Sample records for high wind penetration

  1. Microgrid optimal scheduling considering impact of high penetration wind generation

    NASA Astrophysics Data System (ADS)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  2. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  3. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  4. System-wide emissions implications of increased wind power penetration.

    PubMed

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  5. Evidence for impulsive solar wind plasma penetration through the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Sauvaud, J.-A.; Rème, H.; Balogh, A.; Dandouras, I.; Bosqued, J. M.; Carlson, C.; Parks, G. K.; Möbius, E.; Kistler, L. M.; Klecker, B.; Amata, E.; Formisano, V.; Dunlop, M.; Eliasson, L.; Korth, A.; Lavraud, B.; McCarthy, M.

    2003-02-01

    This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS) on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978).

  6. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  7. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  8. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  9. Evaluation of nano- and submicron particle penetration through ten nonwoven fabrics using a wind-driven approach.

    PubMed

    Gao, Pengfei; Jaques, Peter A; Hsiao, Ta-Chih; Shepherd, Angie; Eimer, Benjamin C; Yang, Mengshi; Miller, Adam; Gupta, Bhupender; Shaffer, Ronald

    2011-01-01

    Existing face mask and respirator test methods draw particles through materials under vacuum to measure particle penetration. However, these filtration-based methods may not simulate conditions under which protective clothing operates in the workplace, where airborne particles are primarily driven by wind and other factors instead of being limited to a downstream vacuum. This study was focused on the design and characterization of a method simulating typical wind-driven conditions for evaluating the performance of materials used in the construction of protective clothing. Ten nonwoven fabrics were selected, and physical properties including fiber diameter, fabric thickness, air permeability, porosity, pore volume, and pore size were determined. Each fabric was sealed flat across the wide opening of a cone-shaped penetration cell that was then housed in a recirculation aerosol wind tunnel. The flow rate naturally driven by wind through the fabric was measured, and the sampling flow rate of the Scanning Mobility Particle Sizer used to measure the downstream particle size distribution and concentrations was then adjusted to minimize filtration effects. Particle penetration levels were measured under different face velocities by the wind-driven method and compared with a filtration-based method using the TSI 3160 automated filter tester. The experimental results show that particle penetration increased with increasing face velocity, and penetration also increased with increasing particle size up to about 300 to 500 nm. Penetrations measured by the wind-driven method were lower than those obtained with the filtration method for most of the fabrics selected, and the relative penetration performances of the fabrics were very different due to the vastly different pore structures.

  10. Optical remote sensing of penetration into the lower thermosphere of neutral wind and composition perturbations driven by magnetospheric forcing

    NASA Astrophysics Data System (ADS)

    Conde, M. G.; Anderson, C.; Hecht, J. H.

    2011-12-01

    Numerous observations of thermospheric neutral winds at altitudes of 240 km and higher clearly show wind structures occurring at auroral latitudes in response to magnetospheric forcing. It is also known from observations that magnetospheric forcing is not a major driver of winds down at mesopause heights and below. Because it is difficult to measure winds in the intervening "transition region" between these height regimes, very little is known about how deeply the magnetospherically driven neutral wind structures penetrate into the lower thermosphere, what factors affect this penetration, and what consequences it may have for transport of chemical species. Here we will show neutral wind maps obtained at F-region and E-region heights in the auroral zone using Fabry-Perot Doppler spectroscopy of the 630 nm and 558 nm optical emissions. Although thermospheric neutral winds are smoothed by viscosity and inertia, observed responses to magnetospheric forcing still include wind responses on time scales as short as 10 minutes or less, and on length scales shorter than 100 km horizontally and 5 km vertically. The data also show that the degree of penetration of magnetospheric forcing into the lower thermospheric wind field is highly variable from day to day. Signatures of magnetospheric forcing are sometimes seen at altitudes as low as 120 km, whereas at other times the E-region does not seem to respond at all. Possible links will be explored between this variability and the day to day differences seen in the column integrated thermospheric [O]/[N2] ratio over Alaska.

  11. Stability improvement of wind turbine penetrated using power system stabilizer (PSS) on South Sulawesi transmission system

    NASA Astrophysics Data System (ADS)

    Siswanto, Agus; Gunadin, Indar Chaerah; Said, Sri Mawar; Suyuti, Ansar

    2018-03-01

    The purpose of this research is to improve the stability of interconnection of South Sulawesi system caused by penetration new wind turbine in Sidrap area on bus 2 and in Jeniponto area on bus 34. The method used in this research was via software Power System analysis Toolbox (PSAT) under MATLAB. In this research, there are two problems that are evaluated, the stability of the system before and after penetration wind turbine into the system South Sulawesi system. From the simulation result shows that penetration of wind turbine on bus 2 Sidrap, bus 37 Jeniponto give effect oscillation on the system. The oscillation was damped by installation of Power System Stabilizer (PSS) on bus 29 area Sungguminasa, that South Sulawesi system stable according to normal condition.

  12. Effects of wind speed on aerosol spray penetration in adult mosquito bioassay cages.

    PubMed

    Hoffmann, W Clint; Fritz, Bradley K; Farooq, Muhammad; Cooperband, Miriam F

    2008-09-01

    Bioassay cages are commonly used to assess efficacy of insecticides against adult mosquitoes in the field. To correlate adult mortality readings to insecticidal efficacy and/or spray application parameters properly, it is important to know how the cage used in the bioassay interacts with the spray cloud containing the applied insecticide. This study compared the size of droplets, wind speed, and amount of spray material penetrating cages and outside of cages in a wind tunnel at different wind speeds. Two bioassay cages, Center for Medical, Agricultural and Veterinary Entomology (CMAVE) and Circle, were evaluated. The screen materials used on these cages reduced the size of droplets, wind speed, and amount of spray material inside the cages as compared to the spray cloud and wind velocity outside of the cages. When the wind speed in the dispersion tunnel was set at 0.6 m/sec (1.3 mph), the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.045 m/sec (0.10 mph) and 0.075 m/sec (0.17 mph), respectively. At air velocities of 2.2 m/sec (4.9 mph) in the dispersion tunnel, the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.83 m/sec (1.86 mph) and 0.71 m/sec (1.59 mph), respectively. Consequently, there was a consistent 50-70% reduction of spray material penetrating the cages compared to the spray cloud that approached the cages. These results provide a better understanding of the impact of wind speed, cage design, and construction on ultra-low-volume spray droplets.

  13. Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile.

    PubMed

    Haas, J; Olivares, M A; Palma-Behnke, R

    2015-05-01

    Hydropeaking operations can severely degrade ecosystems. As variable renewable sources (e.g. wind power) are integrated into a power grid, fluctuations in the generation-demand balance are expected to increase. In this context, compensating technologies, notably hydropower reservoir plants, could operate in a stronger peaking scheme. This issue calls for an integrated modeling of the entire power system, including not only hydropower reservoirs, but also all other plants. A novel methodology to study the link between the short-term variability of renewable energies and the subdaily hydrologic alteration, due to hydropower reservoir operations is presented. Grid operations under selected wind power portfolios are simulated using a short-term hydro-thermal coordination tool. The resulting turbined flows by relevant reservoir plants are then compared in terms of the Richard-Baker flashiness index to both the baseline and the natural flow regime. Those are then analyzed in order to: i) detect if there is a significant change in the degree of subdaily hydrologic alteration (SDHA) due to a larger wind penetration, and ii) identify which rivers are most affected. The proposed scheme is applied to Chile's Central Interconnect System (SIC) for scenarios up to 15% of wind energy penetration. Results show a major degree of SDHA under the baseline as compared to the natural regime. As wind power increases, so does the SDHA in two important rivers. This suggests a need for further ecological studies in those rivers, along with an analysis of operational constraints to limit the SDHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\more » $$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without

  15. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  16. DOE/NREL supported wind energy activities in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system,more » also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.« less

  17. Penetration of Solar Wind Driven ULF Waves into the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Murphy, Kyle; Rae, Jonathan; Ozeke, Louis; Milling, David

    2013-04-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The

  18. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  19. Solar wind and high energy particle effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, Jan

    1989-01-01

    The solar wind variability and high energy particle effects in the neutral middle atmosphere are not much known. These factors are important in the high latitude upper mesosphere, lower thermosphere energy budget. They influence temperature, composition (minor constituents of nitric oxide, ozone), circulation (wind system) and airflow. The vertical and latitudinal structures of such effects, mechanisms of downward penetration of energy and questions of energy abundance are largely to be solved. The most important recent finding seems to be the discovery of the role of highly relativistic electrons in the middle atmosphere at L = 3 - 8 (Baker et al., 1987). The solar wind and high energy particle flux variability appear to form a part of the chain of possible Sun-weather (climate) relationships. The importance of such studies in the nineties is emphasized by their role in big international programs STEP and IGBP - Global Change.

  20. Hawaii Solar and Wind Integration Studies | Grid Modernization | NREL

    Science.gov Websites

    Solar Integration Study and Oahu Wind Integration and Transmission Study investigated the effects of high penetrations of renewables on island grids. Hawaii Solar Integration Study The Hawaii Solar Integration Study was a detailed technical examination of the effects of high penetrations of solar and wind

  1. Results of analyses performed on soil adjacent to penetrators emplaced into sediments at McCook, Nebraska, January 1976. [simulated penetration into wind-deposited sediments on Martian plains

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Kyte, F.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    During 1976 several penetrators (full and 0.58 scale) were dropped into a test site McCook, Nebraska. The McCook site was selected because it simulated penetration into wind-deposited sediments (silts and sands) on Martian plains. The physical and chemical modifications found in the sediment after the penetrators' impact are described. Laboratory analyses have shown mineralogical and elemental changes are produced in the sediment next to the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer of glassy material about 75 microns thick. Elemental analysis of a 0-1-mm layer of sediment next to the penetrator revealed increased concentrations for Cr, Fe, Ni, Mo, and reduced concentrations for Mg, Al Si, P, K, and Ca. The Cr, Fe, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the sediment next to the penetrator included the introduction of micron-size grains of alpha iron and several hydrated iron oxide minerals. The newly formed silicate minerals include metastable phases of silica (cristobalite, lechatelierite, and opal). The glassy material was mostly opal which formed when the host minerals (mica, calcite, and clay) decomposed. In summary, contaminants introduced by the penetrator occur up to 2 mm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the sediment, no changes were observed beyond the 2-mm distance. The analyses indicate 0.58-scale penetrators do effectively simulate full-scale testing for soil modification effects.

  2. Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Botterud, Audun

    2015-05-01

    We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less

  3. High Performance Computing for Modeling Wind Farms and Their Impact

    NASA Astrophysics Data System (ADS)

    Mavriplis, D.; Naughton, J. W.; Stoellinger, M. K.

    2016-12-01

    As energy generated by wind penetrates further into our electrical system, modeling of power production, power distribution, and the economic impact of wind-generated electricity is growing in importance. The models used for this work can range in fidelity from simple codes that run on a single computer to those that require high performance computing capabilities. Over the past several years, high fidelity models have been developed and deployed on the NCAR-Wyoming Supercomputing Center's Yellowstone machine. One of the primary modeling efforts focuses on developing the capability to compute the behavior of a wind farm in complex terrain under realistic atmospheric conditions. Fully modeling this system requires the simulation of continental flows to modeling the flow over a wind turbine blade, including down to the blade boundary level, fully 10 orders of magnitude in scale. To accomplish this, the simulations are broken up by scale, with information from the larger scales being passed to the lower scale models. In the code being developed, four scale levels are included: the continental weather scale, the local atmospheric flow in complex terrain, the wind plant scale, and the turbine scale. The current state of the models in the latter three scales will be discussed. These simulations are based on a high-order accurate dynamic overset and adaptive mesh approach, which runs at large scale on the NWSC Yellowstone machine. A second effort on modeling the economic impact of new wind development as well as improvement in wind plant performance and enhancements to the transmission infrastructure will also be discussed.

  4. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Hodge, B. M.; Orwig, K.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather predictionmore » model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.« less

  5. Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power

    NASA Astrophysics Data System (ADS)

    Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun

    2018-05-01

    Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.

  6. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    PubMed

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  7. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Wiser, R.; Sandor, D.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  8. Frequency Response Assessment and Enhancement of the U.S. Power Grids towards Extra-High Photovoltaic Generation Penetrations – an Industry Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; You, Shutang; Tan, Jin

    Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less

  9. Frequency Response Assessment and Enhancement of the U.S. Power Grids towards Extra-High Photovoltaic Generation Penetrations – an Industry Perspective

    DOE PAGES

    Liu, Yong; You, Shutang; Tan, Jin; ...

    2018-01-30

    Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less

  10. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.; Baldwin, S.; DeMeo, E.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  11. The impact of wind power on electricity prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias

    This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less

  12. Transient Stability of the US Western Interconnection with High Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei

    The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less

  13. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  14. Influence of Wind Pressure on the Carbonation of Concrete

    PubMed Central

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-01-01

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462

  15. Influence of Wind Pressure on the Carbonation of Concrete.

    PubMed

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  16. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  17. New Analysis Finds Synergistic Relationship Between High PV Penetration and

    Science.gov Websites

    High PV Penetration and Energy Storage Deployment April 10, 2018 Adding higher penetrations of solar High PV Penetration and Energy Storage Deployment New Analysis Finds Synergistic Relationship Between photovoltaics (PV) to the electric power grid could increase the potential for energy storage to meet peak

  18. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    NASA Technical Reports Server (NTRS)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  19. Power oscillation suppression by robust SMES in power system with large wind power penetration

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  20. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Kroposki, Benjamin D; Du, Ershun

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. Inmore » order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.« less

  1. Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction

    NASA Astrophysics Data System (ADS)

    Lindhorst, S.; Betzler, C.

    2017-12-01

    The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.

  2. A scenario for solar wind penetration of earth's magnetic tail based on ion composition data from the ISEE 1 spacecraft

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1992-01-01

    Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.

  3. Final Technical Report: Distributed Controls for High Penetrations of Renewables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond H.; Neely, Jason C.; Rashkin, Lee J.

    2015-12-01

    The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with themore » optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.« less

  4. NREL, SolarCity Addressing Challenges of High Penetrations of Distributed

    Science.gov Websites

    Companies NREL, SolarCity Addressing Challenges of High Penetrations of Distributed Photovoltaics NREL is , reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics (PV country that distributed solar is not a liability for reliability-and can even be an asset. Project Impact

  5. High-Penetration Photovoltaic Planning Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection tomore » the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.« less

  6. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Ibanez, E.

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  7. Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide

    PubMed Central

    Tisseyre, Céline; Bahembera, Eloi; Dardevet, Lucie; Sabatier, Jean-Marc; Ronjat, Michel; De Waard, Michel

    2013-01-01

    Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine. The peptide appears so specialized in cell penetration that it seems hard to improve by site directed mutagenesis. A comparative analysis of the efficacies of similar peptides isolated from other toxin members of the same family leads to the identification of hadrucalcin’s hydrophobic face as an even better CPP. Protonation of the histidine residue at position 6 renders the cell penetration of MCaUF1-9 pH-sensitive. Greater cell penetration at acidic pH suggests that MCaUF1-9 can be used to specifically target cancer cells in vivo where tumor masses grow in more acidic environments. PMID:24276021

  8. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric J.; Riva, Alberto D.; Hethey, Janos

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on bothmore » existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.« less

  9. High-Obliquity Impact of a Compact Penetrator on a Thin Plate: Penetrator Splitting and Adiabatic Shear

    DTIC Science & Technology

    1998-01-01

    nonideal penetrator on a thin plate at high obliquities. These computations simulated two series of experiments at velocities of 1.5 km/ s and 4.1 km/ s ...3 2. Combined Effects of Obliquity, 0, and Rotation, 4, on Debris Cloud Evolution at 4.1 km/ s and 26 p s ; Impact Velocity Vector Lies in x-z Plane...7 3. Time History of the Penetrator Mass Fraction Exiting the Bottom of the Target at 4.1 km / s

  10. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Kim, Chunghun; Chung, Chung Choo

    This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we proposemore » the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.« less

  11. Penetration boundary of solar cosmic rays into the earth's magnetosphere during magnetically quiet times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biryukov, A.S.; Ivanova, T.A.; Kovrygina, L.M.

    1984-05-01

    Data is used from the satellites Interkosmos-17 and Kosmos-900 to determine penetration boundaries at high latitudes in the earth's magnetosphere. Considered are the results of observations of the penetration boundary of solar cosmic ray (SCR) protons and electrons during an SCR increase on November 22-25, 1977. The position of the SCR penetration boundary during a single increase at practically all values of MLT in quiet conditions is examined. Magnetospheric structure is determined in the region of closed drift shells where the magnetic field is asymmetric. The authors can estimate how the solar wind pressure affects the magnetosphere by using datamore » on the penetration boundaries of solar protons obtained during quiet geomagnetic conditions.« less

  12. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  13. Evaluation of a passive method for determining particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Portnoff, Lee

    2017-12-01

    The risk of workers' exposure to aerosolized particles has increased with the upsurge in the production of engineered nanomaterials. Currently, a whole-body standard test method for measuring particle penetration through protective clothing ensembles is not available. Those available for respirators neglect the most common challenges to ensembles, because they use active vacuum-based filtration, designed to simulate breathing, rather than the positive forces of wind experienced by workers. Thus, a passive method that measures wind-driven particle penetration through ensemble fabric has been developed and evaluated. The apparatus includes a multidomain magnetic passive aerosol sampler housed in a shrouded penetration cell. Performance evaluation was conducted in a recirculation aerosol wind tunnel using paramagnetic Fe 3 O 4 (i.e., iron (II, III) oxide) particles for the challenge aerosol. The particles were collected on a PVC substrate and quantified using a computer-controlled scanning electron microscope. Particle penetration levels were determined by taking the ratio of the particle number collected on the substrate with a fabric (sample) to that without a fabric (control). Results for each fabric obtained by this passive method were compared to previous results from an automated vacuum-based active fractional efficiency tester (TSI 3160), which used sodium chloride particles as the challenge aerosol. Four nonwoven fabrics with a range of thicknesses, porosities, and air permeabilities were evaluated. Smoke tests and flow modeling showed the passive sampler shroud provided smooth (non-turbulent) air flow along the exterior of the sampler, such that disturbance of flow stream lines and distortion of the particle size distribution were reduced. Differences between the active and passive approaches were as high as 5.5-fold for the fabric with the lowest air permeability (0.00067 m/sec-Pa), suggesting the active method overestimated penetration in dense fabrics

  14. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    PubMed

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  15. Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less

  16. Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Bolinger, Mark; Heath, Garvin

    We model scenarios of the U.S. electric sector in which wind generation reaches 10% of end-use electricity demand in 2020, 20% in 2030, and 35% in 2050. As shown in a companion paper, achieving these penetration levels would have significant implications for the wind industry and the broader electric sector. Compared to a baseline that assumes no new wind deployment, under the primary scenario modeled, achieving these penetrations imposes an incremental cost to electricity consumers of less than 1% through 2030. These cost implications, however, should be balanced against the variety of environmental and social implications of such a scenario.more » Relative to a baseline that assumes no new wind deployment, our analysis shows that the high-penetration wind scenario yields potential greenhouse-gas benefits of $85-$1,230 billion in present-value terms, with a central estimate of $400 billion. Air-pollution-related health benefits are estimated at $52-$272 billion, while annual electric-sector water withdrawals and consumption are lower by 15% and 23% in 2050, respectively. We also find that a high-wind-energy future would have implications for the diversity and risk of energy supply, local economic development, and land use and related local impacts on communities and ecosystems; however, these additional impacts may not greatly affect aggregate social welfare owing to their nature, in part, as resource transfers.« less

  17. Assessing the Impacts of Wind Integration in the Western Provinces

    NASA Astrophysics Data System (ADS)

    Sopinka, Amy

    Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.

  18. The Inland Penetration of Atmospheric Rivers over Western North America: A Lagrangian Analysis

    NASA Astrophysics Data System (ADS)

    Rutz, J. J.; Steenburgh, W. J.; Ralph, F. M.

    2014-12-01

    Although atmospheric rivers (ARs) typically weaken following landfall, those that penetrate inland can contribute to heavy precipitation and high-impact weather within the interior of western North America. In this paper, we examine the evolution of ARs over western North America using trajectories released at 950 and 700 hPa within cool-season ARs along the Pacific coast. These trajectories are classified as coastal decaying, inland penetrating, or interior penetrating based on whether they remain within an AR upon reaching selected transects over western North America. Interior-penetrating AR trajectories most frequently make landfall along the Oregon coast, but the greatest fraction of landfalling AR trajectories that eventually penetrate into the interior is found along the Baja Peninsula. In contrast, interior-penetrating trajectories rarely traverse the southern "high" Sierra. At landfall, interior-penetrating trajectories are associated with a more amplified flow pattern, more southwesterly (vs. westerly) flow along the Pacific coast, and larger water vapor transport (qu). The larger initial qu of interior-penetrating trajectories is due primarily to larger initial water vapor (q) and wind speed (u) for those initiated at 950 and 700 hPa, respectively. Inland- and interior-penetrating AR trajectories maintain large qu over the interior due partially to increases in u that offset decreases in q, particularly in the vicinity of topographical barriers. Therefore, synoptic conditions and trajectory pathways favoring larger initial qu at the coast, limited water vapor depletion by orographic precipitation, and increases in u over the interior are keys to differentiating interior-penetrating from coastal-decaying AR trajectories.

  19. Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Jennie; Mai, Trieu; Brinkman, Greg

    The Department of Energy's 2015 Wind Vision study, which analyzed an ambitious scenario where wind power served 35% of U.S. electricity consumption in 2050, showed the potential for wind energy to provide substantial health, environmental, and economic benefits. Using a commercial unit commitment and economic dispatch model, we build on this research by assessing the hourly operational feasibility of a similar high wind future in the Western United States. Our detailed simulations found no hours of unmet load or reserve violations with more than 35% potential wind (and 12% potential solar) available on the system, which highlights the technical possibilitymore » of integrating large amounts of wind energy. However, absent significant changes to the western grid, we find that substantial wind curtailment could be an issue, as it could degrade the potential for wind power to reduce fuel costs and lowering the emission benefits. To assess the value of transmission to mitigate wind curtailment, we model a suite of transmission expansion scenarios. We find that wind curtailment could be reduced by approximately half under a scenario where new transmission is based only on proposed projects. This avoided wind curtailment could lower annual production costs and reduce carbon dioxide emissions substantially. Greater transmission expansion was found to yield further benefits, although the marginal benefits of these new lines were found to decline. Overall, these results suggest that power systems operation can be realized with more than 35% wind penetration, but that transmission expansion is likely to play a vital role.« less

  20. Security, protection, and control of power systems with large-scale wind power penetration

    NASA Astrophysics Data System (ADS)

    Acharya, Naresh

    As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system

  1. Transient Stability and Frequency Response of the Us Western Interconnection Under Conditions of High Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei

    Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of windmore » and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less

  2. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  3. Capacity expansion model of wind power generation based on ELCC

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  4. High coronal structure of high velocity solar wind stream sources

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Krieger, A. S.; Roelof, E. C.; Gold, R. E.

    1977-01-01

    It is shown analytically that the transition from a high-speed stream source to the ambient coronal conditions is quite rapid in longitude in the high corona. This sharp eastern coronal boundary for the solar wind stream sources is strongly suggested by the solar wind 'dwells' which appear in plots of solar wind velocity against constant-radial-velocity-approximation source longitudes. The possibility of a systematic velocity-dependent effect in the constant-radial-velocity approximation, which would cause this boundary to appear sharper than it is, is investigated. A velocity-dependent interplanetary propagation effect or a velocity-dependent 'source altitude' are two possible sources of such a systematic effect. It is shown that, for at least some dwells, significant interplanetary effects are not likely. The variation of the Alfvenic critical radius in solar wind dwells is calculated, showing that the high-velocity stream originates from a significantly lower altitude than the ambient solar wind.

  5. Active Power Control of Waked Wind Farms: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul A; van Wingerden, Jan-Willem; Pao, Lucy

    Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. Themore » effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.« less

  6. Fault Analysis and Detection in Microgrids with High PV Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less

  7. 75 FR 47301 - Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...- 000; EG10-34-000; EG10-34-000; EG10-35-000; EG10-36-000; EG10-37-000; EG10-38-000] Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC; Wessington Wind Energy Center, LLC; Juniper Canyon Wind Power LLC; Loraine Windpark Project, LLC; White Oak Energy LLC; Meadow...

  8. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  9. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  10. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  11. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  12. High temperature co-axial winding transformers

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  13. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  14. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE PAGES

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    2017-12-27

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  15. Are high penetrations of commercial cogeneration good for society?

    NASA Astrophysics Data System (ADS)

    Keen, Jeremy F.; Apt, Jay

    2016-12-01

    Low natural gas prices, market reports and evidence from New York State suggest that the number of commercial combined heat and power (CHP) installations in the United States will increase by 2%-9% annually over the next decade. We investigate how increasing commercial CHP penetrations may affect net emissions, the distribution network, and total system energy costs. We constructed an integrated planning and operations model that maximizes owner profit through sizing and operation of CHP on a realistic distribution feeder in New York. We find that a greater penetration of CHP reduces both total system energy costs and network congestion. Commercial buildings often have low and inconsistent heat loads, which can cause low fuel utilization efficiencies, low CHP rates-of-return and diminishing avoided emissions as CHP penetration increases. In the northeast, without policy intervention, a 5% penetration of small commercially owned CHP would increase CO2 emissions by 2% relative to the bulk power grid. Low emission CHP installations can be encouraged with incentives that promote CHP operation only during times of high heat loads. Time-varying rates, such as time-of-day and seasonal rates, are one option and were shown to reduce customer emissions without reducing profits. In contrast, natural gas rate discounts, a common incentive for industrial CHP in some states, can encourage CHP operation during low heat loads and thus increase emissions.

  16. [Congenital valvular heart disease with high familial penetrance].

    PubMed

    Dattilo, Giuseppe; Lamari, Annalisa; Tulino, Viviana; Scarano, Michele; De Luca, Eleonora; Mutone, Daniela; Busacca, Paolo

    2012-12-01

    Bicuspid valve aortic (BVA) is one of the most common congenital malformations. Only 20% of patients preserves a normal valve function throughout life. There are sporadic and familial forms, the latter to autosomal dominant. We present a case of familiarity of BVA high penetrance. Patient with aortic stenosis by BVA, is the father of two children with BVA.

  17. Marine Air Penetration: The Effect of Synoptic-scale Change on Regional Climate

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ullrich, P. A.

    2016-12-01

    Marine air penetration (MAP) around the California San Francisco Bay Delta region has a pronounced impact on local temperature and air quality, and is highly correlated with inland wind penetration and hence wind power generation. Observational MAP criteria are defined based on the 900hPa across-shore wind speed greater than or equal to 3m/s at the Oakland radiosonde station, and a surface temperature difference greater than or equal to 7 degrees Celsius between two California Irrigation Management Information System (CIMIS) stations at Fresno, CA and Lodi, CA. This choice reflects marine cooling of Lodi, and was found to be highly correlated with inland specific humidity and breeze front activity. The observational MAP criteria were tuned based on small biases from Climate Forecast System Reanalysis (CFSR) to selected MAP days from CFSR, to identify synoptic-scale indicators associated with MAP events. A multivariate logistic regression model was constructed based on the selected five synoptic indicators from CFSR and demonstrated good model performance. Two synoptic-scale patterns were identified and analyzed out of the 32 categories from the regression model, suggesting a strong influence from the off-shore trough and the inland thermal ridge on MAP events. Future projection of MAP events included the 21st century Coupled Model Intercomparison Project Phase 5 (CMIP5), and Variable resolution in the Community Earth System Model (VR-CESM). Both showed no statistically significant trend associated with MAP events through the end of this century under both Representative Concentration Pathways (RCP) 2.6 and RCP 8.5.

  18. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation

  19. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  20. Kansas Wind Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend themore » renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.« less

  1. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    NASA Astrophysics Data System (ADS)

    King, W. R.; Johnson, B. L., III

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.

  2. Neutral escape at Mars induced by the precipitation of high-energy protons and hydrogen atoms of the solar wind origin

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery I.

    2017-04-01

    One of the first surprises of the NASA MAVEN mission was the observation by the SWIA instrument of a tenuous population of protons with solar wind energies travelling anti-sunward near periapsis, at altitudes of 150-250 km (Halekas et al., 2015). While the penetration of solar wind protons to low altitude is not completely unexpected given previous Mars Express results, this population maintains exactly the same velocity as the solar wind observed. From previous studies it was known that some fraction of the solar wind can interact with the extended corona of Mars. By charge exchange with the neutral particles in this corona, some fraction of the incoming solar wind protons can gain an electron and become an energetic neutral hydrogen atom. Once neutral, these particles penetrate through the Martian induced magnetosphere with ease, with free access to the collisional atmosphere/ionosphere. The origin, kinetics and transport of the suprathermal O atoms in the transition region (from thermosphere to exosphere) of the Martian upper atmosphere due to the precipitation of the high-energy protons and hydrogen atoms are discussed. Kinetic energy distribution functions of suprathermal and superthermal (ENA) oxygen atoms formed in the Martian upper atmosphere were calculated using the kinetic Monte Carlo model (Shematovich et al., 2011, Shematovich, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere. These functions allowed us: (a) to estimate the non-thermal escape rates of neutral oxygen from the Martian upper atmosphere, and (b) to compare with available MAVEN measurements of oxygen corona. Induced by precipitation the escape of hot oxygen atoms may become dominant under conditions of extreme solar events - solar flares and coronal mass ejections, - as it was shown by recent observations of the NASA MAVEN spacecraft (Jakosky et al., 2015). This work is supported by the RFBR project and by the Basic Research Program of the Praesidium of

  3. Western Wind and Solar Integration Study Phase 2 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Ibanez, E.

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scopemore » of the study and results.« less

  4. An Analytical Means of Determining Mass Loss from High Velocity Rigid Penetrators based on the Thermodynamic and Mechanical Properties of the Penetrator and Target

    NASA Astrophysics Data System (ADS)

    Foster, Joseph C., Jr.; Jones, S. E.; Rule, William; Toness, Odin

    1999-06-01

    Sub-scale experimentation is commonly used as a cost-effective means of conducting terminal ballistics research. Analytical models of the penetration process focus on calculating the depth of penetration based on target density, target strength represented by the unconfined compressive-strength (f”c), the areal density of the penetrator (W/A), and the impact velocity.1 Forrestal, et. al. have documented the mass loss from the penetrator during the penetration process and employed improved equations of motion.2 Various researchers have investigated the upper limits of rigid body penetration and identified the onset of instabilities.3 In an effort to better understand the physical processes associated with this instability, experimental techniques have been developed to capture the details of the penetrator and target and subject them to microscopic analysis.4 These results have served as motivation to explore new forms for the physics included in the penetration equation as a means of identifying the processes associated with high velocity instability. We have included target shear and nose friction in the formulation of the fundamental load function expressions.5 When the resulting equations of motion are integrated and combined with the thermodynamics indicated by microscopic analysis, methods are identified to calculated penetrator mass loss. A comparison of results with experimental data serves as an indicator of the thermodynamic state variables associated with the quasi-steady state penetrator target interface conditions. 1 Young, C. W. , “Depth Predictions for Earth Penetrating Projectiles,” Journal of Soil Mechanics and Foundations, Division of ASCE, May 1998 pp 803-817 2. M.J. Forrestal, D.J. Frew, S.J. Hanchak, amd Brar, “ Pentration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles,” Inrt. J. Impact Engng. Vol 18, pp. 465-476,1996 3. Andrew J. Piekutowski, Michael J. Forrestal, Kevin L. Poormon, and Thomas L. Warren, “Penetration

  5. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  6. Penetration of Liquid Jets into a High-velocity Air Stream

    NASA Technical Reports Server (NTRS)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  7. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning

    2010-02-01

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability ofmore » power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.« less

  8. High wind warning system for Bordeaux, Wyoming.

    DOT National Transportation Integrated Search

    2010-07-01

    "The state of Wyoming has frequent severe wind conditions, particularly in the southeast corner of the state along Interstate : 80 and Interstate 25. The high winds are problematic in many ways including, interfering with the performance of the : tra...

  9. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  10. Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    You, Dong Gil; Yoon, Hong Yeol; Jeon, Sangmin; Um, Wooram; Son, Sejin; Park, Jae Hyung; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-11-01

    Recently, ultrasound (US)-based drug delivery strategies have received attention to improve enhanced permeation and retention (EPR) effect-based passive targeting efficiency of nanoparticles in vitro and in vivo conditions. Among the US treatment techniques, pulsed-high intensity focused ultrasound (pHIFU) have specialized for improving tissue penetration of various macromolecules and nanoparticles without irreversible tissue damages. In this study, we have demonstrated that pHIFU could be utilized to improve tissue penetration of fluorescent dye-labeled glycol chitosan nanoparticles (FCNPs) in femoral tissue of mice. pHIFU could improve blood flow of the targeted-blood vessel in femoral tissue. In addition, tissue penetration of FCNPs was specifically increased 5.7-, 8- and 9.3-folds than that of non-treated (0 W pHIFU) femoral tissue, when the femoral tissue was treated with 10, 20 and 50 W of pHIFU, respectively. However, tissue penetration of FCNPs was significantly reduced after 3 h post-pHIFU treatment (50 W). Because overdose (50 W) of pHIFU led to irreversible tissue damages, including the edema and chapped red blood cells. These overall results support that pHIFU treatment can enhance the extravasation and tissue penetration of FCNPs as well as induce irreversible tissue damages. We expect that our results can provide advantages to optimize pHIFU-mediated delivery strategy of nanoparticles for further clinical applications.

  11. Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations.

    NASA Astrophysics Data System (ADS)

    Ángel Prósper Fernández, Miguel; Casal, Carlos Otero; Canoura Fernández, Felipe; Miguez-Macho, Gonzalo

    2017-04-01

    Regional meteorological models are becoming a generalized tool for forecasting wind resource, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the production forecast and validation of a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex terrain region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data provided by the management company. Results show that WRF is able to yield good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions.

  12. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  13. Mobile, high-wind, balloon-launching apparatus

    NASA Technical Reports Server (NTRS)

    Rust, W. David; Marshall, Thomas C.

    1989-01-01

    In order to place instruments for measuring meteorological and electrical parameters into thunderstorms, an inexpensive apparatus has been developed which makes it possible to inflate, transport, and launch balloons in high winds. The launching apparatus is a cylinder of bubble plastic that is made by joining the sides of the cylinder together with a velcro rip strip. A balloon is launched by pulling the rip strip rapidly. This allows the balloon to pop upward into the ambient low-level wind and carry its instrumentation aloft. Different-sized launch tubes are constructed to accommodate particular sizes of balloons. Balloons have been launched in winds of about 20 m/s.

  14. Investigation of wind behaviour around high-rise buildings

    NASA Astrophysics Data System (ADS)

    Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil

    2017-09-01

    A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.

  15. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  16. High-quality weather data for grid integration studies

    NASA Astrophysics Data System (ADS)

    Draxl, C.

    2016-12-01

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing

  17. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeker, Rick; Steurer, Mischa; Faruque, MD Omar

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was themore » partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.« less

  18. Superconductor Armature Winding for High Performance Electrical Machines

    DTIC Science & Technology

    2016-12-05

    Vol. 3, pp.489-507 [Kalsi1] S. S. Kalsi, ‘Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator’, IEEE Trans. on...Contract  Number:  N00014-­‐14-­‐1-­‐0272   Contract  Title:  Superconductor  armature   winding  for  high  performance  electrical...an all-superconducting machine. Superconductor armature windings in electrical machines bring many design challenges that need to be addressed en

  19. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  20. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    NASA Astrophysics Data System (ADS)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  1. The interaction of the solar wind with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Axford, W. I.

    1972-01-01

    The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.

  2. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting bymore » Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.« less

  3. Analysis of chaos in high-dimensional wind power system.

    PubMed

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  4. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  5. Impulsive penetration : a viable mechanism for plasma entry across the magnetopause ?

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Echim, Marius; Darrouzet, Fabien; Gunell, Herbert

    Density inhomogeneities in the solar wind may cross the bow shock, and retain an excess earthward momentum in the magnetosheath upon approaching the magnetopause. Also, the bow shock dynamics as well as the behaviour of the magnetopause itself may introduce spatial inhomogeneities in the magnetosheath density and/or flow. Plasma entities with excess momentum may penetrate across the magnetopause, by the impulsive penetration mechanism. This plasma entry mechanism requires the existence of a polarization electric field in the moving blob, that is sustained by charge separation layers in the interfaces at the flanks of the blob. Both direct observation and simulation of plasma entry across the magnetopause following the impulsive penetration mechanism are hard. It is difficult to prove that observed plasma entry is really due to the impulsive penetration mechanism since the required charge separation layers or the resulting polarization electric field are hard to measure directly. Simply assessing the geometry is not easy, although multi-spacecraft missions like Cluster have resolved many of the ambiguities inherent in single-spacecraft measurements. Impulsive penetration is difficult to simulate as it operates on the fluid, the ion, and the electron scales simultaneously. It requires not only a high spatial resolution, but also a high precision to properly represent the charge imbalance in the flank interfaces. We have modelled impulsive penetration with a kinetic model, by simplifying the problem. The fully kinetic model is 3-dimensional in velocity space, but we consider spatial structure only along a single spatial dimension, namely the coordinate transverse to the blob’s direction of motion. We thereby assume that the blob is elongated both along the magnetic field and in the direction of motion. The model is semi-analytic and is able to represent the charge imbalance in the blob edges very well. In a second modelling step, we consider a slow, quasi

  6. WIND MEASUREMENTS WITH HIGH-ENERGY DOPPLER LIDAR

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Kavaya, Michael J.; Barnes, Bruce W.; Beyon, Jeffrey Y.; Petros, Mulugeta; Jirong, Yu; Amzajerdian, Farzin; Slingh, Upendra N.

    2006-01-01

    Coherent lidars at 2-micron wavelengths from holmium or thulium solid-state lasers have been in use to measure wind for applications in meteorology, aircraft wake vortex tracking, and turbulence detection [1,2,3] These field-deployed lidars, however, have generally been of a pulse energy of a few millijoules, limiting their range capability or restricting operation to regions of high aerosol concentration such as the atmospheric boundary layer. Technology improvements in the form of high-energy pulsed lasers, low noise detectors, and high optical quality telescopes are being evaluated to make wind measurements to long ranges or low aerosol concentrations. This research is aimed at developing lidar technology for satellite-based observation of wind on a global scale. The VALIDAR project was initiated to demonstrate a high pulse energy coherent Doppler lidar. VALIDAR gets its name from the concept of validation lidar, in that it can serve as a calibration and validation source for future airborne and spaceborne lidar missions. VALIDAR is housed within a mobile trailer for field measurements.

  7. High-efficiency wind turbine

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  8. Electric power from vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  9. Huntington disease reduced penetrance alleles occur at high frequency in the general population

    PubMed Central

    Kay, Chris; Collins, Jennifer A.; Miedzybrodzka, Zosia; Madore, Steven J.; Gordon, Erynn S.; Gerry, Norman; Davidson, Mark; Slama, Ramy A.

    2016-01-01

    Objective: To directly estimate the frequency and penetrance of CAG repeat alleles associated with Huntington disease (HD) in the general population. Methods: CAG repeat length was evaluated in 7,315 individuals from 3 population-based cohorts from British Columbia, the United States, and Scotland. The frequency of ≥36 CAG alleles was assessed out of a total of 14,630 alleles. The general population frequency of reduced penetrance alleles (36–39 CAG) was compared to the prevalence of patients with HD with genetically confirmed 36–39 CAG from a multisource clinical ascertainment in British Columbia, Canada. The penetrance of 36–38 CAG repeat alleles for HD was estimated for individuals ≥65 years of age and compared against previously reported clinical penetrance estimates. Results: A total of 18 of 7,315 individuals had ≥36 CAG, revealing that approximately 1 in 400 individuals from the general population have an expanded CAG repeat associated with HD (0.246%). Individuals with CAG 36–37 genotypes are the most common (36, 0.096%; 37, 0.082%; 38, 0.027%; 39, 0.000%; ≥40, 0.041%). General population CAG 36–38 penetrance rates are lower than penetrance rates extrapolated from clinical cohorts. Conclusion: HD alleles with a CAG repeat length of 36–38 occur at high frequency in the general population. The infrequent diagnosis of HD at this CAG length is likely due to low penetrance. Another important contributing factor may be reduced ascertainment of HD in those of older age. PMID:27335115

  10. Voltage Impacts of Utility-Scale Distributed Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbinemore » interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.« less

  11. Mid-Atlantic Offshore Wind Interconnection and Transmission (MAOWIT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempton, Willett

    This project has carried out a detailed analysis to evaluate the pros and cons of offshore transmission, a possible method to decrease balance-of-system costs and permitting time identified in the DOE Office Wind Strategic Plan (DOE, 2011). It also addresses questions regarding the adequacy of existing transmission infrastructure and the ability of existing generating resources to provide the necessary Ancillary Services (A/S) support (spinning and contingency reserves) in the ISO territory. This project has completed the tasks identified in the proposal: 1. Evaluation of the offshore wind resource off PJM, then examination of offshore wind penetrations consistent with U.S. Departmentmore » of Energy’s (DOE) targets and with their assumed resource size (DOE, 2011). 2. Comparison of piecemeal radial connections to the Independent System Operator (ISO) with connections via a high-voltage direct current (HVDC) offshore network similar to a team partner. 3. High-resolution examination of power fluctuations at each node due to wind energy variability 4. Analysis of wind power production profiles over the Eastern offshore region of the regional ISO to assess the effectiveness of long-distance, North- South transmission for leveling offshore wind energy output 5. Analysis of how the third and fourth items affect the need for ISO grid upgrades, congestion management, and demand for Ancillary Services (A/S) 6. Analysis of actual historic 36-hr and 24-hr forecasts to solve the unit commitment problem and determine the optimal mix of generators given the need to respond to both wind variability and wind forecasting uncertainties.« less

  12. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M.; Kroposki, B.; Basso, T.

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the Highmore » Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.« less

  13. Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation

    DOE PAGES

    Siohansi, Ramteen

    2010-05-01

    One of the costs associated with integrating wind generation into a power system is the cost of redispatching the system in real-time due to day-ahead wind resource forecast errors. One possible way of reducing these redispatch costs is to introduce demand response in the form of real-time pricing (RTP), which could allow electricity demand to respond to actual real-time wind resource availability using price signals. A day-ahead unit commitment model with day-ahead wind forecasts and a real-time dispatch model with actual wind resource availability is used to estimate system operations in a high wind penetration scenario. System operations are comparedmore » to a perfect foresight benchmark, in which actual wind resource availability is known day-ahead. The results show that wind integration costs with fixed demands can be high, both due to real-time redispatch costs and lost load. It is demonstrated that introducing RTP can reduce redispatch costs and eliminate loss of load events. Finally, social surplus with wind generation and RTP is compared to a system with neither and the results demonstrate that introducing wind and RTP into a market can result in superadditive surplus gains.« less

  14. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  15. Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds

  16. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessarymore » to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.« less

  17. Highly Structured Wind in Vela X-1

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger

    2008-01-01

    We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured wind of the optical companion: when Vela X-1 encounters a cavity in the wind with strongly reduced density, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in density to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the densities in the OB star winds. The same structured wind can give rise to the giant flares when Vela X-1 encounters a dense blob in the wind. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.

  18. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  19. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Kumar, N.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less

  20. Costs for integrating wind into the future ERCOT system with related costs for savings in CO2 emissions.

    PubMed

    Lu, Xi; McElroy, Michael B; Sluzas, Nora A

    2011-04-01

    Wind power can make an important contribution to the goal of reducing emissions of CO2. The major problem relates to the intrinsic variability of the source and the difficulty of reconciling the supply of electricity with demand particularly at high levels of wind penetration. This challenge is explored for the case of the ERCOT system in Texas. Demand for electricity in Texas is projected to increase by approximately 60% by 2030. Considering hourly load data reported for 2006, assuming that the pattern of demand in 2030 should be similar to 2006, and adopting as a business as usual (BAU) reference an assumption that the anticipated additional electricity should be supplied by a combination of coal and gas with prices, discounted to 2007 dollars of $2 and $6 per MMBTU respectively, we conclude that the bus-bar price for electricity would increase by about 1.1 ¢/kWh at a wind penetration level of 30%, by about 3.4 ¢/kWh at a penetration level of 80%. Corresponding costs for reductions in CO2 range from $20/ton to $60/ton. A number of possibilities are discussed that could contribute to a reduction in these costs including the impact of an expanded future fleet of electrically driven vehicles.

  1. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  2. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  3. High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review.

    PubMed

    Vezzalini, Giovanna; Arletti, Rossella; Quartieri, Simona

    2014-06-01

    This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed.

  4. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  5. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    NASA Astrophysics Data System (ADS)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  6. Field and laboratory comparison of PM10 instruments in high winds

    NASA Astrophysics Data System (ADS)

    Sharratt, Brenton; Pi, Huawei

    2018-06-01

    Instruments capable of measuring PM10 (particulate matter ≤10 μm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentrations above eroding soil surfaces was tested during high wind events at field sites in the Columbia Plateau and inside a wind tunnel. Comparisons among the Big Spring Number Eight (BSNE) sampler, DustTrak monitor, E-sampler, High-Volume sampler, and Tapered Element Oscillating Microbalance (TEOM) monitor were made at field sites during nine wind erosion events and inside a wind tunnel at two wind speeds (7 and 12 m s-1) and two ambient PM10 concentrations (2 and 50 mg m-3). PM10 concentrations were similar for the High-Volume sampler and TEOM monitor as well as for the BSNE samplers and DustTrak monitors but higher for the High-Volume sampler and TEOM monitor than the E-sampler during field erosion events. Based upon wind tunnel experiments, the TEOM monitor measured the highest PM10 concentration while the DustTrak monitor typically measured the lowest PM10 concentration as compared with other instruments. In addition, PM10 concentration appeared to lower for all instruments at a wind speed of 12 as compared with 7 m s-1 inside the wind tunnel. Differences in the performance of instruments in measuring PM10 concentration poses risks in comparing PM10 concentration among different instrument types or using multiple instrument types to jointly measure concentrations in the field or laboratory or even the same instrument type subject to different wind speeds.

  7. Analysis methods for wind turbine control and electrical system dynamics

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1995-01-01

    The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.

  8. Western Grid Can Handle High Renewables in Challenging Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-11-01

    Fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  9. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.

  10. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    PubMed

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  11. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    PubMed Central

    Sathiyanarayanan, J. S.; Senthil Kumar, A.

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  12. Use of a grid simulation model for longer-term analysis of wind energy integration

    NASA Astrophysics Data System (ADS)

    Bossanyi, E.

    A simulation model of an electricity generating system is used to study the integration of wind energy onto the system. Most of the system cost savings achieved are due to the savings of fossil fuels, but in the long term additional savings result from re-optimization of the plant mix. Break-even costs are calculated for wind turbines to become economically viable as fossil fuel savers. This allows the optimum economic penetration level for wind turbines of any given cost to be derived. Break-even costs up to reasonably large penetrations appear to be within reach with modern technology. Results are also given with scenarios of increasing fossil fuel prices and increased nuclear capacity.

  13. Predicting Near-surface Winds with WindNinja for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.

    2016-12-01

    WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy

  14. Wind and solar energy curtailment: A review of international experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Lew, Debra; Milligan, Michael

    2016-11-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases. This paper reviews international experience with curtailment of wind and solar energy on bulk power systems in recent years, with a focus on eleven countries in Europe, North America, and Asia. It examines levels of curtailment, the causes of curtailment, curtailment methods and use of market-based dispatch, as well as operational, institutional, and other changes that aremore » being made to reduce renewable energy curtailment.« less

  15. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable tomore » larger-scale conventional turbines.« less

  16. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  17. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  18. A survey of the three-dimensional high Reynolds number transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Takashima, K.; Sawada, H.; Aoki, T.

    1982-01-01

    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.

  19. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  20. High resolution wind measurements for offshore wind energy development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  1. Active Power Control by Wind Power | Grid Modernization | NREL

    Science.gov Websites

    of conventional generators. How this will affect the system at different wind power penetration levels is not well understood. To gain insight, NREL researchers conducted simulations of different

  2. Evidence for solar wind modulation of lightning

    NASA Astrophysics Data System (ADS)

    Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.

    2014-05-01

    The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer

  3. Differences in Femoral Head Penetration Between Highly Cross-Linked Polyethylene Cemented Sockets and Uncemented Liners.

    PubMed

    Morita, Daigo; Seki, Taisuke; Higuchi, Yoshitoshi; Takegami, Yasuhiko; Ishiguro, Naoki

    2017-12-01

    This study aimed at investigating differences in femoral head penetration between highly cross-linked polyethylene (HXLPE) cemented sockets and uncemented liners during 5 years postoperatively. Ninety-six patients (106 hips) with a mean age of 64.4 (range, 35-83) years underwent total hip arthroplasty using a HXLPE cemented socket or liner and were respectively divided into cemented (35 patients [37 hips]) and uncemented (61 patients [69 hips]) groups. Femoral head penetrations were evaluated on both anteroposterior (AP)-view and Lauenstein-view radiographs, and mean polyethylene (PE) wear rates were calculated based on femoral head penetration from 2 to 5 years. Multivariate analyses were performed to assess risk factors for PE wear. At 5 years postoperatively, the cemented and uncemented groups exhibited proximal direction femoral head penetrations of 0.103 mm and 0.124 mm (P = .226) and anterior direction penetrations of 0.090 mm and 0.151 mm (P = .002), respectively. The corresponding mean PE wear rates were 0.004 mm/y and 0.009 mm/y in the AP-view (P = .286) and 0.005 mm/y and 0.012 mm/y in the Lauenstein-view (P = .168), respectively. Left-side operation and high activity were independent risk factors for PE wear on AP-view. When HXLPE was used, all mean PE wear rates were very low and those of cemented sockets and uncemented liners were very similar. PE particle theory suggests that the occurrence of osteolysis and related aseptic loosening might consequently decrease. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. High-pressure-induced water penetration into 3-­isopropylmalate dehydrogenase

    PubMed Central

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH. PMID:22349232

  5. Simulation Study on Missile Penetration Based on LS - DYNA

    NASA Astrophysics Data System (ADS)

    Tang, Jue; Sun, Xinli

    2017-12-01

    Penetrating the shell armor is an effective means of destroying hard targets with multiple layers of protection. The penetration process is a high-speed impact dynamics research category, involving high pressure, high temperature, high speed and internal material damage, including plugging, penetration, spalling, caving, splashing and other complex forms, therefore, Analysis is one of the difficulties in the study of impact dynamics. In this paper, the Lagrang algorithm and the SPH algorithm are used to analyze the penetrating steel plate, and the penetration model of the rocket penetrating the steel plate, the failure mode of the steel plate and the missile and the advantages and disadvantages of Lagrang algorithm and SPH algorithm in the simulation of high-speed collision problem are analyzed and compared, which provides a reference for the study of simulation collision problem.

  6. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    NASA Astrophysics Data System (ADS)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  7. Bi-Level Arbitrage Potential Evaluation for Grid-Scale Energy Storage Considering Wind Power and LMP Smoothing Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Hantao; Li, Fangxing; Fang, Xin

    Our paper deals with extended-term energy storage (ES) arbitrage problems to maximize the annual revenue in deregulated power systems with high penetration wind power. The conventional ES arbitrage model takes the locational marginal prices (LMP) as an input and is unable to account for the impacts of ES operations on system LMPs. This paper proposes a bi-level ES arbitrage model, where the upper level maximizes the ES arbitrage revenue and the lower level simulates the market clearing process considering wind power and ES. The bi-level model is formulated as a mathematical program with equilibrium constraints (MPEC) and then recast intomore » a mixed-integer linear programming (MILP) using strong duality theory. Wind power fluctuations are characterized by the GARCH forecast model and the forecast error is modeled by forecast-bin based Beta distributions. Case studies are performed on a modified PJM 5-bus system and an IEEE 118-bus system with a weekly time horizon over an annual term to show the validity of the proposed bi-level model. The results from the conventional model and the bi-level model are compared under different ES power and energy ratings, and also various load and wind penetration levels.« less

  8. Bi-Level Arbitrage Potential Evaluation for Grid-Scale Energy Storage Considering Wind Power and LMP Smoothing Effect

    DOE PAGES

    Cui, Hantao; Li, Fangxing; Fang, Xin; ...

    2017-10-04

    Our paper deals with extended-term energy storage (ES) arbitrage problems to maximize the annual revenue in deregulated power systems with high penetration wind power. The conventional ES arbitrage model takes the locational marginal prices (LMP) as an input and is unable to account for the impacts of ES operations on system LMPs. This paper proposes a bi-level ES arbitrage model, where the upper level maximizes the ES arbitrage revenue and the lower level simulates the market clearing process considering wind power and ES. The bi-level model is formulated as a mathematical program with equilibrium constraints (MPEC) and then recast intomore » a mixed-integer linear programming (MILP) using strong duality theory. Wind power fluctuations are characterized by the GARCH forecast model and the forecast error is modeled by forecast-bin based Beta distributions. Case studies are performed on a modified PJM 5-bus system and an IEEE 118-bus system with a weekly time horizon over an annual term to show the validity of the proposed bi-level model. The results from the conventional model and the bi-level model are compared under different ES power and energy ratings, and also various load and wind penetration levels.« less

  9. Forest trees filter chronic wind-signals to acclimate to high winds.

    PubMed

    Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem

    2016-05-01

    Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Penetrating bladder trauma: a high risk factor for associated rectal injury.

    PubMed

    Pereira, B M; Reis, L O; Calderan, T R; de Campos, C C; Fraga, G P

    2014-01-01

    Demographics and mechanisms were analyzed in prospectively maintained level one trauma center database 1990-2012. Among 2,693 trauma laparotomies, 113 (4.1%) presented bladder lesions; 51.3% with penetrating injuries (n = 58); 41.3% (n = 24) with rectal injuries, males corresponding to 95.8%, mean age 29.8 years; 79.1% with gunshot wounds and 20.9% with impalement; 91.6% arriving the emergence room awake (Glasgow 14-15), hemodynamically stable (average systolic blood pressure 119.5 mmHg); 95.8% with macroscopic hematuria; and 100% with penetrating stigmata. Physical exam was not sensitive for rectal injuries, showing only 25% positivity in patients. While 60% of intraperitoneal bladder injuries were surgically repaired, extraperitoneal ones were mainly repaired using Foley catheter alone (87.6%). Rectal injuries, intraperitoneal in 66.6% of the cases and AAST-OIS grade II in 45.8%, were treated with primary suture plus protective colostomy; 8.3% were sigmoid injuries, and 70.8% of all injuries had a minimum stool spillage. Mean injury severity score was 19; mean length of stay 10 days; 20% of complications with no death. Concomitant rectal injuries were not a determinant prognosis factor. Penetrating bladder injuries are highly associated with rectal injuries (41.3%). Heme-negative rectal examination should not preclude proctoscopy and eventually rectal surgical exploration (only 25% sensitivity).

  11. Wind load effects on high rise buildings in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Nizamani, Z.; Thang, K. C.; Haider, B.; Shariff, M.

    2018-04-01

    Wind is a randomly varying dynamic phenomenon composed of a multitude of eddies of varying sizes and rotational characteristics along a general stream of air moving relative to the ground. These eddies give wind its gustiness, creating fluctuation and results in a complex flow characteristics. The wind vector at any point can be regarded as the sum of mean wind vector and the fluctuation components. These components not only vary with height but also dependant on the approach terrain and topography. Prevailing wind exerts pressure onto the structural surfaces. The effects of wind pressure in the form of shear and bending moments are found to be a major problem in structural failure. This study aims to study the effects of wind load on a fifteen-storey high rise building using EN 1991-1-4 code and MS1553:2002. The simulation results showed that by increasing the wind speed, the storey resultant forces, namely storey shear and storey moment increases significantly. Furthermore, simulation results according to EN 1991-1-4 yield higher values compared to the simulation results according to MS1553:2002.

  12. Comparison of NOAA/NMC stratospheric wind analyses with UARS high resolution Doppler Imager wind measurements

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Hays, P. B.; Abreu, V.; Long, C.; Kann, D.

    1994-01-01

    The NOAA National Weather Service currently derives global stratospheric wind analyses via several procedures. The first is the operational data assimilation system that extends from the surface up to about 50 mb and is in process of being tested to about 10 mb. In addition, a balanced wind is determined from the available Climate Analysis Center stratospheric height analyses that encompass the 70-0.4 mb region. The High Resolution Doppler Imager (HRDI) recently launched as a member of the Upper Atmosphere Research Satellite (UARS) is the first satellite instrument designed to measure winds in this stratospheric region and, thus, provide a basic evaluation of the NMC derived products. The HRDI accomplishes this by utilizing a triple-etalon Fabry-Perot interferometer that allows one to measure the Doppler shift of O2 absorption and emission features of the atmosphere, from which the wind field can be determined.

  13. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  14. Contactless system of excitation current measurement in the windings with high inductance

    NASA Astrophysics Data System (ADS)

    Chubraeva, L.; Evseev, E.; Timofeev, S.

    2018-02-01

    The results of development, manufacturing and testing of a special contactless maintenance-free excitation current measurement system intended for the windings with high inductance, typical for superconductive alternators, are presented. The system was assembled on the brushless exciter is intended for 1 MVA wind-power generator with the winding, manufactured of high-temperature superconductors (HTSC). The alternator with brushless exciter were manufactured and successfully tested.

  15. Update on the Management of High-Risk Penetrating Keratoplasty

    PubMed Central

    Jabbehdari, Sayena; Rafii, Alireza Baradaran; Yazdanpanah, Ghasem; Hamrah, Pedram; Holland, Edward J.; Djalilian, Ali R

    2017-01-01

    Purpose of review In this article, we review the indications and latest management of high-risk penetrating keratoplasty. Recent findings Despite the immune-privilege status of the cornea, immune-mediated graft rejection still remains the leading cause of corneal graft failure. This is particularly a problem in the high-risk graft recipients, namely patients with previous graft failure due to rejection and those with inflamed and vascularized corneal beds. A number of strategies including both local and systemic immunosuppression are currently used to increase the success rate of high-risk corneal grafts. Moreover, in cases of limbal stem cell deficiency, limbal stem cells transplantation is employed. Summary Corticosteroids are still the top medication for prevention and treatment in cases of corneal graft rejection. Single and combined administration of immunosuppressive agents e.g. tacrolimus, cyclosporine and mycophenolate are promising adjunctive therapies for prolonging graft survival. In the future, cellular and molecular therapies should allow us to achieve immunologic tolerance even in high-risk grafts. PMID:28959505

  16. Update on the Management of High-Risk Penetrating Keratoplasty.

    PubMed

    Jabbehdari, Sayena; Rafii, Alireza Baradaran; Yazdanpanah, Ghasem; Hamrah, Pedram; Holland, Edward J; Djalilian, Ali R

    2017-03-01

    In this article, we review the indications and latest management of high-risk penetrating keratoplasty. Despite the immune-privilege status of the cornea, immune-mediated graft rejection still remains the leading cause of corneal graft failure. This is particularly a problem in the high-risk graft recipients, namely patients with previous graft failure due to rejection and those with inflamed and vascularized corneal beds. A number of strategies including both local and systemic immunosuppression are currently used to increase the success rate of high-risk corneal grafts. Moreover, in cases of limbal stem cell deficiency, limbal stem cells transplantation is employed. Corticosteroids are still the top medication for prevention and treatment in cases of corneal graft rejection. Single and combined administration of immunosuppressive agents e.g. tacrolimus, cyclosporine and mycophenolate are promising adjunctive therapies for prolonging graft survival. In the future, cellular and molecular therapies should allow us to achieve immunologic tolerance even in high-risk grafts.

  17. Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, G. A.; Kalinin, M. S.; Kvashnin, A. N.; Krainev, M. B.; Makhmutov, V. S.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Stozhkov, Yu. I.; Balabin, Yu. V.; Gvozdevsky, B. B.

    2017-03-01

    From 1957 up to the present time, the Lebedev Physical Institute (LPI) has performed regular monitoring of ionizing radiation in the Earth's atmosphere. There are cases when the X-ray radiation generated by energetic magnetospheric electrons penetrates the atmosphere and is observed at polar latitudes. The vast majority of these events occurs against the background of high-velocity solar wind streams, while magnetospheric perturbations related to interplanetary coronal mass ejections (ICMEs) are noneffective for precipitation. It is shown in the paper that ICMEs do not cause acceleration of a sufficient amount of electrons in the magnetosphere. Favorable conditions for acceleration and subsequent scattering of electrons into the loss cone are created by magnetic storms with an extended recovery phase and with sufficiently frequent periods of negative Bz component of the interplanetary magnetic field (IMF). Such geomagnetic perturbations are typical for storms associated with high-velocity solar wind streams.

  18. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.

    PubMed

    Lu, Xi; McElroy, Michael B; Chen, Xinyu; Kang, Chongqing

    2014-12-16

    Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.

  19. High-Penetration PV Integration Handbook for Distribution Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seguin, Rich; Woyak, Jeremy; Costyk, David

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’smore » service territory through a program approved by the California Public Utility Commission (CPUC).« less

  20. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  1. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  2. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.

  3. High Resolution Wind Direction and Speed Information for Support of Fire Operations

    Treesearch

    B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton

    2006-01-01

    Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed “gridded wind” is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...

  4. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  5. Validation of High Wind Retrievals from the Cyclone Global Navigation Satellite System (CYGNSS) Mission

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the

  6. High-speed photography and stress-gauge studies of the impact and penetration of plates by rods

    NASA Astrophysics Data System (ADS)

    Bourne, Neil K.; Forde, Lucy C.; Field, John E.

    1997-05-01

    There has been much study of the penetration of semi- infinite and finite thickness targets by long rods at normal incidence. The effects of oblique impact have received relatively little attention and techniques of modeling are thus less developed. It was decided to conduct an experimental investigation of the effects of rod penetration at various angles of impact at zero yaw. The rods were mounted in a reverse ballistic configuration so that their response could be quantified through the impact. Scale copper, mild steel and tungsten alloy rods with hemispherical ends were suspended at the end of the barrel of a 50 mm gas gun at the University of Cambridge. The rods were instrumented with embedded manganin piezoresistive stress gauges. Annealed aluminum, duraluminum and rolled homogeneous armor plates of varying thickness and obliquity were fired at the rods at one of two velocities. The impacts were backlit and photographed with an Ultranac FS501 programmable high-speed camera operated in framing mode. The gauges were monitored using a 2 GH s-1 storage oscilloscope. Rods and plates were recovered after the impact for microstructural examination. Additionally, penetration of borosilicate glass targets was investigated using high-speed photography and a localized Xe flash source and schlieren optics. Additional data was obtained by the use of flash X-ray. Waves and damage were visualized in the glass. High-speed sequences and gauge records are presented showing the mechanisms of penetration and exit seen during impact.

  7. Drag Corrections in High-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1947-01-01

    In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.

  8. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out undermore » axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.« less

  9. Miniaturization technology for Lunar penetrator mission

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Saito, H.; Orii, T.; Masumoto, Y.

    1993-10-01

    The ISAS will launch Lunar-A in 1997 to study internal structure of the moon by seismometric measurements. A mother spacecraft which holds three penetrators will be launched by newly developed M-V rocket. Three penetrators will be released from the mother spacecraft orbiting around the moon. These penetrators make hard landing on the moon with shock of about 10,000 G and will penetrate about 1-3 m in depth into the soil. Three axis seismometer, heat flow meter, data handling subsystem, communications subsystem, power subsystem are installed in a penetrator. These penetrators will be placed at three different sites on the moon and expected to operate more than one year using super lithium primary batteries and will send data to the earth via the mother spacecraft. Weight of the penetrator is limited within 13 kg because of the rocket capability. To achieve the mission, it is absolutely necessary to develop miniaturizing technology in the size and power reduction for penetrator equipment in addition to special assembly technique to withstand extremely high-G environment.

  10. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  11. Revised ocean backscatter models at C and Ku band under high-wind conditions

    NASA Astrophysics Data System (ADS)

    Donnelly, William J.; Carswell, James R.; McIntosh, Robert E.; Chang, Paul S.; Wilkerson, John; Marks, Frank; Black, Peter G.

    1999-05-01

    A series of airborne scatterometer experiments designed to collect C and Ku band ocean backscatter data in regions of high ocean surface winds has recently been completed. More than 100 hours of data were collected using the University of Massachusetts C and Ku band scatterometers, CSCAT and KUSCAT. These instruments measure the full azimuthal normalized radar cross section (NRCS) of a common surface area of the ocean simultaneously at four incidence angles. Our results demonstrate limitations of the current empirical models, C band geophysical model function 4 (CMOD4), SeaSat scatterometer 2 (SASS 2), and NASA scatterometer 1 (NSCAT) 1, that relate ocean backscatter to the near-surface wind at high wind speeds. The discussion focuses on winds in excess of 15 m s-1 in clear atmospheric conditions. The scatterometer data are collocated with measurements from ocean data buoys and Global Positioning System dropsondes, and a Fourier analysis is performed as a function of wind regime. A three-term Fourier series is fit to the backscatter data, and a revised set of coefficients is tabulated. These revised models, CMOD4HW and KUSCAT 1, are the basis for a discussion of the NRCS at high wind speeds. Our scatterometer data show a clear overprediction of the derived NRCS response to high winds based on the CMOD4, SASS 2, and NSCAT 1 models. Furthermore, saturation of the NRCS response begins to occur above 15 m s-1. Sensitivity of the upwind and crosswind response is discussed with implications toward high wind speed retrieval.

  12. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    NASA Astrophysics Data System (ADS)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  13. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  14. The impact of a large penetration of intermittent sources on the power system operation and planning

    NASA Astrophysics Data System (ADS)

    Ausin, Juan Carlos

    This research investigated the impact on the power system of a large penetration of intermittent renewable sources, mainly wind and photovoltaic generation. Currently, electrical utilities deal with wind and PV plants as if they were sources of negative demand, that is to say, they have no control over the power output produced. In this way, the grid absorbs all the power fluctuation as if it were coming from a common load. With the level of wind penetration growing so quickly, there is growing concern amongst the utilities and the grid operators, as they will have to deal with a much higher level of fluctuation. In the same way, the potential cost reduction of PV technologies suggests that a similar development may be expected for solar production in the mid term. The first part of the research was focused on the issues that affect utility planning and reinforcement decision making. Although DG is located mainly on the distribution network, a large penetration may alter the flows, not only on the distribution lines, but also on the transmission system and through the transmission - distribution interfaces. The optimal capacity and production costs for the UK transmission network have been calculated for several combinations of load profiles and typical wind/PV output scenarios. A full economic analysis is developed, showing the benefits and disadvantages that a large penetration of these distributed generators may have on transmission system operator reinforcement strategies. Closely related to planning factors are institutional, revelatory, and economic considerations, such as transmission pricing, which may hamper the integration of renewable energy technologies into the electric utility industry. The second part of the research related to the impact of intermittent renewable energy technologies on the second by second, minute by minute, and half-hour by half-hour operations of power systems. If a large integration of these new generators partially replaces the

  15. Wind Resource Assessment | Wind | NREL

    Science.gov Websites

    Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can

  16. Wind offering in energy and reserve markets

    NASA Astrophysics Data System (ADS)

    Soares, T.; Pinson, P.; Morais, H.

    2016-09-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

  17. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  18. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  19. Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection

    DOE PAGES

    You, Shutang; Kou, Gefei; Liu, Yong; ...

    2017-03-31

    Our study explores the impact of high-photovoltaic (PV) penetration on the inter-area oscillation modes of large-scale power grids. A series of dynamic models with various PV penetration levels are developed based on a detailed model representing the U.S. Eastern Interconnection (EI). Transient simulations are performed to investigate the change of inter-area oscillation modes with PV penetration. The impact of PV control strategies and parameter settings on inter-area oscillations is studied. This paper finds that as PV increases, the damping of the dominant oscillation mode decreases monotonically. We also observed that the mode shape varies with the PV control strategy andmore » new oscillation modes may emerge under inappropriate parameter settings in PV plant controls.« less

  20. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F.

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-levelmore » radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.« less

  1. Conducting experimental investigations of wind influence on high-rise constructions

    NASA Astrophysics Data System (ADS)

    Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.

    2018-03-01

    The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.

  2. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  3. Inertial Response of Wind Power Plants: A Comparison of Frequency-Based Inertial Control and Stepwise Inertial Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Wang, Jianhui

    The frequency regulation capability of a wind power plant plays an important role in enhancing frequency reliability especially in an isolated power system with high wind power penetration levels. A comparison of two types of inertial control methods, namely frequency-based inertial control (FBIC) and stepwise inertial control (SIC), is presented in this paper. Comprehensive case studies are carried out to reveal features of the different inertial control methods, simulated in a modified Western System Coordination Council (WSCC) nine-bus power grid using real-time digital simulator (RTDS) platform. The simulation results provide an insight into the inertial control methods under various scenarios.

  4. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems

    PubMed Central

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  5. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.

    PubMed

    Brunelli, Davide

    2016-03-04

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions.

  6. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    PubMed Central

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  7. The effect of HMO penetration on physician retirement.

    PubMed

    Kletke, P R; Polsky, D; Wozniak, G D; Escarce, J J

    2000-12-01

    To examine the effect of HMO penetration on physician retirement. We linked together historical data from the Physician Masterfile of the American Medical Association for successive years to track changes in physicians' activity status between 1980 and 1997. We used a multivariate discrete-time survival model to examine how the probability of physician retirement was affected by the level of HMO penetration in the physician's market area, controlling for other physician and market characteristics. The study population included all active allopathic patient-care physicians in the United States who reached age 55 between the years of 1980 and 1996. The main outcome measure was physician retirements as reported on the Physician Masterfile. HMO penetration had a statistically significant positive effect on the retirement probabilities of generalists and medical/surgical specialists, but it s effect on hospital-based specialists and psychiatrists was not significant . For generalists regression-adjusted retirement probabilities were roughly 13 percent greater in high-penetration markets (HMO penetration of 45 percent ) than in low-penetration markets (HMO penetration of 5 percent ). For medical/surgical specialist s regression-adjusted retirement probabilities were roughly 17 percent greater in high-penetration markets than in low-penetration markets. Our findings suggest that many older physicians have found it preferable to retire rather than adapt their practices to an environment with a high degree of managed care penetration . Because the number of physicians entering the older age categories will increase rapidly over the next 20 years, the growth of managed care and other influences on physician retirement will play an increasingly important role in determining the size of the physician workforce.

  8. Technical, economic and legal aspects of wind energy utilization

    NASA Astrophysics Data System (ADS)

    Obermair, G. M.; Jarass, L.

    Potentially problematical areas of the implementation of wind turbines for electricity production in West Germany are identified and briefly discussed. Variations in wind generator output due to source variability may cause power regulation difficulties in the grid and also raise uncertainties in utility capacity planning for new construction. Catastrophic machine component failures, such as a thrown blade, are hazardous to life and property, while lulls in the resource can cause power regulation capabilities only when grid penetration has reached significant levels. Economically, the lack of actual data from large scale wind projects is cited as a barrier to accurate cost comparisons of wind-derived power relative to other generating sources, although breakeven costs for wind power have been found to be $2000/kW installed capacity, i.e., a marginal cost of $0.10/kW.

  9. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source

  10. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conductmore » simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.« less

  11. A global wind resource atlas including high-resolution terrain effects

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Badger, Jake; Olsen, Bjarke; Davis, Neil; Larsen, Xiaoli; Badger, Merete

    2015-04-01

    Currently no accurate global wind resource dataset is available to fill the needs of policy makers and strategic energy planners. Evaluating wind resources directly from coarse resolution reanalysis datasets underestimate the true wind energy resource, as the small-scale spatial variability of winds is missing. This missing variability can account for a large part of the local wind resource. Crucially, it is the windiest sites that suffer the largest wind resource errors: in simple terrain the windiest sites may be underestimated by 25%, in complex terrain the underestimate can be as large as 100%. The small-scale spatial variability of winds can be modelled using novel statistical methods and by application of established microscale models within WAsP developed at DTU Wind Energy. We present the framework for a single global methodology, which is relative fast and economical to complete. The method employs reanalysis datasets, which are downscaled to high-resolution wind resource datasets via a so-called generalization step, and microscale modelling using WAsP. This method will create the first global wind atlas (GWA) that covers all land areas (except Antarctica) and 30 km coastal zone over water. Verification of the GWA estimates will be done at carefully selected test regions, against verified estimates from mesoscale modelling and satellite synthetic aperture radar (SAR). This verification exercise will also help in the estimation of the uncertainty of the new wind climate dataset. Uncertainty will be assessed as a function of spatial aggregation. It is expected that the uncertainty at verification sites will be larger than that of dedicated assessments, but the uncertainty will be reduced at levels of aggregation appropriate for energy planning, and importantly much improved relative to what is used today. In this presentation we discuss the methodology used, which includes the generalization of wind climatologies, and the differences in local and spatially

  12. Wind to Hydrogen in California: Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  13. ON HIGHLY CLUMPED MAGNETIC WIND MODELS FOR COOL EVOLVED STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, G. M.

    2010-09-10

    Recently, it has been proposed that the winds of non-pulsating and non-dusty K and M giants and supergiants may be driven by some form of magnetic pressure acting on highly clumped wind material. While many researchers believe that magnetic processes are responsible for cool evolved stellar winds, existing MHD and Alfven wave-driven wind models have magnetic fields that are essentially radial and tied to the photosphere. The clumped magnetic wind scenario is quite different in that the magnetic flux is also being carried away from the star with the wind. We test this clumped wind hypothesis by computing continuum radiomore » fluxes from the {zeta} Aur semiempirical model of Baade et al., which is based on wind-scattered line profiles. The radio continuum opacity is proportional to the electron density squared, while the line scattering opacity is proportional to the gas density. This difference in proportionality provides a test for the presence of large clumping factors. We derive the radial distribution of clump factors (CFs) for {zeta} Aur by comparing the nonthermal pressures required to produce the semiempirical velocity distribution with the expected thermal pressures. The CFs are {approx}5 throughout the sub-sonic inner wind region and then decline outward. These implied clumping factors lead to excess radio emission at 2.0 cm, while at 6.2 cm it improves agreement with the smooth unclumped model. Smaller clumping factors of {approx}2 lead to better overall agreement but also increase the discrepancy at 2 cm. These results do not support the magnetic clumped wind hypothesis and instead suggest that inherent uncertainties in the underlying semiempirical model probably dominate uncertainties in predicted radio fluxes. However, new ultraviolet line and radio continuum observations are needed to test the new generations of inhomogeneous magnetohydrodynamic wind models.« less

  14. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  15. A probabilistic neural network based approach for predicting the output power of wind turbines

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Sajad

    2017-03-01

    Finding the authentic predicting tools of eliminating the uncertainty of wind speed forecasts is highly required while wind power sources are strongly penetrating. Recently, traditional predicting models of generating point forecasts have no longer been trustee. Thus, the present paper aims at utilising the concept of prediction intervals (PIs) to assess the uncertainty of wind power generation in power systems. Besides, this paper uses a newly introduced non-parametric approach called lower upper bound estimation (LUBE) to build the PIs since the forecasting errors are unable to be modelled properly by applying distribution probability functions. In the present proposed LUBE method, a PI combination-based fuzzy framework is used to overcome the performance instability of neutral networks (NNs) used in LUBE. In comparison to other methods, this formulation more suitably has satisfied the PI coverage and PI normalised average width (PINAW). Since this non-linear problem has a high complexity, a new heuristic-based optimisation algorithm comprising a novel modification is introduced to solve the aforesaid problems. Based on data sets taken from a wind farm in Australia, the feasibility and satisfying performance of the suggested method have been investigated.

  16. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    NASA Astrophysics Data System (ADS)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  17. Aerosol penetration through a model transport system: Comparison of theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, A.R.; Wong, F.S.; Anand, N.K.

    1991-09-01

    Numerical predictions were made of aerosol penetration through a model transport system. A physical model of the system was constructed and tested in an aerosol wind tunnel to obtain comparative data. The system was 26.6 mm in diameter and consisted of an inlet and three straight sections (oriented horizontally, vertically, and at 45{degree}). Particle sizes covered a range in which losses were primarily caused by inertial and gravitational effects (3-25 {mu}m aerodynamic equivalent diameter (AED)). Tests were conducted at two flow rates (70 and 130 l/min) and two inlet orientations (parallel and perpendicular to the free stream). Wind speed wasmore » 3 m/s for all test cases. The cut points for aerosol penetration through the experimental model vis-a-vis the numerical results are as follows: At a flow rate of 70 l/min with the inlet at 0{degree}, the experimentally observed cut point was 16.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED. At 130 l/min and 0{degree}, the experimental cut point was 12.8 {mu}m AED as compared with a numerically value of 13.7 {mu}m AED. At 70l/min and a 90{degree}, the experimental cut point was 12.0 {mu}m AED while the numerically calculated value was 11.1 {mu}m AED. Slopes of the experimental penetration curves are somewhat steeper than the numerically predicted counterparts.« less

  18. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  19. Greening the Grid: Solar and Wind Grid Integration Study for the Luzon-Visayas System of the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, Clayton P.; Katz, Jessica R.; Cochran, Jaquelin M.

    The Republic of the Philippines is home to abundant solar, wind, and other renewable energy (RE) resources that contribute to the national government's vision to ensure sustainable, secure, sufficient, accessible, and affordable energy. Because solar and wind resources are variable and uncertain, significant generation from these resources necessitates an evolution in power system planning and operation. To support Philippine power sector planners in evaluating the impacts and opportunities associated with achieving high levels of variable RE penetration, the Department of Energy of the Philippines (DOE) and the United States Agency for International Development (USAID) have spearheaded this study along withmore » a group of modeling representatives from across the Philippine electricity industry, which seeks to characterize the operational impacts of reaching high solar and wind targets in the Philippine power system, with a specific focus on the integrated Luzon-Visayas grids.« less

  20. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  1. Study of dispersed small wind systems interconnected with a utility distribution system

    NASA Astrophysics Data System (ADS)

    Curtice, D.; Patton, J.; Bohn, J.; Sechan, N.

    1980-03-01

    Operating problems for various penetrations of small wind systems connected to the distribution system on a utility are defined. Protection equipment, safety hazards, feeder voltage regulation, line losses, and voltage flicker problems are studied, assuming different small wind systems connected to an existing distribution system. To identify hardware deficiencies, possible solutions provided by off-the-shelf hardware and equipment are assessed. Results of the study indicate that existing techniques are inadequate for detecting isolated operation of a small wind system. Potential safety hazards posed by small wind systems are adequately handled by present work procedures although these procedures require a disconnect device at synchronous generator and self commutated inverter small wind systems.

  2. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    NASA Astrophysics Data System (ADS)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by

  3. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  4. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    PubMed

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-06-01

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  5. Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu

    Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economicmore » dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.« less

  6. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  7. Quantification of nanowire penetration into living cells

    NASA Astrophysics Data System (ADS)

    Xu, Alexander M.; Aalipour, Amin; Leal-Ortiz, Sergio; Mekhdjian, Armen H.; Xie, Xi; Dunn, Alexander R.; Garner, Craig C.; Melosh, Nicholas A.

    2014-04-01

    High-aspect ratio nanostructures such as nanowires and nanotubes are a powerful new tool for accessing the cell interior for delivery and sensing. Controlling and optimizing cellular access is a critical challenge for this new technology, yet even the most basic aspect of this process, whether these structures directly penetrate the cell membrane, is still unknown. Here we report the first quantification of hollow nanowires—nanostraws—that directly penetrate the membrane by observing dynamic ion delivery from each 100-nm diameter nanostraw. We discover that penetration is a rare event: 7.1±2.7% of the nanostraws penetrate the cell to provide cytosolic access for an extended period for an average of 10.7±5.8 penetrations per cell. Using time-resolved delivery, the kinetics of the first penetration event are shown to be adhesion dependent and coincident with recruitment of focal adhesion-associated proteins. These measurements provide a quantitative basis for understanding nanowire-cell interactions, and a means for rapidly assessing membrane penetration.

  8. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2012-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load and, separately, electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. The effects of aggregating electric load alone -- including generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs -- were calculated for various groupings of FERC regions using 2006 data. Transmission costs outweighed cost savings due to aggregation in nearly all cases. East-west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC regions resulted in increased costs, both due to limited existing transmission capacity. Scenarios consisting of smaller aggregation groupings had the lowest overall cost. This analysis found no economic case for further aggregation of load alone within the U.S., except possibly in the West and Northwest. If aggregation of electric load is desired, then small, regional consolidations yield the lowest overall system cost. Next, the effects of aggregating electric load together with renewable electricity generation are being quantified through the development and use of an optimization tool in AMPL (A Mathematical Programming Language). This deterministic

  9. Laboratory studies on low-energy electron penetration depths into amorphous ice - consequence to astrobiology on icy surfaces

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Li, I.; Lignell, A. A.

    2009-12-01

    Penetration of electrons through icy surfaces plays an important role in radiation processing of solar system icy bodies. However, to date, there is no quantitative data available on the penetration depths of electrons through cryogenic water-ices. Penetration of high-energy incident electrons also results in the in-situ formation of secondary low-energy electrons, such as on the surface of Europa (Herring-Captain et al., 2005; Johnson et al., 2004). Low-energy electrons can also be produced through photoionization process such as on comet surfaces, or through bombardment by solar wind on icy surfaces (Bodewits et al., 2004). Present models use the laboratory penetration data of high-energy (>10 keV) electrons through silicon as a proxy for the ice (Cooper et al., 2001), normalized by the density of the medium. So far no laboratory studies have been conducted that deal with the penetration of electrons through amorphous or crystalline ices. In order to address this issue, we adopted a new experimental strategy by using aromatic molecules as probes. To begin with, we carried out systematic studies on the penetration depths of low-energy electrons (5 eV - 2 keV) through amorphous ice films of defined thickness at cryogenic temperatures (5 - 30 K). The results of these experiments will be analyzed and their relevance to survival of organic material on solar system icy surfaces will be presented. References: Bodewits, D., et al., 2004. X-ray and Far-Ultraviolet emission from comets: Relevant charge exchange processes. Physica Scripta. 70, C17-C20. Cooper, J. F., et al., 2001. Energetic ion and electron irradiation of the icy Galilean satellites. Icarus. 149, 133-159. Herring-Captain, J., et al., 2005. Low-energy (5-250 eV) electron-stimulated desorption of H+, H2+, and H+(H2O)nfrom low-temperature water ice surfaces. Physical Review B. 72, 035431-10. Johnson, R. E., et al., Radiation Effects on the Surfaces of the Galilean Satellites. In: F. Bagenal, et al., Eds

  10. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  11. High velocity penetration into fibre-reinforced concrete materials - protection of buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.F.; Watson, A.J.; Armstrong, P.J.

    1983-05-01

    Fibre reinforced concrete suitable for spraying onto existing structures is being examined to assess its resistance to penetration by 7.62mm diameter armour piercing projectiles. A major test programme is being carried out to examine the influence of aggregate type and fibre type. For each aggregate/fibre combination a statistical method is being used to plan test series which will lead to optimization of the concrete in terms of water/cement ratio, fibre content and aggregate/cement ratio. The minimum thickness of optimized concretes to resist penetration by the projectile and minimise spall and scabbing, will be determined. The mechanics of the impact andmore » penetration event are being studied and a possible method of deflecting the projectile within the concrete is suggested.« less

  12. Effects of magnetospheric lobe cell convection on dayside upper thermospheric winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, W.; Wu, Q.; Knipp, D.; Kilcommons, L.; Brambles, O. J.; Liu, J.; Wiltberger, M.; Lyon, J. G.; Häggström, I.

    2016-08-01

    This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND observation (HIWIND) balloon. Models that lack adequate coupling produce poleward winds. The modeling study suggests that ion drag driven by magnetospheric lobe cell convection is another possible mechanism for turning the climatologically expected dayside poleward winds to the observed equatorward direction. The simulation results are validated by HIWIND, European Incoherent Scatter, and Defense Meteorological Satellite Program. The results suggest a strong momentum coupling between high-latitude ionospheric plasma circulation and thermospheric neutral winds in the summer hemisphere during positive IMF Bz periods, through the formation of magnetospheric lobe cell convection driven by persistent positive IMF By. The CMIT simulation adds important insight into the role of dayside coupling during intervals of otherwise quiet geomagnetic activity

  13. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  14. Simulation of Mini-Magnetospheric Plasma Propulsion (M2P2) Interacting with an External Plasma Wind

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Euripides, P.; Ziemba, T.; Slough, J.; Giersch, L.

    2003-01-01

    Substantial progress has been made over the last year in the development of the laboratory Mini-Magnetospheric Plasma Propulsion (M2P2) prototype. The laboratory testing has shown that that the plasma can be produced at high neutral gas efficiency, at high temperatures (a few tens of eV) with excellent confinement up to the point where chamber wall interactions dominate the physics. This paper investigates the performance of the prototype as it is opposed by an external plasma acting as a surrogate for the solar wind. The experiments were performed in 5ft diameter by 6ft long vacuum chamber at the University of Washington. The solar wind source comprised of a 33 kWe arc jet attached to a 200 kWe inductively generated plasma source. The dual plasma sources allow the interaction to be studied for different power levels, shot duration and production method. It is shown that plasma from the solar wind source (SWS) is able to penetrate the field of the M2P2 magnetic when no plasma is present. With operation of the M2P2 plasma source at only 1.5 kWe, the penetration of the SWS even at the highest power of operation at 200 kWe is stopped. This deflection is shown to be greatly enhanced over that produced by the magnet alone. In addition it is shown that with the presence of the SWS, M2P2 is able to produce enhanced magnetized plasma production out to at least 10 magnet radii where the field strength is only marginally greater than the terrestrial field. The results are consistent with the initial predictions that kWe M2P2 systems would be able to deflect several hundred kWe plasma winds to produce enhanced propulsion for a spacecraft.

  15. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  16. Profit-based conventional resource scheduling with renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  17. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS_LER

    NASA Astrophysics Data System (ADS)

    Mustari, A. P. A.; Yamaji, A.; Irwanto, Dwi

    2016-08-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS_LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS_LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS_LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate.

  18. A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing

    2017-09-01

    A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.

  19. Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.

    1995-01-01

    The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.

  20. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  1. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  2. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  3. Offshore Wind Research | Wind | NREL

    Science.gov Websites

    validation and certification. A photo of an offshore wind turbine with a yellow foundation floating in the wind turbine with three turbines and blue ocean in the background. Design Methods, Tools, and Standards Applying 35 years of wind turbine validation expertise, NREL has developed instrumentation for high

  4. Comparative Study Between Wind and Photovoltaic (PV) Systems

    NASA Astrophysics Data System (ADS)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  5. Use of high-resolution ground-penetrating radar in kimberlite delineation

    USGS Publications Warehouse

    Kruger, J.M.; Martinez, A.; Berendsen, P.

    1997-01-01

    High-resolution ground-penetrating radar (GPR) was used to image the near-surface extent of two exposed Late Cretaceous kimberlites intruded into lower Permian limestone and dolomite host rocks in northeast Kansas. Six parallel GPR profiles identify the margin of the Randolph 1 kimberlite by the up-bending and termination of limestone reflectors. Five radially-intersecting GPR profiles identify the elliptical margin of the Randolph 2 kimberlite by the termination of dolomite reflectors near or below the kimberlite's mushroom-shaped cap. These results suggest GPR may augment magnetic methods for the delineation of kimberlites or other forceful intrusions in a layered host rock where thick, conductive soil or shale is not present at the surface.

  6. Managing Wind Power Uncertainty Through Strategic Reserve Purchasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Ershun; Zhang, Ning; Kang, Chongqing

    With the rapidly increasing penetration of wind power, wind producers are becoming increasingly responsible for the deviation of the wind power output from the forecast. Such uncertainty results in revenue losses to the wind power producers (WPPs) due to penalties in ex-post imbalance settlements. This paper explores the opportunities available for WPPs if they can purchase or schedule some reserves to offset part of their deviation rather than being fully penalized in the real time market. The revenue for WPPs under such mechanism is modeled. The optimal strategy for managing the uncertainty of wind power by purchasing reserves to maximizemore » the WPP's revenue is analytically derived with rigorous optimality conditions. The amount of energy and reserves that should be bid in the market are explicitly quantified by the probabilistic forecast and the prices of the energy and reserves. A case study using the price data from ERCOT and wind power data from NREL is performed to verify the effectiveness of the derived optimal bidding strategy and the benefits of reserve purchasing. Additionally, the proposed bidding strategy can also reduce the risk of variations on WPP's revenue.« less

  7. Research Needs for Wind Resource Characterization

    NASA Astrophysics Data System (ADS)

    Schreck, S. J.; Lundquist, J. K.; Shaw, W. J.

    2008-12-01

    to 200 meters and encompassing spatial and temporal resolution ranges unique to wind energy. The Mesoscale Processes area deemed improved understanding of mesoscale and local flows crucial to providing enhanced model outputs for wind energy production forecasts and wind plant siting. Modeling approaches need to be developed to resolve spatial scales in the 100 to 1000 meter range, a notable gap in current capabilities. Validation of these models will require new instruments and observational strategies, including augmented analyses of existing measurements. In the Climate Effects area, research was recommended to understand historical trends in wind resource variability. This was considered a prerequisite for improved predictions of future wind climate and resources, which would enable reliable wind resource estimation for future planning. Participants also considered it important to characterize interactions between wind plants and climates through modeling and observations that suitably emphasize atmospheric boundary layer dynamics. High-penetration wind energy deployment represents a crucial and attainable U.S. strategic objective. Achieving the 20 percent wind scenario will require an unprecedented ability for characterizing large wind turbines arrayed in gigawatt wind plants and extracting elevated energy levels from the atmosphere. DOE national laboratories, with industry and academia, represents a formidable capability for attaining these objectives.

  8. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems),more » high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.« less

  9. On the Decrease of the Oceanic Drag Coefficient in High Winds

    NASA Astrophysics Data System (ADS)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  10. High-Order Numerical Simulations of Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2017-05-01

    Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.

  11. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  12. Dynamical downscaling of wind fields for wind power applications

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Huneke, S.; Geyer, J.

    2010-09-01

    Dynamical downscaling of wind fields for wind power applications H.-T. Mengelkamp*,**, S. Huneke**, J, Geyer** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH Investments in wind power require information on the long-term mean wind potential and its temporal variations on daily to annual and decadal time scales. This information is rarely available at specific wind farm sites. Short-term on-site measurements usually are only performed over a 12 months period. These data have to be set into the long-term perspective through correlation to long-term consistent wind data sets. Preliminary wind information is often asked for to select favourable wind sites over regional and country wide scales. Lack of high-quality wind measurements at weather stations was the motivation to start high resolution wind field simulations The simulations are basically a refinement of global scale reanalysis data by means of high resolution simulations with an atmospheric mesoscale model using high-resolution terrain and land-use data. The 3-dimensional representation of the atmospheric state available every six hours at 2.5 degree resolution over the globe, known as NCAR/NCEP reanalysis data, forms the boundary conditions for continuous simulations with the non-hydrostatic atmospheric mesoscale model MM5. MM5 is nested in itself down to a horizontal resolution of 5 x 5 km². The simulation is performed for different European countries and covers the period 2000 to present and is continuously updated. Model variables are stored every 10 minutes for various heights. We have analysed the wind field primarily. The wind data set is consistent in space and time and provides information on the regional distribution of the long-term mean wind potential, the temporal variability of the wind potential, the vertical variation of the wind potential, and the temperature, and pressure distribution (air density). In the context of wind power these data are used

  13. Low Force Penetration of Icy Regolith

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  14. Urban renewal based wind environment at pedestrian level in high-density and high-rise urban areas in Sai Ying Pun, Hong Kong

    NASA Astrophysics Data System (ADS)

    Yao, J. W.; Zheng, J. Y.; Zhao, Y.; Shao, Y. H.; Yuan, F.

    2017-11-01

    In high-density and high-rise urban areas, pedestrian level winds contribute to improve comfort, safety and diffusion of heat in urban areas. Outdoor wind study is extremely vital and a prerequisite in high-density cities considering that the immediate pedestrian level wind environment is fundamentally impacted by the presence of a series of high-rise buildings. In this paper, the research site of Sai Ying Pun in Hong Kong will be analysed in terms of geography, climate and urban morphology, while the surrounding natural ventilation has also been simulated by the wind tunnel experiment Computational Fluid Dynamics (CFD). It has found that, the existing problems in this district are the contradiction between planning control and commercial interests, which means some areas around tall buildings are not benefit to the residents because of the unhealthy wind environment. Therefore, some recommendation of urban renewal strategy has been provided.

  15. Network Analyses for Space-Time High Frequency Wind Data

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2017-04-01

    Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.

  16. Biomechanics of penetrating trauma.

    PubMed

    Yoganandan, N; Pintar, F A

    1997-01-01

    It is well known that injuries and deaths due to penetrating projectiles have become a national and an international epidemic in Western society. The application of biomedical engineering to solve day-to-day problems has produced considerable advances in safety and mitigation/prevention of trauma. The study of penetrating trauma has been largely in the military domain where war-time specific applications were advanced with the use of high-velocity weapons. With the velocity and weapon caliber in the civilian population at half or less compared with the military counterpart, wound ballistics is a largely different problem in today's trauma centers. The principal goal of the study of penetrating injuries in the civilian population is secondary prevention and optimized emergency care after occurrence. A thorough understanding of the dynamic biomechanics of penetrating injuries quantifies missile type, caliber, and velocity to hard and soft tissue damage. Such information leads to a comprehensive assessment of the acute and long-term treatment of patients with penetrating injuries. A review of the relevant military research applied to the civilian domain and presentation of new technology in the biomechanical study of these injuries offer foundation to this field. Relevant issues addressed in this review article include introduction of the military literature, the need for secondary prevention, environmental factors including projectile velocity and design, experimental studies with biological tissues and physical models, and mathematical simulations and analyses. Areas of advancement are identified that enables the pursuit of biomechanics research in order to arrive at better secondary prevention strategies.

  17. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  18. Synergies of wind power and electrified space heating: case study for Beijing.

    PubMed

    Chen, Xinyu; Lu, Xi; McElroy, Michael B; Nielsen, Chris P; Kang, Chongqing

    2014-01-01

    Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

  19. Large Scale Wind and Solar Integration in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to comparemore » and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.« less

  20. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  1. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  2. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  3. Magnetic Penetration Effects in Small Superconducting Devices

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W.-T.; Kelly, D. P.; Nagler, P. C.; Porst, J.-P.; Sadleir, J. E.; hide

    2011-01-01

    The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters.

  4. Magnetosphere-Ionosphere-Thermosphere Response to Quasi-periodic Oscillations in Solar Wind Driving Conditions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Zhang, B.; Huang, C.

    2017-12-01

    Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.

  5. A KCNQ1 Mutation Causes a High Penetrance for Familial Atrial Fibrillation

    PubMed Central

    Bartos, Daniel C.; Anderson, Jeffrey B.; Bastiaenen, Rachel; Johnson, Jonathan N.; Gollob, Michael H; Tester, David J.; Burgess, Don E.; Homfray, Tessa; Behr, Elijah R.; Ackerman, Michael J.; Guicheney, Pascale; Delisle, Brian P.

    2012-01-01

    Background Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its incidence is expected to grow. A genetic predisposition for AF has long been recognized, but its manifestation in these patients likely involves a combination of rare and common genetic variants. Identifying genetic variants that associate with a high penetrance for AF would represent a significant breakthrough for understanding the mechanisms that associate with disease. Method and Results Candidate gene sequencing in five unrelated families with familial AF identified the KCNQ1 missense mutation p.Arg231His (R231H). In addition to AF, several of the family members have abnormal QTc intervals, syncope, or experienced sudden cardiac arrest or death. KCNQ1 encodes the voltage-gated K+ channel that conducts the slowly activating delayed rectifier K+ current in the heart. Functional and computational analyses suggested that R231H increases KCNQ1 current (IKCNQ1) to shorten the atrial action potential (AP) duration. R231H is predicted to minimally affect ventricular excitability, but it prevented the increase in IKCNQ1 following PKA activation. The unique properties of R231H appeared to be caused by a loss in voltage-dependent gating. Conclusions The R231H variant causes a high penetrance for interfamilial early-onset AF. Our study indicates R231H likely shortens atrial refractoriness to promote a substrate for reentry. Additionally, R231H might cause abnormal ventricular repolarization by disrupting PKA activation of IKCNQ1. We conclude genetic variants, which increase IKs during the atrial AP, decrease the atrial AP duration, and/or shorten atrial refractoriness, present a high risk for interfamilial AF. PMID:23350853

  6. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct

    NASA Astrophysics Data System (ADS)

    Olmos, José M.; Astiz, Miguel Á.

    2018-04-01

    In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.

  7. SMES for wind energy systems

    NASA Astrophysics Data System (ADS)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  8. Analysis of Failures of High Speed Shaft Bearing System in a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Wasilczuk, Michał; Gawarkiewicz, Rafał; Bastian, Bartosz

    2018-01-01

    During the operation of wind turbines with gearbox of traditional configuration, consisting of one planetary stage and two helical stages high failure rate of high speed shaft bearings is observed. Such a high failures frequency is not reflected in the results of standard calculations of bearing durability. Most probably it can be attributed to atypical failure mechanism. The authors studied problems in 1.5 MW wind turbines of one of Polish wind farms. The analysis showed that the problems of high failure rate are commonly met all over the world and that the statistics for the analysed turbines were very similar. After the study of potential failure mechanism and its potential reasons, modification of the existing bearing system was proposed. Various options, with different bearing types were investigated. Different versions were examined for: expected durability increase, extent of necessary gearbox modifications and possibility to solve existing problems in operation.

  9. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  10. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    NASA Astrophysics Data System (ADS)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  11. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer.

    PubMed

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2016-08-22

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km.

  12. A Unified Theory of Penetration

    DTIC Science & Technology

    1986-12-01

    occur for jets penetrating plastics as will be mentioned later. For very high impact speeds, (1.13) melting and vaporization may also become important... plastic flow in a target is P - 3Y (1.2) we can calculate the resistive force of the target due to its hardness as a - pA - 3YtA - 3C (BHN) A (1.3) t...projectile can affect its penetration, especially as it enters the target, or if the target is thin, and projectile plastic (1.22) deformation and/or erosion

  13. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    NASA Astrophysics Data System (ADS)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  14. Quantifying uncertainties in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  15. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema

    None

    2017-12-09

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  16. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  17. The influence of the North-Atlantic Oscillation on Variable Renewable Energy penetration rate in Europe

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste

    2016-04-01

    The on-going transition to low-carbon economy promotes the development of Variable Renewable Energies (VRE) such as wind-power, solar-power and hydro-power. The European Climate Foundation now typically dates for 2050 optimistic scenarios with close to 100 % renewable energy in Europe. When considering 100 % renewable scenarios, backup generation is needed for stabilizing the network when variable renewable energy sources such as wind, solar or run-of-the river hydropower are not sufficient for supplying the load. Several studies show that backup generation needs are reduced by dissipating power densities either in space through grids and time through storage. To our knowledge, most of these published studies were carried out using field measurements collected at meteorological and hydrological stations and over relatively short time period (less than 10 years). By using short period of times, such studies somehow disregarded the space and temporal variability of VRE power generation that could be induced by larger-scale climate variability patterns. This study investigates the influence of the North Atlantic Oscillation (NAO) on the VRE penetration for a set of 11 regions in Europe and Tunisia, and over 1980-2012 time period. These regions are located along two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine data from the Weather Research and Forecasting Model (wind speed, solar radiation; Vautard et al., 2014) and the European Climate Assessment & Dataset (temperature, precipitation; Haylock et al,. 2008) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 33 years. For each region, we analyze seasonal differences in penetration rates of wind-, solar- and

  18. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.

  19. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.

    PubMed

    Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A

    2015-12-08

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

  20. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

    PubMed Central

    Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.

    2015-01-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  1. High Quality Data for Grid Integration Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less

  2. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  3. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  4. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    PubMed

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Pressure enhanced penetration with shaped charge perforators

    DOEpatents

    Glenn, Lewis A.

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  6. Wind-tunnel measurement of noise emitted by helicopter rotors at high speed

    NASA Astrophysics Data System (ADS)

    Prieur, J.

    Measurements of high-speed impulsive helicopter rotor noise in a wind-tunnel are presented. High-speed impulsive noise measurements have been performed in 1988 in the ONERA S2ch wind-tunnel, fitted with an acoustic lining, on two types of rotors. They show that substantial noise reduction is obtained with sweptback tips, initially designed for aerodynamic purposes, which lower transonic effects on the advancing blade tip. Emphasis is placed on the necessity of taking into account the acoustic annoyance problem, using noise prediction tools, when designing new helicopter blades.

  7. Development of an Apparatus for Wind Tunnel Dynamic Experiments at High-alpha

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    A unique experimental apparatus that allows a wind tunnel model two degrees of freedom has been designed and built. The apparatus was developed to investigate the use of new methods to augment aircraft control in the high angle of attack regime. The model support system provides a platform in which the roll-yaw coupling at high angles of attack can be studied in a controlled environment. Active cancellation of external effects is used to provide a system in which the dynamics are dominated by the aerodynamic loads acting on the wind tunnel model.

  8. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  9. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  10. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less

  11. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island.

  12. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  13. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  14. Investigating Wind-Driven Rain Intrusion in Walls with the CARWASh

    Treesearch

    C.R. Boardman; Samuel V. Glass

    2013-01-01

    Wind-driven rain provides the primary external moisture load for exterior walls.Water absorption by the cladding, runoff, and penetration through the cladding or at details determine how a wall system performs. In this paper we describe a new laboratory facility that can create controlled outdoor and indoor conditions and use it to investigate the water...

  15. Offshore Wind Power Integration in severely fluctuating Wind Conditions

    NASA Astrophysics Data System (ADS)

    von Bremen, L.

    2010-09-01

    Strong power fluctuations from offshore wind farms that are induced by wind speed fluctuations pose a severe problem to the save integration of offshore wind power into the power supply system. Experience at the first large-scale offshore wind farm Horns Rev showed that spatial smoothing of power fluctuations within a single wind farm is significantly smaller than onshore results suggest when distributed wind farms of 160 MW altogether are connected to a single point of common-coupling. Wind power gradients larger than 10% of the rated capacity within 5 minutes require large amount of regulation power that is very expensive for the grid operator. It must be noted that a wind speed change of only 0.5m/s result in a wind power change of 10% (within the range of 9-11 m/s where the wind power curve is steepest). Hence, it is very important for the grid operator to know if strong fluctuations are likely or not. Observed weather conditions at the German wind energy research platform FINO1 in the German bight are used to quantify wind fluctuations. With a standard power curve these wind fluctuations are transfered to wind power. The aim is to predict the probability of exceedence of certain wind power gradients that occur in a time interval of e.g. 12 hours. During 2006 and 2009 the distribution of wind power fluctuations looks very similar giving hope that distinct atmospheric processes can be determined that act as a trigger. Most often high wind power fluctuations occur in a range of wind speeds between 9-12 m/s as can be expected from the shape of the wind power curve. A cluster analysis of the 500 hPa geopotential height to detect predominant weather regimes shows that high fluctuations are more likely in north-western flow. It is shown that most often high fluctuations occur in non-stable atmospheric stratification. The description of stratification by means of the vertical gradient of the virtual potential temperature is chosen to be indicative for convection, i

  16. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  17. Penetrating abdominal gunshot wounds caused by high-velocity missiles: a review of 51 military injuries managed at a level-3 trauma center.

    PubMed

    Gorgulu, Semih; Gencosmanoglu, Rasim; Akaoglu, Cuneyt

    2008-01-01

    The aim of this study was to present the outcomes of military penetrating abdominal gunshot injuries, to identify factors that predict morbidity, and to compare the present results with those from two civilian trauma centers. Fifty-one consecutive patients who had suffered high-velocity gunshot wounds to the abdomen were assessed retrospectively. Penetrating abdominal trauma index, the number of injured organs, and the presence of colonic injury were significantly associated with high morbidity by univariate analysis. Multivariate analysis showed that only the number of organs injured and presence of colonic injury were independent predictors of morbidity. Our results showed that military rifle bullets do not cause greater tissue disruption than that found in wounds created by lower-velocity projectiles. The presence of colonic injury and the number of organs injured (more than three) seem to be important predictors of morbidity in penetrating abdominal gunshot wounds caused by high-velocity missiles.

  18. Cosmic ray modulation by high-speed solar wind fluxes

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.

    1985-01-01

    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.

  19. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  20. Validation of the CNS Penetration-Effectiveness Rank for Quantifying Antiretroviral Penetration Into the Central Nervous System

    PubMed Central

    Letendre, Scott; Marquie-Beck, Jennifer; Capparelli, Edmund; Best, Brookie; Clifford, David; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Morgello, Susan; Simpson, David; Grant, Igor; Ellis, Ronald J.

    2009-01-01

    Objective To evaluate whether penetration of a combination regimen into the central nervous system (CNS), as estimated by the CNS Penetration-Effectiveness (CPE) rank, is associated with lower cerebrospinal fluid (CSF) viral load. Design Data were analyzed from 467 participants who were human immunodeficiency virus (HIV) seropositive and who reported antiretroviral (ARV) drug use. Individual ARV drugs were assigned a penetration rank of 0 (low), 0.5 (intermediate), or 1 (high) based on their chemical properties, concentrations in CSF, and/or effectiveness in the CNS in clinical studies. The CPE rank was calculated by summing the individual penetration ranks for each ARV in the regimen. Results The median CPE rank was 1.5 (interquartile range, 1–2). Lower CPE ranks correlated with higher CSF viral loads. Ranks less than 2 were associated with an 88% increase in the odds of detectable CSF viral load. In multivariate regression, lower CPE ranks were associated with detectable CSF viral loads even after adjusting for total number of ARV drugs, ARV drug adherence, plasma viral load, duration and type of the current regimen, and CD4 count. Conclusions Poorer penetration of ARV drugs into the CNS appears to allow continued HIV replication in the CNS as indicated by higher CSF HIV viral loads. Because inhibition of HIV replication in the CNS is probably critical in treating patients who have HIV-associated neurocognitive disorders, ARV treatment strategies that account for CNS penetration should be considered in consensus treatment guidelines and validated in clinical studies. PMID:18195140

  1. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  2. Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.

    2007-01-01

    We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.

  3. Solar wind energy transfer through the magnetopause of an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Roederer, J. G.

    1982-01-01

    An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.

  4. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmissionmore » requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.« less

  5. Real-Time Digital Simulation of Inertial Response with Hardware-in-the-Loop Implementation on the CART3 Wind Turbine at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard

    compare the performances of the two methods in terms of their frequency nadirs, rates of change of frequency, and recovery times. We conclude the results under various wind speeds and penetration cases, which provide insight into designing the inertial response of WTGs. Further, we discuss the impact of the parameters on the performance of the inertial control methods. We evaluate both the scaling factors for the FBIC method and the slope values for the TLIC methods. The simulation work shows the characteristics of different inertial responses compared to conventional synchronous generators. Based on the simulation results, we modify, improve, and test the inertial control methods under a more realistic wind turbine model based on FAST. We then validate the inertial responses under highly turbulent wind conditions generated by TurbSim, and we examine their influences on the turbine mechanical components. The extensive simulation proves the effectiveness of the proposed inertial control methods as well as the nine-bus test power system. We then reconsider the parameters. We rebuild the same test power system using Real time Simulator Computer Aided Design (RSCAD), and we implement the inertial control methods in the real Controls Advanced Research Turbine (CART3), which is prepared for the hardware-in-the-loop field-test simulation. After the setups for the hardware and software hybrid simulation platform are complete, the inertial response is further tested on a real wind turbine for the first time, in which CART3 release the controlled inertial response against the emulated frequency excursion, provided by the real-time simulated power system test bed in RTDS.« less

  6. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  7. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  8. Sedimentary rhythms in coastal dunes as a record of intra-annual changes in wind climate (Łeba, Poland)

    NASA Astrophysics Data System (ADS)

    Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S. E.; Borówka, R. K.

    2017-08-01

    It is shown that coastal dunes bear a so far unread archive of annual wind intensity. Active dunes at the Polish coast near Łeba consist of two genetic units: primary dunes with up to 18 m high eastward-dipping foresets, temporarily superimposed by smaller secondary dunes. Ground-penetrating radar (GPR) data reveal that the foresets of the primary dunes are bundled into alternating packages imaged as either low- or high-amplitude reflections. High-amplitude packages are composed of quartz sand with intercalated heavy-minerals layers. Low-amplitude packages lack these heavy-mineral concentrations. Dune net-progradation is towards the east, reflecting the prevalence of westerly winds. Winds blowing parallel to the dune crest winnow the lee slope, leaving layers enriched in heavy minerals. Sediment transport to the slip face of the dunes is enhanced during the winter months, whereas winnowing predominantly takes place during the spring to autumn months, when the wind field is bi-directional. As a consequence of this seasonal shift, the sedimentary record of one year comprises one low- and one high-amplitude GPR reflection interval. This sedimentary pattern is a persistent feature of the Łeba dunes and recognized to resemble a sedimentary "bar code". To overcome hiatuses in the bar code of individual dunes and dune-to-dune variations in bar-code quality, dendrochronological methods were adopted to compile a composite bar code from several dunes. The resulting data series shows annual variations in west-wind intensity at the southern Baltic coast for the time period 1987 to 2012. Proxy-based wind data are validated against instrumental based weather observations.

  9. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    NASA Astrophysics Data System (ADS)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  10. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  11. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  12. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  13. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  14. A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul; hide

    2015-01-01

    In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will

  15. Surface penetrators for planetary exploration: Science rationale and development program

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.

    1981-01-01

    Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.

  16. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  17. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less

  18. High temperature penetrator assembly with bayonet plug and ramp-activated lock

    NASA Technical Reports Server (NTRS)

    Wood, K. E. (Inventor)

    1982-01-01

    A penetration apparatus, for very high temperature applications in which a base plug is inserted into an opening through a bulkhead is described. The base plug has a head shape and is seated against the highest temperature surface of the bulkhead, which may be the skin of the nose cone or other part of a space vehicle intended for nondestructive atmospheric reentry. From the second side of the bulkhead at which the less severe environment is extant, a bayonet plug is inserted into the base plug and engages an internal shoulder at about 90 deg rotation. The bayonet plug has an integral flanged portion and a pair of ramping washers which are located between the flange and the second bulkhead surface with a spacing washer as necessary.

  19. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, B. A.; Shah, S.; Norris, B. L.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commissionmore » (CPUC). This report provides the findings of the research completed under the project to date.« less

  20. Southward shift of the global wind energy resource under high carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  1. Phenomenology of electromagnetic coupling: Conductors penetrating an aperture

    NASA Astrophysics Data System (ADS)

    Wright, D. B.; King, R. J.

    1987-06-01

    The purpose of this study was to investigate the coupling effects of penetrating conductors through free-standing apertures. This penetrating conductor and aperture arrangement are referred to as a modified aperture. A penetrating conductor is defined here to be a thin, single wire bent twice at 90 angles. The wire was inserted through a rectangular aperture in a metal wall. Vertical segments on both sides of the wall coupled energy from one region to the other. Energy was incident upon the modified aperture from what is referred to as the exterior region. The amount of coupling was measured by a D sensor on the other (interior) side of the wall. This configuration of an aperture in a metal wall was used as opposed to an aperture in a cavity in order to simplify the interpretation of resulting data. The added complexity of multiple cavity resonances was therefore eliminated. Determining the effects of penetrating conductors on aperture coupling is one of several topics being investigated as part of on-going research at Lawrence Livermore National Laboratory on the phenomenology of electromagnetic coupling. These phenomenology studies are concerned with the vulnerability of electronic systems to high intensity electromagnetic fields. The investigation is relevant to high altitude EMP (HEMP), enhanced HEMP (EHEMP), and high power microwave (HPM) coupling.

  2. Microwave (EPR) measurements of the penetration depth measurements of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Dalal, N. S.; Rakvin, B.; Mahl, T. A.; Bhalla, A. S.; Sheng, Z. Z.

    1991-01-01

    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T sub c superconductors. The method uses the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T sub c is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, neutron scattering, and magnetic susceptibility.

  3. Akon - A Penetrator for Europa

    NASA Astrophysics Data System (ADS)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  4. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2013-04-01

    The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds

  5. A Highly Sensitive Assay Using Synthetic Blood Containing Test Microbes for Evaluation of the Penetration Resistance of Protective Clothing Material under Applied Pressure.

    PubMed

    Shimasaki, Noriko; Hara, Masayuki; Kikuno, Ritsuko; Shinohara, Katsuaki

    2016-01-01

    To prevent nosocomial infections caused by even either Ebola virus or methicillin-resistant Staphylococcus aureus (MRSA), healthcare workers must wear the appropriate protective clothing which can inhibit contact transmission of these pathogens. Therefore, it is necessary to evaluate the performance of protective clothing for penetration resistance against infectious agents. In Japan, some standard methods were established to evaluate the penetration resistance of protective clothing fabric materials under applied pressure. However, these methods only roughly classified the penetration resistance of fabrics, and the detection sensitivity of the methods and the penetration amount with respect to the relationship between blood and the pathogen have not been studied in detail. Moreover, no standard method using bacteria for evaluation is known. Here, to evaluate penetration resistance of protective clothing materials under applied pressure, the detection sensitivity and the leak amount were investigated by using synthetic blood containing bacteriophage phi-X174 or S. aureus. And the volume of leaked synthetic blood and the amount of test microbe penetration were simultaneously quantified. Our results showed that the penetration detection sensitivity achieved using a test microbial culture was higher than that achieved using synthetic blood at invisible leak level pressures. This finding suggested that there is a potential risk of pathogen penetration even when visual leak of contaminated blood through the protective clothing was not observed. Moreover, at visible leak level pressures, it was found that the amount of test microbe penetration varied at least ten-fold among protective clothing materials classified into the same class of penetration resistance. Analysis of the penetration amount revealed a significant correlation between the volume of penetrated synthetic blood and the amount of test microbe penetration, indicating that the leaked volume of synthetic

  6. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  7. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  8. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.

    PubMed

    Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S

    2017-04-13

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  9. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    PubMed Central

    Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.

    2017-01-01

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265021

  10. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less

  11. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  12. Gust wind tunnel study on ballast pick-up by high-speed trains

    NASA Astrophysics Data System (ADS)

    Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.

    2012-01-01

    This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.

  13. Wind farms production: Control and prediction

    NASA Astrophysics Data System (ADS)

    El-Fouly, Tarek Hussein Mostafa

    and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.

  14. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  15. HMO penetration and the geographic mobility of practicing physicians.

    PubMed

    Polsky, D; Kletke, P R; Wozniak, G D; Escarce, J J

    2000-09-01

    In this study, we assessed the influence of changes in health maintenance organization (HMO) penetration on the probability that established patient care physicians relocated their practices or left patient care altogether. For physicians who relocated their practices, we also assessed the impact of HMO penetration on their destination choices. We found that larger increases in HMO penetration decreased the probability that medical/surgical specialists in early career stayed in patient care in the same market, but had no impact on generalists, hospital-based specialists, or mid career medical/surgical specialists. We also found that physicians who relocated their practices were much more likely to choose destination markets with the same level of HMO penetration or lower HMO penetration compared with their origin markets than they were to choose destination markets with higher HMO penetration. The largely negligible impact of changes in HMO penetration on established physicians' decisions to relocate their practices or leave patient care is consistent with high relocation and switching costs. Relocating physicians' attraction to destination markets with the same level of HMO penetration as their origin markets suggests that, while physicians' styles of medical practice may adapt to changes in market conditions, learning new practice styles is costly.

  16. Air emissions due to wind and solar power.

    PubMed

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  17. Voltage-Load Sensitivity Matrix Based Demand Response for Voltage Control in High Solar Penetration Distribution Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Wang, Jiyu; Mulcahy, David

    This paper presents a voltage-load sensitivity matrix (VLSM) based voltage control method to deploy demand response resources for controlling voltage in high solar penetration distribution feeders. The IEEE 123-bus system in OpenDSS is used for testing the performance of the preliminary VLSM-based voltage control approach. A load disaggregation process is applied to disaggregate the total load profile at the feeder head to each load nodes along the feeder so that loads are modeled at residential house level. Measured solar generation profiles are used in the simulation to model the impact of solar power on distribution feeder voltage profiles. Different casemore » studies involving various PV penetration levels and installation locations have been performed. Simulation results show that the VLSM algorithm performance meets the voltage control requirements and is an effective voltage control strategy.« less

  18. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less

  19. Improved Modeling Tools Development for High Penetration Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washom, Byron; Meagher, Kevin

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motionmore » vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.« less

  20. Wind flow in an urban environment.

    PubMed

    Dutt, A J

    1991-10-01

    The wind environment at ground leven in built-up areas is influenced by the extremely complex interaction amongst incident wind, mean vertical velocity gradient, turbulence and the shapes, sizes and layouts of building. Random layout of buildings could generate zones of overspeed and vortices in the connecting passage way between buildings, terraces, opensided shelters, courtyards, which could potentially cause unpleasantness, hazard from resuspended particulates, and airborne rain penetration into the buildings. The paper presents the results of two case studies comprising field measurements made within the Kent Ridge Campus, National University of Singapore, using DANTEC 54N10 Multichannel Flow Analyser and Probes. Results are presented in terms of non-dimensional windspeed coefficients. It is concluded that there is significant increase in windspeed due to channel and venturi effects. This information provides useful guidelines for building plans and layouts to the architects and engineers.

  1. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  2. Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.

    1992-01-01

    On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.

  3. The appearance of highly relativistic, spherically symmetric stellar winds

    NASA Technical Reports Server (NTRS)

    Abramowicz, Marek A.; Novikov, Igor D.; Paczynski, Bohdan

    1991-01-01

    A nonluminous, steady state, spherically symmetric, relativistic wind, with the opacity dominated by electron scattering appears against a bright background as a dark circle with the radius rd. A luminous wind would appear as a bright spot with a radius rl = rd/2 pi gamma exp 3, where gamma is the Lorentz factor of the wind. The bright wind photosphere is convex for v equal to or less than 2c/3, and appears concave for higher outflow velocities.

  4. A new approach to wind energy: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Greer, Julia R.; Koseff, Jeffrey R.; Moin, Parviz; Peng, Jifeng

    2015-03-01

    Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource—which is 20 times greater than total global power consumption—and the limited penetration of existing wind energy technologies as a means for electricity generation worldwide. We describe an approach to wind energy harvesting that has the potential to resolve this disconnect by geographically distributing wind power generators in a manner that more closely mirrors the physical resource itself. To this end, technology development is focused on large arrays of small wind turbines that can harvest wind energy at low altitudes by using new concepts of biology-inspired engineering. This approach dramatically extends the reach of wind energy, as smaller wind turbines can be installed in many places that larger systems cannot, especially in built environments. Moreover, they have lower visual, acoustic, and radar signatures, and they may pose significantly less risk to birds and bats. These features can be leveraged to attain cultural acceptance and rapid adoption of this new technology, thereby enabling significantly faster achievement of state and national renewable energy targets than with existing technology alone. Favorable economics stem from an orders-of-magnitude reduction in the number of components in a new generation of simple, mass-manufacturable (even 3D-printable), vertical-axis wind turbines. However, this vision can only be achieved by overcoming significant scientific challenges that have limited progress over the past three decades. The following essay summarizes our approach as well as the opportunities and challenges associated with it, with the aim of motivating a concerted effort in basic and applied research in this area.

  5. Comparison of wind velocity in thunderstorms determined from measurements by a ground-based Doppler radar and an F-106B airplane

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Dunham, R. E., Jr.; Lee, J. T.

    1985-01-01

    As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests.

  6. Bean--Livingston barriers and first field for flux penetration in high- T sub c crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlachkov, L.; Konczykowski, M.; Yeshurun, Y.

    We present evidence for the importance of Bean--Livingston (BL) barriers for field penetration into high-{ital T}{sub {ital c}} crystals. The magnetization curves {ital M}({ital H}) and the first field {ital H}{sub {ital p}} for flux penetration were measured near the transition temperature {ital T}{sub {ital c}} of untwinned Y-Ba-Cu-O crystal by using a miniature Hall probe. There are three observations that serve as evidence for the efficiency of BL barriers: (1) the magnetization was found to be almost zero on the descending branch of the magnetization loop; (2) The slope of {ital H}{sub {ital p}}({ital T}) exhibits a clear changemore » close to {ital T}{sub {ital c}}, being largest at {ital T}{sub {ital c}}; (3) after introducing damage by irradiating the sample, both the field {ital H}{sub {ital p}} and the width of the {ital M}({ital H}) loops reduce significantly, showing almost reversible behavior for the sample. We explain these observations in terms of BL barriers which are shown to be especially important in high-{ital T}{sub {ital c}} superconductors, and these could be responsible for the controversy of the {ital H}{sub {ital c}1} values reported previously in the literature.« less

  7. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.

  8. Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2003-01-01

    The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be

  9. Results of the mole penetration tests in different materials

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Roman; Seweryn, Karol; Grygorczuk, Jerzy; Banaszkiewicz, Marek; Rybus, Tomasz; Wisniewski, Lukasz; Neal, Clive R.; Huang, Shaopeng

    2010-05-01

    Mole devices are low velocity, medium to high energy, self-driven penetrators, designed as a carrier of different sensors for in situ investigations of subsurface layers of planetary bodies. The maximum insertion depth of such devices is limited by energy of single mole's stroke and soil resistance for the dynamic penetration. A mole penetrator ‘KRET' has been designed, developed, and successfully tested at Space Research Centre PAS in Poland. The principle of operation of the mole bases on the interaction between three masses: the cylindrical casing, the hammer, and the rest of the mass, acting as a support mass. This approach takes advantage of the MUPUS penetrator (a payload of Philae lander on Rosetta mission) insertion tests knowledge. Main parameters of the mole KRET are listed below: - outer diameter: 20.4mm, - length: 330mm, - total mass: 488g, - energy of the driving spring: 2.2J, - average power consumption: 0.28W, - average insertion progress/stroke: 8.5mm, The present works of Space Research Center PAS team are focused on three different activities. First one includes investigations of the mole penetration effectiveness in the lunar analogues (supported by ESA PECS project). Second activity, supported by Polish national fund, is connected with numerical calculation of the heat flow investigations and designing and developing the Heat Flow Probe Hardware Component (HPHC) for L-GIP NASA project. It's worth noting that L-GIP project refers to ILN activity. Last activity focuses on preparing the second version of the mole ready to work in low thermal and pressure conditions. Progress of a mole penetrator in granular medium depends on the mechanical properties of this medium. The mole penetrator ‘KRET' was tested in different materials: dry quartz sand (0.3 - 0.8 grain size), wet quartz sand, wheat flour and lunar regolith mechanical simulant - Chemically Enhanced OB-1 (CHENOBI). Wheat flour was selected due to its high cohesion rate and small grain size

  10. Perinatal market penetration rate. A tool to evaluate regional perinatal programs.

    PubMed

    Powers, W F; McGill, L

    1987-01-01

    Very small babies born in tertiary centers fare better than outborn babies referred for tertiary care after birth. Viewing the 1001-1500 gm regional cohort of fetuses as a potential "market" for center delivery, and measuring a center's penetration into this market, quantitates how well a center draws to itself these small, high-risk fetuses for delivery. An Illinois center's annual penetration rate into its regional market for the years 1973-1983 is presented and significant increases are found. The penetration rates of nine Illinois perinatal centers are calculated and wide discrepancies are found. Defining a high-risk regional cohort as a market stresses a perinatal center's obligation to its region. The penetration rate into a defined market measures how well a center fulfills this obligation.

  11. Penetrating head injury from angle grinder: A cautionary tale.

    PubMed

    Senthilkumaran, S; Balamurgan, N; Arthanari, K; Thirumalaikolundusubramanian, P

    2010-01-01

    Penetrating cranial injury is a potentially life-threatening condition. Injuries resulting from the use of angle grinders are numerous and cause high-velocity penetrating cranial injuries. We present a series of two penetrating head injuries associated with improper use of angle grinder, which resulted in shattering of disc into high velocity missiles with reference to management and prevention. One of those hit on the forehead of the operator and the other on the occipital region of the co-worker at a distance of five meters. The pathophysiological consequence of penetrating head injuries depends on the kinetic energy and trajectory of the object. In the nearby healthcare center the impacted broken disc was removed without realising the consequences and the wound was packed. As the conscious level declined in both, they were referred. CT brain revealed fracture in skull and changes in the brain in both. Expeditious removal of the penetrating foreign body and focal debridement of the scalp, skull, dura, and involved parenchyma and Watertight dural closure were carried out. The most important thing is not to remove the impacted foreign body at the site of accident. Craniectomy around the foreign body, debridement and removal of foreign body without zigzag motion are needed. Removal should be done following original direction of projectile injury. The neurological sequelae following the non missile penetrating head injuries are determined by the severity and location of initial injury as well as the rapidity of the exploration and fastidious debridement.

  12. The Norwegian PMS2 founder mutation c.989-1G > T shows high penetrance of microsatellite instable cancers with normal immunohistochemistry.

    PubMed

    Grindedal, Eli Marie; Aarset, Harald; Bjørnevoll, Inga; Røyset, Elin; Mæhle, Lovise; Stormorken, Astrid; Heramb, Cecilie; Medvik, Heidi; Møller, Pål; Sjursen, Wenche

    2014-01-01

    Using immunohistochemistry (IHC) to select cases for mismatch repair (MMR) genetic testing, we failed to identify a large kindred with the deleterious PMS2 mutation c.989-1G > T. The purpose of the study was to examine the sensitivity of IHC and microsatellite instability-analysis (MSI) to identify carriers of the mutation, and to estimate its penetrance and expressions. All carriers and obligate carriers of the mutation were identified. All cancer diagnoses were confirmed. IHC and MSI-analysis were performed on available tumours. Penetrances of cancers included in the Amsterdam and the Bethesda Criteria, for MSI-high tumours and MSI-high and low tumours were calculated by the Kaplan-Meier algorithm. Probability for co-segregation of the mutation and cancers by chance was 0.000004. Fifty-six carriers or obligate carriers were identified. There was normal staining for PMS2 in 15/18 (83.3%) of tumours included in the AMS1/AMS2/Bethesda criteria. MSI-analysis showed that 15/21 (71.4%) of tumours were MSI-high and 4/21 (19.0%) were MSI-low. Penetrance at 70 years was 30.6% for AMS1 cancers (colorectal cancers), 42.8% for AMS2 cancers, 47.2% for Bethesda cancers, 55.6% for MSI-high and MSI-low cancers and 52.2% for MSI-high cancers. The mutation met class 5 criteria for pathogenicity. IHC was insensitive in detecting tumours caused by the mutation. Penetrance of cancers that displayed MSI was 56% at 70 years. Besides colorectal cancers, the most frequent expressions were carcinoma of the endometrium and breast in females and stomach and prostate in males.

  13. The Norwegian PMS2 founder mutation c.989-1G > T shows high penetrance of microsatellite instable cancers with normal immunohistochemistry

    PubMed Central

    2014-01-01

    Background Using immunohistochemistry (IHC) to select cases for mismatch repair (MMR) genetic testing, we failed to identify a large kindred with the deleterious PMS2 mutation c.989-1G > T. The purpose of the study was to examine the sensitivity of IHC and microsatellite instability-analysis (MSI) to identify carriers of the mutation, and to estimate its penetrance and expressions. Methods All carriers and obligate carriers of the mutation were identified. All cancer diagnoses were confirmed. IHC and MSI-analysis were performed on available tumours. Penetrances of cancers included in the Amsterdam and the Bethesda Criteria, for MSI-high tumours and MSI-high and low tumours were calculated by the Kaplan-Meier algorithm. Results Probability for co-segregation of the mutation and cancers by chance was 0.000004. Fifty-six carriers or obligate carriers were identified. There was normal staining for PMS2 in 15/18 (83.3%) of tumours included in the AMS1/AMS2/Bethesda criteria. MSI-analysis showed that 15/21 (71.4%) of tumours were MSI-high and 4/21 (19.0%) were MSI-low. Penetrance at 70 years was 30.6% for AMS1 cancers (colorectal cancers), 42.8% for AMS2 cancers, 47.2% for Bethesda cancers, 55.6% for MSI-high and MSI-low cancers and 52.2% for MSI-high cancers. Conclusions The mutation met class 5 criteria for pathogenicity. IHC was insensitive in detecting tumours caused by the mutation. Penetrance of cancers that displayed MSI was 56% at 70 years. Besides colorectal cancers, the most frequent expressions were carcinoma of the endometrium and breast in females and stomach and prostate in males. PMID:24790682

  14. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Botterud, Audun; Zhou, Zhi

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  15. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE PAGES

    Liu, Cong; Botterud, Audun; Zhou, Zhi; ...

    2016-10-21

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  16. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  17. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.

    This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner inmore » which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.« less

  18. Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2014-12-01

    An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the

  19. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  20. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  1. A CME-Driven Solar Wind Disturbance Observed at both Low and High Heliographic Latitudes

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; McComas, D. J.; Phillips, J. L.; Pizzo, V. J.; Goldstein, B. E.; Forsyth, R. J.; Lepping, R. P.

    1995-01-01

    A solar wind disturbance produced by a fast coronal mass ejection, CME, that departed from the Sun on February 20, 1994 was observed in the ecliptic plane at 1 AU by IMP 8 and at high heliographic latitudes at 3.53 AU by Ulysses. In the ecliptic the disturbance included a strong forward shock but no reverse shock, while at high latitudes the disturbance was bounded by a relatively weak forward-reverse shock pair. It is clear that the disturbance in the ecliptic plane was driven primarily by the relative speed between the CME and a slower ambient solar wind ahead, whereas at higher latitudes the disturbance was driven by expansion of the CME. The combined IMP 8 and Ulysses observations thus provide a graphic illustration of how a single fast CME can produce very different types of solar wind disturbances at low and high heliographic latitudes. Simple numerical simulations help explain observed differences at the two spacecraft.

  2. ASC-AD penetration modeling FY05 status report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Bruce L.; Ostien, Jakob T.; Chiesa, Michael L.

    2006-04-01

    Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertaintymore » quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.« less

  3. Penetrating ocular trauma from trampoline spring.

    PubMed

    Spokes, David; Siddiqui, Salina; Vize, Colin

    2010-02-01

    The case is presented of a 12-year old boy who sustained severe penetrating ocular trauma while playing on a domestic trampoline. A main spring broke under tension and the hook had struck the eye at high velocity and penetrated the sclera. Primary repair was undertaken but on review it became apparent the eye could not be salvaged. Evisceration was carried out and an orbital implant was placed. Post-operative cosmesis is acceptable. This type of injury has not been reported before. Adult supervision of children on trampolines is recommended to minimise the chance of serious injury.

  4. Three-model ensemble wind prediction in southern Italy

    NASA Astrophysics Data System (ADS)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  5. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and

  6. Study on development system of increasing gearbox for high-performance wind-power generator

    NASA Astrophysics Data System (ADS)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  7. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    PubMed

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  8. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  9. Integration of permanent magnet synchronous generator wind turbines into power grid

    NASA Astrophysics Data System (ADS)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  10. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  11. Solid versus Liquid Particle Sampling Efficiency of Three Personal Aerosol Samplers when Facing the Wind

    PubMed Central

    Koehler, Kirsten A.; Anthony, T. Renee; Van Dyke, Michael

    2016-01-01

    The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min−1 of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies

  12. Gas transfer under high wind and its dependence on wave breaking and sea state

    NASA Astrophysics Data System (ADS)

    Brumer, Sophia; Zappa, Christopher; Fairall, Christopher; Blomquist, Byron; Brooks, Ian; Yang, Mingxi

    2016-04-01

    Quantifying greenhouse gas fluxes on regional and global scales relies on parameterizations of the gas transfer velocity K. To first order, K is dictated by wind speed (U) and is typically parameterized as a non-linear functions of U. There is however a large spread in K predicted by the traditional parameterizations at high wind speed. This is because a large variety of environmental forcing and processes (Wind, Currents, Rain, Waves, Breaking, Surfactants, Fetch) actually influence K and wind speed alone cannot capture the variability of air-water gas exchange. At high wind speed especially, breaking waves become a key factor to take into account when estimating gas fluxes. The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on this poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas (CO2, DMS, acetone and methanol) were taken from the bow of the R/V Knorr. The wave field was sampled by a wave rider buoy and breaking events were tracked in visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we test existing parameterizations and explore ways of better constraining K based on whitecap coverage, sea state and breaking statistics contrasting pure windseas to swell dominated periods. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra for mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer

  13. Sensitivity Analysis of Expected Wind Extremes over the Northwestern Sahara and High Atlas Region.

    NASA Astrophysics Data System (ADS)

    Garcia-Bustamante, E.; González-Rouco, F. J.; Navarro, J.

    2017-12-01

    A robust statistical framework in the scientific literature allows for the estimation of probabilities of occurrence of severe wind speeds and wind gusts, but does not prevent however from large uncertainties associated with the particular numerical estimates. An analysis of such uncertainties is thus required. A large portion of this uncertainty arises from the fact that historical observations are inherently shorter that the timescales of interest for the analysis of return periods. Additional uncertainties stem from the different choices of probability distributions and other aspects related to methodological issues or physical processes involved. The present study is focused on historical observations over the Ouarzazate Valley (Morocco) and in a high-resolution regional simulation of the wind in the area of interest. The aim is to provide extreme wind speed and wind gust return values and confidence ranges based on a systematic sampling of the uncertainty space for return periods up to 120 years.

  14. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  15. Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Krylov, Aleksey

    2017-04-01

    Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.

  16. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    PubMed

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Treesearch

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  18. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  19. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.

    PubMed

    Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P

    2008-04-08

    Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.

  20. C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.

    2015-12-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.

  1. Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  2. Seasonal forecasting of high wind speeds over Western Europe

    NASA Astrophysics Data System (ADS)

    Palutikof, J. P.; Holt, T.

    2003-04-01

    As financial losses associated with extreme weather events escalate, there is interest from end users in the forestry and insurance industries, for example, in the development of seasonal forecasting models with a long lead time. This study uses exceedences of the 90th, 95th, and 99th percentiles of daily maximum wind speed over the period 1958 to present to derive predictands of winter wind extremes. The source data is the 6-hourly NCEP Reanalysis gridded surface wind field. Predictor variables include principal components of Atlantic sea surface temperature and several indices of climate variability, including the NAO and SOI. Lead times of up to a year are considered, in monthly increments. Three regression techniques are evaluated; multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression (PLS). PCR and PLS proved considerably superior to MLR with much lower standard errors. PLS was chosen to formulate the predictive model since it offers more flexibility in experimental design and gave slightly better results than PCR. The results indicate that winter windiness can be predicted with considerable skill one year ahead for much of coastal Europe, but that this deteriorates rapidly in the hinterland. The experiment succeeded in highlighting PLS as a very useful method for developing more precise forecasting models, and in identifying areas of high predictability.

  3. Quantifying and Improving International Space Station Survivability Following Orbital Debris Penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, Joel; Evans, Hilary; Bohl, Bill; Evans, Steven; Parker, Nelson (Technical Monitor)

    2001-01-01

    The increase of the orbital debris environment in low-earth orbit has prompted NASA to develop analytical tools for quantifying and lowering the likelihood of crew loss following orbital debris penetration of the International Space Station (ISS). NASA uses the Manned Spacecraft and Crew Survivability (MSCSurv) computer program to simulate the events that may cause crew loss following orbital debris penetration of ISS manned modules, including: (1) critical cracking (explosive decompression) of the module; (2) critical external equipment penetration (such as hydrazine and high pressure tanks); (3) critical internal system penetration (guidance, control, and other vital components); (4) hazardous payload penetration (furnaces, pressure bottles, and toxic substances); (5) crew injury (from fragments, overpressure, light flash, and temperature rise); (6) hypoxia from loss of cabin pressure; and (7) thrust from module hole causing high angular velocity (occurring only when key Guidance, Navigation, and Control (GN&C) equipment is damaged) and, thus, preventing safe escape vehicle (EV) departure. MSCSurv is also capable of quantifying the 'end effects' of orbital debris penetration, such as the likelihood of crew escape, the probability of each module depressurizing, and late loss of station control. By quantifying these effects (and their associated uncertainties), NASA is able to improve the likelihood of crew survivability following orbital debris penetration due to improved crew operations and internal designs.

  4. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  5. Management of penetrating brain injury

    PubMed Central

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-01-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients. PMID:21887033

  6. Unsteady penetration of a target by a liquid jet

    PubMed Central

    Uth, Tobias; Deshpande, Vikram S.

    2013-01-01

    It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet–target interface––this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818

  7. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC; Pacific Wind, LLC; Colorado Highlands Wind, LLC; Shooting Star Wind Project, LLC; Notice of Effectiveness of Exempt Wholesale Generator or...

  8. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  9. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    PubMed

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  10. Enhanced chlorhexidine skin penetration with eucalyptus oil

    PubMed Central

    2010-01-01

    Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (μg/mg of skin) was determined to a skin depth of 1500 μm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis. PMID:20860796

  11. Quality Assessment of Longissimus and Semitendinosus Muscles from Beef Cattle Subjected to Non-penetrative and Penetrative Percussive Stunning Methods

    PubMed Central

    Sazili, A. Q.; Norbaiyah, B.; Zulkifli, I.; Goh, Y. M.; Lotfi, M.; Small, A. H.

    2013-01-01

    This study provides a comparative analysis of the effects of pre-slaughter penetrative and non-penetrative stunning and post-slaughter stunning on meat quality attributes in longissimus lumborum (LL) and semitendinosus (ST) muscles in heifers. Ten animals were assigned to each of four treatment groups: i) animals were subjected to conventional Halal slaughter (a clean incision through the structures at the front of the upper neck - the trachea, oesophagus, carotid arteries and jugular veins) and post-cut penetrating mechanical stun within 10 to 20 s of the neck cut (Unstunned; US); ii) high power non-penetrating mechanical stunning followed by the neck cut (HPNP); iii) low power non-penetrating mechanical stunning followed by the neck cut (LPNP); and iv) penetrative stunning using a captive bolt pistol followed by the neck cut (P). For each carcass, muscle samples were removed within 45 min of slaughter, portioned and analysed for pH, cooking loss, water holding capacity (WHC), tenderness (WBS), lipid oxidation (TBARS) and color, over a two week storage period. Stunning did not affect pH and cooking loss. Significant differences in water holding capacity, tenderness, lipid oxidation and color were present at different storage time points. HPNP stunning resulted in lower WHC and color values, particularly lightness (L*), higher TBARS values and peak force values compared with those stunned using LPNP, P and US. These adverse effects on quality were mostly encountered in the ST muscle. In conclusion, the meat quality achieved using P, LPNP and US treatments was comparable, and no treatment stood out as considerably better than another. PMID:25049845

  12. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M.; Jonkman, J.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented asmore » validation.« less

  13. High resolution wind turbine wake measurements with a scanning lidar

    NASA Astrophysics Data System (ADS)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.

    2017-05-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.

  14. Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Tsurutani, B. T.

    1997-01-01

    We have examined the ISEE 3 distant tail data during three intense magnetic storms and have identified the tail response to high-speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  15. An Extended IEEE 118-Bus Test System With High Renewable Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Martinez-Anido, Carlo Brancucci; Hodge, Bri-Mathias

    This article describes a new publicly available version of the IEEE 118-bus test system, named NREL-118. The database is based on the transmission representation (buses and lines) of the IEEE 118-bus test system, with a reconfigured generation representation using three regions of the US Western Interconnection from the latest Western Electricity Coordination Council (WECC) 2024 Common Case [1]. Time-synchronous hourly load, wind, and solar time series are provided for over one year (8784 hours). The public database presented and described in this manuscript will allow researchers to model a test power system using detailed transmission, generation, load, wind, and solarmore » data. This database includes key additional features that add to the current IEEE 118-bus test model, such as: the inclusion of 10 generation technologies with different heat rate functions, minimum stable levels and ramping rates, GHG emissions rates, regulation and contingency reserves, and hourly time series data for one full year for load, wind and solar generation.« less

  16. Wind constraints on the thermoregulation of high mountain lizards.

    PubMed

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard (Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  17. Wind constraints on the thermoregulation of high mountain lizards

    NASA Astrophysics Data System (ADS)

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  18. Wind fence enclosures for infrasonic wind noise reduction.

    PubMed

    Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy

    2015-03-01

    A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.

  19. The evolution of inner disk winds from a large survey of high-resolution [OI] spectra

    NASA Astrophysics Data System (ADS)

    Banzatti, Andrea; Pascucci, Illaria; Edwards, Suzan

    2018-01-01

    Current theoretical work suggests that protoplanetary disk evolution and dispersal could be driven by radially extended disk winds. I will present new observational results on the evolution of inner disk winds as linked to jets and to the dispersal of disks. The analysis is based on a large survey of forbidden emission from oxygen ([OI]) as observed in the optical (5577 and 6300 ang) at the spectral resolution of ~7 km/s, and it is part of a large recent effort (Rigliaco et al. 2013, Simon et al. 2016) to study winds at higher resolution than in the past. Past work identified two largely distinct components in [OI] emission: a high-velocity-component (HVC) that has been related to collimated jets, and a low-velocity-component (LVC) that has been attributed to slow disk winds (MHD and/or photoevaporative). The larger sample, high resolution, and improved correction for photospheric absorption now allow us to find new important clues, in particular in terms of the evolution of line blue-shifts and of 5577/6300 line flux ratios in the LVC. I will discuss these findings in the context of the properties and evolution of wind process(es) that are proposed to produce them.

  20. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    NASA Astrophysics Data System (ADS)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  1. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  2. Analyzing the Impacts of Increased Wind Power on Generation Revenue Sufficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Wu, Hongyu; Tan, Jin

    2016-11-14

    The Revenue Sufficiency Guarantee (RSG), as part of make-whole (or uplift) payments in electricity markets, is designed to recover the generation resources' offer-based production costs that are not otherwise covered by their market revenues. Increased penetrations of wind power will bring significant impacts to the RSG payments in the markets. However, literature related to this topic is sparse. This paper first reviews the industrial practices of implementing RSG in major U.S. independent system operators (ISOs) and regional transmission operators (RTOs) and then develops a general RSG calculation method. Finally, an 18-bus test system is adopted to demonstrate the impacts ofmore » increased wind power on RSG payments.« less

  3. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

    PubMed

    Xie, Wei-Jie; Zhang, Yong-Ping; Xu, Jian; Sun, Xiao-Bo; Yang, Fang-Fang

    2017-03-27

    In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0-t , AUMC 0-t ), area under the zero and first moment curves from 0 to infinity (AUC 0-∞ , AUMC 0-∞ ), maximum plasma concentration (C max ) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with

  4. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bebic, Jovan; Hinkle, Gene; Matic, Slobodan

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO 2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage andmore » adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.« less

  5. Wind Power Ramping Product for Increasing Power System Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus Systemmore » show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.« less

  6. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliablemore » or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.« less

  7. Incremental wind tunnel testing of high lift systems

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Efficiency of trailing edge high lift systems is essential for long range future transport aircrafts evolving in the direction of laminar wings, because they have to compensate for the low performance of the leading edge devices. Modern high lift systems are subject of high performance requirements and constrained to simple actuation, combined with a reduced number of aerodynamic elements. Passive or active flow control is thus required for the performance enhancement. An experimental investigation of reduced kinematics flap combined with passive flow control took place in a low speed wind tunnel. The most important features of the experimental setup are the relatively large size, corresponding to a Reynolds number of about 2 Million, the sweep angle of 30 degrees corresponding to long range airliners with high sweep angle wings and the large number of flap settings and mechanical vortex generators. The model description, flap settings, methodology and results are presented.

  8. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  9. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use.

    PubMed

    Yang, Yan; Ou, Rujing; Guan, Shixia; Ye, Xiaoling; Hu, Bo; Zhang, Yi; Lu, Shufan; Zhou, Yubin; Yuan, Zhongwen; Zhang, Jun; Li, Qing-Guo

    2015-12-01

    Terbinafine hydrochloride is an antifungal drug for onychomycosis. Poor permeability of its external preparation leads to poor curative effect. Transfersomes, also known as flexible liposome, could improve transmission of drug for local external use. Terbinafine hydrochloride-loaded liposome is expected to become a breakthrough on the treatment of onychomycosis. This study is aimed to prepare high skin penetration terbinafine hydrochloride transfersomes with high encapsulation efficiency, appropriate drug loading and good stability. Taking entrapment efficiency as the main indicator, the formulations and the processes of preparation were investigated. Transfersomes with different surfactants were prepared in the optimization processes, and the formulations were optimized through the transdermal test in vitro. As a result, a gel contained transfersomes was obtained with a brief evaluation. Its pharmacokinetic properties of going through the skin were studied by using the micro dialysis technology and liquid chromatography-mass spectrometry to assay the penetration behavior of terbinafine. Mean particle size of the terbinafine hydrochloride transfersomes was 69.6 ± 1.23 nm, and the entrapment efficiency was 95.4% ± 0.51. The content of the gel was 4.45 ± 0.15 mg/g. The accumulated permeation of the transfersomes gel in 12 h was 88.52 ± 4.06 µg cm -2 and the intracutaneous drug detention was 94.38 ± 5.26 µg cm -2 . The results of pharmacokinetic studies showed the C max and area under the curve (AUC) were apparently higher than the commercial cream. The terbinafine hydrochloride transfersomes was highly absorbed by the skin. The absorption rate was significantly higher than that of the commercial cream either in the transdermal test in vitro or in the pharmacokinetic studies in vivo.

  10. [Professor WU Zhongchao's experience of penetration needling].

    PubMed

    Zhang, Ning; Wang, Bing; Zhou, Yu

    2016-08-12

    Professor WU Zhongchao has unique application of penetration needling in clinical treatment. Professor WU applies penetration needling along meridians, and the methods of penetration needling include self-meridian penetration, exterior-interior meridian penetration, identical-name meridian penetration, different meridian penetration. The meridian differentiation is performed according to different TCM syndromes, locations and natures of diseases and acupoint nature, so as to make a comprehensive assessment. The qi movement during acupuncture is focused. In addition, attention is paid on anatomy and long-needle penetration; the sequence and direction of acupuncture is essential, and the reinforcing and reducing methods have great originality, presented with holding, waiting, pressing and vibrating. Based on classical acupoint, the acupoint of penetration needling is flexible, forming unique combination of acupoints.

  11. Penetrative convection at high Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  12. High resolution urban morphology data for urban wind flow modeling

    NASA Astrophysics Data System (ADS)

    Cionco, Ronald M.; Ellefsen, Richard

    The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with

  13. Hafnium-Based Bulk Metallic Glasses for Kinetic Energy Penetrators

    DTIC Science & Technology

    2004-12-01

    uranium -based (DU) and tungsten- nickel -iron (W-Ni-Fe) composite kinetic energy (KE) munitions is primarily ascribed to their high densities (U: ρ...based on an invariant point identified in the hafnium- copper- nickel ternary system. They are denser than zirconium-based glass-forming compositions...depleted- uranium penetrators. 1. INTRODUCTION 1.1 Criterion for Effective Kinetic Energy Penetrator Performance The lethality of depleted

  14. High-speed aerodynamic design of space vehicle and required hypersonic wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Sakakibara, Seizou; Hozumi, Kouichi; Soga, Kunio; Nomura, Shigeaki

    Problems associated with the aerodynamic design of space vehicles with emphasis of the role of hypersonic wind tunnel facilities in the development of the vehicle are considered. At first, to identify wind tunnel and computational fluid dynamics (CFD) requirements, operational environments are postulated for hypervelocity vehicles. Typical flight corridors are shown with the associated flow density: real gas effects, low density flow, and non-equilibrium flow. Based on an evaluation of these flight regimes and consideration of the operational requirements, the wind tunnel testing requirements for the aerodynamic design are examined. Then, the aerodynamic design logic and optimization techniques to develop and refine the configurations in a traditional phased approach based on the programmatic design of space vehicle are considered. Current design methodology for the determination of aerodynamic characteristics for designing the space vehicle, i.e., (1) ground test data, (2) numerical flow field solutions and (3) flight test data, are also discussed. Based on these considerations and by identifying capabilities and limits of experimental and computational methods, the role of a large conventional hypersonic wind tunnel and the high enthalpy tunnel and the interrelationship of the wind tunnels and CFD methods in actual aerodynamic design and analysis are discussed.

  15. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer

    PubMed Central

    Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-01-01

    Abstract The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air–sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s−1 in the tunnel and ≤4.1 m s−1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. PMID:28369320

  16. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    PubMed

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  17. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    NASA Astrophysics Data System (ADS)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  18. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    NASA Astrophysics Data System (ADS)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  19. Cutaneous mucormycosis secondary to penetrative trauma.

    PubMed

    Zahoor, Bilal; Kent, Stephen; Wall, Daryl

    2016-07-01

    Mucormycosis is a rare but serious sequelae of penetrating trauma [1-5]. In spite of aggressive management, mortality remains high due to dissemination of infection. We completed a review of literature to determine the most optimal treatment of cutaneous mucormycosis which occurs secondary to penetrating trauma. We completed a review regarding the management of mucormycosis in trauma patients. We selected a total of 36 reports, of which 18 were case-based, for review. Surgical debridement is a primary predictor of improved outcomes in the treatment of mucormycosis [3,6,7]. Anti-fungal therapy, especially lipid soluble formulation of Amphotericin B, is helpful as an adjunct or when surgical debridement has been maximally achieved. Further research is needed to fully evaluate the impact of topical dressings; negative pressure wound therapy is helpful. An aggressive and early surgical approach, even at the expense of disfigurement, is necessary to reduce mortality in the setting of cutaneous mucormycosis that results from penetrating trauma [4,8,9]. Anti-fungal therapy and negative pressure wound therapy are formidable adjuncts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Developing high-resolution spatial data of migration corridors for avian species of concern in regions of high potential wind development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzner, Todd

    2014-06-15

    The future of the US economy, our national security, and our environmental quality all depend on decreasing our reliance on foreign oil and on fossil fuels. An essential component of decreasing this reliance is the development of alternative energy sources. Wind power is among the most important alternative energy sources currently available, and the mid-Atlantic region is a primary focus for wind power development. In addition to being important to the development of wind power, the mid-Atlantic region holds a special responsibility for the conservation of the eastern North America's golden eagles (Aquila chrysaetos). This small population breeds in northeasternmore » Canada, winters in the southern Appalachians, and nearly all of these birds pass through the mid-Atlantic region twice each year. Movement of these birds is not random and, particularly during spring and autumn, migrating golden eagles concentrate in a narrow 30-50 mile wide corridor in central Pennsylvania. Thus, because the fate of these rare birds may depend on responsible management of the habitat they use it is critical to use research to identify ways to mitigate prospective impacts on this and similar raptor species. The goal of this project was to develop high-resolution spatial risk maps showing migration corridors of and habitat use by eastern golden eagles in regions of high potential for wind development. To accomplish this, we first expanded existing models of raptor migration for the eastern USA to identify broad-scale migration patterns. We then used data from novel high-resolution tracking devices to discover routes of passage and detailed flight behavior of individual golden eagles throughout the eastern USA. Finally, we integrated these data and models to predict population-level migration patterns and individual eagle flight behavior on migration. We then used this information to build spatially explicit, probabilistic maps showing relative risk to birds from wind development

  1. Persistent enhancement of bacterial motility increases tumor penetration.

    PubMed

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  2. Penetrating ballistic-like frontal brain injury caused by a metallic rod.

    PubMed

    Pascual, J M; Navas, M; Carrasco, R

    2009-06-01

    Penetrating non-missile intracranial injuries caused by metallic foreign bodies are very rare among the civilian population. We present a unique instance of a severe, high-energy, penetrating orbitocranial injury caused by a solid metallic rod that corresponded to the spray valve lever handle of a kitchen sink pre-rinse spray tap, which was fractured and projected at high speed for an unknown reason. To our knowledge, this is the first report of a high-energy, penetrating brain injury caused by such an object. After careful radiological evaluation of the shape and position of the foreign object, a combined right frontal craniotomy and supraorbital osteotomy was performed in order to achieve safe removal of the metal bar. Successful surgical treatment of an orbitocranial injury caused by a similar object has not previously been reported.

  3. Galactic wind shells and high redshift radio galaxies. On the nature of associated absorbers

    NASA Astrophysics Data System (ADS)

    Krause, M.

    2005-06-01

    A jet is simulated on the background of a galactic wind headed by a radiative bow shock. The wind shell, which is due to the radiative bow shock, is effectively destroyed by the impact of the jet cocoon, thanks to Rayleigh-Taylor instabilities. Associated strong HI absorption, and possibly also molecular emission, in high redshift radio galaxies which is observed preferentially in the smaller ones may be explained by that model, which is an improvement of an earlier radiative bow shock model. The model requires temperatures of ≈106 K in the proto-clusters hosting these objects, and may be tested by high resolution spectroscopy of the Lyα line. The simulations show that - before destruction - the jet cocoon fills the wind shell entirely for a considerable time with intact absorption system. Therefore, radio imaging of sources smaller than the critical size should reveal the round central bubbles, if the model is correct.

  4. High-Latitude Observations of a Localized Wind Wall and Its Coupling to the Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Shepherd, Gordon G.; Shepherd, Marianna G.

    2018-05-01

    Reversals in the thermospheric zonal winds at altitudes of 140 to 250 km from eastward to westward have been found at southern geographic latitudes between 60° and 70°. These are confined to a narrow region between 100° and 200° in longitude with zonal velocities regularly of -400 m/s, sometimes reaching -600 m/s, so sharply defined that the authors describe it as a "wind wall." The observations were made by the Wind Imaging Interferometer on National Aeronautics and Space Administration's Upper Atmosphere Research Satellite, and they occur as the field of view crosses the high polar cap wind field. The wind reversals at the wall boundaries create a convergence on the west side of the wall and a divergence on the east side that potentially generate vertical flows, consistent with observed perturbations in the O(1S) emission rate. They are present about one half of the time in local summer and autumn.

  5. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration.

    PubMed

    Priwitaningrum, Dwi L; Blondé, Jean-Baptiste G; Sridhar, Adithya; van Baarlen, Joop; Hennink, Wim E; Storm, Gert; Le Gac, Séverine; Prakash, Jai

    2016-12-28

    Nanoparticle penetration through tumor tissue after extravasation is considered as a key issue for tumor distribution and therapeutic effects. Most tumors possess abundant stroma, a fibrotic tissue composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which acts as a barrier for nanoparticle penetration. There is however a lack of suitable in vitro systems to study the tumor stroma penetration of nanoparticles. In the present study, we developed and thoroughly characterized a 3D co-culture spheroidal array to mimic tumor stroma and investigated the penetration of silica and PLGA nanoparticles in these spheroids. First, we examined human breast tumor patient biopsies to characterize the content and organization of stroma and found a high expression of alpha-smooth muscle actin (α-SMA; 40% positive area) and collagen-1 (50% positive area). Next, we prepared homospheroids of 4T1 mouse breast cancer cells or 3T3 mouse fibroblasts alone as well as heterospheroids combining 3T3 and 4T1 cells in different ratios (1:1 and 5:1) using a microwell array platform. Confocal live imaging revealed that fibroblasts distributed and reorganized within 48h in heterospheroids. Furthermore, immunohistochemical staining and gene expression analysis showed a proportional increase of α-SMA and collagen in heterospheroids with higher fibroblast ratios attaining 35% and 45% positive area at 5:1 (3T3:4T1) ratio, in a good match with the clinical breast tumor stroma. Subsequently, we studied the penetration of high and low negatively charged fluorescent silica nanoparticles (30nm; red and 100 or 70nm; green; zeta potential: -40mV and -20mV) and as well as Cy5-conjugated pegylated PLGA nanoparticles (200nm, -7mV) in both homo- and heterospheroid models. Fluorescent microscopy on spheroid cryosections after incubation with silica nanoparticles showed that 4T1 homospheroids allowed a high penetration of about 75-80% within 24h, with higher penetration in case of the

  6. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    PubMed Central

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  7. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  8. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    NASA Technical Reports Server (NTRS)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  9. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  10. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  11. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE PAGES

    Guo, Yi; Keller, Jonathan

    2017-11-10

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  12. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Keller, Jonathan

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  13. Effect of compressibility on the hypervelocity penetration

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  14. ? stability of wind turbine switching control

    NASA Astrophysics Data System (ADS)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  15. Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Langston, William L.; ...

    2017-07-11

    In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less

  16. Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Langston, William L.

    In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less

  17. Grid impacts of wind power: a summary of recent studies in the United States

    NASA Astrophysics Data System (ADS)

    Parsons, Brian; Milligan, Michael; Zavadil, Bob; Brooks, Daniel; Kirby, Brendan; Dragoon, Ken; Caldwell, Jim

    2004-04-01

    Several detailed technical investigations of grid ancillary service impacts of wind power plants in the United States have recently been performed. These studies were applied to Xcel Energy (in Minnesota) and PacifiCorp and the Bonneville Power Administration (both in the northwestern United States). Although the approaches vary, three utility time frames appear to be most at issue: regulation, load following and unit commitment. This article describes and compares the analytic frameworks from recent analysis and discusses the implications and cost estimates of wind integration. The findings of these studies indicate that relatively large-scale wind generation will have an impact on power system operation and costs, but these impacts and costs are relatively low at penetration rates that are expected over the next several years. Published in 2004 by John Wiley & Sons, Ltd.

  18. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  19. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  20. Analyzing the Impacts of Increased Wind Power on Generation Revenue Sufficiency: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Wu, Hongyu; Tan, Jin

    2016-08-01

    The Revenue Sufficiency Guarantee (RSG), as part of make-whole (or uplift) payments in electricity markets, is designed to recover the generation resources' offer-based production costs that are not otherwise covered by their market revenues. Increased penetrations of wind power will bring significant impacts to the RSG payments in the markets. However, literature related to this topic is sparse. This paper first reviews the industrial practices of implementing RSG in major U.S. independent system operators (ISOs) and regional transmission operators (RTOs) and then develops a general RSG calculation method. Finally, an 18-bus test system is adopted to demonstrate the impacts ofmore » increased wind power on RSG payments.« less

  1. Measured effects of wind turbine generation at the Block Island Power Company

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.

    1984-01-01

    Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.

  2. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  3. Follicular and percutaneous penetration pathways of topically applied minoxidil foam.

    PubMed

    Blume-Peytavi, Ulrike; Massoudy, Lida; Patzelt, Alexa; Lademann, Jürgen; Dietz, Ekkehart; Rasulev, Utkur; Garcia Bartels, Natalie

    2010-11-01

    In the past, it was assumed that the intercellular route was the only relevant penetration pathway for topically applied substances. Recent results on follicular penetration emphasize that the hair follicles represent a highly relevant and efficient penetration pathway and reservoir for topically applied substances. This study investigates a selective closure technique of hair follicle orifices in vivo assessing interfollicular and follicular absorption rates of topical minoxidil foam in humans. In delimited skin area, single hair orifices or interfollicular skin were blocked with a microdrop of special varnish-wax-mixture in vivo. Minoxidil foam (5%) was topically applied, and transcutaneous absorption was measured by a new surface ionization mass spectrometry technique in serum. Different settings (open, closed or none of both) enabled to clearly distinguish between interfollicular and follicular penetration of the topically applied minoxidil foam. Five minutes after topical application, minoxidil was detected in blood samples when follicles remained open, whereas with closed follicles 30 min were needed. Highest levels were found first when both pathways were open, followed by open follicles and subsequently by closed follicles. These results demonstrate the high importance of the follicular penetration pathway. Hair follicles are surrounded by a dense network of blood capillaries and dendritic cells and have stem cells in their immediate vicinity, making them ideal targets for drug delivery. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, A.; Eden, C.; von Storch, J.

    2012-12-01

    Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is

  5. Videofluoroscopic Predictors of Penetration-Aspiration in Parkinson's Disease Patients.

    PubMed

    Argolo, Natalie; Sampaio, Marília; Pinho, Patrícia; Melo, Ailton; Nóbrega, Ana Caline

    2015-12-01

    Parkinson's disease (PD) patients show a high prevalence of swallowing disorders and tracheal aspiration of food. The videofluoroscopic study of swallowing (VFSS) allows clinicians to visualize the visuoperceptual and temporal parameters associated with swallowing disorders in an attempt to predict aspiration risk. However, this subject remains understudied in PD populations. Our aim was to identify the predictors of penetration-aspiration in PD patients using the VFSS. Consecutive patients were evaluated using VFSS with different consistencies and volumes of food. A speech-language pathologist measured the type of intra-oral bolus organization, loss of bolus control, bolus location at the initiation of the pharyngeal swallow, the presence of multiple swallows, piecemeal deglutition, bolus residue in the pharyngeal recesses and temporal measures. Scores ≥3 on the penetration-aspiration scale (PAS) indicated the occurrence of penetration-aspiration. Using logistic marginal regression, we found that residue in the vallecula, residue in the upper esophageal sphincter and piecemeal deglutition were associated with penetration-aspiration (odds ratio (OR) = 4.09, 2.87 and 3.83; P = 0.0040, 0.0071 and 0.0009, respectively). Penetration/aspiration occurred only with fluids (both of thin and thick consistency), and no significant differences were observed between fluid types or food volumes. The mechanisms underlying dysphagia and penetration/aspiration in PD patients and indications for further studies are discussed.

  6. Brushless exciters using a high temperature superconducting field winding

    DOEpatents

    Garces, Luis Jose [Schenectady, NY; Delmerico, Robert William [Clifton Park, NY; Jansen, Patrick Lee [Scotia, NY; Parslow, John Harold [Scotia, NY; Sanderson, Harold Copeland [Tribes Hill, NY; Sinha, Gautam [Chesterfield, MO

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  7. Biennial Wind Energy Conference and Workshop, 5th, Washington, DC, October 5-7, 1981, Proceedings

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The results of studies funded by the Federal government to advance the state of the art of wind energy conversion systems (WECS) construction, operation, applications, and financial viability are presented. The economics of WECS were considered in terms of applicable tax laws, computer simulations of net value of WECS to utilities, and the installation of Mod-2 2.5 MW and WTS-4 4MW wind turbines near Medicine Bow, WY to test the operation of two different large WECS on the same utility grid. Potential problems of increasing penetration of WECS-produced electricity on a utility grid were explored and remedies suggested. The structural dynamics of wind turbines were analyzed, along with means to predict potential noise pollution from large WECS, and to make blade fatigue life assessments. Finally, Darrieus rotor aerodynamics were investigated, as were dynamic stall in small WECS and lightning protection for wind turbines and components.

  8. An ultra-high performance liquid chromatography method to determine the skin penetration of an octyl methoxycinnamate-loaded liquid crystalline system.

    PubMed

    Prado, A H; Borges, M C; Eloy, J O; Peccinini, R G; Chorilli, M

    2017-10-01

    Cutaneous penetration is a critical factor in the use of sunscreen, as the compounds should not reach systemic circulation in order to avoid the induction of toxicity. The evaluation of the skin penetration and permeation of the UVB filter octyl methoxycinnamate (OMC) is essential for the development of a successful sunscreen formulation. Liquid-crystalline systems are innovative and potential carriers of OMC, which possess several advantages, including controlled release and protection of the filter from degradation. In this study, a new and effective method was developed using ultra-high performance liquid chromatography (UPLC) with ultraviolet detection (UV) for the quantitative analysis of penetration of OMC-loaded liquid crystalline systems into the skin. The following parameters were assessed in the method: selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD), and limit of quantification (LOQ). The analytical curve was linear in the range from 0.25 to 250 μg.m-1, precise, with a standard deviation of 0.05-1.24%, with an accuracy in the range from 96.72 to 105.52%, and robust, with adequate values for the LOD and LOQ of 0.1 and 0.25 μg.mL -1, respectively. The method was successfully used to determine the in vitro skin permeation of OMC-loaded liquid crystalline systems. The results of the in vitro tests on Franz cells showed low cutaneous permeation and high retention of the OMC, particularly in the stratum corneum, owing to its high lipophilicity, which is desirable for a sunscreen formulation.

  9. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  10. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  11. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  12. 77 FR 40608 - Notice of Petition for Enforcement and Declaratory Order; Exelon Wind 1, LLC; Exelon Wind 2, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Petition for Enforcement and Declaratory Order; Exelon Wind 1, LLC; Exelon Wind 2, LLC; Exelon Wind 3, LLC; Exelon Wind 4, LLC; Exelon Wind 5, LLC; Exelon Wind 6, LLC; Exelon Wind 7, LLC; Exelon Wind 8, LLC; Exelon Wind 9, LLC; Exelon Wind 10, LLC; Exelon Wind 11, LLC; High Plains Wind Power, LLC Take notice...

  13. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    NASA Astrophysics Data System (ADS)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  14. Static penetration resistance of soils

    NASA Technical Reports Server (NTRS)

    Durgunoglu, H. T.; Mitchell, J. K.

    1973-01-01

    Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.

  15. Quantitative wood–adhesive penetration with X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Jesse L.; Kamke, Frederick A.

    Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximatelymore » 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO 2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified

  16. Wind and solar resource data sets: Wind and solar resource data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solarmore » resource data sets is then presented, followed by areas for future research.« less

  17. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  18. Cyclotron Line and Wind studies of Galactic High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir

    High mass X-ray binaries are rotating neutron stars with very strong magnetic fields that channel accreting matter from their companion star onto the magnetic poles with subsequent collimated X-ray emission. The stars are fed either by a strong stellar wind of the optical companion or by an accretion disk, where material follows the magnetic field lines, emitting X-rays throughout this process either in the accretion column or directly from the neutron star surface. The fast rotation and the narrow collimation of the X-ray emission creates an observed pulsation, forming the concept of a pulsar. Some of the key questions of these thesis are the emission processes above the magnetic pole, including the influence of the magnetic field, the formation of the X-ray beam, and the structure of the stellar wind. An important process is the effect of the teraGauss magnetic field. Cyclotron resonance scattering creates spectral features similar to broad absorption lines (CRSFs or cyclotron lines) that are directly related to the magnetic field. The discovery of cyclotron lines ˜ 35 years ago allows for the only direct method to measure the magnetic field strength in neutron star systems. Variations in the line parameters throughout the pulse phase, and a dependence in the observed luminosity can also aid in the understanding of these processes. In this thesis I present the results of phase averaged and phase resolved analysis of the three high mass X-ray binaries CenX-3, 1A 1118--61, and GX301--2. The data used for this work were obtained with NASA's Rossi X-ray Timing Explorer and the Japanese Suzaku mission. Both satellites are ideal to cover the broad energy band, where CRSFs occur and are necessary for understanding the continuum as a whole. In the process of investigating the 3 sources, I discovered a CRSF at ˜ 55 keV in the transient binary 1A 1118--61, which indicates one of the strongest magnetic fields known in these objects. I used the variations of the CRSF in GX

  19. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    NASA Technical Reports Server (NTRS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  20. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  1. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  2. Winds and Temperatures in Venus Upper Atmosphere from High-Resolution Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, Guido; Krötz, Peter; Stupar, Dusan

    2010-05-01

    Narrow non-LTE emission lines of CO2 at 10μm are induced by solar radiation in Venus upper atmosphere. Measurements of fully resolved emission lines can be used to probe the emitting regions of the atmosphere for winds and tempertaures. Using infrared heterodyne spectroscopy kinetic temperatures with a precision of 5 K can be calculated from the width of emission lines and wind velocities can be determined from Doppler-shifts of emission lines with a precision up to 10 m/s. The non-LTE emission can only occur within a narrow pressure/altitude region around 110 km. At the I.Physikalisches Instiut of the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) infrared observations also provide high spatial resolution on the planet. Over the last two years we observed wind velocities and temperatures at several characteristic orbital positions of Venus using the McMath-Pierce-Solar Telescope on Kitt Peak, Arizona, USA. This telescope provides a field-of-view of 1.7 arcsec on an apparent diameter of Venus of approximately 20-60 arcsec. New observations close to inferior conjunction have been accomplished in March and in April 2009 An additional observing run took place in June 2009 at maximum western elongation. These observing geometries allow investigations of wind velocities of different combinations of the superrotational component and the subsolar-antisolar (SS-AS) flow component. Due to the observing geometry during the March and April runs we focused on SS-AS flow. Wind velocities around 140 m/s were found decreasing significantly at high latitudes. No significant superrotational component could be observed and the variability between these two runs was moderate. Data analysis for the run in June 2009 addressing mainly the superrotational component is still in progress. Retrieved temperatures from all three

  3. Rifle bullet penetration into ballistic gelatin.

    PubMed

    Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C

    2017-03-01

    The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  5. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  6. Alfvén Turbulence Driven by High-Dimensional Interior Crisis in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.; Rempel, E. L.; Macau, E. E. N.; Rosa, R. R.; Christiansen, F.

    2003-09-01

    Alfvén intermittent turbulence has been observed in the solar wind. It has been previously shown that the interplanetary Alfvén intermittent turbulence can appear due to a low-dimensional temporal chaos [1]. In this paper, we study the nonlinear spatiotemporal dynamics of Alfvén waves governed by the Kuramoto-Sivashinsky equation which describes the phase evolution of a large-amplitude Alfvén wave. We investigate the Alfvén turbulence driven by a high-dimensional interior crisis, which is a global bifurcation caused by the collision of a chaotic attractor with an unstable periodic orbit. This nonlinear phenomenon is analyzed using the numerical solutions of the model equation. The identification of the unstable periodic orbits and their invariant manifolds is fundamental for understanding the instability, chaos and turbulence in complex systems such as the solar wind plasma. The high-dimensional dynamical system approach to space environment turbulence developed in this paper can improve our interpretation of the origin and the nature of Alfvén turbulence observed in the solar wind.

  7. Penetration through the Skin Barrier.

    PubMed

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals. © 2016 S. Karger AG, Basel.

  8. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by

  9. Characteristic Paths of Extratropical Cyclones that Cause High Wind Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.

    2014-12-01

    This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.

  10. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States

    PubMed Central

    Pryor, S. C.; Barthelmie, R. J.

    2011-01-01

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the “fuel” is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades. PMID:21536905

  11. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    PubMed

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  12. 30 WS North Base Wind Study

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark

    2011-01-01

    The 30 Weather Squadron (30 WS) is concerned about strong winds observed at their northern towers without advance warning. They state that terrain influences along the extreme northern fringes of Vandenberg Air Force Base (VAFB) make it difficult for forecasters to issue timely and accurate high wind warnings for northeasterly wind events. These events tend to occur during the winter or early spring when they are under the influence of the Great Basin high pressure weather regime. The Launch Weather Officers (LWOs) have seen these rapid wind increases in the current northern Towers 60, 70 and 71 in excess of their 35 kt operational warning threshold. For this task, the 30 WS requested the Applied Meteorology Unit (AMU) analyze data from days when these towers reported winds in excess of 35 kt and determine if there were any precursors in the observations that would allow the LWOs to better forecast and warn their operational customers for these wind events. The 30 WS provided wind tower data for the cool season (October - March) from the period January 2004-March 20 IO. The AMU decoded and evaluated the wind tower data for 66 days identified by the 30 WS as having high-wind events. Out of the 66 event days, only 30 had wind speed observations of > or =35 kt from at least one of the three northern towers. The AMU analyzed surface and upper air charts to determine the synoptic conditions for each event day along with tower peak wind speed and direction time series and wind rose charts for all 30 event days. The analysis revealed a trend on all event days in which the tower winds shifted to the northeast for a period of time before the first recorded > or =35 kt wind speed. The time periods for the 30 event days ranged from 20 minutes to several hours, with a median value of 110 minutes. This trend, if monitored, could give the 30 WS forecasters a precursor to assist in issuing an operational warning before a high wind event occurs. The AMU recommends developing a

  13. PMU-Aided Voltage Security Assessment for a Wind Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason

    2015-10-05

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This papermore » proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant's point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.« less

  14. Double-Plate Penetration Equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    2000-01-01

    This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.

  15. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  16. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  17. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV

  18. Correlation of the Drag Characteristics of a Typical Pursuit Airplane Obtained from High-Speed Wind-Tunnel and Flight Tests

    NASA Technical Reports Server (NTRS)

    Nissen, James M; Gadebero, Burnett L; Hamilton, William T

    1948-01-01

    In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane.

  19. AE Geomagnetic Index Predictability for High Speed Solar Wind Streams: A Wavelet Decomposition Technique

    NASA Technical Reports Server (NTRS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Mannucci, Anthony J.

    2014-01-01

    High speed solar wind streams cause geomagnetic activity at Earth. In this study we have applied a wavelet interactive filtering and reconstruction technique on the solar wind magnetic field components and AE index series to allowed us to investigate the relationship between the two. The IMF Bz component was found as the most significant solar wind parameter responsible by the control of the AE activity. Assuming magnetic reconnection associated to southward directed Bz is the main mechanism transferring energy into the magnetosphere, we adjust parameters to forecast the AE index. The adjusted routine is able to forecast AE, based only on the Bz measured at the L1 Lagrangian point. This gives a prediction approximately 30-70 minutes in advance of the actual geomagnetic activity. The correlation coefficient between the observed AE data and the forecasted series reached values higher than 0.90. In some cases the forecast reproduced particularities observed in the signal very well.The high correlation values observed and the high efficacy of the forecasting can be taken as a confirmation that reconnection is the main physical mechanism responsible for the energy transfer during HILDCAAs. The study also shows that the IMF Bz component low frequencies are most important for AE prediction.

  20. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  1. Penetration electric fields: A Volland Stern approach

    NASA Astrophysics Data System (ADS)

    Burke, William J.

    2007-07-01

    This paper reformulates the Volland Stern model, separating contributions from corotation and convection to predict electric field penetration of the inner magnetosphere using data from the Advanced Composition Explorer (ACE) satellite. In the absence of shielding, the model electric field is EVS=ΦPC/2LYRE, where ΦPC is the polar cap potential and 2LYRE is the width of the magnetosphere along the dawn dusk meridian. ΦPC is estimated from the interplanetary electric field (IEF) and the dynamic pressure of the solar wind (PSW); values of LY were approximated using PSW and simple force-balance considerations. ACE measurements on 16 17 April 2002 were then used to calculate EVS for comparison with the eastward electric field component (EJφ) detected by the incoherent scatter radar at Jicamarca, Peru. While the interplanetary magnetic field (IMF) was southward, the model predicted observed ratios of EVS/IEF. During intervals of northward IMF, EJφ turned westward suggesting that a northward IMF BZ system of field-aligned currents affected the electrodynamics of the dayside ionosphere on rapid time scales.

  2. Verification of high resolution simulation of precipitation and wind in Portugal

    NASA Astrophysics Data System (ADS)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Demand of energy and freshwater continues to grow as the global population and demands increase. Precipitation feed the freshwater ecosystems which provides a wealth of goods and services for society and river flow to sustain native species and natural ecosystem functions. The adoption of the wind and hydro-electric power supplies will sustain energy demands/services without restricting the economic growth and accelerated policies scenarios. However, the international meteorological observation network is not sufficiently dense to directly support high resolution climatic research. In this sense, coupled global and regional atmospheric models constitute the most appropriate physical and numerical tool for weather forecasting and downscaling in high resolution grids with the capacity to solve problems resulting from the lack of observed data and measuring errors. Thus, this study aims to calibrate and validate of the WRF regional model from precipitation and wind fields simulation, in high spatial resolution grid cover in Portugal. The simulations were performed in two-way nesting with three grids of increasing resolution (60 km, 20 km and 5 km) and the model performance assessed for the summer and winter months (January and July), using input variables from two different reanalyses and forecasted databases (ERA-Interim and NCEP-FNL) and different forcing schemes. The verification procedure included: (i) the use of several statistics error estimators, correlation based measures and relative errors descriptors; and, (ii) an observed dataset composed by time series of hourly precipitation, wind speed and direction provided by the Portuguese meteorological institute for a comprehensive set of weather stations. Main results suggested the good ability of the WRF to: (i) reproduce the spatial patterns of the mean and total observed fields; (ii) with relatively small values of bias and other errors; and, (iii) and good temporal correlation. These findings are in good

  3. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller-Ricci Kempton, Eliza; Rauscher, Emily, E-mail: ekempton@ucolick.org

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observedmore » a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.« less

  4. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less

  5. Revisiting the feasibility analysis of on-site wind generation for the control of a dutch polder

    NASA Astrophysics Data System (ADS)

    Abraham, Edo; van Nooijen, Ronald

    2017-04-01

    EU targets to substantially reduce greenhouse gas emissions, by 20% within 2020 and 40% within 2030, has resulted in the introduction of more renewables to the grid. The recent announcement (2016) by the UK and the Netherlands to build offshore wind farms of 1.2 GW and 0.7 GW, respectively, is an example of the increasing trend for wind power penetration in the grid. The uncertainty in renewable electricity generation and its use has, however, created problems for grid stability, necessitating smarter grid and demand side management. Renewable energy, through the use of on-site windmills, has been used to keep Dutch polders dry for centuries. In this work, we present preliminary analysis of the potential for on-site wind energy use for draining a Dutch polder. A mathematical framework is presented to optimise pumping subject to uncertainties in wind energy variations and runoff predictions.

  6. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less

  7. No Evidence of Narrowly Defined Cognitive Penetrability in Unambiguous Vision

    PubMed Central

    Lammers, Nikki A.; de Haan, Edward H.; Pinto, Yair

    2017-01-01

    The classical notion of cognitive impenetrability suggests that perceptual processing is an automatic modular system and not under conscious control. Near consensus is now emerging that this classical notion is untenable. However, as recently pointed out by Firestone and Scholl, this consensus is built on quicksand. In most studies claiming perception is cognitively penetrable, it remains unclear which actual process has been affected (perception, memory, imagery, input selection or judgment). In fact, the only available “proofs” for cognitive penetrability are proxies for perception, such as behavioral responses and neural correlates. We suggest that one can interpret cognitive penetrability in two different ways, a broad sense and a narrow sense. In the broad sense, attention and memory are not considered as “just” pre- and post-perceptual systems but as part of the mechanisms by which top-down processes influence the actual percept. Although many studies have proven top-down influences in this broader sense, it is still debatable whether cognitive penetrability remains tenable in a narrow sense. The narrow sense states that cognitive penetrability only occurs when top-down factors are flexible and cause a clear illusion from a first person perspective. So far, there is no strong evidence from a first person perspective that visual illusions can indeed be driven by high-level flexible factors. One cannot be cognitively trained to see and unsee visual illusions. We argue that this lack of convincing proof for cognitive penetrability in the narrow sense can be explained by the fact that most research focuses on foveal vision only. This type of perception may be too unambiguous for transient high-level factors to control perception. Therefore, illusions in more ambiguous perception, such as peripheral vision, can offer a unique insight into the matter. They produce a clear subjective percept based on unclear, degraded visual input: the optimal basis to study

  8. Transmission Integration | Grid Modernization | NREL

    Science.gov Websites

    high penetrations of renewable energy sources operate. NREL researchers are identifying these effects and Wind Integration Studies Studying the effects of high penetrations of renewables on Hawaiian

  9. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    NASA Technical Reports Server (NTRS)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  10. Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Strasser, U.; Zängl, G.; Mauser, W.; Liston, G.; Pohl, S.

    2008-12-01

    Wind-induced snow transport processes lead to a significant variability of the snow cover. Knowledge about this variability is important for e.g. determining the temporal dynamics of the snowmelt runoff. For predicting the correct amount of transported snow knowledge of the local wind-field is an essential. In high-alpine rugged relief wind fields can hardly be provided by a simple interpolation of station recordings. In this work we use a modified version of the PSU/NCAR Mesoscale Model MM5 to derive wind fields for a 450 km² area at a target resolution of 200 m, accounting for topography and related dynamic effects. We have modelled 220 wind fields representing the most characteristic wind situations within the test-area. The criteria for the extraction of the wind field for the current snowmodel (SNOWTRAND-3D) time step are mean wind speeds and directions in the 700 hPa level derived from DWD (German Weather Service) Local Model reanalysis data with a temporal resolution of one hour. These data are then compared with the corresponding mean wind speeds and directions from the appropriate MM5 nesting area indicating which one of the library files represents the best fit. Verification is conducted by comparison of historical station measurements with corresponding downscaled simulation results. For this downscaling a semi-empirical approach is utilized which accounts for topographic effects. Results for the winter seasons 2003/04 and 2004/05 showing that the presented scheme is able to improve the quality of SNOWTRAN-3D runs with respect to the snow height.

  11. Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts

    NASA Astrophysics Data System (ADS)

    Whitt, D. B.; Taylor, J. R.; Lévy, M.

    2017-06-01

    In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4-16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.

  12. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  13. Evaluation of Microencapsulated Penetrant Inspection.

    DTIC Science & Technology

    1980-12-01

    AD-A9b 826 GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE GROUP F/6 IA/2ADG EVALUATION OF MICROENCAPSULATED PENETRANT INSPECTION.(U) DEC 80 J M...4156 ADA096826 EVALUATION OF MICROENCAPSULATED PENETRANT INSPECTION i :I J.M. Portaz Aircraft Engine Group General Electric Company Cincinnati, Ohio... Microencapsulated Penetrant 5 7riJF-Iehica17 = Inspection p un May@84 -1 ---- --- ---- 19AMFGK657j7 7. AiJTHOR(s) nVCWRACT OR GRANT m 𔃻 " JO J.M./Portaz

  14. Lenticular astigmatism after penetrating eye injury.

    PubMed

    Rumelt, S; Jager, G; Rehany, U

    1996-09-01

    Lenticular astigmatism of 5.00 diopters developed after penetrating injury in the eye of a 16-year-old boy. Full visual acuity, refraction, and crystalline lens clarity remained stable for more than 2 years. The high astigmatism, in conjunction with a spherical cornea and posterior lens capsule striae, indicates the lenticular origin of the astigmatism.

  15. Costs and clinical quality among Medicare beneficiaries: associations with health center penetration of low-income residents.

    PubMed

    Sharma, Ravi; Lebrun-Harris, Lydie A; Ngo-Metzger, Quyen

    2014-01-01

    Determine the association between access to primary care by the underserved and Medicare spending and clinical quality across hospital referral regions (HRRs). Data on elderly fee-for-service beneficiaries across 306 HRRs came from CMS' Geographic Variation in Medicare Spending and Utilization database (2010). We merged data on number of health center patients (HRSA's Uniform Data System) and number of low-income residents (American Community Survey). We estimated access to primary care in each HRR by "health center penetration" (health center patients as a proportion of low-income residents). We calculated total Medicare spending (adjusted for population size, local input prices, and health risk). We assessed clinical quality by preventable hospital admissions, hospital readmissions, and emergency department visits. We sorted HRRs by health center penetration rate and compared spending and quality measures between the high- and low-penetration deciles. We also employed linear regressions to estimate spending and quality measures as a function of health center penetration. The high-penetration decile had 9.7% lower Medicare spending ($926 per capita, p=0.01) than the low-penetration decile, and no different clinical quality outcomes. Compared with elderly fee-for-service beneficiaries residing in areas with low-penetration of health center patients among low-income residents, those residing in high-penetration areas may accrue Medicare cost savings. Limited evidence suggests that these savings do not compromise clinical quality.

  16. The most intense current sheets in the high-speed solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  17. Comparison of Drop and Wind-Tunnel Experiments on Bomb Drag at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1948-01-01

    The drag coefficients of bombs at high velocities velocity of fall was 97 percent of the speed of sound) (the highest are determined by drop tests and compared with measurements taken in the DVL high-speed closed wind tunnel and the open jet at AVA - Gottingen.

  18. Mesospheric radar wind comparisons at high and middle southern latitudes

    NASA Astrophysics Data System (ADS)

    Reid, Iain M.; McIntosh, Daniel L.; Murphy, Damian J.; Vincent, Robert A.

    2018-05-01

    We compare hourly averaged neutral winds derived from two meteor radars operating at 33.2 and 55 MHz to estimate the errors in these measurements. We then compare the meteor radar winds with those from a medium-frequency partial reflection radar operating at 1.94 MHz. These three radars are located at Davis Station, Antarctica. We then consider a middle-latitude 55 MHz meteor radar wind comparison with a 1.98 MHz medium-frequency partial reflection radar to determine how representative the Davis results are. At both sites, the medium-frequency radar winds are clearly underestimated, and the underestimation increases from 80 km to the maximum height of 98 km. Correction factors are suggested for these results.[Figure not available: see fulltext.

  19. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less

  20. Impact and Penetration Simulations for Composite Wing-like Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  1. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  2. Nonoperative management of penetrating kidney injuries: a prospective audit.

    PubMed

    Moolman, C; Navsaria, P H; Lazarus, J; Pontin, A; Nicol, A J

    2012-07-01

    The role of nonoperative management for penetrating kidney injuries is unknown. Therefore, we review the management and outcome of penetrating kidney injuries at a center with a high incidence of penetrating trauma. Data from all patients presenting with hematuria and/or kidney injury discovered on imaging or at surgery admitted to the trauma center at Groote Schuur Hospital in Cape Town, South Africa during a 19-month period (January 2007 to July 2008) were prospectively collected and reviewed. These data were analyzed for demographics, injury mechanism, perioperative management, nephrectomy rate and nonoperative success. Patients presenting with hematuria and with an acute abdomen underwent a single shot excretory urogram. Those presenting with hematuria without an indication for laparotomy underwent computerized tomography with contrast material. A total of 92 patients presented with hematuria following penetrating abdominal trauma. There were 75 (80.4%) proven renal injuries. Of the patients 84 were men and the median age was 26 years (range 14 to 51). There were 50 stab wounds and 42 gunshot renal injuries. Imaging modalities included computerized tomography in 60 cases and single shot excretory urography in 18. There were 9 patients brought directly to the operating room without further imaging. A total of 47 patients with 49 proven renal injuries were treated nonoperatively. In this group 4 patients presented with delayed hematuria, of whom 1 had a normal angiogram and 3 underwent successful angioembolization of arteriovenous fistula (2) and false aneurysm (1). All nonoperatively managed renal injuries were successfully treated without surgery. There were 18 nephrectomies performed for uncontrollable bleeding (11), hilar injuries (2) and shattered kidney (3). Post-nephrectomy complications included 1 infected renal bed hematoma requiring percutaneous drainage. Of the injuries found at laparotomy 12 were not explored, 2 were drained and 5 were treated with

  3. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  4. A generalized model for the air-sea transfer of dimethyl sulfide at high wind speeds

    NASA Astrophysics Data System (ADS)

    Vlahos, Penny; Monahan, Edward C.

    2009-11-01

    The air-sea exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the air-sea flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (<10 m/s) but that these DMS transfer rates may diverge from other gases as wind speeds increase. Herein we provide a mechanism that predicts the attenuation of DMS transfer rates at high wind speeds. The model is based on the amphiphilic nature of DMS that leads to transfer delay at the water-bubble interface and becomes significant at wind speeds above >10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.

  5. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  6. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  7. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  8. Self-inflicted injuries are an important cause of penetrating traumatic injuries in Japan.

    PubMed

    Izawa, Yoshimitsu; Suzukawa, Masayuki; Lefor, Alan K

    2016-10-01

    Japan has a low crime rate, but a high suicide rate. The aim of this study is to review the causes of penetrating traumatic injuries in a tertiary care emergency center in Japan. We retrospectively reviewed all admissions for traumatic injuries over a 3-year period, and calculated the proportion of patients with penetrating traumatic injuries. Weapon used, age, gender, Injury Severity Score, cause of injury, and site of injury in all patients with penetrating injuries were reviewed. The proportion of patients with penetrating injuries among patients with all types of traumatic injuries requiring surgical intervention was calculated. Of 1,321 patients admitted over 3 years, 65 patients (5%) suffered from penetrating injuries. Most were stab wounds, with only one gunshot (2%). The most common site of injury was an extremity (48%). The most common cause of penetrating injury was self-inflicted (38%). The abdomen is the most common site injured among self-inflicted injuries. Of patients with all types of traumatic injuries requiring surgical intervention, penetrating injuries accounted for 23%. Penetrating injuries represent 23% of all patients with traumatic injuries who required surgical intervention. Self-inflicted penetrating injuries were most common, supporting the need for preventive services. Acute care surgeons must be familiar with the surgical management of penetrating traumatic injuries, even in a country with a low crime rate.

  9. Penetrating ocular injuries in the home.

    PubMed

    Bhogal, G; Tomlins, P J; Murray, P I

    2007-03-01

    We studied the prevalence and aetiology of penetrating ocular injuries, in particular ones that were sustained whilst undertaking Do It Yourself (DIY) or gardening in the domestic environment. We also examined the extent of eye safety promotion in DIY stores and garden centres and on their websites. We conducted a case note review of patients who underwent surgery for penetrating ocular trauma between January 2000 and June 2004. Eight DIY stores and garden centres and 10 websites were visited and evaluated using standardized questions. Of the 85 patients identified, 35 (41.2%) patients had injuries that occurred in the home with 10 patients having visual acuities of <6/60 at final follow up. Accidents from DIY or gardening were the cause in 17 of 33 (51.5%) patients, with a failure to wear eye protection in all cases. Overall, DIY stores and garden centres were poor at promoting eye safety both in their stores and on their websites. The home is a frequent place for severe penetrating ocular injury, with highly popular pastimes such as DIY and gardening as common causes. As many of these injuries are preventable, additional safety information is essential to educate the public on the potential dangers of these pastimes.

  10. Oligoalanine helical callipers for cell penetration.

    PubMed

    Pazo, Marta; Juanes, Marisa; Lostalé-Seijo, Irene; Montenegro, Javier

    2018-06-04

    Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides. We here report on short oligoalanine scaffolds for the fine-tuning of peptide helicity in different media and the study of cell penetrating properties. This strategy allowed the extraction of the structure/activity features required for maximal membrane interaction and cellular penetration at minimal toxicity. These results confirmed oligoalanine helical callipers as optimal scaffolds for the rational design and the identification of cell penetrating peptides.

  11. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed “KIZUNA”

    PubMed Central

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R.; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA) has developed the “Kizuna” ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS) ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing) with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan), Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also for

  12. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  13. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus

    PubMed Central

    Lai, Samuel K.; Suk, Jung Soo; Pace, Amanda; Wang, Ying-Ying; Yang, Ming; Mert, Olcay; Chen, Jeane; Kim, Jean; Hanes, Justin

    2011-01-01

    No effective therapies currently exist for chronic rhinosinusitis (CRS), a persistent inflammatory condition characterized by the accumulation of highly viscoelastic mucus (CRSM) in the sinuses. Nanoparticle therapeutics offer promise for localized therapies for CRS, but must penetrate CRSM in order to avoid washout during sinus cleansing and to reach underlying epithelial cells. Prior research has not established whether nanoparticles can penetrate the tenacious CRSM barrier, or instead become trapped. Here, we first measured the diffusion rates of polystyrene nanoparticles and the same nanoparticles modified with muco-inert polyethylene glycol (PEG) coatings in fresh, minimally perturbed CRSM collected during endoscopic sinus surgery from CRS patients with and without nasal polyp. We found that uncoated polystyrene particles, previously shown to be mucoadhesive, were immobilized in all CRSM samples tested. In contrast, densely PEGylated particles as large as 200 nm were able to readily penetrate all CRSM samples from patients with CRS alone, and nearly half of CRSM samples from patients with nasal polyp. Based on the mobility of different sized PEGylated particles, we estimate the average pore size of fresh CRSM to be at least 150 ± 50 nm. Guided by these studies, we formulated mucus-penetrating particles (MPP) composed of PLGA and Pluronics, two materials with a long history of safety and use in humans. We showed that biodegradable MPP are capable of rapidly penetrating CRSM at average speeds up to only 20-fold slower than their theoretical speeds in water. Our findings strongly support the development of mucus-penetrating nanomedicines for the treatment of CRS. PMID:21665271

  14. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  15. Follicular penetration of topically applied caffeine via a shampoo formulation.

    PubMed

    Otberg, N; Teichmann, A; Rasuljev, U; Sinkgraven, R; Sterry, W; Lademann, J

    2007-01-01

    Follicular drug delivery is the prerequisite for an effective treatment of androgenetic alopecia or other reasons of premature hair loss. The follicular penetration of caffeine, applied topically in a shampoo formulation for 2 min, was measured with highly sensitive surface ionization in combination with mass spectroscopy, a selective method for the detection of very small quantities of transcutaneously absorbed substances in the blood. An experimental protocol, developed to selectively block the follicular pathway within the test area, was used. Based on this principle, a clear distinction between interfollicular and follicular penetration of topically applied caffeine was feasible. After 2 min, caffeine penetrated via the hair follicles and stratum corneum. It was found that the penetration via hair follicles was faster and higher compared with the interfollicular route and that hair follicles are the only pathway for fast caffeine absorption during the first 20 min after application. Copyright 2007 S. Karger AG, Basel.

  16. Retaining the Value of PV at High Penetration Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah; Bolen, Michael

    PV prices have dropped and are now attractive without incentives for peaking applications in some locations. Modeling suggests and, empirically, some regions demonstrate that as PV penetration increases its value decreases, predominantly due to a decrease in energy and capacity value. It is not apparent what technologies and price may be needed for PV to supply tens of percent of electricity in the most economically efficient manner. A 1-day workshop was co-sponsored by EPRI and NREL with support from ASU. A dozen presentations and discussions introduced how the interplay of various technologies impact the value of PV, identified technical challengesmore » and gaps impeding implementation, and discussed future R&D needs and opportunities.« less

  17. High-precision measurement of magnetic penetration depth in superconducting films

    DOE PAGES

    He, X.; Gozar, A.; Sundling, R.; ...

    2016-11-01

    We report that the magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other depositionmore » methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. Lastly, the sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.« less

  18. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

  19. The wind-wind collision hole in eta Car

    NASA Astrophysics Data System (ADS)

    Damineli, A.; Teodoro, M.; Richardson, N. D.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.; Groh, J. H.; Weigelt, G.; Hillier, D. J.; Russell, C.; Moffat, A.; Pollard, K. R.; Madura, T. I.

    2017-11-01

    Eta Carinae is one of the most massive observable binaries. Yet determination of its orbital and physical parameters is hampered by obscuring winds. However the effects of the strong, colliding winds changes with phase due to the high orbital eccentricity. We wanted to improve measures of the orbital parameters and to determine the mechanisms that produce the relatively brief, phase-locked minimum as detected throughout the electromagnetic spectrum. We conducted intense monitoring of the He ii λ4686 line in η Carinae for 10 months in the year 2014, gathering ~300 high S/N spectra with ground- and space-based telescopes. We also used published spectra at the FOS4 SE polar region of the Homunculus, which views the minimum from a different direction. We used a model in which the He ii λ4686 emission is produced by two mechanisms: a) one linked to the intensity of the wind-wind collision which occurs along the whole orbit and is proportional to the inverse square of the separation between the companion stars; and b) the other produced by the `bore hole' effect which occurs at phases across the periastron passage. The opacity (computed from 3D SPH simulations) as convolved with the emission reproduces the behavior of equivalent widths both for direct and reflected light. Our main results are: a) a demonstration that the He ii λ4686 light curve is exquisitely repeatable from cycle to cycle, contrary to previous claims for large changes; b) an accurate determination of the longitude of periastron, indicating that the secondary star is `behind' the primary at periastron, a dispute extended over the past decade; c) a determination of the time of periastron passage, at ~4 days after the onset of the deep light curve minimum; and d) show that the minimum is simultaneous for observers at different lines of sight, indicating that it is not caused by an eclipse of the secondary star, but rather by the immersion of the wind-wind collision interior to the inner wind of the

  20. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE PAGES

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; ...

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less