen to the surface waters of the gulf. Daily dry deposition was highly variable and ranged from ˜ 1 to 144 μmol N m-2 d-1 (median 16 μmol N m-2 d-1). Wet deposition dominated dry deposition, contributing 80-90% of the total flux annually. Wet deposition was also highly variable and ranged from 3 to 4264 μmol N m-2 d-1 (median 214 μmol N m-2 d-1). Fog water nitrogen deposition could contribute as much as large precipitation nitrogen deposition events, in excess of 500 μmol N m-2d-1. Dissolved organic nitrogen (DON) in precipitation constituted only a small fraction (3%) of the total precipitation nitrogen flux most of the year, except in spring where it comprised 14%, on average, of the total. The total atmospheric direct nitrogen (ADN) deposition numbers reported here do not include the contributions of fog and DON as they were not sampled regularly over the course of this study. The total ADN flux ranged from 1 to 4262 μmol N m-2 d-1 (median 23 μmol N m-2 d-1), depositing 52 mmol N m-2 yr-1 to the surface waters of the Gulf of Maine, 3% of the total N input to those waters annually. However, this deposition was highly episodic with events over 500 μmol N m-2 d-1 occurring in 8% of the days sampled but contributing 56% of the total measured flux and events in excess of 1000 μmol N m-2 d-1 occurring in 2% of the samples and contributing 22% of the total measured flux. It is these large events that may influence biological productivity of the Gulf of Maine. The annual wet deposition of inorganic N measured at New Castle exceeded that reported by two National Atmospheric Deposition Program (NADP) sites by 42% on average of that reported from Cape Cod, Massachusetts, and by 69% ofthat at Mt. Dessert Island, Maine. Estimates of the episodic atmospheric nitrogen flux to the surface waters of the

  4. From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations.

    PubMed

    Bochicchio, Davide; Pavan, Giovanni M

    2017-01-24

    Supramolecular polymers, formed via noncovalent self-assembly of elementary monomers, are extremely interesting for their dynamic bioinspired properties. In order to understand their behavior, it is necessary to access their dynamics while maintaining high resolution in the treatment of the monomer structure and monomer-monomer interactions, which is typically a difficult task, especially in aqueous solution. Focusing on 1,3,5-benzenetricarboxamide (BTA) water-soluble supramolecular polymers, we have developed a transferable coarse-grained model that allows studying BTA supramolecular polymerization in water, while preserving remarkable consistency with the atomistic models in the description of the key interactions between the monomers (hydrophobic, H-bonding, etc.), self-assembly cooperativity, and amplification of order into the growing fibers. This permitted us to monitor the amplification of the key interactions between the monomers (including H-bonding) in the BTA fibers during the dynamic polymerization process. Our molecular dynamics simulations provide a picture of a stepwise cooperative polymerization mechanism, where initial fast hydrophobic aggregation of the BTA monomers in water is followed by the slower reorganization of these disordered aggregates into ordered directional oligomers. Supramolecular polymer growth then proceeds on a slower time scale. We challenged our models via comparison with the experimental evidence, capturing the effect of temperature variations and subtle changes in the monomer structure on the polymerization and on the properties of the fibers seen in the real systems. This work provides a multiscale spatiotemporal characterization of BTA self-assembly in water and a useful platform to study a variety of BTA-based supramolecular polymers toward structure-property relationships.

  5. Water-soluble loratadine inclusion complex: analytical control of the preparation by microwave irradiation.

    PubMed

    Nacsa, A; Ambrus, R; Berkesi, O; Szabó-Révész, P; Aigner, Z

    2008-11-04

    The majority of active pharmaceutical ingredients are poorly soluble in water. The rate-determining step of absorption is the dissolution of these drugs. Inclusion complexation with cyclodextrin derivatives can lead to improved aqueous solubility and bioavailability of pharmacons due to the formation of co-crystals through hydrogen-bonding between the components. Inclusion complexes of loratadine were prepared by a convenient new method involving microwave irradiation and the products were compared with those of a conventional preparation method. Dissolution studies demonstrated that the solubility and rate of dissolution of loratadine increased in both of the methods used. The interactions between the components were investigated by thermal analysis and Fourier Transform Infrared studies. The microwave treatment did not cause any chemical changes in the loratadine molecule.

  6. Water-soluble platinum phthalocyanines as potential antitumor agents.

    PubMed

    Bologna, Giuseppina; Lanuti, Paola; D'Ambrosio, Primiano; Tonucci, Lucia; Pierdomenico, Laura; D'Emilio, Carlo; Celli, Nicola; Marchisio, Marco; d'Alessandro, Nicola; Santavenere, Eugenio; Bressan, Mario; Miscia, Sebastiano

    2014-06-01

    Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 μM) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 μM. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment.

  7. Method of cross-linking polyvinyl alcohol and other water soluble resins

    NASA Technical Reports Server (NTRS)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  8. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry`s law constants

    SciTech Connect

    Maagd, P.G.J. de; Opperhuizen, A.; Sijm, D.T.H.M.; Hulscher, D.T.E.M. ten; Heuvel, H. van den

    1998-02-01

    Aqueous solubilities, n-octanol/water partition coefficients (K{sub ow}S), and Henry`s law constants were determined for a range of polycyclic aromatic hydrocarbons (PAHs) using a generator-column, slow-stirring, and gas-purge method, respectively. The currently obtained data were compared to available literature data. For seven of the PAHs no K{sub ow}S previously were determined with the slow-stirring method. For four of the PAHs the present study reports the first experimental Henry`s law constants. Relationships between subcooled liquid solubilities, K{sub ow}S, and Henry`s law constants as a function of molar volume are discussed. A consistent data set was obtained, for which an excellent correlation was found between subcooled liquid solubility and molar volume. A linear fit did not accurately describe the relationship between log K{sub ow} and molar volume. This is probably due to a decreasing solubility in n-octanol with increasing molar volume. Finally, a high correlation was found between Henry`s law constant and molar volume. The presently obtained dataset can be used to predict the fate and behavior of unsubstituted homocyclic PAHs.

  9. A recipe for designing water-soluble, beta-sheet-forming peptides.

    PubMed Central

    Mayo, K. H.; Ilyina, E.; Park, H.

    1996-01-01

    Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates. PMID:8819163

  10. Water solubility enhancements of PAHs by sodium castor oil sulfonate microemulsions.

    PubMed

    Zhu, Li-Zhong; Zhao, Bao-Wei; Li, Zong-Lai

    2003-09-01

    Water solubility enhancements of naphthalene(Naph), phenantherene(Phen) and pyrene(Py) in sodium castor oil sulfonate(SCOS) microemulsions were evaluated. The apparent solubilities of PAHs are linearly proportional to the concentrations of SCOS microemulsion, and the enhancement extent by SCOS solutions is greater than that by ordinary surfactants on the basis of weight solubilization ratio(WSR). The logK(em) values of Naph, Phen, and Py are 3.13, 4.44 and 5.01 respectively, which are about the same as the logK(ow) values. At 5000 mg/L of SCOS concentration, the apparent solubilities are 8.80, 121, and 674 times as the intrinsic solubilities for Naph, Phen, and Py. The effects of inorganic ions and temperature on the solubilization of solutes are also investigated. The solubilization is improved with a moderate addition of Ca2+, Na+, NH4+ and the mixture of Na+, K+, Ca2+, Mg2+ and NH4+. WSR values are enhanced by 22.0% for Naph, 23.4% for Phen, and 24.6% for Py with temperature increasing by 5 degrees C. The results indicated that SCOS microemulsions improve the performance of the surfactant-enhanced remediation (SER) of soil, by increasing solubilities of organic pollutants and reducing the level of surfactant pollution and remediation expenses.

  11. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    PubMed

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine.

  12. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome.

    PubMed

    Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo

    2011-11-01

    Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

  13. Water-soluble Au25(Capt)18 nanoclusters: synthesis, thermal stability, and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Jin, Rongchao

    2012-06-01

    This work was motivated by the unsatisfactory stability of Au25(SG)18 in solution under thermal conditions (e.g. 70-90 °C for DNA melting). Thus, we searched for a better, water-soluble thiol ligand. Herein, we report a one-pot synthesis and investigation of the stability and optical properties of captopril (abbreviated Capt)-protected Au25(Capt)18 nanoclusters. The Au25(Capt)18 (anionic, counterion: Na+) nanoclusters were formed via size focusing under ambient conditions. Significantly, Au25(Capt)18 nanoclusters exhibit largely improved thermal stability compared to the glutathione (HSG) capped Au25(SG)18. Both Au25(Capt)18 and Au25(SG)18 nanoclusters show fluorescence centered at ~700 nm. The chiral ligands (Capt, SG, as well as chirally modified phenylethanethiol (PET*)) give rise to distinct chiroptical features. The high thermal stability and distinct optical properties of Au25(Capt)18 nanoclusters render this material quite promising for biological applications.This work was motivated by the unsatisfactory stability of Au25(SG)18 in solution under thermal conditions (e.g. 70-90 °C for DNA melting). Thus, we searched for a better, water-soluble thiol ligand. Herein, we report a one-pot synthesis and investigation of the stability and optical properties of captopril (abbreviated Capt)-protected Au25(Capt)18 nanoclusters. The Au25(Capt)18 (anionic, counterion: Na+) nanoclusters were formed via size focusing under ambient conditions. Significantly, Au25(Capt)18 nanoclusters exhibit largely improved thermal stability compared to the glutathione (HSG) capped Au25(SG)18. Both Au25(Capt)18 and Au25(SG)18 nanoclusters show fluorescence centered at ~700 nm. The chiral ligands (Capt, SG, as well as chirally modified phenylethanethiol (PET*)) give rise to distinct chiroptical features. The high thermal stability and distinct optical properties of Au25(Capt)18 nanoclusters render this material quite promising for biological applications. Electronic supplementary

  14. Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin.

    PubMed

    Chen, Hua; Yao, Yuan

    2017-04-15

    The study examined the capability of phytoglycogen (PG) to improve the water solubility of quercetin (QC). PG-QC formulations were prepared by mixing a QC ethanol solution with a PG aqueous solution followed with vacuum drying of the supernatant. PG-QC formulations with various PG to QC ratios were prepared; the solubility of QC reached 241.76μg/mL at PG/QC ratio of 30/1 compared with approximately 4.32μg/mL of QC alone. The X-ray powder diffraction and FTIR analyses showed a significant reduction of QC crystallinity upon formulating with PG that was associated with the intermolecular hydrogen bonding between the hydroxyl groups of QC and PG. The Caco-2 cell monolayer permeation tests showed that PG-QC formulations resulted in substantially enhanced cellular uptake and transepithelial permeation of QC, which was related to the much-enhanced QC solubility. This study showed the potential of using PG to formulate poorly water-soluble ingredients such as QC.

  15. Design, synthesis and in vitro evaluation of novel water-soluble prodrugs of buparvaquone.

    PubMed

    Mäntylä, Antti; Rautio, Jarkko; Nevalainen, Tapio; Keski-Rahkonen, Pekka; Vepsälainen, Jouko; Järvinen, Tomi

    2004-10-01

    Novel water-soluble phosphate prodrugs (2b-5b) of buparvaquone-oxime (1a) and buparvaquone-O-methyloxime (1b) were synthesized and evaluated in vitro as potential oral prodrugs against leishmaniasis. Buparvaquone-oxime (1a), and most probably also buparvaquone-O-methyloxime (1b), released the parent buparvaquone via a cytochrome P450-catalysed reaction. The prodrugs 2b-5b showed significantly higher aqueous solubilities (>4 mg/ml) than buparvaquone (< or = 0.03 microg/ml) over a pH range of 3.0-7.4. The prodrugs 2b, 3b and 5b rapidly released (t1/2 = 7 min) the corresponding oximes of buparvaquone (1a and 1b), and prodrug 4b at a moderate rate (t1/2 = 22.5 min) in alkaline phosphatase solution in vitro. Prodrug 3b was the most chemically stable in the aqueous solutions over a pH range of 3.0-7.4 (t1/2 > 8 days). Although buparvaquone-oxime (1a) has been shown to undergo a cytochrome P450-catalysed oxidation in liver microsomes to the parent buparvaquone and behave as a novel bioreversible prodrug, its usefulness is limited in oral drug delivery due to its poor aqueous solubility, like buparvaquone itself. Further phosphorylation of an oxime form of buparvaquone significantly increased water solubility, and this novel approach is therefore useful to improve physicochemical properties of drugs containing a ketone functional group.

  16. Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures.

    PubMed

    Shakeel, Faiyaz; Anwer, Md Khalid

    2015-01-01

    An isothermal method was used to measure the solubility of silymarin in binary polyethylene glycol 400 (PEG 400) + water co-solvent mixtures at temperatures T = 298.15-333.15 K and pressure p = 0.1 MPa. Apelblat and Yalkowsky models were used to correlate experimental solubility data. The mole fraction solubility of silymarin was found to increase with increasing the temperature and mass fraction of PEG 400 in co-solvent mixtures. The root mean square deviations were observed in the range of 0.48-5.32% and 1.50-9.65% for the Apelblat equation and Yalkowsky model, respectively. The highest and lowest mole fraction solubility of silymarin was observed in pure PEG 400 (0.243 at 298.15 K) and water (1.46 × 10(-5) at 298.15 K). Finally, thermodynamic parameters were determined by Van't Hoff and Krug analysis, which indicated an endothermic and spontaneous dissolution of silymarin in all co-solvent mixtures.

  17. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    NASA Astrophysics Data System (ADS)

    Di Stasio, Francesco; Berti, Luca; McDonnell, Shane O.; Robbiano, Valentina; Anderson, Harry L.; Comoretto, Davide; Cacialli, Franco

    2013-10-01

    We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405-650 nm). We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405-447 nm). Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ˜11%, in the range 405-447 nm), but elongated within the stop-band (by ˜13%, in the range 448-482 nm). We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of "solvent-compatible" non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  18. Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water

    SciTech Connect

    Cai, Xiang; Tan, Shaozao; Xie, Agui; Lin, Minsong; Liu, Yingliang; Zhang, Xiuju; Lin, Zhidan; Wu, Ting; Mai, Wenjie

    2011-12-15

    Graphical abstract: MB-rGO was synthesized by making use of {pi} stacking and water-solubility of MB to assist the hydrazine mediated reduction of graphene oxide (GO) in aqueous solution. The resulting MB-rGO shows excellent solubility and stability in aqueous solution, and the electrical conductivity of MB-rGO is almost two orders of magnitude larger than that of GO. Highlights: Black-Right-Pointing-Pointer Methyl blue (MB) stacks onto the plane of reduced graphene oxide (rGO) by strong {pi}-{pi} interactions. Black-Right-Pointing-Pointer Sulfo groups of MB prevent rGO from aggregating by electrostatic and steric repulsions. Black-Right-Pointing-Pointer MB-functionalized rGO (MB-rGO) shows excellent solubility and stability in aqueous solution. Black-Right-Pointing-Pointer Electrical conductivity of MB-rGO is almost two orders of magnitude larger than that of GO. -- Abstract: {pi} stacking and water-solubility of methyl blue (MB) are expected to facilitate the hydrazine mediated reduction of graphene oxide (GO) in aqueous environment. Our newly obtained MB-functionalized reduced graphene oxide (MB-rGO) exhibited excellent solubility and stability in water. The results showed that the MB molecules stacked non-covalently onto the basal plane of rGO while the sulfo groups of MB prevented the rGO from aggregation. In addition, the better electrical conductivity of MB-rGO than that of GO was analyzed. This novel conductive MB-rGO should have promising applications in diverse nanotechnological areas, such as electronic and optoelectronic devices, photovoltaics, sensors, and microfabrication.

  19. Biodegradability of soil water soluble organic carbon extracted from seven different soils.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on the both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, and provided useful information to soil fertility.

  20. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok

    2012-09-01

    The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems.

  1. Immobilization of water-soluble HRP within poly-N-isopropylacrylamide microgel particles for use in organic media.

    PubMed

    Gawlitza, Kornelia; Georgieva, Radostina; Tavraz, Neslihan; Keller, Janos; von Klitzing, Regine

    2013-12-23

    In the present work, the immobilization of enzymes within poly-N-isopropylacrylamide (p-NIPAM) microgels using the method of solvent exchange is applied to the enzyme horseradish peroxidase (HRP). When the solvent is changed from water to isopropanol, HRP is embedded within the polymer structure. After the determination of the immobilized amount of enzyme, an enhanced specific activity of the biocatalyst in isopropanol can be observed. Karl Fischer titration is used to determine the amount of water within the microgel particles before and after solvent exchange, leading to the conclusion that an "aqueous cage" remains within the polymer structure. This represents the driving force for the immobilization due to the high affinity of HRP for water. Beside, confocal laser scanning microscopy (CLSM) images show that HRP is located within the microgel network after immobilization. This gives the best conditions for HRP to be protected against chemical and mechanical stress. We were able to transfer a water-soluble enzyme to an organic phase by reaching a high catalytic activity. Hence, the method of solvent exchange displays a general method for immobilizing enzymes within p-NIPAM microgels for use in organic solvents. With this strategy, enzymes that are not soluble in organic solvents such as HRP can be used in such polar organic solvents.

  2. Evaluation of synthetic water-soluble metal-binding polymers with ultrafiltration for selective concentration of americium and plutonium

    SciTech Connect

    Smith, B.F.; Gibson, R.R.; Jarvinen, G.D.; Jones, M.M.; Lu, M.T.; Robison, T.W.; Schroeder, N.C.; Stalnaker, N.

    1997-12-31

    Routine counting methods and ICP-MS are unable to directly measure the new US Department of Energy (DOE) regulatory level for discharge waters containing alpha-emitting radionuclides of 30 pCi/L total alpha or the 0.05 pCi/L regulatory level for Pu or Am activity required for surface waters at the Rocky Flats site by the State of Colorado. This inability indicates the need to develop rapid, reliable, and robust analytical techniques for measuring actinide metal ions, particularly americium and plutonium. Selective separation or preconcentration techniques would aid in this effort. Water-soluble metal-binding polymers in combination with ultrafiltration are shown to be an effective method for selectively removing dilute actinide ions from acidic solutions of high ionic strength. The actinide-binding properties of commercially available water-soluble polymers and several polymers which have been reported in the literature were evaluated. The functional groups incorporated in the polymers were pyrrolidone, amine, oxime, and carboxylic, phosphonic, or sulfonic acid. The polymer containing phosphonic acid groups gave the best results with high distribution coefficients and concentration factors for {sup 241}Am(III) and {sup 238}Pu(III)/(IV) at pH 4 to 6 and ionic strengths of 0.1 to 4.

  3. Water Soluble Organic Compounds over the Eastern Mediterranean: Study of their occurrence and sources

    NASA Astrophysics Data System (ADS)

    Tziaras, T.; Spyros, A.; Mandalakis, M.; Apostolaki, M.; Stephanou, E. G.

    2010-05-01

    detects. The sampling period was 2007-2008. Measurements of collective parameters such as organic/elemental carbon (OC/EC), dissolved organic carbon (DOC), and aerosol surface active substances as methylene blue active substances (MBAS) were also performed. The concentration ranges for total suspended particles (TSP) was 12.3-61.1 microg m-3, for OC and EC 0.6-2.2 microg m-3 and 0.1-0.4 microg m-3 respectively, for DOC 0.7-1.8 microg m-3, and for MBAS 7.4-15.4 ng m-3. The average ratio OC/EC was 6.9 (+/- 3.5) and the proportion of DCO in relation to OC was 83 (+/-13) %, indicating a high degree of oxidation in the water-soluble organic matter. OC and DOC were statistically strongly correlated with the intensity of fire events in southern Europe. The analysis of the water soluble organic extract by GC/MS, NMR and revealed the presence of 130 individual organic compounds which made the 17% of DOC. The most significant categories were: I) Twenty (20) amino acids were determined as free (FAA) and combined (CAA) amino acids with an average concentration of 16 and 66 ng m-3 respectively. The average concentration of total amino acids (TAA) was 82 ng m-3. Glycine, glutamine, glutamic acid, aspartic acid and alanine made the 87% of the FAA fraction and glycine, alanine, glutamic acid, aspartic acid, valine and leucine the 87% of CAA. Statistically significant correlations were found between FAA and CAA, and MBAS and the intensity of fire events. II) Twenty six (26) n-alkanoic acids (C2-C14) were detected with an average concentration of 145 ng m-3. Acetic acid, tridecanoic and heneicosanoic acids demonstrated the highest correlation with fire events. III) Twenty two (22) saturated, unsaturated and branched dicarboxylic acids were analysed with an average concentration of 526 ng m-3. The highest statistical correlation with fire events was determined for the concentration of dicarboxylic acids with Cn larger than 6. IV) Thirty one (31) hydroxy-, oxo- and keto- carboxylic and

  4. Immunomodulatory effect of water soluble extract separated from mycelium of Phellinus linteus on experimental atopic dermatitis

    PubMed Central

    2012-01-01

    Background Complementary and alternative medicine (CAM) is becoming a popular treatment for modulating diverse immune disorders. Phellinus linteus (P. linteus) as one of the CAMs has been used to modulate cancers, inflammation and allergic activities. However, little evidence has been shown about its underlying mechanism of action by which it exerts a beneficial role in dermatological disease in vivo. In this study, we examined the immunomodulatory effects of P. linteus on experimental atopic dermatitis (AD) and elucidated its action mechanism. Methods The immunomodulatory effect of total extract of P. linteus on IgE production by human myeloma U266B1 cells was measured by ELISA. To further identify the effective components, P. linteus was fractionated into methanol soluble, water soluble and boiling water soluble extracts. Each extract was treated to U266B1 cells and primary B cells to compare their inhibitory effects on IgE secretion. To test the in vivo efficacy, experimental atopic dermatitis (AD) was established by alternative treatment of DNCB and house dust mite extract into BALB/c mice. Water soluble extract of P. linteus (WA) or ceramide as a positive control were topically applied to ears of atopic mouse every day for 2 weeks and progression of the disease was estimated by the following criteria: (a) ear thickness, clinical score, (b) serum total IgE, IgG and mite specific IgE level by ELSIA, (c) histological examination of ear tissue by H&E staining and (d) cytokine profile of total ear cells and CD4+ T cells by real time PCR and ELSIA. Results Treatment of total extracts of P. linteus to U266B1 inhibited IgE secretion. Among the diverse extracts of P. linteus, water soluble extract of P. linteus (WA) significantly reduced the IgE production in primary B cells and B cell line U266B1. Moreover, treatment of WA reduced AD symptoms such as ear swelling, erythema, and dryness and decreased recruitment of lymphocyte into the inflamed site. Interestingly WA

  5. Rapid isolation, reliable characterization, and water solubility improvement of polymethoxyflavones from cold-pressed mandarin essential oil.

    PubMed

    Russo, Marina; Rigano, Francesca; Arigò, Adriana; Sciarrone, Danilo; Calabrò, Maria Luisa; Farnetti, Sara; Dugo, Paola; Mondello, Luigi

    2016-06-01

    Polymethoxyflavones possess many biological properties, as lipid-lowering, hypoglycaemic, anti-inflammatory, antioxidant, and anticancer activities, therefore, they may be employed as nutraceuticals or therapeutic agents. The scarcity of pure polymethoxyflavones on the market as well as their low water solubility limited in vivo studies and the use of polymethoxyflavones as food or pharmaceutical supplements. Since mandarin peels are a rich source of polymethoxyflavones, tangeretin, nobiletin, sinensetin, tetra-O-methyl scutellarein, and heptamethoxyflavone were purified from a nonvolatile residue of a cold-pressed mandarin essential oil using a multidimensional preparative liquid chromatographic system coupled with a photodiode array detector and a single quadrupole mass spectrometer. A new prototype, consisting of a nano-liquid chromatography system coupled with an electron ionization mass spectrometer, was used for the characterization of the pure isolated molecules. Finally, due to the collection of highly pure nobiletin and tangeretin, the ability of 2-hydroxypropyl-β-cyclodextrin to enhance the water solubility of both polymethoxyflavones was evaluated by phase solubility studies and Job's plot method.

  6. Assessment of absorption potential of poorly water-soluble drugs by using the dissolution/permeation system.

    PubMed

    Kataoka, Makoto; Yano, Koji; Hamatsu, Yoriko; Masaoka, Yoshie; Sakuma, Shinji; Yamashita, Shinji

    2013-11-01

    This study aims to assess the absorption potential of oral absorption of poorly water-soluble drugs by using the dissolution/permeation system (D/P system). The D/P system can be used to perform analysis of drug permeation under dissolution process and can predict the fraction of absorbed dose in humans. When celecoxib at 1/100 of a clinical dose was applied to the D/P system, percentage of dose dissolved and permeated significantly decreased with an increase in the applied amount, resulting in the oral absorption being predicted to be 22-55%. Whereas similar dissolution and permeation profiles of montelukast sodium were observed, estimated absorption (69-85%) was slightly affected. Zafirlukast absorption (33-36%) was not significantly affected by the dose, although zafirlukast did not show complete dissolution. The relationship between clinical dose and predicted oral absorption of drugs corresponded well to clinical observations. The limiting step of the oral absorption of celecoxib and montelukast sodium was solubility, while that of zafirlukast was dissolution rate. However, due to high permeability of montelukast, oral absorption was not affected by dose. Therefore, the D/P system is a useful tool to assess the absorption potential of poorly water-soluble drugs for oral use.

  7. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol.

    PubMed

    Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling

    2013-09-15

    The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs.

  8. Synthesis and evaluation of water-soluble prodrugs of ursodeoxycholic acid (UDCA), an anti-apoptotic bile acid.

    PubMed

    Dosa, Peter I; Ward, Tim; Castro, Rui E; Rodrigues, Cecília M P; Steer, Clifford J

    2013-06-01

    Ursodeoxycholic acid (UDCA) is a bile acid with demonstrated anti-apoptotic activity in both in vitro and in vivo models. However, its utility is hampered by limited aqueous solubility. As such, water-soluble prodrugs of UDCA could have an advantage over the parent bile acid in indications where intravenous administration might be preferable, such as decreasing damage from stroke or acute kidney injury. Five phosphate prodrugs were synthesized, including one incorporating a novel phosphoryloxymethyl carboxylate (POMC) moiety. These prodrugs were highly water-soluble, but showed significant differences in chemical stability, with oxymethylphosphate prodrugs being the most unstable. In a series of NMR experiments, the POMC prodrug was bioactivated to UDCA by alkaline phosphatase (AP) faster than a prodrug containing a phosphate directly attached to the alcohol at the 3-position of UDCA. Both of these prodrugs showed significant anti-apoptotic activity in a series of in vitro assays, although the POMC prodrug required the addition of AP for activity, while the other compound was active without exogenous AP.

  9. Size distribution of water-soluble components in particulate matter emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    Park, Seung-Shik; Sim, Soo Young; Bae, Min-Suk; Schauer, James J.

    2013-07-01

    Size-resolved measurements of particulate matter (PM) emissions from 10 biomass materials (rice straw, soybean stem, green perilla stem, red pepper stem, pine needles, cherry leaves, cherry stem, maple leaves, gingko leaves and gingko stem) were conducted in a laboratory hood chamber environment using a 10-stage MOUDI. Samples were analyzed to determine the mass, water soluble organic carbon (WSOC), and water soluble inorganic species. This study examines how particle emissions and size distributions of chemical components vary with biomass materials. Mass fractions of water soluble organic mass (WSOM) (=1.6 × WSOC) and ionic species to the PM1.8 emissions varied significantly depending on the biomass type burned. The percent mass of WSOM in PM1.8 emissions ranged from 19.8% (green perilla stem) to 41.9% (red pepper stem) for agricultural crop residues, while the tree category accounted for 9.6% (gingko leaves) to 44.0% (gingko stem) of the PM1.8 emissions. Total ionic species contents in the PM1.8 mass ranged from 7.4% (rice straw) to 26.9% (green perilla stem) for the agricultural waste category, and 5.8% (maple leaves) to 23.5% (gingko stem) for the tree category. The ionic species fraction of the PM1.8 emission was dominated by K+, Cl-, and SO, while Ca2+ was important in the coarse mode particles (>3.1 μm). PM1.8 emissions of K+, Cl-, and SO were as high as 16.9%, 9.0%, and 5.8%, respectively, and were from the green perilla stem, red pepper stem, and gingko stem emissions. Normalized size distributions of mass, WSOC, K+, Cl-, SO, and oxalate in the biomass burning emissions showed a unimodal size distribution, peaking in the size ranges of 0.32-0.55 μm and 0.55-1.0 μm. Size-resolved PM mass fractions of WSOM, K+, Cl-, and SO showed fairly consistent distributions for each biomass type, with higher fractions in the ultrafine mode (<0.10 μm) and lower fractions in the accumulation mode of 0.32-1.0 μm. The size distributions of WSOC were strongly

  10. Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus.

    PubMed

    Kimura, Tomomi; Fukuda, Wakao; Sanada, Tomoe; Imanaka, Tadayuki

    2015-07-01

    Lysobacter oligotrophicus strain 107-E2(T) isolated from Antarctica produces dark-brown colored water-soluble pigment, in addition to hydrolases and lytic enzymes. The production of pigment is a common characteristic among members of the genus Lysobacter, but the identity of the pigments has been unknown. In this study, we identified the pigment from L. oligotrophicus as melanin pigment (Lo-melanin) by chemical and spectroscopic analyses. Although melanin is generally insoluble in both aqueous and organic solvents, the results in this study revealed that Lo-melanin shows water-solubility by means of the added polysaccharide chain. Lo-melanin production of L. oligotrophicus was increased by ultraviolet (UV) exposure, and survival rate of Escherichia coli under UV-irradiated condition was increased by the addition of Lo-melanin to the medium.

  11. Rapid screening of water soluble arsenic species in edible oils using dispersive liquid-liquid microextraction.

    PubMed

    López-García, Ignacio; Briceño, Marisol; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2015-01-15

    A methodology for the non-chromatographic screening of the main arsenic species present in edible oils is discussed. Reverse dispersive liquid-liquid microextraction was used to extract water soluble arsenic compounds (inorganic arsenic, methylarsonate, dimethylarsinate and arsenobetaine) from the edible oils into a slightly acidic aqueous medium. The total arsenic content was measured in the extracts by electrothermal atomic absorption spectrometry using palladium as the chemical modifier. By repeating the measurement using cerium instead of palladium, the sum of inorganic arsenic and methylarsonate was obtained. The detection limit was 0.03 ng As per gram of oil. Data for the total and water-soluble arsenic levels of 29 samples of different origin are presented. Inorganic arsenic was not found in any of the samples marketed as edible oils.

  12. Copper ions interfere with the reduction of the water-soluble tetrazolium salt-8.

    PubMed

    Semisch, Annetta; Hartwig, Andrea

    2014-02-17

    Metabolic activity as a measure of cell viability is frequently determined using the water-soluble tetrazolium salt 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-8), commercially available as CCK-8 reagent. In this study, CCK-8 was investigated with respect to its suitability for investigating nano- and microscale copper oxide (CuO NP and CuO MP) as well as water-soluble copper chloride (CuCl2). The results were compared to cell number and colony forming ability. Our data demonstrate that the CCK-8 assay overestimates the loss of metabolic activity by CuCl2 and CuO NP, because of interference by copper ions with the reduction of the dye.

  13. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  14. Synthesis and Antibacterial Evaluation of Novel Water-Soluble Organic Peroxides

    PubMed Central

    Liu, Wenqiu; Liu, Xuejun; Knaebel, David; Luck, Linda; Li, Yuzhou

    1998-01-01

    A set of new water-soluble organic peroxides has been synthesized and evaluated for in vitro antibacterial activity as part of an effort to develop new antibacterial agents for the treatment of acne vulgaris. The water solubility of these new dialkyl peroxides and peroxyesters was achieved by incorporating either a quaternary ammonium group or a polyethylene glycol moiety. These peroxides are effective against both gram-positive and gram-negative bacteria and have a prolonged activity compared to that of benzoyl peroxide and other peroxide-type antiseptic agents. Among them 4-[[(tert-butylperoxy)carbonyl]benzyl]triethylammonium chloride and [10-(tert-butylperoxy)decyl]trimethylammonium bromide have the broadest antimicrobial spectrums. We have shown that the oxidizing properties of the dioxy group of these compounds are responsible for their antibacterial activities. PMID:9559807

  15. Compositional studies on succinoglycan-like extracellular water-soluble Rhizobium polysaccharides.

    PubMed

    Ghai, S K

    1981-01-01

    This study reports structural information on extracellular, water-soluble polysaccharides from 5 different strains of Rhizobium, viz. R. trifolii J60, R. meliloti J1017, 202, 204 and 207. All the 5 polysaccharides had glucose and galactose in approximate molar ratio of 7:1. Methylation analysis revealed that the polysaccharides contained (1 leads to 3), (1 leads to 6), (1 leads to 4), (1 leads to 4, 1 leads to 6)-linked D-glucose residues, (1 leads to 3)-linked D-galactose and non-reducing terminal D-glucose attached to pyruvate. This structure was found to be exactly the same as that of succinoglycan, a succinic acid containing water-soluble polysaccharide elaborated by Alcaligenes faecalis var. myxogenes 10C3. The similarity of the structure of polysaccharides of two different Rhizobium species and also to the polysaccharide produced by Alcaligenes are discussed in terms of host specificity.

  16. Afterglow Study of ZnS:Cu,Co Water-soluble Nanoparticles and Potential Applications

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Chen, Wei

    2011-03-01

    ZnS:Cu,Co water-soluble afterglow particles with average size of 4 nm have been prepared by using simple wet chemistry method. The X-ray diffraction pattern of the nanoparticles shows a cubic zinc blende structure as the synthesis temperature is low comparing with solid state reactions. The nanoparticles have two photoluminescence emission peaks. The blue emission is from sulfur defects (vacancies), while the green emission is from Cu 2+ luminescent center which also contributes to the particle's afterglow. The presence of co-dopant Co 2+ is critical to perform the afterglow of these nanoparticles. The afterglow intensity and decay vary on different Cu 2+ and Co 2+ doping levels. Further conjugation of ZnS:Cu,Co nanoparticles and photosensitizers presents a new method for deep cancer treatment in photodynamic therapy. The successful afterglow observation from water-soluble nanoparticles may find many new applications in biological imaging, detection and treatment.

  17. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    PubMed Central

    Puentes, Cira Mollings

    2017-01-01

    The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III) and ytterbium(III) further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins. PMID:28179947

  18. Comparison of volatile compounds in water- and oil-soluble annatto (Bixa orellana L.) extracts.

    PubMed

    Galindo-Cuspinera, Verónica; Lubran, Meryl B; Rankin, Scott A

    2002-03-27

    Annatto is a natural food colorant extracted from the seeds of the Bixa orellana L. plant. Annatto is used in Latin American cuisine to add a deep red color as well as distinctive flavor notes to fish, meat, and rice dishes. In the United States, annatto extracts are primarily used to impart orange/yellow hues to cheese and other dairy foods. The objective of this study was to identify and compare volatile compounds present in water- and oil-soluble annatto extracts. Volatile compounds were recovered using dynamic headspace-solvent desorption sampling and analyzed using GC-MS. Compounds were identified by comparison to a mass spectral database, Kovats indexes, and retention times of known standards. Of the 107 compounds detected, 56 compounds were tentatively identified and 51 were positively identified. Volatile profile differences exist between water- and oil- soluble extracts, and annatto extracts contain odorants with the potential to influence food aroma.

  19. Interaction of multi-walled carbon nanotubes with water-soluble proteins: effect of sidewall carboxylation.

    PubMed

    Takada, Tomoya; Kurosaki, Rei; Konno, Yuji; Abe, Shigeaki

    2014-04-01

    Effect of sidewall carboxylation on protein adsorption behavior of multi-walled carbon nanotubes (MWCNTs) was studied. Two water-soluble proteins, bovine serum albumin (BSA) and egg white lysozyme (LYS), were employed in this work. Carboxylation of MWCNTs suppressed adsorption of BSA, whereas adsorption of LYS was enhanced by the carboxylation. These behaviors are explained by the difference in the dominance of hydrophobic interaction and ionic interaction between MWCNTs and the proteins.

  20. The effect of water solubility of solutes on their flux through human skin in vitro.

    PubMed

    Majumdar, Susruta; Thomas, Joshua; Wasdo, Scott; Sloan, Kenneth B

    2007-02-01

    The Flynn database (n=97) for determining the effect of the physicochemical properties of solutes on their skin absorption has been edited to give a database for which the solubilities of the solutes in water, S(AQ), and their maximum fluxes from water through human skin in vitro, J(MAQ), are known or can be calculated (n=76). Data from the six major contributors to the original Flynn database have been included. Data for solutes, which were significantly ionized or for experiments using different thicknesses of skin were not excluded so that the edited database is as diverse as the original. The edited database was fit to five equations where the independent variables were solubility in octanol (S(OCT)) in water (S(AQ)) or molecular weight (MW), and combinations of those three variables; and the dependent variable was J(MAQ). The best fit was obtained from the Roberts-Sloan (RS) equation: logJ(MAQ)=x+ylogS(OCT)+(1-y)logS(AQ)-zMW, x=-3.00, y=0.73, z=0.0048, r(2)=0.934, S.D.=0.37 and F=274. This result is important because J (amount/area time) is the more clinically useful descriptor of permeation compared to P (distance/time); and because the identification of S(AQ) as a significant variable in predicting flux changes the design parameters for optimizing topical delivery of drugs from solubility in lipids (or partition coefficients between OCT and AQ, K(OCT:AQ)) and MW, to solubility in lipids, S(OCT), and in water, S(AQ), as well as MW.

  1. Structural features of a water soluble gum polysaccharide from Murraya paniculata fruits.

    PubMed

    Mondal, S K; Ray, B; Ghosal, P K; Teleman, A; Vuorinen, T

    2001-10-22

    A water soluble gum polysaccharide was isolated from Murraya paniculata fruits. Hydrolytic experiments, methylation analysis, periodate oxidation studies and NMR data revealed that the polysaccharide was extensively branched and it consisted of 1,3-, and 1,3,6-linked beta-D-galactopyranosyl units, terminal beta-D-galactopyranosyl units and terminal alpha-D-glucopyranosyl 1,4-beta-D-galactopyranosyl units. Small amounts of 4-O-methylglucuronic acid residues were also present.

  2. New water-soluble Mn-porphyrin with catalytic activity for superoxide dismutation and peroxynitrite decomposition.

    PubMed

    Asayama, Shoichiro; Nakajima, Takumi; Kawakami, Hiroyoshi

    2011-07-01

    We have synthesized a new water-soluble cationic Mn-porphyrin with catalytic activity for both superoxide dismutation and peroxynitrite decomposition. The resulting Mn-porphyrin also showed higher stability for reactive oxygen species such as hydrogen peroxide and lower cytotoxicity, when compared with a control normal Mn-porphyrin. Furthermore, the new porphyrin recovered the viability of lipopolysaccharide-stimulated macrophage RAW 264.7 cells but the control Mn-porphyrin did not.

  3. NASA Workmanship Hot Topics: Water Soluble Flux and ESD Charge Device Model

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette F.

    2009-01-01

    This slide presentation reviews two topics of interest to NASA Workmanship: (1) Water Soluble Flux (WSF) and Electrostatic Discharge (ESD) safety. In the first topic, WSF, the presentation reviews voiding and the importance of cleanliness in using WSF for welding and soldering operations. The second topic reviews the NASA-HDBK-8739.21 for Human Body Model, and Machine Model safety methods, and challenges associated with the Charged Device Model (CDM)

  4. Nanocrystals for the parenteral delivery of poorly water-soluble drugs

    PubMed Central

    Sun, Bo; Yeo, Yoon

    2012-01-01

    Nanocrystals have drawn increasing interest in pharmaceutical industry because of the ability to improve dissolution of poorly water-soluble drugs. Nanocrystals can be produced by top-down and bottom-up technologies and have been explored for a variety of therapeutic applications. Here we review the methods of nanocrystal production and parenteral applications of nanocrystals. We also discuss remaining challenges in the development of nanocrystal products. PMID:23645994

  5. Facile synthesis of stable, water soluble, dendron-coated gold nanoparticles.

    PubMed

    Enciso, Alan E; Doni, Giovanni; Nifosì, Riccardo; Palazzesi, Ferruccio; Gonzalez, Roberto; Ellsworth, Amy A; Coffer, Jeffery L; Walker, Amy V; Pavan, Giovanni M; Mohamed, Ahmed A; Simanek, Eric E

    2017-03-02

    Upon reduction with sodium borohydride, diazonium tetrachloroaurate salts of triazine dendrons yield dendron-coated gold nanoparticles connected by a gold-carbon bond. These robust nanoparticles are stable in water and toluene solutions for longer than one year and present surface groups that can be reacted to change surface chemistry and manipulate solubility. Molecular modeling was used to provide insight on the hydration of the nanoparticles and their observed solubilties.

  6. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    DTIC Science & Technology

    2016-09-12

    Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange Milton L. Truong...Supporting Information ABSTRACT: Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene...for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst -activation

  7. Water-soluble phenylpropanoid constituents from aerial roots of Ficus microcarpa.

    PubMed

    Ouyang, Ming-An; Chen, Pei-Qing; Wang, Si-Bing

    2007-07-20

    New water-soluble phenylpropanoid constituents, ficuscarpanoside A, guaiacylglycerol 9-O-beta-D-glucopyranoside, and erythro-guaiacylglycerol 9-O-beta-D-glucopyranoside, along with known guaiacylglycerol, erythro-guaiacylglycerol, 4-methoxy guaiacylglycerol 7-O-beta-D-glucopyranoside, and 3-(4-hydroxy-3-methoxy phenyl) propan-1,2-diol, have been isolated from the aerial roots of Ficus microcarpa. Their structures were elucidated on the basis of 1D and 2D NMR experiments.

  8. Synthesis and Size Dependent Reflectance Study of Water Soluble SnS Nanoparticles

    PubMed Central

    Xu, Ying; Al-Salim, Najeh; Tilley, Richard D.

    2012-01-01

    Near-monodispersed water soluble SnS nanoparticles in the diameter range of 3–6 nm are synthesized by a facile, solution based one-step approach using ethanolamine ligands. The optimal amount of triethanolamine is investigated. The effect of further heat treatment on the size of these SnS nanoparticles is discussed. Diffuse reflectance study of SnS nanoparticles agrees with predictions from quantum confinement model.

  9. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol.

  10. Recrystallization of water in non-water-soluble (meth)acrylate polymers is not rare and is not devitrification.

    PubMed

    Gemmei-Ide, Makoto; Ohya, Atsushi; Kitano, Hiromi

    2012-02-16

    Change in the state of water sorbed into four kinds of non-water-soluble poly(meth)acrylates with low water content by temperature (T) perturbation was examined on the basis of T variable mid-infrared (MIR) spectroscopy. Many studies using differential scanning calorimetry suggested that there was no change in the state. T dependence of their MIR spectra, however, clearly demonstrated various changes in the state. Furthermore, recrystallization, which was crystallization during heating, was observed in all four polymers. The recrystallization observed in this study was not devitrification, which is the change in the state from glassy water to crystalline water, but vapor deposition during heating (vapor re-deposition). There were only two reports about recrystallization of water in a non-water-soluble polymer before this report; therefore, it might be considered to be a rare phenomenon. However, as demonstrated in this study, it is not a rare phenomenon. Recrystallization (vapor re-deposition) of water in the polymer matrices is related to a balance between flexibility and strength of the electrostatic interaction sites of polymer matrices but might not be related to the biocompatibility of polymers.

  11. Effect of pH and water-soluble polymers on the aqueous solubility of nimesulide in the absence and presence of beta-cyclodextrin derivatives.

    PubMed

    Alexanian, Christina; Papademou, Helen; Vertzoni, Maria; Archontaki, Helen; Valsami, Georgia

    2008-11-01

    The aqueous solubility of nimesulide in the absence and presence of beta-cyclodextrin (beta-CD) and its alkyl derivatives hydroxypropyl-beta-CD and methyl-beta-CD was studied. We also investigated the effect of water-soluble polymers, hydroxypropylmethyl-cellulose, sodium-carboxymethyl-cellulose, polyvinylpyrrolidone and polyethyleneglycol on the solubilization efficacy and complexation ability of cyclodextrins with nimesulide. The solubility of nimesulide in the absence and presence of cyclodextrins and polymers was studied using a phase solubility technique combined with a spectrophotometric method. The study was carried out at 25 degrees C and pH values of 6.0 and 7.0. Conditions in terms of polymer concentration and polymer heating with and without sonication were optimized. Values of the solubility enhancement factor of nimesulide in the presence of each cyclodextrin and in the absence and presence of each polymer were determined and the formation constants, K, of the inclusion complexes formed calculated. beta-CDs increased the aqueous solubility of nimesulide in the following order: methyl-beta-CD > beta-CD > hydroxypropyl-beta-CD. Addition of hydroxypropylmethyl-cellulose at a concentration of 0.1% (w/v) had the greatest influence on complexation of all three beta-CDs with nimesulide, while preheating of the polymer at 70 degrees C under sonication resulted in an additional two-fold increase in the aqueous solubility of the drug. Sodium-carboxymethyl-cellulose, polyvinylpyrrolidone and polyethyleneglycol had minor effects on the aqueous solubility of nimesulide. Thus beta-CD, hydroxypropyl-beta-CD and methyl-beta-CD are proposed as good solubilizing agents for nimesulide in the presence and absence of hydroxypropylmethyl-cellulose in order to enhance its oral bioavailability.

  12. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  13. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs.

    PubMed

    Chavanpatil, Mahesh D; Khdair, Ayman; Patil, Yogesh; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2007-12-01

    Poor drug encapsulation efficiency and rapid release of the encapsulated drug limit the use of nanoparticles in biomedical applications involving water-soluble drugs. We have developed a novel polymer-surfactant nanoparticle formulation, using the anionic surfactant Aerosol OT (AOT) and polysaccharide polymer alginate, for sustained release of water-soluble drugs. Particle size of nanoparticles, as determined by atomic force microscopy and transmission electron microscopy, was in the range of 40-70 nm. Weakly basic molecules like methylene blue, doxorubicin, rhodamine, verapamil, and clonidine could be encapsulated efficiently in AOT-alginate nanoparticles. In vitro release studies with basic drug molecules indicate that nanoparticles released 60-70% of the encapsulated drug over 4 weeks, with near zero-order release during the first 15 days. Studies with anionic drug molecules demonstrate poorer drug encapsulation efficiency and more rapid drug release than those observed with basic drugs. Further studies investigating the effect of sodium concentration in the release medium and the charge of the drug suggest that calcium-sodium exchange between nanoparticle matrix and release medium and electrostatic interaction between drug and nanoparticle matrix are important determinants of drug release. In conclusion, we have formulated a novel surfactant-polymer drug delivery carrier demonstrating sustained release of water-soluble drugs.

  14. Gastrointestinal effects associated with soluble and insoluble copper in drinking water.

    PubMed Central

    Pizarro, F; Olivares, M; Araya, M; Gidi, V; Uauy, R

    2001-01-01

    The aim of this study was to determine whether total copper or soluble copper concentration is associated with gastrointestinal signs and symptoms. Forty-five healthy adult women (18-55 years of age), living in Santiago, Chile, ingested tap water with 5 mg/L of copper containing different ratios of soluble copper (copper sulfate) and insoluble copper (copper oxide) over a 9-week period. Three randomized sequences of the different copper ratios (0:5, 1:4, 2:3, 3:2, and 5:0 mg/L) were followed. Subjects recorded their water consumption and gastrointestinal symptoms daily on a special form. Mean water consumption was similar among groups. Serum copper levels, ceruloplasmin, and activities of liver enzymes were within normal limits. No differences were detected between the means of biochemical parameters at the beginning and at the end of the study. Twenty subjects presented gastrointestinal disturbances at least once during the study, 9 suffered diarrhea (with or without abdominal pain and vomiting), and the other 11 subjects reported abdominal pain, nausea, or vomiting. No differences were found in incidence of abdominal pain, nausea, vomiting, and diarrhea regardless of the ratio of copper sulfate to copper oxide. In conclusion, both copper sulfate (a soluble compound) and copper oxide (an insoluble compound) have comparable effects on the induction of gastrointestinal manifestations, implying that similar levels of ionic copper were present in the stomach. PMID:11673125

  15. Synthesis of water-soluble camptothecin-polyoxetane conjugates via click chemistry.

    PubMed

    Zolotarskaya, Olga Yu; Wagner, Alison F; Beckta, Jason M; Valerie, Kristoffer; Wynne, Kenneth J; Yang, Hu

    2012-11-05

    Water-soluble camptothecin (CPT)-polyoxetane conjugates were synthesized using a clickable polymeric platform P(EAMO) that was made by polymerization of acetylene-functionalized 3-ethyl-3-(hydroxymethyl)oxetane (i.e., EAMO). CPT was first modified with a linker 6-azidohexanoic acid via an ester linkage to yield CPT-azide. CPT-azide was then click coupled to P(EAMO) in dichloromethane using bromotris(triphenylphosphine)copper(I)/N,N-diisopropylethylamine. For water solubility and cytocompatibility improvement, methoxypolyethylene glycol azide (mPEG-azide) was synthesized from mPEG 750 g mol(-1) and click grafted using copper(II) sulfate and sodium ascorbate to P(EAMO)-g-CPT. (1)H NMR spectroscopy confirmed synthesis of all intermediates and the final product P(EAMO)-g-CPT/PEG. CPT was found to retain its therapeutically active lactone form. The resulting P(EAMO)-g-CPT/PEG conjugates were water-soluble and produced dose-dependent cytotoxicity to human glioma cells and increased γ-H2AX foci formation, indicating extensive cell cycle-dependent DNA damage. Altogether, we have synthesized CPT-polymer conjugates able to induce controlled toxicity to human cancer cells.

  16. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.

    PubMed

    Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing

    2017-03-18

    (20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH3-PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH3-PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH3-PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH3-PPD and its derivatives was tested and the results showed that the solubility of 25-OCH3-PPD sulfamic acid and diacid derivatives were better than that of 25-OCH3-PPD in water, which may provide valuable data for the research and development of new anti-tumor agents.

  17. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca(2+), Mg(2+), and Zn(2+)) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  18. Nanosizing of poorly water soluble compounds using rotation/revolution mixer.

    PubMed

    Takatsuka, Takayuki; Endo, Tomoko; Jianguo, Yao; Yuminoki, Kayo; Hashimoto, Naofumi

    2009-10-01

    In this study, nanoparticles of various poorly water soluble compounds were prepared by wet milling that was carried out using a rotation/revolution mixer and zirconia balls. To be compared with Beads mill, rotation/revolution mixer has superior in very quick process (5 min) and needs very few amounts of zirconia balls (2.4 g) for pulverizing drugs to nanometer range. Phenytoin, indomethacin, nifedipine, danazol, and naproxen were selected as the standard poorly water soluble compounds. Various parameters of the rotation/revolution mixer were studied to decide the optimal pulverization conditions for the production of nanoparticles of the abovementioned compounds. The rotation/revolution speed, shape of the mixing vessel, amount of zirconia balls, and volume of the vehicle (methylcellulose solution) mainly affected the pulverization of the compounds. Using the mixer, phenytoin could be pulverized to nanoparticles within a few minutes. The particle size was confirmed by using a scanning electron microscope and a particle size analyzer. The crystallinity of the pulverized phenytoin particles was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). It was observed that the pulverized phenytoin particles retained their crystallinity, and amorphous phenytoin was not detected. Particles of other poorly water soluble compounds were also reduced to the nanometer range by using this method.

  19. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission.

    PubMed

    Li, Hai-Ning; Zimmerman, Mary; Milledge, Gaolin Z; Hou, Xiao-Lin; Cheng, Jiang; Wang, Zhen-Hai; Li, P Andy

    2017-02-11

    Parkinson's disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson's disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson's disease.

  20. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  1. A predictive model for the release of slightly water-soluble drugs from HPMC matrices.

    PubMed

    Fu, X C; Wang, G P; Wang, Y H; Liang, W Q

    2004-08-01

    A model to predict the fraction of slightly water-soluble drug released as a function of release time (t, h), HPMC concentration (C(H), w/w), drug solubility in distilled water at 37 degrees C (C(s), g/100 mL), and volume of drug molecule (V, nm3) was derived when theophyline, tinidazole, and propylthiouracil were selected as model drugs. The model is log (M(t)/M(infinity)) = 0.8683 logt-0.1930C(s) logt + 0.5406V logt-1.227C(H) + 0.1594C(s) + 0.4423C(H)C(s) - 0.8655 (n = 130, r = 0.9969), where Mt is the amount of drug released at time t, Minfinity is the amount of drug released over a very long time, which corresponds in principle to the initial loading, n is the number of samples, and r is the correlation coefficient. The model was validated using sulfamethoxazole and satisfactory results were obtained. The model can be used to predict the release fraction of variousslightly water-soluble drugs from HPMC matrices having different polymer levels.

  2. Method for production of polymer and carbon nanofibers from water-soluble polymers.

    PubMed

    Spender, Jonathan; Demers, Alexander L; Xie, Xinfeng; Cline, Amos E; Earle, M Alden; Ellis, Lucas D; Neivandt, David J

    2012-07-11

    Nanometer scale carbon fibers (carbon nanofibers) are of great interest to scientists and engineers in fields such as materials science, composite production, and energy storage due to their unique chemical, physical, and mechanical properties. Precursors currently used for production of carbon nanofibers are primarily from nonrenewable resources. Lignin is a renewable natural polymer existing in all high-level plants that is a byproduct of the papermaking process and a potential feedstock for carbon nanofiber production. The work presented here demonstrates a process involving the rapid freezing of an aqueous lignin solution, followed by sublimation of the resultant ice, to form a uniform network comprised of individual interconnected lignin nanofibers. Carbonization of the lignin nanofibers yields a similarly structured carbon nanofiber network. The methodology is not specific to lignin; nanofibers of other water-soluble polymers have been successfully produced. This nanoscale fibrous morphology has not been observed in traditional cryogel processes, due to the relatively slower freezing rates employed compared to those achieved in this study.

  3. Water-soluble co-polyelectrolytes by selective modification of cellulose esters.

    PubMed

    Liu, Shu; Edgar, Kevin J

    2017-04-15

    Cellulose-based materials are well-suited for biomedical uses, because of their abundance, renewable nature, biodegradability, and relatively low cost. However, the set of commercially available cellulose esters and ethers is limited in number and diversity, and contains no cationically charged cellulose esters. Herein we report a simple, efficient strategy for synthesizing cationic, water-soluble co-polyelectrolytes from commercial, hydrophobic, renewable-based cellulose esters. Cellulose acetate (degree of substitution (DS) 1.78, CA320S), was the exemplary starting material for preparing these cationic polyelectrolytes by a reaction sequence of phosphine-catalyzed bromination and subsequent displacement by an aromatic amine, affording high reaction conversions. We show that these modification techniques can be carried out with essentially complete regio- and chemoselectivity, proceeding in the presence of multiple ester groups, yet preserving those groups. Availability of these novel polysaccharide-based electrolytes starting from uncharged, commercial, inexpensive cellulose esters may open up multiple new application areas, including in several aspects of gene or drug delivery.

  4. Water-soluble Ag(2)S quantum dots for near-infrared fluorescence imaging in vivo.

    PubMed

    Jiang, Peng; Zhu, Chun-Nan; Zhang, Zhi-Ling; Tian, Zhi-Quan; Pang, Dai-Wen

    2012-07-01

    A one-step method for synthesizing water-soluble Ag(2)S quantum dots terminated with carboxylic acid group has been reported. The crystal structure and surface of the prepared Ag(2)S quantum dots were characterized. The prepared Ag(2)S quantum dots exhibited bright photoluminescence and excellent photostabilities. The photoluminescence emissions could be tuned from visible region to near-infrared (NIR) region (from 510 nm to 1221 nm). Ultra-small sized Ag(2)S nanoclusters were synthesized with high initial monomer concentration in the current system. The in vivo imaging experiments of nude mice showed that the NIR photoluminescence of the prepared Ag(2)S quantum dots could penetrate the body of mice. Compared to the conventional NIR quantum dots, the Ag(2)S quantum dots don't contain toxic elements to body (such as Cd and Pb), thus, the prepared Ag(2)S quantum dots could serve as excellent NIR optical imaging probes and would open the opportunity to study nanodiagnostics and imaging in vivo.

  5. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2011-02-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  6. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2010-09-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  7. Antimicrobial Action of Water-Soluble β-Chitosan against Clinical Multi-Drug Resistant Bacteria

    PubMed Central

    Park, Seong-Cheol; Nam, Joung-Pyo; Kim, Jun-Ho; Kim, Young-Min; Nah, Jae-Woon; Jang, Mi-Kyeong

    2015-01-01

    Recently, the number of patients infected by drug-resistant pathogenic microbes has increased remarkably worldwide, and a number of studies have reported new antibiotics from natural sources. Among them, chitosan, with a high molecular weight and α-conformation, exhibits potent antimicrobial activity, but useful applications as an antibiotic are limited by its cytotoxicity and insolubility at physiological pH. In the present study, the antibacterial activity of low molecular weight water-soluble (LMWS) α-chitosan (α1k, α5k, and α10k with molecular masses of 1, 5, and 10 kDa, respectively) and β-chitosan (β1k, β5k, and β10k) was compared using a range of pathogenic bacteria containing drug-resistant bacteria isolated from patients at different pH. Interestingly, β5k and β10k exhibited potent antibacterial activity, even at pH 7.4, whereas only α10k was effective at pH 7.4. The active target of β-chitosan is the bacterial membrane, where the leakage of calcein is induced in artificial PE/PG vesicles, bacterial mimetic membrane. Moreover, scanning electron microscopy showed that they caused significant morphological changes on the bacterial surfaces. An in vivo study utilizing a bacteria-infected mouse model found that LMWS β-chitosan could be used as a candidate in anti-infective or wound healing therapeutic applications. PMID:25867474

  8. Investigation of photodynamic activity of water-soluble porphyrins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Arsenyan, Flora H.; Gyulkhandanyan, Aram G.

    2006-02-01

    Photodynamic therapy (PDT) is the method of photosensitized tumor treatment. It is based on the photosensitizer (PS) selective accumulation in tumors, its subsequent activation under the light influence and oxygen active form formation that results in tumor destruction. Photodynamic action of some new water-soluble porphyrins was investigated in our laboratory. Dose-dependent effect of these porphyrins was shown on PC-12 murine pheochromocytoma cell line. The results revealed that the efficiency of the investigated porphyrins decreased in the following way: TOEPyP (meso-tetra-(4-N-oxyethylpyridyl)porphyrin) > Zn-TOEPyP > Ag-TOEPyP. It was shown that TOEPyP possessed nearly the same photodynamic activity (LD50) as well-known photosensitizer chlorin e6. These porphyrins have also demonstrated quite high photodynamic activity in vivo. The results were obtained in the experiments on white mice with engrafted C-180 (Croker's sarcoma). Antitumor activity of these porphyrins in the dark was 30-40%, whereas photodynamic activity was 45-60%.

  9. Functions of the water soluble chlorophyll-binding protein in plants.

    PubMed

    Damaraju, Sridevi; Schlede, Stephanie; Eckhardt, Ulrich; Lokstein, Heiko; Grimm, Bernhard

    2011-08-15

    Functional aspects of water soluble chlorophyll-binding protein (WSCP) in plants were investigated during the courses of leaf senescence, chlorophyll biogenesis, stress response and photoprotection. The cDNA sequence encoding WSCP from cauliflower was cloned into a binary vector to facilitate Agrobacterium tumefaciens mediated transformation of Nicotiana tabacum. The resultant transgenic tobacco plants overexpressed the CauWSCP gene under the control of a 35S-promoter. Analyses of protein and pigment contents indicate that WSCP overexpression does not enhance chlorophyll catabolism in vivo, thus rendering a role of WSCP in Chl degradation unlikely. Accumulation of higher levels of protochlorophyllide in WSCP overexpressor plants corroborates a proposed temporary storage and carrier function of WSCP for chlorophyll and late precursors. Although WSCP overexpressor plants did not show significant differences in non-photochemical quenching of chlorophyll fluorescence, they are characterized by significantly lower zeaxanthin accumulation and peroxidase activity at different light intensities, even at high light intensities of 700-900μmol photons m(-2)s(-1). These results suggest a photoprotective function of the functional chlorophyll binding-WSCP tetramer by shielding of chlorophylls from molecular oxygen.

  10. Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus.

    PubMed

    Wang, Qingjie; Mu, Haibo; Zhang, Lin; Dong, Dongqi; Zhang, Wuxia; Duan, Jinyou

    2015-03-01

    The chaga mushroom, Inonotus obliquus has long been recognized as a remedy for cancer, gastritis, ulcers, and tuberculosis of the bones since the 16th century. Herein we reported the identification of two homogenous biological macromolecules, designated as IOW-S-1 and IOW-S-2 with anti-tumor activities from the hot-water extract of I. obliquus. Their molecular weights were determined to be 37.9 and 24.5kDa by high performance gel permeation chromatography (HPGPC) respectively. Chemical and spectral analysis indicated that both IOW-S-1 and IOW-S-2 were predominant in lignin, along with ∼20% carbohydrates. Examination of cytotoxicity showed that these two lignin-carbohydrate complexes induced cell death in a concentration dependent manner, while this apoptosis induction was largely cell-cycle independent. Further investigation demonstrated that IOW-S-1 or IOW-S-2 inhibited the activation of the nuclear transcription factor in cancer cells. These findings implied that soluble lignin derivatives were one of bioactive components in I. obliquus, and further provided insights into the understanding of molecular basis for diverse medicinal and nutritional values of this mushroom.

  11. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-01-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (RESPONSIVE TO DESICCATION 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles’ heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  12. Synthesis and characterization of water-soluble carbon nanotubes from mustard soot

    NASA Astrophysics Data System (ADS)

    Dubey, Prashant; Muthukumaran, Devarajan; Dash, Subhashis; Mukhopadhyay, Rupa; Sarkar, Sabyasachi

    2005-10-01

    Carbon nanotubes (CNT) has been synthesized by pyrolysing mustard oil using an oil lamp. It was made water-soluble (wsCNT) through oxidative treatment by dilute nitric acid and was characterized by SEM, AFM, XRD, Raman and FTIR spectroscopy. The synthesized wsCNT showed the presence of several junctions and defects in it. The presence of curved graphene structure (sp^{2}) with frequent sp^{3} hybridized carbon is found to be responsible for the observed defects. These defects along with the presence of di- and tri-podal junctions showed interesting magnetic properties of carbon radicals formed by spin frustration. This trapped carbon radical showed ESR signal in aqueous solution and was very stable even under drastic treatment by strong oxidizing or reducing agents. Oxidative acid treatment of CNT introduced several carboxylic acid group functionalities in wsCNT along with the nicking of the CNT at different lengths with varied molecular weight. To evaluate molecular weights of these wsCNTs, an innovative method like gel electrophoresis using high molecular weight DNA as marker was introduced.

  13. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat

    PubMed Central

    Dong, Yan; Liu, Jindong; Zhang, Yan; Geng, Hongwei; Rasheed, Awais; Xiao, Yonggui; Cao, Shuanghe; Fu, Luping; Yan, Jun; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars. PMID:27802269

  14. New water soluble phosphonate and polycarboxylate complexants for enhanced f element separations

    SciTech Connect

    Nash, K.L.; Rickert, P.G.; Lessmann, E.P.; Mendoza, M.D.; Feil, J.F.; Sullivan, J.C.

    1994-08-01

    While lipophilic extractant molecules and ion exchange polymeric materials are clearly essential to efficient separation of metal ions by solvent extraction or ion exchange, the most difficult separations often could not be accomplished without the use of water soluble complexants. This report focuses on recent developments in design, synthesis and characterization of phosphonic acid and polycarboxylic acid ligands for enhanced f element separations. Emphasis is on the basic solution chemistry and crystal structures of complexes of the f elements with selected amino-derivatives of methanediphosphonic acid and with tetrahydrofuran-2,3,4,5-tetracarboxylic acid. The former series of compounds exhibit high affinity for lanthanides and actinides in acidic solutions. The latter ligand exhibits an unusual (and very useful) ``anti-selectivity`` for uranyl ion in a solvent extraction process, which permits efficient separation of uranyl from more radioactive components of nuclear wastes. Most of the observed effects can be explained through examination of the structure of the ligand, and comparison of the spectroscopic and thermodynamic parameters for complexation of various metal ions.

  15. Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters

    SciTech Connect

    Wang, Zan; Small, Mitchell J; Karamalidis, Athanasios K

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO{sub 2} solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304–433 K, pressure range 74–500 bar, and salt concentration range 0–7 m (NaCl equivalent), using 173 published CO{sub 2} solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO{sub 2} solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO{sub 2} solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  16. Multimodel predictive system for carbon dioxide solubility in saline formation waters.

    PubMed

    Wang, Zan; Small, Mitchell J; Karamalidis, Athanasios K

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO(2) solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304-433 K, pressure range 74-500 bar, and salt concentration range 0-7 m (NaCl equivalent), using 173 published CO(2) solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO(2) solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO(2) solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  17. The apparent solubilizing capacity of simulated intestinal fluids for poorly water-soluble drugs.

    PubMed

    Schwebel, Hervé J; van Hoogevest, Peter; Leigh, Mathew L S; Kuentz, Martin

    2011-06-01

    Drug solubility testing in biorelevant media has become an indispensable tool in pharmaceutical development. Despite this importance, there is still an incomplete understanding of how poorly soluble compounds interact with these media. The aim of this study was to apply the concept of the apparent solubilization capacity to fasted and fed state simulated intestinal fluid (FaSSIF and FeSSIF, respectively). A set of non-ionized poorly soluble compounds was studied in biorelevant media prepared from an instantly dissolving complex (SIF(™) Powder) at 37°C. The values of the solubilization capacity were different between FaSSIF and FeSSIF but correlated. Drug inclusion into the mixed micelles was highly specific for a given compound. The ratio of the FeSSIF to FaSSIF solubility was in particular considered and discussed in terms of the apparent solubilizing capacity. The apparent solubilization concept appears to be useful for the interpretation of biorelevant solubility tests. Further studies are needed to explore acidic and basic drugs.

  18. Film-coated matrix mini-tablets for the extended release of a water-soluble drug.

    PubMed

    Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R

    2015-04-01

    Extended release (ER) of water-soluble drugs from hydroxypropylmethylcellulose (HPMC) matrix mini-tablets (mini-matrices) is difficult to achieve due to the large surface area to volume ratio of the mini matrices. Therefore, the aims of this study were to control the release of a water-soluble drug (theophylline) from mini-matrices by applying ER ethylcellulose film coating (Surelease®), and to assess the effects of Surelease®:pore former (Opadry®) ratio and coating load on release rates. Mini-matrices containing 40%w/w HPMC K100M CR were coated with 100:0, 85:15, 80:20, 75:25 or 70:30 Surelease®:Opadry® to different coating weight gains (6-20%). Non-matrix mini-tablets were also produced and coated with 80:20 Surelease®:Opadry® to different coating weight gains. At low coating weight gains, nonmatrix mini-tablets released the entire drug within 0.5 h, while at high coating weight gains only a very small amount (<5%) of drug was released after 12 h. The gel formation of HPMC prevented disintegration of mini-matrices at low coating weight gains but contributed to rupture of the film even at high coating weight gains. As a result, drug release from mini-matrices was slower than that from nonmatrix mini-tablets at low coating weight gains, yet faster at high coating weight gains. An increase in the lag time of drug release from mini-matrices was observed as the concentration of Opadry® reduced or the coating weight gain increased. This study has demonstrated the possibility of extending the release of a water-soluble drug from HPMC mini-matrices by applying ER film coating with appropriate levels of pore former and coating weight gains to tailor the release rate.

  19. Water-soluble phthalocyanine complexes of Ga(III) and In(III) in the photodynamic inactivation of pathogenic fungus

    NASA Astrophysics Data System (ADS)

    Mantareva, V.; Angelov, I.; Wöhrle, D.; Dogandjiska, V.; Dimitrov, R.; Kussovski, V.

    2010-10-01

    Phthalocyanines of gallium(III) and indium(III) (GaPc1 and InPc1) bearing four methylpyridyloxy groups on the periphery of the phthalocyanine ring were synthesized. The both phthalocyanines were obtained with a good solubility in water solutions, which make them suitable for application in the Photodynamic therapy (PDT). The absorbance in the Uv-vis region of the complexes is typical for MPc with a highly intensive maximum in the far red spectra (681 nm - 697 nm for GaPc1 and for InPc1, both in DMSO). The fluorescence maxima are red shifted (691 nm/716 nm). The fluorescence quantum yields of the both complexes are lower than that for the unsubstituted MPcs with values