NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
Satellite image fusion based on principal component analysis and high-pass filtering.
Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E
2010-06-01
This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.
Single image super-resolution via an iterative reproducing kernel Hilbert space method.
Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu
2016-11-01
Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.
O-space with high resolution readouts outperforms radial imaging.
Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi
2017-04-01
While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Image quality improvement in cone-beam CT using the super-resolution technique.
Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi
2018-04-05
This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.
Lee, N J; Chung, M S; Jung, S C; Kim, H S; Choi, C-G; Kim, S J; Lee, D H; Suh, D C; Kwon, S U; Kang, D-W; Kim, J S
2016-12-01
High-resolution MR imaging has recently been introduced as a promising diagnostic modality in intracranial artery disease. Our aim was to compare high-resolution MR imaging with digital subtraction angiography for the characterization and diagnosis of various intracranial artery diseases. Thirty-seven patients who had undergone both high-resolution MR imaging and DSA for intracranial artery disease were enrolled in our study (August 2011 to April 2014). The time interval between the high-resolution MR imaging and DSA was within 1 month. The degree of stenosis and the minimal luminal diameter were independently measured by 2 observers in both DSA and high-resolution MR imaging, and the results were compared. Two observers independently diagnosed intracranial artery diseases on DSA and high-resolution MR imaging. The time interval between the diagnoses on DSA and high-resolution MR imaging was 2 weeks. Interobserver diagnostic agreement for each technique and intermodality diagnostic agreement for each observer were acquired. High-resolution MR imaging showed moderate-to-excellent agreement (interclass correlation coefficient = 0.892-0.949; κ = 0.548-0.614) and significant correlations (R = 0.766-892) with DSA on the degree of stenosis and minimal luminal diameter. The interobserver diagnostic agreement was good for DSA (κ = 0.643) and excellent for high-resolution MR imaging (κ = 0.818). The intermodality diagnostic agreement was good (κ = 0.704) for observer 1 and moderate (κ = 0.579) for observer 2, respectively. High-resolution MR imaging may be an imaging method comparable with DSA for the characterization and diagnosis of various intracranial artery diseases. © 2016 by American Journal of Neuroradiology.
Image super-resolution via sparse representation.
Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi
2010-11-01
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
Umehara, Kensuke; Ota, Junko; Ishida, Takayuki
2017-10-18
In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-06-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
Zhang, Qi; Yang, Xiong; Hu, Qinglei; Bai, Ke; Yin, Fangfang; Li, Ning; Gang, Yadong; Wang, Xiaojun; Zeng, Shaoqun
2017-01-01
To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 μm, 0.47μm, and 0.59 μm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections. PMID:29296503
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-01-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu
2008-09-01
With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
High-resolution dynamic 31 P-MRSI using a low-rank tensor model.
Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei
2017-08-01
To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.
2017-04-01
A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less
Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael
Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Transmission of digital images within the NTSC analog format
Nickel, George H.
2004-06-15
HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.
MRI Superresolution Using Self-Similarity and Image Priors
Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat
2010-01-01
In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
Reproducible high-resolution multispectral image acquisition in dermatology
NASA Astrophysics Data System (ADS)
Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir
2015-07-01
Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.
Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm
NASA Astrophysics Data System (ADS)
Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.
2018-03-01
X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.
Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder
NASA Astrophysics Data System (ADS)
Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi
2017-05-01
Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Transmission/Scanning Transmission Electron Microscopy | Materials Science
imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z
Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe
Majewski, Stanislaw; Proffitt, James
2010-12-28
A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
NASA Astrophysics Data System (ADS)
Ni, Guangming; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong
2018-01-01
With the development of the liquid crystal display (LCD) module industry, LCD modules become more and more precise with larger sizes, which demands harsh imaging requirements for automated optical inspection (AOI). Here, we report a high-resolution and clearly focused imaging optomechatronics for precise LCD module bonding AOI inspection. It first presents and achieves high-resolution imaging for LCD module bonding AOI inspection using a line scan camera (LSC) triggered by a linear optical encoder, self-adaptive focusing for the whole large imaging region using LSC, and a laser displacement sensor, which reduces the requirements of machining, assembly, and motion control of AOI devices. Results show that this system can directly achieve clearly focused imaging for AOI inspection of large LCD module bonding with 0.8 μm image resolution, 2.65-mm scan imaging width, and no limited imaging width theoretically. All of these are significant for AOI inspection in the LCD module industry and other fields that require imaging large regions with high resolution.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
High-resolution ab initio three-dimensional x-ray diffraction microscopy
Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...
2006-01-01
Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Advanced x-ray imaging spectrometer
NASA Technical Reports Server (NTRS)
Callas, John L. (Inventor); Soli, George A. (Inventor)
1998-01-01
An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Kawaguchi, Wataru
2018-06-01
For precise distribution measurements of alpha particles, a high-resolution alpha particle imaging detector is required. Although combining a thin scintillator with a silicon photomultiplier (Si-PM) array is a promising method for achieving high resolution, the spatial resolution is limited. Reducing the size of the Si-PM array is a possible approach to improving the spatial resolution of the alpha particle imaging detector. Consequently, we employed a 1 mm channel size Si-PM array combined with a thin ZnS(Ag) sheet to form an alpha particle imaging detector and evaluated the performance. For the developed alpha particle imaging detector, an Si-PM array with 1 mm x 1 mm channel size arranged 8 x 8 was optically coupled to a ZnS(Ag) sheet with a 1-mm-thick light guide between them. The size of the alpha particle imaging detector was 9.5 mm x 9.5 mm. The spatial resolution of the developed alpha particle imaging detector was 0.14 mm FWHM, and the energy resolution was 74% FWHM for 5.5 MeV alpha particles. The uniformity of the imaging detector at the central part of the field of view (FOV) was ±4.7%. The background count rate was 0.06 counts/min. We obtained various high-resolution phantom images for alpha particles with the developed system. We conclude that the developed imaging detector is promising for high-resolution distribution measurements of alpha particles.
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.
Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T
2013-08-01
Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.
Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.
Robitaille, P M; Abduljalil, A M; Kangarlu, A
2000-01-01
To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
NASA Astrophysics Data System (ADS)
Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.
2017-09-01
With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
High resolution surface plasmon microscopy for cell imaging
NASA Astrophysics Data System (ADS)
Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.
2010-04-01
We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.
Single-shot spiral imaging at 7 T.
Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P
2018-03-25
The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Yilmaz, Hasan
2016-03-01
Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).
Kang, Jeon Woong; So, Peter T. C.; Dasari, Ramachandra R.; Lim, Dong-Kwon
2015-01-01
We report a method to achieve high speed and high resolution live cell Raman images using small spherical gold nanoparticles with highly narrow intra-nanogap structures responding to NIR excitation (785 nm) and high-speed confocal Raman microscopy. The three different Raman-active molecules placed in the narrow intra-nanogap showed a strong and uniform Raman intensity in solution even under transient exposure time (10 ms) and low input power of incident laser (200 μW), which lead to obtain high-resolution single cell image within 30 s without inducing significant cell damage. The high resolution Raman image showed the distributions of gold nanoparticles for their targeted sites such as cytoplasm, mitochondria, or nucleus. The high speed Raman-based live cell imaging allowed us to monitor rapidly changing cell morphologies during cell death induced by the addition of highly toxic KCN solution to cells. These results strongly suggest that the use of SERS-active nanoparticle can greatly improve the current temporal resolution and image quality of Raman-based cell images enough to obtain the detailed cell dynamics and/or the responses of cells to potential drug molecules. PMID:25646716
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
High resolution Cerenkov light imaging of induced positron distribution in proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki
2014-11-01
Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less
Super resolution reconstruction of infrared images based on classified dictionary learning
NASA Astrophysics Data System (ADS)
Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng
2018-05-01
Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.
Multiframe super resolution reconstruction method based on light field angular images
NASA Astrophysics Data System (ADS)
Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao
2017-12-01
The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.
2010-07-01
W81XWH-09-1-0420 TITLE: High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer...4. TITLE AND SUBTITLE High-Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment of Prostate Cancer... molecular imaging for diagnosis as well as treatment planning and monitoring in prostate cancer. This investigation hypothesizes that a dedicated
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio
2017-11-06
Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.
Togami, Takashi; Yamaguchi, Norio
2017-01-01
Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis. PMID:29113104
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk
2015-01-01
Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa
2015-02-01
Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
Refinement procedure for the image alignment in high-resolution electron tomography.
Houben, L; Bar Sadan, M
2011-01-01
High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.
Panretinal, high-resolution color photography of the mouse fundus.
Paques, Michel; Guyomard, Jean-Laurent; Simonutti, Manuel; Roux, Michel J; Picaud, Serge; Legargasson, Jean-François; Sahel, José-Alain
2007-06-01
To analyze high-resolution color photographs of the mouse fundus. A contact fundus camera based on topical endoscopy fundus imaging (TEFI) was built. Fundus photographs of C57 and Balb/c mice obtained by TEFI were qualitatively analyzed. High-resolution digital imaging of the fundus, including the ciliary body, was routinely obtained. The reflectance and contrast of retinal vessels varied significantly with the amount of incident and reflected light and, thus, with the degree of fundus pigmentation. The combination of chromatic and spherical aberration favored blue light imaging, in term of both field and contrast. TEFI is a small, low-cost system that allows high-resolution color fundus imaging and fluorescein angiography in conscious mice. Panretinal imaging is facilitated by the presence of the large rounded lens. TEFI significantly improves the quality of in vivo photography of retina and ciliary process of mice. Resolution is, however, affected by chromatic aberration, and should be improved by monochromatic imaging.
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-04-01
Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-02-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-05-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Fractional screen video enhancement apparatus
Spletzer, Barry L [Albuquerque, NM; Davidson, George S [Albuquerque, NM; Zimmerer, Daniel J [Tijeras, NM; Marron, Lisa C [Albuquerque, NM
2005-07-19
The present invention provides a method and apparatus for displaying two portions of an image at two resolutions. For example, the invention can display an entire image at a first resolution, and a subset of the image at a second, higher resolution. Two inexpensive, low resolution displays can be used to produce a large image with high resolution only where needed.
Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.
Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju
2018-05-29
Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco
High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less
Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing
2016-01-25
Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.
A new omni-directional multi-camera system for high resolution surveillance
NASA Astrophysics Data System (ADS)
Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf
2014-05-01
Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.
Computational high-resolution optical imaging of the living human retina
NASA Astrophysics Data System (ADS)
Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.
2015-07-01
High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.
Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.
Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao
2018-01-12
Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.
New Release of the High-Resolution Mimas Atlas derived from Cassini-ISS Images
NASA Astrophysics Data System (ADS)
Roatsch, T.; Kersten, E.; Matz, K.-D.; Porco, C. C.
2017-09-01
The Cassini Imaging Science Subsystem (ISS) acquired 128 high-resolution images (< 1 km/pixel) of Mimas during its tour through the Saturnian system since 2004. We combined new images from orbit 249 (Nov. 2016) and orbit 259 (Jan. 2017) with the high-resolution global semi-controlled mosaic of Mimas from 2012. This global mosaic is the baseline for the new high-resolution Mimas atlas that still consists of three tiles mapped at a scale of 1:1,000,000 [1]. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The entire atlas will become available to the public through the Imaging Team's website [http://ciclops.org/maps] and the Planetary Data System (PDS) [https://pds- imaging.jpl.nasa.gov/volumes/carto.html].
MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging
NASA Astrophysics Data System (ADS)
Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.
2012-07-01
Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Deep learning massively accelerates super-resolution localization microscopy.
Ouyang, Wei; Aristov, Andrey; Lelek, Mickaël; Hao, Xian; Zimmer, Christophe
2018-06-01
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
Super-resolved refocusing with a plenoptic camera
NASA Astrophysics Data System (ADS)
Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu
2011-03-01
This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).
A stochastically fully connected conditional random field framework for super resolution OCT
NASA Astrophysics Data System (ADS)
Boroomand, A.; Tan, B.; Wong, A.; Bizheva, K.
2017-02-01
A number of factors can degrade the resolution and contrast of OCT images, such as: (1) changes of the OCT pointspread function (PSF) resulting from wavelength dependent scattering and absorption of light along the imaging depth (2) speckle noise, as well as (3) motion artifacts. We propose a new Super Resolution OCT (SR OCT) imaging framework that takes advantage of a Stochastically Fully Connected Conditional Random Field (SF-CRF) model to generate a Super Resolved OCT (SR OCT) image of higher quality from a set of Low-Resolution OCT (LR OCT) images. The proposed SF-CRF SR OCT imaging is able to simultaneously compensate for all of the factors mentioned above, that degrade the OCT image quality, using a unified computational framework. The proposed SF-CRF SR OCT imaging framework was tested on a set of simulated LR human retinal OCT images generated from a high resolution, high contrast retinal image, and on a set of in-vivo, high resolution, high contrast rat retinal OCT images. The reconstructed SR OCT images show considerably higher spatial resolution, less speckle noise and higher contrast compared to other tested methods. Visual assessment of the results demonstrated the usefulness of the proposed approach in better preservation of fine details and structures of the imaged sample, retaining biological tissue boundaries while reducing speckle noise using a unified computational framework. Quantitative evaluation using both Contrast to Noise Ratio (CNR) and Edge Preservation (EP) parameter also showed superior performance of the proposed SF-CRF SR OCT approach compared to other image processing approaches.
Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution.
Pavlin, C J; Foster, F S
1998-11-01
UBM presents us with a new method of imaging the anterior segment of the eye at high resolution. Its strengths lie in its ability to produce cross-sections of the living eye at microscopic resolution without violating the integrity of the globe. UBM, although lacking the resolution of optical microscopy, gives us images in living eyes without affecting the internal relationships of the structures imaged. There are many other applications of this new imaging method. Examples of other uses include imaging adnexal pathology, assessing corneal changes with refractive surgery, the assessment of trauma, and determination of intraocular lens position.
Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm
NASA Astrophysics Data System (ADS)
Foroutan, M.; Zimbelman, J. R.
2017-09-01
Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.
High-resolution ophthalmic imaging system
Olivier, Scot S.; Carrano, Carmen J.
2007-12-04
A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.
An atlas of high-resolution IRAS maps on nearby galaxies
NASA Technical Reports Server (NTRS)
Rice, Walter
1993-01-01
An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.
Ultrahigh-resolution endoscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.
2005-01-01
Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Super Resolution Imaging Applied to Scientific Images
2007-05-01
norm has found favor in the image restoration community because it allows discontinuities in its solution. As opposed to the L2 norm it does not...Oxford University Press. 31) Malay Kumar Nema , S.Rakshit and S.Chaudhuri,”Edge Model Based High Resolution Image Genration”Indian Conference on...Society of America, vol. 11, no. 2, pp. 572- 579, February 1994 37) M. Nema , S. Rakshit and S. Chaudhuri, ``Edge Model Based High Resolution Image
A super resolution framework for low resolution document image OCR
NASA Astrophysics Data System (ADS)
Ma, Di; Agam, Gady
2013-01-01
Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
High-resolution terahertz inline digital holography based on quantum cascade laser
NASA Astrophysics Data System (ADS)
Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong
2017-11-01
A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo
2018-03-01
Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.
High-resolution axial MR imaging of tibial stress injuries
2012-01-01
Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840
NASA Technical Reports Server (NTRS)
1987-01-01
The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.
High resolution NMR imaging using a high field yokeless permanent magnet.
Kose, Katsumi; Haishi, Tomoyuki
2011-01-01
We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.
Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm
NASA Astrophysics Data System (ADS)
Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.
2015-03-01
High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
Correction of eddy current distortions in high angular resolution diffusion imaging.
Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna
2013-06-01
To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.
Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan
2017-04-04
Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Image Quality in High-resolution and High-cadence Solar Imaging
NASA Astrophysics Data System (ADS)
Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.
2018-03-01
Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.
Single-image super-resolution based on Markov random field and contourlet transform
NASA Astrophysics Data System (ADS)
Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai
2011-04-01
Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.
2014-05-08
This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370
Dual-axis confocal microscope for high-resolution in vivo imaging
Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.
2007-01-01
We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264
NASA Astrophysics Data System (ADS)
Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot
2008-03-01
The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
Comparison of mosaicking techniques for airborne images from consumer-grade cameras
USDA-ARS?s Scientific Manuscript database
Images captured from airborne imaging systems have the advantages of relatively low cost, high spatial resolution, and real/near-real-time availability. Multiple images taken from one or more flight lines could be used to generate a high-resolution mosaic image, which could be useful for diverse rem...
Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.
Breyer, Tobias; Wanke, Isabel; Maderwald, Stefan; Woermann, Friedrich G; Kraff, Oliver; Theysohn, Jens M; Ebner, Alois; Forsting, Michael; Ladd, Mark E; Schlamann, Marc
2010-04-01
Focal epilepsies potentially can be cured by neurosurgery; other treatment options usually remain symptomatic. High-resolution magnetic resonance (MR) imaging is the central imaging strategy in the evaluation of focal epilepsy. The most common substrate of temporal epilepsies is hippocampal sclerosis (HS), which cannot always be sufficiently characterized with current MR field strengths. Therefore, the purpose of our study was to demonstrate the feasibility of high-resolution MR imaging at 7 Tesla in patients with focal epilepsy resulting from a HS and to improve image resolution at 7 Tesla in patients with HS. Six patients with known HS were investigated with T1-, T2-, T2(*)-, and fluid-attenuated inversion recovery-weighted sequences at 7 Tesla with an eight-channel transmit-receive head coil. Total imaging time did not exceed 90 minutes per patient. High-resolution imaging at 7 Tesla is feasible and reveals high resolution of intrahippocampal structures in vivo. HS was confirmed in all patients. The maximum non-interpolated in-plane resolution reached 0.2 x 0.2 mm(2) in T2(*)-weighted images. The increased susceptibility effects at 7 Tesla revealed identification of intrahippocampal structures in more detail than at 1.5 Tesla, but otherwise led to stronger artifacts. Imaging revealed regional differences in hippocampal atrophy between patients. The scan volume was limited because of specific absorption rate restrictions, scanning time was reasonable. High-resolution imaging at 7 Tesla is promising in presurgical epilepsy imaging. "New" contrasts may further improve detection of even very small intrahippocampal structural changes. Therefore, further investigations will be necessary to demonstrate the potential benefit for presurgical selection of patients with various lesion patterns in mesial temporal epilepsies resulting from a unilateral HS. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.
High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.
Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E
2012-01-01
To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.
2010-09-01
High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.
A high-resolution imaging technique using a whole-body, research photon counting detector CT system
NASA Astrophysics Data System (ADS)
Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.
2016-03-01
A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S.; Domowicz, Miriam
Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflectmore » local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.« less
Muldoon, Timothy J; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex J; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2012-01-01
Background Confocal endomicroscopy has revolutionized endoscopy by offering sub-cellular images of gastrointestinal epithelium; however, field-of-view is limited. There is a need for multi-scale endoscopy platforms that use widefield imaging to better direct placement of high-resolution probes. Design Feasibility Study Objective This study evaluates the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high resolution imaging to characterize morphologic changes associated with a variety of gastrointestinal conditions. Setting U.T. M.D. Anderson Cancer Center (Houston, TX) and Mount Sinai Medical Center (New York, NY) Patients, Interventions, and Main Outcome Measurements Surgical specimens were obtained from 15 patients undergoing esophagectomy/colectomy. Proflavine, a vital fluorescent dye, was applied topically. Specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. Images were compared to histopathology. Results Widefield-fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy and crowding. High-resolution imaging of widefield-abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with histopathology. Limitations This imaging approach must be validated in vivo with a larger sample size. Conclusions Multi-scale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of gastrointestinal conditions. Distorted glandular features seen with widefield imaging could serve as a critical ‘bridge’ to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital-dye may facilitate point-of-care decision-making by providing real-time, in vivo diagnoses. PMID:22301343
Vital-dye enhanced fluorescence imaging of GI mucosa: metaplasia, neoplasia, inflammation.
Thekkek, Nadhi; Muldoon, Timothy; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex Jenny; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2012-04-01
Confocal endomicroscopy has revolutionized endoscopy by offering subcellular images of the GI epithelium; however, the field of view is limited. Multiscale endoscopy platforms that use widefield imaging are needed to better direct the placement of high-resolution probes. Feasibility study. This study evaluated the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high-resolution imaging to characterize the morphologic changes associated with a variety of GI conditions. The University of Texas MD Anderson Cancer Center, Houston, Texas, and Mount Sinai Medical Center, New York, New York. PATIENTS, INTERVENTIONS, AND MAIN OUTCOME MEASUREMENTS: Resected specimens were obtained from 15 patients undergoing EMR, esophagectomy, or colectomy. Proflavine hemisulfate, a vital fluorescent dye, was applied topically. The specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. The images were compared with histopathologic examination. Widefield fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy, and crowding. High-resolution imaging of widefield abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with the histopathologic features. This imaging approach must be validated in vivo with a larger sample size. Multiscale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of GI conditions. Distorted glandular features seen with widefield imaging could serve as a critical bridge to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital dye may facilitate point-of-care decision making by providing real-time, in vivo diagnoses. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
High speed, real-time, camera bandwidth converter
Bower, Dan E; Bloom, David A; Curry, James R
2014-10-21
Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.
LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation
NASA Astrophysics Data System (ADS)
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2015-01-01
Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong
2016-09-01
With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.
All-passive pixel super-resolution of time-stretch imaging
Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.
2017-01-01
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936
Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.
Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen
2018-01-19
As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Yang, Zhibo
2015-06-01
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes
NASA Astrophysics Data System (ADS)
Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu
2018-02-01
Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.
Coregistration of high-resolution Mars orbital images
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter
2015-04-01
The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs represent the best available 3D reference frame for Mars showing co-registration with MOLA<25m (loc.cit.). In our work, the reference generated by HRSC terrain corrected orthorectified images is used as a common reference frame to co-register all available high-resolution orbital NASA products into a common 3D coordinate system, thus allowing the examination of the changes that happen on the surface of Mars over time (such as seasonal flows [McEwen et al., 2011] or new impact craters [Byrne, et al., 2009]). In order to accomplish such a tedious manual task, we have developed an automatic co-registration pipeline that produces orthorectified versions of the NASA images in realistic time (i.e. from ~15 minutes to 10 hours per image depending on size). In the first step of this pipeline, tie-points are extracted from the target NASA image and the reference HRSC image or image mosaic. Subsequently, the HRSC areo-reference information is used to transform the HRSC tie-points pixel coordinates into 3D "world" coordinates. This way, a correspondence between the pixel coordinates of the target NASA image and the 3D "world" coordinates is established for each tie-point. This set of correspondences is used to estimate a non-rigid, 3D to 2D transformation model, which transforms the target image into the HRSC reference coordinate system. Finally, correlation of the transformed target image and the HRSC image is employed to fine-tune the orthorectification results, thus generating results with sub-pixel accuracy. This method, which has been proven to be accurate, robust to resolution differences and reliable when dealing with partially degraded data and fast, will be presented, along with some example co-registration results that have been achieved by using it. Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] K. F. Gwinner, et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007. [2] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science , 333 (6043): 740-743. [3] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676.
Nowak, Derek B; Lawrence, A J; Sánchez, Erik J
2010-12-10
We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.
FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.
Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore
2017-01-01
High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.
Kumar, Joish Upendra; Kavitha, Y
2017-02-01
With the use of various surgical techniques, types of implants, the preoperative assessment of cochlear dimensions is becoming increasingly relevant prior to cochlear implantation. High resolution CISS protocol MRI gives a better assessment of membranous cochlea, cochlear nerve, and membranous labyrinth. Curved Multiplanar Reconstruction (MPR) algorithm provides better images that can be used for measuring dimensions of membranous cochlea. To ascertain the value of curved multiplanar reconstruction algorithm in high resolution 3-Dimensional T2 Weighted Gradient Echo Constructive Interference Steady State (3D T2W GRE CISS) imaging for accurate morphometry of membranous cochlea. Fourteen children underwent MRI for inner ear assessment. High resolution 3D T2W GRE CISS sequence was used to obtain images of cochlea. Curved MPR reconstruction algorithm was used to virtually uncoil the membranous cochlea on the volume images and cochlear measurements were done. Virtually uncoiled images of membranous cochlea of appropriate resolution were obtained from the volume data obtained from the high resolution 3D T2W GRE CISS images, after using curved MPR reconstruction algorithm mean membranous cochlear length in the children was 27.52 mm. Maximum apical turn diameter of membranous cochlea was 1.13 mm, mid turn diameter was 1.38 mm, basal turn diameter was 1.81 mm. Curved MPR reconstruction algorithm applied to CISS protocol images facilitates in getting appropriate quality images of membranous cochlea for accurate measurements.
High Spatial Resolution Commercial Satellite Imaging Product Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas
2005-01-01
NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.
Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules
NASA Astrophysics Data System (ADS)
Zhang, Chi
Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.
van Veluw, Susanne J.; Charidimou, Andreas; van der Kouwe, Andre J.; Lauer, Arne; Reijmer, Yael D.; Costantino, Isabel; Gurol, M. Edip; Biessels, Geert Jan; Frosch, Matthew P.; Viswanathan, Anand; Greenberg, Steven M.
2016-01-01
Cerebral amyloid angiopathy is a common neuropathological finding in the ageing human brain, associated with cognitive impairment. Neuroimaging markers of severe cerebral amyloid angiopathy are cortical microbleeds and microinfarcts. These parenchymal brain lesions are considered key contributors to cognitive impairment. Therefore, they are important targets for therapeutic strategies and may serve as surrogate neuroimaging markers in clinical trials. We aimed to gain more insight into the pathological basis of magnetic resonance imaging-defined microbleeds and microinfarcts in cerebral amyloid angiopathy, and to explore the pathological burden that remains undetected, by using high and ultra-high resolution ex vivo magnetic resonance imaging, as well as detailed histological sampling. Brain samples from five cases (mean age 85 ± 6 years) with pathology-proven cerebral amyloid angiopathy and multiple microbleeds on in vivo clinical magnetic resonance imaging were subjected to high-resolution ex vivo 7 T magnetic resonance imaging. On the obtained high-resolution (200 μm isotropic voxels) ex vivo magnetic resonance images, 171 microbleeds were detected compared to 66 microbleeds on the corresponding in vivo magnetic resonance images. Of 13 sampled microbleeds that were matched on histology, five proved to be acute and eight old microhaemorrhages. The iron-positive old microhaemorrhages appeared approximately four times larger on magnetic resonance imaging compared to their size on histology. In addition, 48 microinfarcts were observed on ex vivo magnetic resonance imaging in three out of five cases (two cases exhibited no microinfarcts). None of them were visible on in vivo 1.5 T magnetic resonance imaging after a retrospective analysis. Of nine sampled microinfarcts that were matched on histology, five were confirmed as acute and four as old microinfarcts. Finally, we explored the proportion of microhaemorrhage and microinfarct burden that is beyond the detection limits of ex vivo magnetic resonance imaging, by scanning a smaller sample at ultra-high resolution, followed by serial sectioning. At ultra-high resolution (75 μm isotropic voxels) magnetic resonance imaging we observed an additional 48 microbleeds (compared to high resolution), which proved to correspond to vasculopathic changes (i.e. morphological changes to the small vessels) instead of frank haemorrhages on histology. After assessing the serial sections of this particular sample, no additional haemorrhages were observed that were missed on magnetic resonance imaging. In contrast, nine microinfarcts were found in these sections, of which six were only retrospectively visible at ultra-high resolution. In conclusion, these findings suggest that microbleeds on in vivo magnetic resonance imaging are specific for microhaemorrhages in cerebral amyloid angiopathy, and that increasing the resolution of magnetic resonance images results in the detection of more ‘non-haemorrhagic’ pathology. In contrast, the vast majority of microinfarcts currently remain under the detection limits of clinical in vivo magnetic resonance imaging. PMID:27645801
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Hayworth, Kenneth J.; Morgan, Josh L.; Schalek, Richard; Berger, Daniel R.; Hildebrand, David G. C.; Lichtman, Jeff W.
2014-01-01
The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly—the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments. PMID:25018701
Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images
Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni
2018-01-01
Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images. PMID:29614745
Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.
Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni
2018-03-31
Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.
A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars
Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,
2002-01-01
A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.
2014-03-11
optical configuration that significantly enhances both lateral and depth resolution and returns crisp PL images 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...that significantly enhances both lateral and depth resolution and returns crisp PL images with high contrast. This technique revolutionized fluorescent...resolution and returns crisp PL images with high contrast. This technique revolutionized fluorescent imaging in biology, and has the potential to
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-01-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-03-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
Dual-resolution image reconstruction for region-of-interest CT scan
NASA Astrophysics Data System (ADS)
Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.
2014-07-01
In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.
2011-08-01
Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.
Texture analysis of high-resolution FLAIR images for TLE
NASA Astrophysics Data System (ADS)
Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost
2005-04-01
This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu, E-mail: yuzhang@smu.edu.cn, E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei
2014-11-01
Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images.more » The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.« less
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
Instrumentation in molecular imaging.
Wells, R Glenn
2016-12-01
In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.
Single image super-resolution reconstruction algorithm based on eage selection
NASA Astrophysics Data System (ADS)
Zhang, Yaolan; Liu, Yijun
2017-05-01
Super-resolution (SR) has become more important, because it can generate high-quality high-resolution (HR) images from low-resolution (LR) input images. At present, there are a lot of work is concentrated on developing sophisticated image priors to improve the image quality, while taking much less attention to estimating and incorporating the blur model that can also impact the reconstruction results. We present a new reconstruction method based on eager selection. This method takes full account of the factors that affect the blur kernel estimation and accurately estimating the blur process. When comparing with the state-of-the-art methods, our method has comparable performance.
Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien
2018-01-01
To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
Low-count PET image restoration using sparse representation
NASA Astrophysics Data System (ADS)
Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli
2018-04-01
In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.
Virtually distortion-free imaging system for large field, high resolution lithography
Hawryluk, A.M.; Ceglio, N.M.
1993-01-05
Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.
Virtually distortion-free imaging system for large field, high resolution lithography
Hawryluk, Andrew M.; Ceglio, Natale M.
1993-01-01
Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.
Garcia-Sucerquia, J; Alvarez-Palacio, D C; Kreuzer, H J
2008-09-10
We report the observation of the Talbot self-imaging effect in high resolution digital in-line holographic microscopy (DIHM) and its application to structural characterization of periodic samples. Holograms of self-assembled monolayers of micron-sized polystyrene spheres are reconstructed at different image planes. The point-source method of DIHM and the consequent high lateral resolution allows the true image (object) plane to be identified. The Talbot effect is then exploited to improve the evaluation of the pitch of the assembly and to examine defects in its periodicity.
Multispectral image enhancement processing for microsat-borne imager
NASA Astrophysics Data System (ADS)
Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin
2017-10-01
With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
Wide-aperture aspherical lens for high-resolution terahertz imaging
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.
2017-01-01
In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.
Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.
Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki
2017-11-01
Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna
Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jetmore » sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.« less
New learning based super-resolution: use of DWT and IGMRF prior.
Gajjar, Prakash P; Joshi, Manjunath V
2010-05-01
In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.
Video flow active control by means of adaptive shifted foveal geometries
NASA Astrophysics Data System (ADS)
Urdiales, Cristina; Rodriguez, Juan A.; Bandera, Antonio J.; Sandoval, Francisco
2000-10-01
This paper presents a control mechanism for video transmission that relies on transmitting non-uniform resolution images depending on the delay of the communication channel. These images are built in an active way to keep the areas of interest of the image at the highest resolution available. In order to shift the area of high resolution over the image and to achieve a data structure easy to process by using conventional algorithms, a shifted fovea multi resolution geometry of adaptive size is used. Besides, if delays are nevertheless too high, the different areas of resolution of the image can be transmitted at different rates. A functional system has been developed for corridor surveillance with static cameras. Tests with real video images have proven that the method allows an almost constant rate of images per second as long as the channel is not collapsed.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, D H; Littrup, P
2002-01-24
Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparablemore » resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.« less
Label-free imaging of cellular malformation using high resolution photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Chen, Zhongjiang; Li, Bingbing; Yang, Sihua
2014-09-01
A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.
High-Resolution Views of Io's Emakong Patera: Latest Galileo Imaging Results
NASA Technical Reports Server (NTRS)
Williams, D. A.; Keszthelyi, L. P.; Davies, A. G.; Greeley, R.; Head, J. W., III
2002-01-01
This presentation will discuss analyses of the latest Galileo SSI (solid state imaging) high-resolution images of the Emakong lava channels and flow field on Jupiter's moon Io. Additional information is contained in the original extended abstract.
Ultrahigh-speed X-ray imaging of hypervelocity projectiles
NASA Astrophysics Data System (ADS)
Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.
2011-08-01
High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.
Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization
Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.
2018-01-01
Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296
Low-dose, high-resolution and high-efficiency ptychography at STXM beamline of SSRF
NASA Astrophysics Data System (ADS)
Xu, Zijian; Wang, Chunpeng; Liu, Haigang; Tao, Xulei; Tai, Renzhong
2017-06-01
Ptychography is a diffraction-based X-ray microscopy method that can image extended samples quantitatively while remove the resolution limit imposed by image-forming optical elements. As a natural extension of scanning transmission X-ray microscopy (STXM) imaging method, we developed soft X-ray ptychographic coherent diffraction imaging (PCDI) method at the STXM endstation of BL08U beamline of Shanghai Synchrotron Radiation Facility. Compared to the traditional STXM imaging, the new PCDI method has resulted in significantly lower dose, higher resolution and higher efficiency imaging in our platform. In the demonstration experiments shown here, a spatial resolution of sub-10 nm was obtained for a gold nanowires sample, which is much better than the limit resolution 30 nm of the STXM method, while the radiation dose is only 1/12 of STXM.
Analysis and characterization of high-resolution and high-aspect-ratio imaging fiber bundles.
Motamedi, Nojan; Karbasi, Salman; Ford, Joseph E; Lomakin, Vitaliy
2015-11-10
High-contrast imaging fiber bundles (FBs) are characterized and modeled for wide-angle and high-resolution imaging applications. Scanning electron microscope images of FB cross sections are taken to measure physical parameters and verify the variations of irregular fibers due to the fabrication process. Modal analysis tools are developed that include irregularities in the fiber core shapes and provide results in agreement with experimental measurements. The modeling demonstrates that the irregular fibers significantly outperform a perfectly regular "ideal" array. Using this method, FBs are designed that can provide high contrast with core pitches of only a few wavelengths of the guided light. Structural modifications of the commercially available FB can reduce the core pitch by 60% for higher resolution image relay.
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
Resolution analysis of archive films for the purpose of their optimal digitization and distribution
NASA Astrophysics Data System (ADS)
Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek
2017-09-01
With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.
Image superresolution of cytology images using wavelet based patch search
NASA Astrophysics Data System (ADS)
Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo
2015-01-01
Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.
A brain MRI atlas of the common squirrel monkey, Saimiri sciureus
NASA Astrophysics Data System (ADS)
Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.
2014-03-01
The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.
NASA Astrophysics Data System (ADS)
Liu, Gang; Wen, Desheng; Song, Zongxi
2017-10-01
With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.
An automatic chip structure optical inspection system for electronic components
NASA Astrophysics Data System (ADS)
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
Single sensor processing to obtain high resolution color component signals
NASA Technical Reports Server (NTRS)
Glenn, William E. (Inventor)
2010-01-01
A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2017-09-01
A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.
Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.
2010-01-01
Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605
NASA Astrophysics Data System (ADS)
Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun
2016-05-01
In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.
Imaging system for creating 3D block-face cryo-images of whole mice
NASA Astrophysics Data System (ADS)
Roy, Debashish; Breen, Michael; Salvado, Olivier; Heinzel, Meredith; McKinley, Eliot; Wilson, David
2006-03-01
We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.
NASA Technical Reports Server (NTRS)
Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen
1987-01-01
Very high resolution Viking Orbiter images of the Martian surface, though rare, make it possible to examine specific areas at image scales approaching those of high altitude terrestrial aerial photographs. Twenty three clear images lie within west Deuteronilus Mensae. The northernmost images which constitute an almost unbroken mosaic of the west wall of a long fingerlike canyon are examined. Morphological details on the plateau surface within zone B, not detectable at low resolution, make it possible to divide the zone into two distinct subzones separated by an east-west escarpment. The morphology of the canyon floor is described in detail.
Multibeam interferometric illumination as the primary source of resolution in optical microscopy
NASA Astrophysics Data System (ADS)
Ryu, J.; Hong, S. S.; Horn, B. K. P.; Freeman, D. M.; Mermelstein, M. S.
2006-04-01
High-resolution images of a fluorescent target were obtained using a low-resolution optical detector by illuminating the target with interference patterns produced with 31 coherent beams. The beams were arranged in a cone with 78° half angle to produce illumination patterns consistent with a numerical aperture of 0.98. High-resolution images were constructed from low-resolution images taken with 930 different illumination patterns. Results for optical detectors with numerical apertures of 0.1 and 0.2 were similar, demonstrating that the resolution is primarily determined by the illuminator and not by the low-resolution detector. Furthermore, the long working distance, large depth of field, and large field of view of the low-resolution detector are preserved.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
Automated Verification of Spatial Resolution in Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald
2011-01-01
Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data set, enabling the appropriate use of those images in a number of applications.
NASA Astrophysics Data System (ADS)
Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark
2017-03-01
There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.
A novel super-resolution camera model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli
2015-05-01
Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.
Adaptive Markov Random Fields for Example-Based Super-resolution of Faces
NASA Astrophysics Data System (ADS)
Stephenson, Todd A.; Chen, Tsuhan
2006-12-01
Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.
High-Resolution Mars Camera Test Image of Moon Infrared
2005-09-13
This crescent view of Earth Moon in infrared wavelengths comes from a camera test by NASA Mars Reconnaissance Orbiter spacecraft on its way to Mars. This image was taken by taken by the High Resolution Imaging Science Experiment camera Sept. 8, 2005.
NASA Astrophysics Data System (ADS)
Shread, E. E.; Chabot, N. L.
2018-05-01
High-resolution images acquired by MESSENGER's Mercury Dual Imaging System were used to investigate the illumination conditions of Mercury's south polar deposits and to map the areas of permanent shadow in the region to compare with radar imaging.
Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing
NASA Astrophysics Data System (ADS)
Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.
2018-01-01
Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.
High-resolution reconstruction for terahertz imaging.
Xu, Li-Min; Fan, Wen-Hui; Liu, Jia
2014-11-20
We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
What Geoscience Experts and Novices Look At, and What They See, When Viewing Data Visualizations
ERIC Educational Resources Information Center
Kastens, Kim A.; Shipley, Thomas F.; Boone, Alexander P.; Straccia, Frances
2016-01-01
This study examines how geoscience experts and novices make meaning from an iconic type of data visualization: shaded relief images of bathymetry and topography. Participants examined, described, and interpreted a global image, two high-resolution seafloor images, and 2 high-resolution continental images, while having their gaze direction…
New concept high-speed and high-resolution color scanner
NASA Astrophysics Data System (ADS)
Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya
2003-05-01
We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.
High-resolution streaming video integrated with UGS systems
NASA Astrophysics Data System (ADS)
Rohrer, Matthew
2010-04-01
Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.
Toward an image compression algorithm for the high-resolution electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
Taking pictures with a camera that uses a digital recording medium instead of film has the advantage of recording and transmitting images without the use of a darkroom or a courier. However, high-resolution images contain an enormous amount of information and strain data-storage systems. Image compression will allow multiple images to be stored in the High-Resolution Electronic Still Camera. The camera is under development at Johnson Space Center. Fidelity of the reproduced image and compression speed are of tantamount importance. Lossless compression algorithms are fast and faithfully reproduce the image, but their compression ratios will be unacceptably low due to noise in the front end of the camera. Future efforts will include exploring methods that will reduce the noise in the image and increase the compression ratio.
Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong
2016-01-01
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050
Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong
2016-01-01
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.
Bright, A N; Yoshida, K; Tanaka, N
2013-01-01
Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.
Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.
2013-01-01
Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554
Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain.
Tardif, Christine Lucas; Schäfer, Andreas; Trampel, Robert; Villringer, Arno; Turner, Robert; Bazin, Pierre-Louis
2016-01-01
Magnetic resonance imaging at ultra high field opens the door to quantitative brain imaging at sub-millimeter isotropic resolutions. However, novel image processing tools to analyze these new rich datasets are lacking. In this article, we introduce the Open Science CBS Neuroimaging Repository: a unique repository of high-resolution and quantitative images acquired at 7 T. The motivation for this project is to increase interest for high-resolution and quantitative imaging and stimulate the development of image processing tools developed specifically for high-field data. Our growing repository currently includes datasets from MP2RAGE and multi-echo FLASH sequences from 28 and 20 healthy subjects respectively. These datasets represent the current state-of-the-art in in-vivo relaxometry at 7 T, and are now fully available to the entire neuroimaging community. Copyright © 2015 Elsevier Inc. All rights reserved.
High-Resolution 3T MR Imaging of the Triangular Fibrocartilage Complex
von Borstel, Donald; Wang, Michael; Small, Kirstin; Nozaki, Taiki; Yoshioka, Hiroshi
2017-01-01
This study is intended as a review of 3Tesla (T) magnetic resonance (MR) imaging of the triangular fibrocartilage complex (TFCC). The recent advances in MR imaging, which includes high field strength magnets, multi-channel coils, and isotropic 3-dimensional (3D) sequences have enabled the visualization of precise TFCC anatomy with high spatial and contrast resolution. In addition to the routine wrist protocol, there are specific techniques used to optimize 3T imaging of the wrist; including driven equilibrium sequence (DRIVE), parallel imaging, and 3D imaging. The coil choice for 3T imaging of the wrist depends on a number of variables, and the proper coil design selection is critical for high-resolution wrist imaging with high signal and contrast-to-noise ratio. The TFCC is a complex structure and is composed of the articular disc (disc proper), the triangular ligament, the dorsal and volar radioulnar ligaments, the meniscus homologue, the ulnar collateral ligament (UCL), the extensor carpi ulnaris (ECU) tendon sheath, and the ulnolunate and ulnotriquetral ligaments. The Palmer classification categorizes TFCC lesions as traumatic (type 1) or degenerative (type 2). In this review article, we present clinical high-resolution MR images of normal TFCC anatomy and TFCC injuries with this classification system. PMID:27535592
High-Resolution 3T MR Imaging of the Triangular Fibrocartilage Complex.
von Borstel, Donald; Wang, Michael; Small, Kirstin; Nozaki, Taiki; Yoshioka, Hiroshi
2017-01-10
This study is intended as a review of 3Tesla (T) magnetic resonance (MR) imaging of the triangular fibrocartilage complex (TFCC). The recent advances in MR imaging, which includes high field strength magnets, multi-channel coils, and isotropic 3-dimensional (3D) sequences have enabled the visualization of precise TFCC anatomy with high spatial and contrast resolution. In addition to the routine wrist protocol, there are specific techniques used to optimize 3T imaging of the wrist; including driven equilibrium sequence (DRIVE), parallel imaging, and 3D imaging. The coil choice for 3T imaging of the wrist depends on a number of variables, and the proper coil design selection is critical for high-resolution wrist imaging with high signal and contrast-to-noise ratio. The TFCC is a complex structure and is composed of the articular disc (disc proper), the triangular ligament, the dorsal and volar radioulnar ligaments, the meniscus homologue, the ulnar collateral ligament (UCL), the extensor carpi ulnaris (ECU) tendon sheath, and the ulnolunate and ulnotriquetral ligaments. The Palmer classification categorizes TFCC lesions as traumatic (type 1) or degenerative (type 2). In this review article, we present clinical high-resolution MR images of normal TFCC anatomy and TFCC injuries with this classification system.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Effects of whispering gallery mode in microsphere super-resolution imaging
NASA Astrophysics Data System (ADS)
Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui
2017-09-01
Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.
Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R
2007-01-01
With the increasing use of in vivo imaging in mouse models of disease, there are many interesting applications that demand imaging of organs and tissues with submillimeter resolution. Though there are other contributing factors, the spatial resolution in small-animal PET is still largely determined by the detector pixel dimensions. In this work, a pair of lutetium oxyorthosilicate (LSO) arrays with 0.5-mm pixels was coupled to multichannel photomultiplier tubes and evaluated for use as high-resolution PET detectors. Flood histograms demonstrated that most crystals were clearly identifiable. Energy resolution varied from 22% to 38%. The coincidence timing resolution was 1.42-ns full width at half maximum (FWHM). The intrinsic spatial resolution was 0.68-mm FWHM as measured with a 30-gauge needle filled with (18)F. The improvement in spatial resolution in a tomographic setting is demonstrated using images of a line source phantom reconstructed with filtered backprojection and compared with images obtained from 2 dedicated small-animal PET scanners. Finally, a projection image of the mouse foot is shown to demonstrate the application of these 0.5-mm LSO detectors to a biologic task. A pair of highly pixelated LSO detections has been constructed and characterized for use as high-spatial-resolution PET detectors. It appears that small-animal PET systems capable of a FWHM spatial resolution of 600 microm or less are feasible and should be pursued.
SkySat-1: very high-resolution imagery from a small satellite
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk
2014-10-01
This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.
Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.
Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A
2013-12-30
Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.
A Procedure for High Resolution Satellite Imagery Quality Assessment
Crespi, Mattia; De Vendictis, Laura
2009-01-01
Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312
Design of UAV high resolution image transmission system
NASA Astrophysics Data System (ADS)
Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng
2017-02-01
In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.
Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju
2015-01-01
The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.
Fiber-bundle-basis sparse reconstruction for high resolution wide-field microendoscopy.
Mekhail, Simon Peter; Abudukeyoumu, Nilupaer; Ward, Jonathan; Arbuthnott, Gordon; Chormaic, Síle Nic
2018-04-01
In order to observe deep regions of the brain, we propose the use of a fiber bundle for microendoscopy. Fiber bundles allow for the excitation and collection of fluorescence as well as wide field imaging while remaining largely impervious to image distortions brought on by bending. Furthermore, their thin diameter, from 200-500 µ m, means their impact on living tissue, though not absent, is minimal. Although wide field imaging with a bundle allows for a high temporal resolution since no scanning is involved, the largest criticism of bundle imaging is the drastically lowered spatial resolution. In this paper, we make use of sparsity in the object being imaged to up sample the low resolution images from the fiber bundle with compressive sensing. We take each image in a single shot by using a measurement basis dictated by the quasi-crystalline arrangement of the bundle's cores. We find that this technique allows us to increase the resolution of a typical image taken through a fiber bundle.
NASA Astrophysics Data System (ADS)
Ogien, Jonas; Dubois, Arnaud
2017-02-01
This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.
Image formation analysis and high resolution image reconstruction for plenoptic imaging systems.
Shroff, Sapna A; Berkner, Kathrin
2013-04-01
Plenoptic imaging systems are often used for applications like refocusing, multimodal imaging, and multiview imaging. However, their resolution is limited to the number of lenslets. In this paper we investigate paraxial, incoherent, plenoptic image formation, and develop a method to recover some of the resolution for the case of a two-dimensional (2D) in-focus object. This enables the recovery of a conventional-resolution, 2D image from the data captured in a plenoptic system. We show simulation results for a plenoptic system with a known response and Gaussian sensor noise.
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K
2015-12-01
To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.
NASA Astrophysics Data System (ADS)
Guan, Huifeng; Anastasio, Mark A.
2017-03-01
It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.
A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Changhui; Zhu, Lei; Gu, Naiting
A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system wasmore » demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.« less
NASA Technical Reports Server (NTRS)
Palmer, David; Prince, Thomas A.
1987-01-01
A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.
NASA Astrophysics Data System (ADS)
Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.
2007-09-01
An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.
Single image super resolution algorithm based on edge interpolation in NSCT domain
NASA Astrophysics Data System (ADS)
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
NASA Technical Reports Server (NTRS)
Desai, U. D.; Orwig, Larry E.
1988-01-01
In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.
Linear mixing model applied to coarse resolution satellite data
NASA Technical Reports Server (NTRS)
Holben, Brent N.; Shimabukuro, Yosio E.
1992-01-01
A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.
Stochastic Optical Reconstruction Microscopy (STORM).
Xu, Jianquan; Ma, Hongqiang; Liu, Yang
2017-07-05
Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Super-resolution differential interference contrast microscopy by structured illumination.
Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun
2013-01-14
We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution
Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...
2016-02-05
Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less
Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.
Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less
Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.
Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi
2018-04-12
Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials
NASA Astrophysics Data System (ADS)
Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu
2018-02-01
High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.
NASA Astrophysics Data System (ADS)
Hotta, Aira; Sasaki, Takashi; Okumura, Haruhiko
2007-02-01
In this paper, we propose a novel display method to realize a high-resolution image in a central visual field for a hyper-realistic head dome projector. The method uses image processing based on the characteristics of human vision, namely, high central visual acuity and low peripheral visual acuity, and pixel shift technology, which is one of the resolution-enhancing technologies for projectors. The projected image with our method is a fine wide-viewing-angle image with high definition in the central visual field. We evaluated the psychological effects of the projected images with our method in terms of sensation of reality. According to the result, we obtained 1.5 times higher resolution in the central visual field and a greater sensation of reality by using our method.
Functional cardiac magnetic resonance microscopy
NASA Astrophysics Data System (ADS)
Brau, Anja Christina Sophie
2003-07-01
The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.
Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution
NASA Astrophysics Data System (ADS)
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.
High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of <20 μm FWHM and timing resolutions of <100 ps for dynamic imaging. New high efficiency photocathodes for the visible regime are discussed, which also allow response down below 150nm for UV sensing. Borosilicate MCPs are providing high performance, and when processed with ALD techniques are providing order of magnitude lifetime improvements and enhanced photocathode stability. New developments include UV/visible photocathodes, ALD MCPs, and high resolution cross strip anodes for 100 mm detectors. Tests with 50 mm format cross strip readouts suitable for Planacon devices show spatial resolutions better than 20 μm FWHM, with good image linearity while using low gain ( 106). Current cross strip encoding electronics can accommodate event rates of >5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.
Damage extraction of buildings in the 2015 Gorkha, Nepal earthquake from high-resolution SAR data
NASA Astrophysics Data System (ADS)
Yamazaki, Fumio; Bahri, Rendy; Liu, Wen; Sasagawa, Tadashi
2016-05-01
Satellite remote sensing is recognized as one of the effective tools for detecting and monitoring affected areas due to natural disasters. Since SAR sensors can capture images not only at daytime but also at nighttime and under cloud-cover conditions, they are especially useful at an emergency response period. In this study, multi-temporal high-resolution TerraSAR-X images were used for damage inspection of the Kathmandu area, which was severely affected by the April 25, 2015 Gorkha Earthquake. The SAR images obtained before and after the earthquake were utilized for calculating the difference and correlation coefficient of backscatter. The affected areas were identified by high values of the absolute difference and low values of the correlation coefficient. The post-event high-resolution optical satellite images were employed as ground truth data to verify our results. Although it was difficult to estimate the damage levels for individual buildings, the high resolution SAR images could illustrate their capability in detecting collapsed buildings at emergency response times.
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji
2017-12-01
Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy
Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.
2013-01-01
Abstract. The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans. PMID:23515864
Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy.
Masihzadeh, Omid; Ammar, David A; Kahook, Malik Y; Gibson, Emily A; Lei, Tim C
2013-03-01
The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.
Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy
NASA Astrophysics Data System (ADS)
Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.
2013-03-01
The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.
Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa
2016-01-01
High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Cross-correlation photothermal optical coherence tomography with high effective resolution.
Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie
2017-12-01
We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.
Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena
2013-01-01
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804
Computational burden resulting from image recognition of high resolution radar sensors.
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena
2013-04-22
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan
2015-11-01
To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
High resolution microscopy of the lipid layer of the tear film.
King-Smith, P Ewen; Nichols, Jason J; Braun, Richard J; Nichols, Kelly K
2011-10-01
Tear film evaporation is controlled by the lipid layer and is an important factor in dry eye conditions. Because the barrier to evaporation depends on the structure of the lipid layer, a high resolution microscope has been constructed to study the lipid layer in dry and in normal eyes. The microscope incorporates the following features. First, a long working distance microscope objective is used with a high numerical aperture and resolution. Second, because such a high resolution objective has limited depth of focus, 2000 images are recorded with a video camera over a 20-sec period, with the expectation that some images will be in focus. Third, illumination is from a stroboscopic light source having a brief flash duration, to avoid blurring from movement of the lipid layer. Fourth, the image is in focus when the edge of the image is sharp - this feature is used to select images in good focus. Fifth, an aid is included to help align the cornea at normal incidence to the axis of the objective so that the whole lipid image can be in focus. High resolution microscopy has the potential to elucidate several characteristics of the normal and abnormal lipid layer, including different objects and backgrounds, changes in the blink cycle, stability and fluidity, dewetting, gel-like properties and possible relation to lipid domains. It is expected that high resolution microscopy of the lipid layer will provide information about the mechanisms of dry eye disorders. Illustrative results are presented, derived from over 10,000 images from 375 subjects.
Robb, Paul D; Craven, Alan J
2008-12-01
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.
Comparison of SeaWinds Backscatter Imaging Algorithms
Long, David G.
2017-01-01
This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143
The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar
NASA Astrophysics Data System (ADS)
Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian
2017-10-01
This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.
Chromatic Modulator for High Resolution CCD or APS Devices
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)
2003-01-01
A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.
Optic for an endoscope/borescope having high resolution and narrow field of view
Stone, Gary F.; Trebes, James E.
2003-10-28
An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.
NASA Astrophysics Data System (ADS)
Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.
2015-10-01
Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).
NASA Astrophysics Data System (ADS)
Zhu, Y.; Jin, S.; Tian, Y.; Wang, M.
2017-09-01
To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.
High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.
Krämer, Martin; Reichenbach, Jürgen R
2014-05-01
We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.
High Speed Computational Ghost Imaging via Spatial Sweeping
NASA Astrophysics Data System (ADS)
Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai
2017-03-01
Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.
Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G
2018-04-16
Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.
2013-06-12
Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz
Sub-pixel mapping of hyperspectral imagery using super-resolution
NASA Astrophysics Data System (ADS)
Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.
2016-04-01
With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.
Example-based super-resolution for single-image analysis from the Chang'e-1 Mission
NASA Astrophysics Data System (ADS)
Wu, Fan-Lu; Wang, Xiang-Jun
2016-11-01
Due to the low spatial resolution of images taken from the Chang'e-1 (CE-1) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high-resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Holtrop, Joseph L.; Sutton, Bradley P.
2016-01-01
Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry
2008-04-01
The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less
Comparative performance evaluation of a new a-Si EPID that exceeds quad high-definition resolution.
McConnell, Kristen A; Alexandrian, Ara; Papanikolaou, Niko; Stathakis, Sotiri
2018-01-01
Electronic portal imaging devices (EPIDs) are an integral part of the radiation oncology workflow for treatment setup verification. Several commercial EPID implementations are currently available, each with varying capabilities. To standardize performance evaluation, Task Group Report 58 (TG-58) and TG-142 outline specific image quality metrics to be measured. A LinaTech Image Viewing System (IVS), with the highest commercially available pixel matrix (2688x2688 pixels), was independently evaluated and compared to an Elekta iViewGT (1024x1024 pixels) and a Varian aSi-1000 (1024x768 pixels) using a PTW EPID QC Phantom. The IVS, iViewGT, and aSi-1000 were each used to acquire 20 images of the PTW QC Phantom. The QC phantom was placed on the couch and aligned at isocenter. The images were exported and analyzed using the epidSoft image quality assurance (QA) software. The reported metrics were signal linearity, isotropy of signal linearity, signal-tonoise ratio (SNR), low contrast resolution, and high-contrast resolution. These values were compared between the three EPID solutions. Computed metrics demonstrated comparable results between the EPID solutions with the IVS outperforming the aSi-1000 and iViewGT in the low and high-contrast resolution analysis. The performance of three commercial EPID solutions have been quantified, evaluated, and compared using results from the PTW QC Phantom. The IVS outperformed the other panels in low and high-contrast resolution, but to fully realize the benefits of the IVS, the selection of the monitor on which to view the high-resolution images is important to prevent down sampling and visual of resolution.
Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid
Farokh Payam, Amir; Piantanida, Luca; Cafolla, Clodomiro; Voïtchovsky, Kislon
2016-01-01
Atomic force microscopy (AFM) has become a well-established technique for nanoscale imaging of samples in air and in liquid. Recent studies have shown that when operated in amplitude-modulation (tapping) mode, atomic or molecular-level resolution images can be achieved over a wide range of soft and hard samples in liquid. In these situations, small oscillation amplitudes (SAM-AFM) enhance the resolution by exploiting the solvated liquid at the surface of the sample. Although the technique has been successfully applied across fields as diverse as materials science, biology and biophysics and surface chemistry, obtaining high-resolution images in liquid can still remain challenging for novice users. This is partly due to the large number of variables to control and optimize such as the choice of cantilever, the sample preparation, and the correct manipulation of the imaging parameters. Here, we present a protocol for achieving high-resolution images of hard and soft samples in fluid using SAM-AFM on a commercial instrument. Our goal is to provide a step-by-step practical guide to achieving high-resolution images, including the cleaning and preparation of the apparatus and the sample, the choice of cantilever and optimization of the imaging parameters. For each step, we explain the scientific rationale behind our choices to facilitate the adaptation of the methodology to every user's specific system. PMID:28060262
Otazo, Ricardo; Lin, Fa-Hsuan; Wiggins, Graham; Jordan, Ramiro; Sodickson, Daniel; Posse, Stefan
2009-01-01
Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complete k-space matrix and reconstruction is explicitly based on intra-voxel coil sensitivity variation. In SURE-SENSE, parallel MRI reconstruction is formulated as a superresolution imaging problem where a collection of low resolution images acquired with multiple receiver coils are combined into a single image with higher spatial resolution using coil sensitivities acquired with high spatial resolution. The effective acceleration of conventional gradient encoding is given by the gain in spatial resolution, which is dictated by the degree of variation of the different coil sensitivity profiles within the low resolution image voxel. Since SURE-SENSE is an ill-posed inverse problem, Tikhonov regularization is employed to control noise amplification. Unlike standard SENSE, for which acceleration is constrained to the phase-encoding dimension/s, SURE-SENSE allows acceleration along all encoding directions — for example, two-dimensional acceleration of a 2D echo-planar acquisition. SURE-SENSE is particularly suitable for low spatial resolution imaging modalities such as spectroscopic imaging and functional imaging with high temporal resolution. Application to echo-planar functional and spectroscopic imaging in human brain is presented using two-dimensional acceleration with a 32-channel receiver coil. PMID:19341804
High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data
NASA Technical Reports Server (NTRS)
Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.
2006-01-01
Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.
Prospects for Electron Imaging with Ultrafast Time Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, M R; Reed, B W; Torralva, B R
2007-01-26
Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here we demonstrate the feasibility of short-pulse electron imaging with t10 nanometer/10 picosecond spatio-temporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10 kilometer/second) without smearing. We outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, we present a model electron imaging system that achieves 10 nanometer/10 picosecond spatio-temporal resolution.
NASA Astrophysics Data System (ADS)
Kong, J.; Ryu, Y.
2017-12-01
Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
High Resolution Near Real Time Image Processing and Support for MSSS Modernization
2012-09-01
00-00-2012 to 00-00-2012 4 . TITLE AND SUBTITLE High Resolution Near Real Time Image Processing and Support for MSSS Modernization 5a. CONTRACT...This current CONOPS is depicted in Fig. 4 . Fig. 4 . PCID/ASPIRE High Resolution Post...experiments were performed, and subsequently addressed in papers and presentations [3, 4 ,] that demonstrated system behavior; with details of the
NASA Astrophysics Data System (ADS)
Li, Jiao; Zhang, Songhe; Chekkoury, Andrei; Glasl, Sarah; Vetschera, Paul; Koberstein-Schwarz, Benno; Omar, Murad; Ntziachristos, Vasilis
2017-03-01
Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi
2009-03-20
The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.
NASA Astrophysics Data System (ADS)
Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric
2018-02-01
High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2017-03-01
Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.
Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M
2016-06-01
MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical imaging modalities: From design to diagnosis of skin cancer
NASA Astrophysics Data System (ADS)
Korde, Vrushali Raj
This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.
Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array
Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang
2016-01-01
Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069
High resolution quantitative phase imaging of live cells with constrained optimization approach
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2016-03-01
Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.
Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification
NASA Astrophysics Data System (ADS)
Gao, G.; Zhang, M.; Gu, Y.
2017-05-01
Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".
2017-01-26
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate
X-ray diffraction microscopy on frozen hydrated specimens
NASA Astrophysics Data System (ADS)
Nelson, Johanna
X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.
Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin
2015-07-01
The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.
High-speed adaptive optics line scan confocal retinal imaging for human eye
Wang, Xiaolin; Zhang, Yuhua
2017-01-01
Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458
High-speed adaptive optics line scan confocal retinal imaging for human eye.
Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua
2017-01-01
Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.
Study of fish response using particle image velocimetry and high-speed, high-resolution imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Z.; Richmond, M. C.; Mueller, R. P.
2004-10-01
Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flowsmore » and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.« less
Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning
NASA Astrophysics Data System (ADS)
Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun
2017-06-01
Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
High-Resolution Surface Reconstruction from Imagery for Close Range Cultural Heritage Applications
NASA Astrophysics Data System (ADS)
Wenzel, K.; Abdel-Wahab, M.; Cefalu, A.; Fritsch, D.
2012-07-01
The recording of high resolution point clouds with sub-mm resolution is a demanding and cost intensive task, especially with current equipment like handheld laser scanners. We present an image based approached, where techniques of image matching and dense surface reconstruction are combined with a compact and affordable rig of off-the-shelf industry cameras. Such cameras provide high spatial resolution with low radiometric noise, which enables a one-shot solution and thus an efficient data acquisition while satisfying high accuracy requirements. However, the largest drawback of image based solutions is often the acquisition of surfaces with low texture where the image matching process might fail. Thus, an additional structured light projector is employed, represented here by the pseudo-random pattern projector of the Microsoft Kinect. Its strong infrared-laser projects speckles of different sizes. By using dense image matching techniques on the acquired images, a 3D point can be derived for almost each pixel. The use of multiple cameras enables the acquisition of a high resolution point cloud with high accuracy for each shot. For the proposed system up to 3.5 Mio. 3D points with sub-mm accuracy can be derived per shot. The registration of multiple shots is performed by Structure and Motion reconstruction techniques, where feature points are used to derive the camera positions and rotations automatically without initial information.
Li, Guang; Luo, Shouhua; Yan, Yuling; Gu, Ning
2015-01-01
The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion.
2015-01-01
Background The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. Methods In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. Results By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. Conclusions The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion. PMID:25602532
Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.
He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming
2018-06-04
Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
2014-01-01
Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.
2015-01-01
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048
High resolution imaging and wavefront aberration correction in plenoptic systems.
Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M
2014-09-01
Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
Joint estimation of high resolution images and depth maps from light field cameras
NASA Astrophysics Data System (ADS)
Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki
2014-03-01
Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.
Microcapillary imaging of lamina cribrosa in porcine eyes using photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Moothanchery, Mohesh; Chuangsuwanich, Thanadet; Yan, Alvan Tsz Chung; Schmetterer, Leopold; Girard, Michael J. A.; Pramanik, Manojit
2018-02-01
In order to understand the pathophysiology of glaucoma, Lamina cribrosa (LC) perfusion needs to be the subject of thorough investigation. It is currently difficult to obtain high resolution images of the embedded microcapillary network of the LC using conventional imaging techniques. In this study, an optical resolution photoacoustic microscopy (OR-PAM) system was used for imaging lamina cribrosa of an ex vivo porcine eye. Extrinsic contrast agent was used to perfuse the eye via its ciliary arteries. The OR-PAM system have a lateral resolution of 4 μm and an axial resolution of 30 μm. The high resolution system could able resolve a perfused LC microcapillary network to show vascular structure within the LC thickness. OR-PAM could be a promising imaging modality to study the LC perfusion and hence could be used to elucidate the hemodynamic aspect of glaucoma.
Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging
NASA Astrophysics Data System (ADS)
Micó, Vicente; Zalevsky, Zeev
2010-07-01
Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The proposed approach can be applied when imaging essentially transparent (low-concentration dilutions) and static (slow dynamics) samples. Validation of the method for both a synthetic object (U.S. Air Force resolution test) to quantify the resolution improvement and a biological specimen (sperm cells biosample) are reported showing the generation of high synthetic numerical aperture values working without lenses.
High-resolution 3D laser imaging based on tunable fiber array link
NASA Astrophysics Data System (ADS)
Zhao, Sisi; Ruan, Ningjuan; Yang, Song
2017-10-01
Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.
Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu
2018-01-01
A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224
Display challenges resulting from the use of wide field of view imaging devices
NASA Astrophysics Data System (ADS)
Petty, Gregory J.; Fulton, Jack; Nicholson, Gail; Seals, Ean
2012-06-01
As focal plane array technologies advance and imagers increase in resolution, display technology must outpace the imaging improvements in order to adequately represent the complete data collection. Typical display devices tend to have an aspect ratio similar to 4:3 or 16:9, however a breed of Wide Field of View (WFOV) imaging devices exist that skew from the norm with aspect ratios as high as 5:1. This particular quality, when coupled with a high spatial resolution, presents a unique challenge for display devices. Standard display devices must choose between resizing the image data to fit the display and displaying the image data in native resolution and truncating potentially important information. The problem compounds when considering the applications; WFOV high-situationalawareness imagers are sought for space-limited military vehicles. Tradeoffs between these issues are assessed to the image quality of the WFOV sensor.
The Fundamental Structure of Coronal Loops
NASA Technical Reports Server (NTRS)
Winebarger, Amy; Warren, Harry; Cirtain, Jonathan; Kobayashi, Ken; Korreck, Kelly; Golub, Leon; Kuzin, Sergey; Walsh, Robert; DePontieu, Bart; Title, Alan;
2012-01-01
During the past ten years, solar physicists have attempted to infer the coronal heating mechanism by comparing observations of coronal loops with hydrodynamic model predictions. These comparisons often used the addition of sub ]resolution strands to explain the observed loop properties. On July 11, 2012, the High Resolution Coronal Imager (Hi ]C) was launched on a sounding rocket. This instrument obtained images of the solar corona was 0.2 ]0.3'' resolution in a narrowband EUV filter centered around 193 Angstroms. In this talk, we will compare these high resolution images to simultaneous density measurements obtained with the Extreme Ultraviolet Imaging Spectrograph (EIS) on Hinode to determine whether the structures observed with Hi ]C are resolved.
Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.
Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z
2018-06-01
To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India
NASA Astrophysics Data System (ADS)
Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.
2017-12-01
The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata
High-resolution x-ray imaging using a structured scintillator.
Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan
2016-02-01
In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.
High-resolution x-ray imaging using a structured scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan
2016-02-15
Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less
Multiple-image hiding using super resolution reconstruction in high-frequency domains
NASA Astrophysics Data System (ADS)
Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua
2017-12-01
In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.
A fast and automatic mosaic method for high-resolution satellite images
NASA Astrophysics Data System (ADS)
Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing
2015-12-01
We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.
Image super-resolution via adaptive filtering and regularization
NASA Astrophysics Data System (ADS)
Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming
2014-11-01
Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
High resolution OCT image generation using super resolution via sparse representation
NASA Astrophysics Data System (ADS)
Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi
2017-02-01
In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.
Optical coherence microscope for invariant high resolution in vivo skin imaging
NASA Astrophysics Data System (ADS)
Murali, S.; Lee, K. S.; Meemon, P.; Rolland, J. P.
2008-02-01
A non-invasive, reliable and affordable imaging system with the capability of detecting skin pathologies such as skin cancer would be a valuable tool to use for pre-screening and diagnostic applications. Optical Coherence Microscopy (OCM) is emerging as a building block for in vivo optical diagnosis, where high numerical aperture optics is introduced in the sample arm to achieve high lateral resolution. While high numerical aperture optics enables realizing high lateral resolution at the focus point, dynamic focusing is required to maintain the target lateral resolution throughout the depth of the sample being imaged. In this paper, we demonstrate the ability to dynamically focus in real-time with no moving parts to a depth of up to 2mm in skin-equivalent tissue in order to achieve 3.5μm lateral resolution throughout an 8 cubic millimeter sample. The built-in dynamic focusing ability is provided by an addressable liquid lens embedded in custom-designed optics which was designed for a broadband laser source of 120 nm bandwidth centered at around 800nm. The imaging probe was designed to be low-cost and portable. Design evaluation and tolerance analysis results show that the probe is robust to manufacturing errors and produces consistent high performance throughout the imaging volume.
USDA-ARS?s Scientific Manuscript database
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...
Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images
Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor
2012-01-01
Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602
Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.
Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor
2012-01-01
Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.
Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser
NASA Astrophysics Data System (ADS)
Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong
2016-09-01
High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.
Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser
Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong
2016-01-01
High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems. PMID:27659203
Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser.
Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong
2016-09-23
High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the "diffract and destroy" approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2018-03-01
Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.
Noninvasive imaging of bone microarchitecture
Patsch, Janina M.; Burghardt, Andrew J.; Kazakia, Galateia; Majumdar, Sharmila
2015-01-01
The noninvasive quantification of peripheral compartment-specific bone microarchitecture is feasible with high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI). In addition to classic morphometric indices, both techniques provide a suitable basis for virtual biomechanical testing using finite element (FE) analyses. Methodical limitations, morphometric parameter definition, and motion artifacts have to be considered to achieve optimal data interpretation from imaging studies. With increasing availability of in vivo high-resolution bone imaging techniques, special emphasis should be put on quality control including multicenter, cross-site validations. Importantly, conclusions from interventional studies investigating the effects of antiosteoporotic drugs on bone microarchitecture should be drawn with care, ideally involving imaging scientists, translational researchers, and clinicians. PMID:22172043
NASA Astrophysics Data System (ADS)
Leonard, E. J.; Pappalardo, R. T.; Yin, A.; Prockter, L. M.; Patthoff, D. A.
2014-12-01
The Galileo Solid State Imager (SSI) recorded nine very high-resolution frames (8 at 12 m/pixel and 1 at 6 m/pixel) during the E12 flyby of Europa in Dec. 1997. To understand the implications for the small-scale structure and evolution of Europa, we mosaicked these frames (observations 12ESMOTTLE01 and 02, incidence ≈18°, emission ≈77°) into their regional context (part of observation 11ESREGMAP01, 220 m/pixel, incidence ≈74°, emission ≈23°), despite their very different viewing and lighting conditions. We created a map of geological units based on morphology, structure, and albedo along with stereoscopic images where the frames overlapped. The highly diverse units range from: high albedo sub-parallel ridge and grooved terrain; to variegated-albedo hummocky terrain; to low albedo and relatively smooth terrain. We classified and analyzed the diverse units solely based on the high-resolution image mosaic, prior to comparison to the context image, to obtain an in-depth look at possible surface evolution and underlying formational processes. We infer that some of these units represent different stages and forms of resurfacing, including cryovolcanic and tectonic resurfacing. However, significant morphological variation among units in the region indicates that there are different degrees of resurfacing at work. We have created candidate morphological sequences that provide insight into the conversion of ridged plains to chaotic terrain—generally, a process of subduing formerly sharp features through tectonic modification and/or cryovolcanism. When the map of the high-resolution area is compared to the regional context, features that appear to be one unit at regional resolution are comprised of several distinct units at high resolution, and features that appear to be smooth in the context image are found to show distinct textures. Moreover, in the context image, transitions from ridged units to disrupted units appear to be gradual; however the high-resolution image reveals them to be abrupt, suggesting tectonic control of these boundaries. These discrepancies could have important implications for a future landed exploration.
Webb, Donna J.; Brown, Claire M.
2012-01-01
Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996
Next Generation X-Ray Observatory: New Mission Concepts in Astrophysics
NASA Technical Reports Server (NTRS)
Cash, Webster
1998-01-01
This grant was to review the impact and possibilities for high resolution imaging as the theme for a new observatory early in the 21st Century. We proposed to investigate the suitability of a new approach to high resolution x-ray optics and investigate the range of science it might support. There is no question that high resolution x-ray imaging would lead to exciting, fundamental new discoveries. We demonstrated in this study that the technology already exists to improve imaging in the x-ray by up to six orders of magnitude. This would make the x-ray band the highest resolution band instead of its current status as second worst, behind gamma rays.
Satellite image time series simulation for environmental monitoring
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction
Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver
2015-01-01
High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146
High resolution axicon-based endoscopic FD OCT imaging with a large depth range
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.
2010-02-01
Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.
The viability of ADVANTG deterministic method for synthetic radiography generation
NASA Astrophysics Data System (ADS)
Bingham, Andrew; Lee, Hyoung K.
2018-07-01
Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.
En-face Flying Spot OCT/Ophthalmoscope
NASA Astrophysics Data System (ADS)
Rosen, Richard B.; Garcia, Patricia; Podoleanu, Adrian Gh.; Cucu, Radu; Dobre, George; Trifanov, Irina; van Velthoven, Mirjam E. J.; de Smet, Marc D.; Rogers, John A.; Hathaway, Mark; Pedro, Justin; Weitz, Rishard
This is a review of a technique for high-resolution imaging of the eye that allows multiple sample sectioning perspectives with different axial resolutions. The technique involves the flying spot approach employed in confocal scanning laser ophthalmoscopy which is extended to OCT imaging via time domain en face fast lateral scanning. The ability of imaging with multiple axial resolutions stimulated the development of the dual en face OCT-confocal imaging technology. Dual imaging also allows various other imaging combinations, such as OCT with confocal microscopy for imaging the eye anterior segment and OCT with fluorescence angiography imaging.
Generating High-Temporal and Spatial Resolution TIR Image Data
NASA Astrophysics Data System (ADS)
Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.
2017-09-01
Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.
Atomic resolution images of graphite in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigg, D.A.; Shedd, G.M.; Griffis, D.
One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.
NASA Astrophysics Data System (ADS)
Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.
2018-01-01
An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.
The CHARIS High-Contrast Integral-Field Spectrograph
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja;
2017-01-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.
Resolution enhancement of tri-stereo remote sensing images by super resolution methods
NASA Astrophysics Data System (ADS)
Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif
2016-10-01
Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.
A CMOS-based large-area high-resolution imaging system for high-energy x-ray applications
NASA Astrophysics Data System (ADS)
Rodricks, Brian; Fowler, Boyd; Liu, Chiao; Lowes, John; Haeffner, Dean; Lienert, Ulrich; Almer, John
2008-08-01
CCDs have been the primary sensor in imaging systems for x-ray diffraction and imaging applications in recent years. CCDs have met the fundamental requirements of low noise, high-sensitivity, high dynamic range and spatial resolution necessary for these scientific applications. State-of-the-art CMOS image sensor (CIS) technology has experienced dramatic improvements recently and their performance is rivaling or surpassing that of most CCDs. The advancement of CIS technology is at an ever-accelerating pace and is driven by the multi-billion dollar consumer market. There are several advantages of CIS over traditional CCDs and other solid-state imaging devices; they include low power, high-speed operation, system-on-chip integration and lower manufacturing costs. The combination of superior imaging performance and system advantages makes CIS a good candidate for high-sensitivity imaging system development. This paper will describe a 1344 x 1212 CIS imaging system with a 19.5μm pitch optimized for x-ray scattering studies at high-energies. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity are estimated. The Detective Quantum Efficiency (DQE) is also estimated. Representative x-ray diffraction images are presented. Diffraction images are compared against a CCD-based imaging system.
Data fusion of Landsat TM and IRS images in forest classification
Guangxing Wang; Markus Holopainen; Eero Lukkarinen
2000-01-01
Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...
Fast high resolution reconstruction in multi-slice and multi-view cMRI
NASA Astrophysics Data System (ADS)
Velasco Toledo, Nelson; Romero Castro, Eduardo
2015-01-01
Cardiac magnetic resonance imaging (cMRI) is an useful tool in diagnosis, prognosis and research since it functionally tracks the heart structure. Although useful, this imaging technique is limited in spatial resolution because heart is a constant moving organ, also there are other non controled conditions such as patient movements and volumetric changes during apnea periods when data is acquired, those conditions limit the time to capture high quality information. This paper presents a very fast and simple strategy to reconstruct high resolution 3D images from a set of low resolution series of 2D images. The strategy is based on an information reallocation algorithm which uses the DICOM header to relocate voxel intensities in a regular grid. An interpolation method is applied to fill empty places with estimated data, the interpolation resamples the low resolution information to estimate the missing information. As a final step a gaussian filter that denoises the final result. A reconstructed image evaluation is performed using as a reference a super-resolution reconstructed image. The evaluation reveals that the method maintains the general heart structure with a small loss in detailed information (edge sharpening and blurring), some artifacts related with input information quality are detected. The proposed method requires low time and computational resources.
Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data
NASA Astrophysics Data System (ADS)
Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.
2015-04-01
In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.
NASA Astrophysics Data System (ADS)
Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.
2016-03-01
Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.
High resolution imaging of a subsonic projectile using automated mirrors with large aperture
NASA Astrophysics Data System (ADS)
Tateno, Y.; Ishii, M.; Oku, H.
2017-02-01
Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
Thin polymer etalon arrays for high-resolution photoacoustic imaging
Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew
2009-01-01
Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679
Miniature all-optical probe for photoacoustic and ultrasound dual-modality imaging
NASA Astrophysics Data System (ADS)
Li, Guangyao; Guo, Zhendong; Chen, Sung-Liang
2018-02-01
Photoacoustic (PA) imaging forms an image based on optical absorption contrasts with ultrasound (US) resolution. In contrast, US imaging is based on acoustic backscattering to provide structural information. In this study, we develop a miniature all-optical probe for high-resolution PA-US dual-modality imaging over a large imaging depth range. The probe employs three individual optical fibers (F1-F3) to achieve optical generation and detection of acoustic waves for both PA and US modalities. To offer wide-angle laser illumination, fiber F1 with a large numerical aperture (NA) is used for PA excitation. On the other hand, wide-angle US waves are generated by laser illumination on an optically absorbing composite film which is coated on the end face of fiber F2. Both the excited PA and backscattered US waves are detected by a Fabry-Pérot cavity on the tip of fiber F3 for wide-angle acoustic detection. The wide angular features of the three optical fibers make large-NA synthetic aperture focusing technique possible and thus high-resolution PA and US imaging. The probe diameter is less than 2 mm. Over a depth range of 4 mm, lateral resolutions of PA and US imaging are 104-154 μm and 64-112 μm, respectively, and axial resolutions of PA and US imaging are 72-117 μm and 31-67 μm, respectively. To show the imaging capability of the probe, phantom imaging with both PA and US contrasts is demonstrated. The results show that the probe has potential for endoscopic and intravascular imaging applications that require PA and US contrast with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G; Zakian, K; Deasy, J
Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging.more » Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI. Further validation and improvement are still required prior to clinical applications. This study is in part supported by the NIH (U54CA137788/U54CA132378).« less
Adaptive optics with pupil tracking for high resolution retinal imaging
Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris
2012-01-01
Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577
Adaptive optics with pupil tracking for high resolution retinal imaging.
Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris
2012-02-01
Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.
Optical Imaging with a High Resolution Microendoscope to Identify Cholesteatoma of the Middle Ear
Levy, Lauren L.; Jiang, Nancy; Smouha, Eric; Richards-Kortum, Rebecca; Sikora, Andrew G.
2013-01-01
Objective High resolution optical imaging is an imaging modality which allows visualization of structural changes in epithelial tissue in real time. Our prior studies using contrast-enhanced microendoscopy to image squamous cell carcinoma in the head and neck demonstrated that the contrast agent, proflavine, has high affinity for keratinized tissue. Thus, high-resolution microendoscopy with proflavine provides a potential mechanism to identify ectopic keratin production, such as that associated with cholesteatoma formation and distinguish between uninvolved mucosa and residual keratin at the time of surgery. Study Design Ex vivo imaging of histopathologically-confirmed samples of cholesteatoma and uninvolved middle-ear epithelium. Methods Seven separate specimens collected from patients who underwent surgical treatment for cholesteatoma were imaged ex vivo with the fiberoptic endoscope after surface staining with proflavine. Following imaging, the specimens were submitted for hematoxylin &eosin staining to allow histopathological correlation. Results Cholesteatoma and surrounding middle ear epithelium have distinct imaging characteristics. Keratin-bearing areas of cholesteatoma lack nuclei and appear as confluent hyperfluorescence, while nuclei are easily visualized in specimens containing normal middle ear epithelium. Hyperfluorescence and loss of cellular detail is the imaging hallmark of keratin allowing for discrimination of cholesteatoma from normal middle ear epithelium. Conclusions This study demonstrates the feasibility of high-resolution optical imaging to discriminate cholesteatoma from uninvolved middle ear mucosa, based on the unique staining properties of keratin. Use of real-time imaging may facilitate more complete extirpation of cholesteatoma by identifying areas of residual disease. PMID:23299781
NASA Astrophysics Data System (ADS)
Sankey, T.; Donald, J.; McVay, J.
2015-12-01
High resolution remote sensing images and datasets are typically acquired at a large cost, which poses big a challenge for many scientists. Northern Arizona University recently acquired a custom-engineered, cutting-edge UAV and we can now generate our own images with the instrument. The UAV has a unique capability to carry a large payload including a hyperspectral sensor, which images the Earth surface in over 350 spectral bands at 5 cm resolution, and a lidar scanner, which images the land surface and vegetation in 3-dimensions. Both sensors represent the newest available technology with very high resolution, precision, and accuracy. Using the UAV sensors, we are monitoring the effects of regional forest restoration treatment efforts. Individual tree canopy width and height are measured in the field and via the UAV sensors. The high-resolution UAV images are then used to segment individual tree canopies and to derive 3-dimensional estimates. The UAV image-derived variables are then correlated to the field-based measurements and scaled to satellite-derived tree canopy measurements. The relationships between the field-based and UAV-derived estimates are then extrapolated to a larger area to scale the tree canopy dimensions and to estimate tree density within restored and control forest sites.
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles
NASA Astrophysics Data System (ADS)
Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.
2018-03-01
Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.
Burgess, M T; Apostolakis, I; Konofagou, E E
2018-03-15
Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei
2015-01-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250
Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction
NASA Technical Reports Server (NTRS)
Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.
1996-01-01
The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.
Khonsari, R H; Di Rocco, F; Arnaud, E; Sanchez, S; Tafforeau, P
2012-09-01
The developmental genetics and the biomechanics of sutures are well-studied topics, while their microanatomy is still imperfectly known. Here, we aim to investigate the structure of skull vault sutures using a high-resolution imaging device. We used synchrotron X-ray microtomography in order to obtain high-resolution images of skull vault sutures from an extant mammal (the mouse Mus musculus) and from an extinct fish (the placoderm Compagopiscis croucheri). We used segmentation and 3D reconstruction softwares in order to reveal the microanatomy of sutures in these species. The high-resolution images allowed us to study the distribution of osteocytes, the organisation of vascular canals, the shapes of the suture borders, the insertion of Sharpey's fibres, the bone growth lines and the structure of the soft tissues surrounding the sutures. Synchrotron imaging provides new perspectives for the study of the normal microanatomy of sutures. The submicronic resolution of the synchrotron scans gives access to the 3D organisation of structures that were previously only known in 2D, even in normal sutures. The description of anatomical entities such as vascular canals and Sharpey's fibres in abnormally fused sutures would be of interest in the understanding of craniosynostoses.
Hawryluk, A.M.; Ceglio, N.M.
1993-01-12
Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.
Hawryluk, Andrew M.; Ceglio, Natale M.
1993-01-01
Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.
Public-Requested Mars Image: Crater on Pavonis Mons
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-481, 12 September 2003
This image is in the first pair obtained in the Public Target Request program, which accepts suggestions for sites to photograph with the Mars Orbiter Camera on NASA's Mars Global Surveyor spacecraft.It is a narrow-angle (high-resolution) view of a portion of the lower wall and floor of the caldera at the top of a martian volcano named Pavonis Mons. A companion picture is a wide-angle context image, taken at the same time as the high-resolution view. The white box in the context frame shows the location of the high-resolution picture. [figure removed for brevity, see original site] Pavonis Mons is a broad shield volcano. Its summit region is about 14 kilometers (8.7 miles) above the martian datum (zero-elevation reference level). The caldera is about 4.6 kilometers (2.8 miles) deep. The caldera formed by collapse--long ago--as molten rock withdrew to greater depths within the volcano. The high-resolution picture shows that today the floor and walls of this caldera are covered by a thick, textured mantle of dust, perhaps more than 1 meter (1 yard) deep. Larger boulders and rock outcroppings poke out from within this dust mantle. They are seen as small, dark dots and mounds on the lower slopes of the wall in the high-resolution image. The narrow-angle Mars Orbiter Camera image has a resolution of 1.5 meters (about 5 feet) per pixel and covers an area 1.5 kilometers (0.9 mile) wide by 9 kilometers (5.6 miles) long. The context image, covering much of the summit region of Pavonis Mons, is about 115 kilometers (72 miles) wide. Sunlight illuminates both images from the lower left; north is toward the upper right; east to the right. The high-resolution view is located near 0.4 degrees north latitude, 112.8 degrees west longitude.Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image
NASA Astrophysics Data System (ADS)
Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.
2018-04-01
At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution
NASA Astrophysics Data System (ADS)
Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin
2017-09-01
Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
Noninvasive imaging analysis of biological tissue associated with laser thermal injury.
Chang, Cheng-Jen; Yu, De-Yi; Hsiao, Yen-Chang; Ho, Kuang-Hua
2017-04-01
The purpose of our study is to use a noninvasive tomographic imaging technique with high spatial resolution to characterize and monitor biological tissue responses associated with laser thermal injury. Optical doppler tomography (ODT) combines laser doppler flowmetry (LDF) with optical coherence tomography (OCT) to obtain high resolution tomographic velocity and structural images of static and moving constituents in highly scattering biological tissues. A SurgiLase XJ150 carbon dioxide (CO 2 ) laser using a continuous mode of 3 watts (W) was used to create first, second or third degree burns on anesthetized Sprague-Dawley rats. Additional parameters for laser thermal injury were assessed as well. The rationale for using ODT in the evaluation of laser thermal injury offers a means of constructing a high resolution tomographic image of the structure and perfusion of laser damaged skin. In the velocity images, the blood flow is coded at 1300 μm/s and 0 velocity, 1000 μm/s and 0 velocity, 700 μm/s and 0 velocity adjacent to the first, second, and third degree injuries, respectively. ODT produces exceptional spatial resolution while having a non-invasive way of measurement, therefore, ODT is an accurate measuring method for high-resolution fluid flow velocity and structural images for biological tissue with laser thermal injury. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gonzaga, S.; et al.
2011-03-01
ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.
Ship Detection Using High Resolution Satellite Imagery and Space-Based AIS
NASA Astrophysics Data System (ADS)
Hannevik, Tonje Nanette; Skauen, Andreas N.; Olsen, R. B.
2013-03-01
This paper presents a trial carried out in the Malangen area close to Tromsø city in the north of Norway in September 2010. High resolution Synthetic Aperture Radar (SAR) images from RADARSAT-2 were used to analyse how SAR images and cooperative reporting can be combined. Data from the Automatic Identification System, both land-based and space-based, have been used to identify detected vessels in the SAR images. The paper presents results of ship detection in high resolution RADARSAT-2 Standard Quad-Pol images, and how these results together with land-based and space-based AIS can be used. Some examples of tracking of vessels are also shown.
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Wenzhong; Zhang, Hao F.
2015-10-01
Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.
Radiometric infrared focal plane array imaging system for thermographic applications
NASA Technical Reports Server (NTRS)
Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.
1992-01-01
This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).
Radiometric infrared focal plane array imaging system for thermographic applications
NASA Astrophysics Data System (ADS)
Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.
1992-11-01
This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).
High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals
Smither, Robert K [Hinsdale, IL
2008-12-23
A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.
High resolution multiplexed functional imaging in live embryos (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Zhou, Weibin; Peng, Leilei
2017-02-01
Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.
NASA Astrophysics Data System (ADS)
Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.
2013-05-01
Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.
Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Kato, Katsuhiko; Hatazawa, Jun
2013-03-01
A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd3Al12Ga3O12 (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm3 GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm2. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.
Compressive light field imaging
NASA Astrophysics Data System (ADS)
Ashok, Amit; Neifeld, Mark A.
2010-04-01
Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatioangular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient measurements. Here, we describe two architectures for compressive light field imaging that require relatively few photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall exposure time. Our simulation study shows that, compressive light field imagers using the principal component (PC) measurement basis require four times fewer measurements and three times shorter exposure time compared to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.
Design Method For Ultra-High Resolution Linear CCD Imagers
NASA Astrophysics Data System (ADS)
Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan
1984-11-01
This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.
Evaluation of registration accuracy between Sentinel-2 and Landsat 8
NASA Astrophysics Data System (ADS)
Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia
2016-08-01
Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
Gamma-Ray Imager With High Spatial And Spectral Resolution
NASA Technical Reports Server (NTRS)
Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.
1996-01-01
Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.
Optimization of an on-board imaging system for extremely rapid radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He
2015-11-15
Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less
Interactive Display of High-Resolution Images on the World Wide Web.
ERIC Educational Resources Information Center
Clyde, Stephen W.; Hirschi, Gregory W.
Viewing high-resolution images on the World Wide Web at a level of detail necessary for collaborative research is still a problem today, given the Internet's current bandwidth limitations and its ever increasing network traffic. ImageEyes is an interactive display tool being developed at Utah State University that addresses this problem by…
NASA Astrophysics Data System (ADS)
Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong
2018-05-01
Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.
Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths.
Ingaramo, Maria; York, Andrew G; Hoogendoorn, Eelco; Postma, Marten; Shroff, Hari; Patterson, George H
2014-03-17
We use Richardson-Lucy (RL) deconvolution to combine multiple images of a simulated object into a single image in the context of modern fluorescence microscopy techniques. RL deconvolution can merge images with very different point-spread functions, such as in multiview light-sheet microscopes,1, 2 while preserving the best resolution information present in each image. We show that RL deconvolution is also easily applied to merge high-resolution, high-noise images with low-resolution, low-noise images, relevant when complementing conventional microscopy with localization microscopy. We also use RL deconvolution to merge images produced by different simulated illumination patterns, relevant to structured illumination microscopy (SIM)3, 4 and image scanning microscopy (ISM). The quality of our ISM reconstructions is at least as good as reconstructions using standard inversion algorithms for ISM data, but our method follows a simpler recipe that requires no mathematical insight. Finally, we apply RL deconvolution to merge a series of ten images with varying signal and resolution levels. This combination is relevant to gated stimulated-emission depletion (STED) microscopy, and shows that merges of high-quality images are possible even in cases for which a non-iterative inversion algorithm is unknown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne
2017-02-15
In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.
Long linear MWIR and LWIR HgCdTe infrared detection arrays for high resolution imaging
NASA Astrophysics Data System (ADS)
Chamonal, Jean-Paul; Audebert, Patrick; Medina, Philippe; Destefanis, Gérard; Deschamps, Joel R.; Girard, Michel; Chatard, Jean-Pierre
2018-04-01
This paper, "Long linear MWIR and LWIR HgCdTe infrared detection arrays for high resolution imaging," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
High-resolution low-dose scanning transmission electron microscopy.
Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning
2010-01-01
During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.
Image restoration method based on Hilbert transform for full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2008-01-01
A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.
High-resolution imaging of the large non-human primate brain using microPET: a feasibility study
NASA Astrophysics Data System (ADS)
Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.
2007-11-01
The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.
New developments in super-resolution for GaoFen-4
NASA Astrophysics Data System (ADS)
Li, Feng; Fu, Jie; Xin, Lei; Liu, Yuhong; Liu, Zhijia
2017-10-01
In this paper, the application of super resolution (SR, restoring a high spatial resolution image from a series of low resolution images of the same scene) techniques to GaoFen(GF)-4, which is the most advanced geostationaryorbit earth observing satellite in China, remote sensing images is investigated and tested. SR has been a hot research area for decades, but one of the barriers of applying SR in remote sensing community is the time slot between those low resolution (LR) images acquisition. In general, the longer the time slot, the less reliable the reconstruction. GF-4 has the unique advantage of capturing a sequence of LR of the same region in minutes, i.e. working as a staring camera from the point view of SR. This is the first experiment of applying super resolution to a sequence of low resolution images captured by GF-4 within a short time period. In this paper, we use Maximum a Posteriori (MAP) to solve the ill-conditioned problem of SR. Both the wavelet transform and the curvelet transform are used to setup a sparse prior for remote sensing images. By combining several images of both the BeiJing and DunHuang regions captured by GF-4 our method can improve spatial resolution both visually and numerically. Experimental tests show that lots of detail cannot be observed in the captured LR images, but can be seen in the super resolved high resolution (HR) images. To help the evaluation, Google Earth image can also be referenced. Moreover, our experimental tests also show that the higher the temporal resolution, the better the HR images can be resolved. The study illustrates that the application for SR to geostationary-orbit based earth observation data is very feasible and worthwhile, and it holds the potential application for all other geostationary-orbit based earth observing systems.
Requirement of spatiotemporal resolution for imaging intracellular temperature distribution
NASA Astrophysics Data System (ADS)
Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira
2017-04-01
Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.
THz holography in reflection using a high resolution microbolometer array.
Zolliker, Peter; Hack, Erwin
2015-05-04
We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.
NASA Astrophysics Data System (ADS)
Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui
2007-05-01
A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.
Single image super-resolution based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia
2018-03-01
We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
2016-01-01
Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.
In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla
Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.
2015-01-01
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Coded aperture detector: an image sensor with sub 20-nm pixel resolution.
Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick
2014-08-11
We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
Visually Lossless JPEG 2000 for Remote Image Browsing
Oh, Han; Bilgin, Ali; Marcellin, Michael
2017-01-01
Image sizes have increased exponentially in recent years. The resulting high-resolution images are often viewed via remote image browsing. Zooming and panning are desirable features in this context, which result in disparate spatial regions of an image being displayed at a variety of (spatial) resolutions. When an image is displayed at a reduced resolution, the quantization step sizes needed for visually lossless quality generally increase. This paper investigates the quantization step sizes needed for visually lossless display as a function of resolution, and proposes a method that effectively incorporates the resulting (multiple) quantization step sizes into a single JPEG2000 codestream. This codestream is JPEG2000 Part 1 compliant and allows for visually lossless decoding at all resolutions natively supported by the wavelet transform as well as arbitrary intermediate resolutions, using only a fraction of the full-resolution codestream. When images are browsed remotely using the JPEG2000 Interactive Protocol (JPIP), the required bandwidth is significantly reduced, as demonstrated by extensive experimental results. PMID:28748112
Pinto, Francisco; Mielewczik, Michael; Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe
2013-01-01
Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.
NASA Astrophysics Data System (ADS)
Li, C.; Zhou, X.; Tang, D.; Zhu, Z.
2018-04-01
Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.
Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging
Dempsey, Graham T.; Vaughan, Joshua C.; Chen, Kok Hao; Bates, Mark; Zhuang, Xiaowei
2011-01-01
One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes — the properties of the probes, including photons per switching event, on/off duty cycle, photostability, and number of switching cycles, largely dictate the quality of super-resolution images. While many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here, we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides a set of guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low crosstalk, four-color super-resolution imaging. PMID:22056676
Full-Frame Reference for Test Photo of Moon
NASA Technical Reports Server (NTRS)
2005-01-01
This pair of views shows how little of the full image frame was taken up by the Moon in test images taken Sept. 8, 2005, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The Mars-bound camera imaged Earth's Moon from a distance of about 10 million kilometers (6 million miles) away -- 26 times the distance between Earth and the Moon -- as part of an activity to test and calibrate the camera. The images are very significant because they show that the Mars Reconnaissance Orbiter spacecraft and this camera can properly operate together to collect very high-resolution images of Mars. The target must move through the camera's telescope view in just the right direction and speed to acquire a proper image. The day's test images also demonstrate that the focus mechanism works properly with the telescope to produce sharp images. Out of the 20,000-pixel-by-6,000-pixel full frame, the Moon's diameter is about 340 pixels, if the full Moon could be seen. The illuminated crescent is about 60 pixels wide, and the resolution is about 10 kilometers (6 miles) per pixel. At Mars, the entire image region will be filled with high-resolution information. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across. The Mars Reconnaissance Orbiter mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, prime contractor for the project, built the spacecraft. Ball Aerospace & Technologies Corp., Boulder, Colo., built the High Resolution Imaging Science Experiment instrument for the University of Arizona, Tucson, to provide to the mission. The HiRISE Operations Center at the University of Arizona processes images from the camera.NASA Astrophysics Data System (ADS)
Jayasekare, Ajith S.; Wickramasuriya, Rohan; Namazi-Rad, Mohammad-Reza; Perez, Pascal; Singh, Gaurav
2017-07-01
A continuous update of building information is necessary in today's urban planning. Digital images acquired by remote sensing platforms at appropriate spatial and temporal resolutions provide an excellent data source to achieve this. In particular, high-resolution satellite images are often used to retrieve objects such as rooftops using feature extraction. However, high-resolution images acquired over built-up areas are associated with noises such as shadows that reduce the accuracy of feature extraction. Feature extraction heavily relies on the reflectance purity of objects, which is difficult to perfect in complex urban landscapes. An attempt was made to increase the reflectance purity of building rooftops affected by shadows. In addition to the multispectral (MS) image, derivatives thereof namely, normalized difference vegetation index and principle component (PC) images were incorporated in generating the probability image. This hybrid probability image generation ensured that the effect of shadows on rooftop extraction, particularly on light-colored roofs, is largely eliminated. The PC image was also used for image segmentation, which further increased the accuracy compared to segmentation performed on an MS image. Results show that the presented method can achieve higher rooftop extraction accuracy (70.4%) in vegetation-rich urban areas compared to traditional methods.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media
NASA Astrophysics Data System (ADS)
Edrei, Eitan; Scarcelli, Giuliano
2016-09-01
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
Edrei, Eitan; Scarcelli, Giuliano
2016-09-16
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
Culturing of avian embryos for time-lapse imaging.
Rupp, Paul A; Rongish, Brenda J; Czirok, Andras; Little, Charles D
2003-02-01
Monitoring morphogenetic processes, at high resolution over time, has been a long-standing goal of many developmental cell biologists. It is critical to image cells in their natural environment whenever possible; however, imaging many warm-blooded vertebrates, especially mammals, is problematic. At early stages of development, birds are ideal for imaging, since the avian body plan is very similar to that of mammals. We have devised a culturing technique that allows for the acquisition of high-resolution differential interference contrast and epifluorescence images of developing avian embryos in a 4-D (3-D + time) system. The resulting information, from intact embryos, is derived from an area encompassing several millimeters, at micrometer resolution for up to 30 h.
Dynamic-focusing microscope objective for optical coherence tomography
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-01-01
Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-01-01
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely delay-multiply-and-sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, double stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.
Full-field OCT: applications in ophthalmology
NASA Astrophysics Data System (ADS)
Grieve, Kate; Dubois, Arnaud; Paques, Michel; Le Gargasson, Jean-Francois; Boccara, Albert C.
2005-04-01
We present images of ocular tissues obtained using ultrahigh resolution full-field OCT. The experimental setup is based on the Linnik interferometer, illuminated by a tungsten halogen lamp. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by a high-resolution CCD camera. A spatial resolution of 0.7 μm × 0.9 μm (axial × transverse) is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of 90 dB is obtained by means of image averaging and pixel binning. Whole unfixed eyes and unstained tissue samples (cornea, lens, retina, choroid and sclera) of ex vivo rat, mouse, rabbit and porcine ocular tissues were examined. The unprecedented resolution of our instrument allows cellular-level resolution in the cornea and retina, and visualization of individual fibers in the lens. Transcorneal lens imaging was possible in all animals, and in albino animals, transscleral retinal imaging was achieved. We also introduce our rapid acquisition full-field optical coherence tomography system designed to accommodate in vivo ophthalmologic imaging. The variations on the original system technology include the introduction of a xenon arc lamp as source, and rapid image acquisition performed by a high-speed CMOS camera, reducing acquisition time to 5 ms per frame.
Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A
2017-04-01
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
High-resolution imaging of biological tissue with full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhu, Yue; Gao, Wanrong
2015-03-01
A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.
NASA Astrophysics Data System (ADS)
Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu
2018-03-01
Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.
NASA Astrophysics Data System (ADS)
Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao
2018-03-01
The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.
High-resolution, continuous field-of-view (FOV), non-rotating imaging system
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)
2010-01-01
A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.
First light of the CHARIS high-contrast integral-field spectrograph
NASA Astrophysics Data System (ADS)
Groff, Tyler; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Currie, Thayne; Takato, Naruhisa; Hayashi, Masahiko
2017-09-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has `high' and `low' resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.
Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment
NASA Astrophysics Data System (ADS)
Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.
2010-02-01
Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.
Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F
2015-01-01
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
NASA Astrophysics Data System (ADS)
Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin
2016-03-01
Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.
Wells, Darren M.; French, Andrew P.; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein; Bennett, Malcolm J.; Pridmore, Tony P.
2012-01-01
Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana. PMID:22527394
Wells, Darren M; French, Andrew P; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein I; Hijazi, Hussein; Bennett, Malcolm J; Pridmore, Tony P
2012-06-05
Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana.
3D super resolution range-gated imaging for canopy reconstruction and measurement
NASA Astrophysics Data System (ADS)
Huang, Hantao; Wang, Xinwei; Sun, Liang; Lei, Pingshun; Fan, Songtao; Zhou, Yan
2018-01-01
In this paper, we proposed a method of canopy reconstruction and measurement based on 3D super resolution range-gated imaging. In this method, high resolution 2D intensity images are grasped by active gate imaging, and 3D images of canopy are reconstructed by triangular-range-intensity correlation algorithm at the same time. A range-gated laser imaging system(RGLIS) is established based on 808 nm diode laser and gated intensified charge-coupled device (ICCD) camera with 1392´1040 pixels. The proof experiments have been performed for potted plants located 75m away and trees located 165m away. The experiments show it that can acquire more than 1 million points per frame, and 3D imaging has the spatial resolution about 0.3mm at the distance of 75m and the distance accuracy about 10 cm. This research is beneficial for high speed acquisition of canopy structure and non-destructive canopy measurement.
Higher resolution satellite remote sensing and the impact on image mapping
Watkins, Allen H.; Thormodsgard, June M.
1987-01-01
Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.
High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh
2017-10-01
Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
Time stamping of single optical photons with 10 ns resolution
NASA Astrophysics Data System (ADS)
Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; Hodges, Diedra R.; Nguyen, Jayke; Nomerotski, Andrei
2017-05-01
High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc.1-5 Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Photon counting is already widely used in X-ray imaging,6 where the high energy of the photons makes their detection easier. TimepixCam is a novel optical imager,7 which achieves high spatial resolution using an array of 256×256 55 μm × 55μm pixels which have individually controlled functionality. It is based on a thin-entrance-window silicon sensor, bump-bonded to a Timepix ASIC.8 TimepixCam provides high quantum efficiency in the optical wavelength range (400-1000 nm). We perform the timestamping of single photons with a time resolution of 20 ns, by coupling TimepixCam to a fast image-intensifier with a P47 phosphor screen. The fast emission time of the P479 allows us to preserve good time resolution while maintaining the capability to focus the optical output of the intensifier onto the 256×256 pixel Timepix sensor area. We demonstrate the capability of the (TimepixCam + image intensifier) setup to provide high-resolution single-photon timestamping, with an effective frame rate of 50 MHz.
NASA Astrophysics Data System (ADS)
Limonova, Elena; Tropin, Daniil; Savelyev, Boris; Mamay, Igor; Nikolaev, Dmitry
2018-04-01
In this paper we describe stitching protocol, which allows to obtain high resolution images of long length monochromatic objects with periodic structure. This protocol can be used for long length documents or human-induced objects in satellite images of uninhabitable regions like Arctic regions. The length of such objects can reach notable values, while modern camera sensors have limited resolution and are not able to provide good enough image of the whole object for further processing, e.g. using in OCR system. The idea of the proposed method is to acquire a video stream containing full object in high resolution and use image stitching. We expect the scanned object to have straight boundaries and periodic structure, which allow us to introduce regularization to the stitching problem and adapt algorithm for limited computational power of mobile and embedded CPUs. With the help of detected boundaries and structure we estimate homography between frames and use this information to reduce complexity of stitching. We demonstrate our algorithm on mobile device and show image processing speed of 2 fps on Samsung Exynos 5422 processor
High-resolution three-dimensional magnetic resonance imaging of mouse lung in situ.
Scadeng, Miriam; Rossiter, Harry B; Dubowitz, David J; Breen, Ellen C
2007-01-01
This study establishes a method for high-resolution isotropic magnetic resonance (MR) imaging of mouse lungs using tracheal liquid-instillation to remove MR susceptibility artifacts. C57BL/6J mice were instilled sequentially with perfluorocarbon and phosphate-buffered saline to an airway pressure of 10, 20, or 30 cm H2O. Imaging was performed in a 7T MR scanner using a 2.5-cm Quadrature volume coil and a 3-dimensional (3D) FLASH imaging sequence. Liquid-instillation removed magnetic susceptibility artifacts and allowed lung structure to be viewed at an isotropic resolution of 78-90 microm. Instilled liquid and modeled lung volumes were well correlated (R = 0.92; P < 0.05) and differed by a constant tissue volume (220 +/- 92 microL). 3D image renderings allowed differences in structural dimensions (volumes and areas) to be accurately measured at each inflation pressure. These data demonstrate the efficacy of pulmonary liquid instillation for in situ high-resolution MR imaging of mouse lungs for accurate measurement of pulmonary airway, parenchymal, and vascular structures.
Long-range speckle imaging theory, simulation, and brassboard results
NASA Astrophysics Data System (ADS)
Riker, Jim F.; Tyler, Glenn A.; Vaughn, Jeff L.
2017-09-01
In the SPIE 2016 Unconventional Imaging session, the authors laid out a breakthrough new theory for active array imaging that exploits the speckle return to generate a high-resolution picture of the target. Since then, we have pursued that theory even in long-range (<1000-km) engagement scenarios and shown how we can obtain that high-resolution image of the target using only a few illuminators, or by using many illuminators. There is a trade of illuminators versus receivers, but many combinations provide the same synthetic aperture resolution. We will discuss that trade, along with the corresponding radiometric and speckle-imaging Signal-to-Noise Ratios (SNR) for geometries that can fit on relatively small aircraft, such as an Unmanned Aerial Vehicle (UAV). Furthermore, we have simulated the performance of the technique, and we have created a laboratory version of the approach that is able to obtain high-resolution speckle imagery. The principal results presented in this paper are the Signal to Noise Ratios (SNR) for both the radiometric and the speckle imaging portions of the problem, and the simulated results obtained for representative arrays.
Live CLEM imaging to analyze nuclear structures at high resolution.
Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako
2015-01-01
Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.
FFT-enhanced IHS transform method for fusing high-resolution satellite images
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2007-01-01
Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Image sharpening for mixed spatial and spectral resolution satellite systems
NASA Technical Reports Server (NTRS)
Hallada, W. A.; Cox, S.
1983-01-01
Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.
NASA Astrophysics Data System (ADS)
Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde
2016-03-01
In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.
Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear.
Levy, Lauren L; Jiang, Nancy; Smouha, Eric; Richards-Kortum, Rebecca; Sikora, Andrew G
2013-04-01
High-resolution optical imaging is an imaging modality that allows visualization of structural changes in epithelial tissue in real time. Our prior studies using contrast-enhanced microendoscopy to image squamous cell carcinoma in the head and neck demonstrated that the contrast agent, proflavine, has high affinity for keratinized tissue. Thus, high-resolution microendoscopy with proflavine provides a potential mechanism to identify ectopic keratin production, such as that associated with cholesteatoma formation, and distinguish between uninvolved mucosa and residual keratin at the time of surgery. Ex vivo imaging of histopathologically confirmed samples of cholesteatoma and uninvolved middle ear epithelium. Seven separate specimens collected from patients who underwent surgical treatment for cholesteatoma were imaged ex vivo with the fiberoptic endoscope after surface staining with proflavine. Following imaging, the specimens were submitted for hematoxylin and eosin staining to allow histopathological correlation. Cholesteatoma and surrounding middle ear epithelium have distinct imaging characteristics. Keratin-bearing areas of cholesteatoma lack nuclei and appear as confluent hyperfluorescence, whereas nuclei are easily visualized in specimens containing normal middle ear epithelium. Hyperfluorescence and loss of cellular detail is the imaging hallmark of keratin, allowing for discrimination of cholesteatoma from normal middle ear epithelium. This study demonstrates the feasibility of high-resolution optical imaging to discriminate cholesteatoma from uninvolved middle ear mucosa based on the unique staining properties of keratin. Use of real-time imaging may facilitate more complete extirpation of cholesteatoma by identifying areas of residual disease. Laryngoscope, 2012. Copyright © 2013 The American Laryngological, Rhinological, and Otological Society, Inc.
HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori
2018-01-01
Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022
Monolithic focused reference beam X-ray holography
Geilhufe, J.; Pfau, B.; Schneider, M.; Büttner, F.; Günther, C. M.; Werner, S.; Schaffert, S.; Guehrs, E.; Frömmel, S.; Kläui, M.; Eisebitt, S.
2014-01-01
Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux facilities like high harmonic generation sources. The application of monolithic focused reference beams improves the efficiency of high-resolution X-ray Fourier transform holography beyond all present approaches and paves the path towards sub-10 nm single-shot X-ray imaging. PMID:24394675
Yang, Junhai; Caprioli, Richard M.
2011-01-01
We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high quality MALDI mass spectra and high spatial resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of tissue section and amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20 and 10 µm spatial resolution are presented and are correlated with H&E stained optical images. For targeted analysis, histology directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section. PMID:21639088
A Bayesian Nonparametric Approach to Image Super-Resolution.
Polatkan, Gungor; Zhou, Mingyuan; Carin, Lawrence; Blei, David; Daubechies, Ingrid
2015-02-01
Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler.
Photoacoustic imaging of single circulating melanoma cells in vivo
NASA Astrophysics Data System (ADS)
Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.
2015-03-01
Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.
Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A
2015-01-01
High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.
Architecture and applications of a high resolution gated SPAD image sensor
Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo
2014-01-01
We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572
Imaging During MESSENGER's Second Flyby of Mercury
NASA Astrophysics Data System (ADS)
Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team
2008-12-01
During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an average resolution of 2.5 km/pixel. Two NAC mosaics of the entire departing planet will be acquired beginning about 66 minutes after closest approach, with resolutions of 500-700 m/pixel. About 89 minutes following closest approach, the WAC will acquire a multispectral image set with a resolution of about 5 km/pixel. Following this WAC image set, MDIS will continue to acquire occasional images with both the WAC and NAC until 20 hours after closest approach, at which time the flyby data will begin being transmitted to Earth.
NASA Astrophysics Data System (ADS)
Liebel, L.; Körner, M.
2016-06-01
In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.
High-resolution observations of the globular cluster NGC 7099
NASA Astrophysics Data System (ADS)
Sams, Bruce Jones, III
The globular cluster NGC 7099 is a prototypical collapsed core cluster. Through a series of instrumental, observational, and theoretical observations, I have resolved its core structure using a ground based telescope. The core has a radius of 2.15 arcsec when imaged with a V band spatial resolution of 0.35 arcsec. Initial attempts at speckle imaging produced images of inadequate signal to noise and resolution. To explain these results, a new, fully general signal-to-noise model has been developed. It properly accounts for all sources of noise in a speckle observation, including aliasing of high spatial frequencies by inadequate sampling of the image plane. The model, called Full Speckle Noise (FSN), can be used to predict the outcome of any speckle imaging experiment. A new high resolution imaging technique called ACT (Atmospheric Correlation with a Template) was developed to create sharper astronomical images. ACT compensates for image motion due to atmospheric turbulence. ACT is similar to the Shift and Add algorithm, but uses apriori spatial knowledge about the image to further constrain the shifts. In this instance, the final images of NGC 7099 have resolutions of 0.35 arcsec from data taken in 1 arcsec seeing. The PAPA (Precision Analog Photon Address) camera was used to record data. It is subject to errors when imaging cluster cores in a large field of view. The origin of these errors is explained, and several ways to avoid them proposed. New software was created for the PAPA camera to properly take flat field images taken in a large field of view. Absolute photometry measurements of NGC 7099 made with the PAPA camera are accurate to 0.1 magnitude. Luminosity sampling errors dominate surface brightness profiles of the central few arcsec in a collapsed core cluster. These errors set limits on the ultimate spatial accuracy of surface brightness profiles.
Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science
NASA Astrophysics Data System (ADS)
Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.
2018-03-01
We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.
A hybrid color mapping approach to fusing MODIS and Landsat images for forward prediction
USDA-ARS?s Scientific Manuscript database
We present a new, simple, and efficient approach to fusing MODIS and Landsat images. It is well known that MODIS images have high temporal resolution and low spatial resolution whereas Landsat images are just the opposite. Similar to earlier approaches, our goal is to fuse MODIS and Landsat images t...
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging.
Liu, Dengyu; Gu, Jinwei; Hitomi, Yasunobu; Gupta, Mohit; Mitsunaga, Tomoo; Nayar, Shree K
2014-02-01
Cameras face a fundamental trade-off between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this trade-off without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing, and reconstructing the space-time volume to overcome this trade-off. Our approach has two important distinctions compared to previous works: 1) We achieve sparse representation of videos by learning an overcomplete dictionary on video patches, and 2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach, sampling function and sparse representation, by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a liquid crystal on silicon device. System characteristics such as field of view and modulation transfer function are evaluated for our imaging system. Both simulations and experiments on a wide range of scenes show that our method can effectively reconstruct a video from a single coded image while maintaining high spatial resolution.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
High-speed Fourier ptychographic microscopy based on programmable annular illuminations.
Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian
2018-05-16
High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.
Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome
2009-01-01
We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.
NASA Astrophysics Data System (ADS)
Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome
2009-05-01
We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.
High-speed reconstruction of compressed images
NASA Astrophysics Data System (ADS)
Cox, Jerome R., Jr.; Moore, Stephen M.
1990-07-01
A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.
Advances in photographic X-ray imaging for solar astronomy
NASA Technical Reports Server (NTRS)
Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.
1989-01-01
The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.
IMART software for correction of motion artifacts in images collected in intravital microscopy
Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J
2014-01-01
Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271
Resolution enhancement of low-quality videos using a high-resolution frame
NASA Astrophysics Data System (ADS)
Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer
2006-01-01
This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.
Constructing a WISE High Resolution Galaxy Atlas
NASA Technical Reports Server (NTRS)
Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.;
2012-01-01
After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.
NASA Astrophysics Data System (ADS)
Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza
2016-03-01
The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.
Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT
NASA Astrophysics Data System (ADS)
Shokouhi, S.; Metzler, S. D.; Wilson, D. W.; Peterson, T. E.
2009-01-01
We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.
Sensitometric and image analysis of T-grain film.
Thunthy, K H; Weinberg, R
1986-08-01
The new Kodak T-grain film is the result of a new technology that makes fast films with high image resolution. The purpose of the investigation was to determine the sensitometric properties and image quality of a T-grain film (T-Mat G) and also to compare this film with a green-sensitive orthochromatic film (Ortho G) and a blue-sensitive film (XRP). The criteria for film evaluation were relative speed, average contrast, exposure latitude, and image resolution. The results showed that the T-Mat G film is twice as fast as the X-Omat RP film and, one and one-third times as fast as the Ortho G film. T-Mat G also produces high resolution and high contrast. This is contrary to the widely held notion that speed is inversely proportional to image quality.
Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders.
Işil, Çağatay; Yorulmaz, Mustafa; Solmaz, Berkan; Turhan, Adil Burak; Yurdakul, Celalettin; Ünlü, Selim; Ozbay, Ekmel; Koç, Aykut
2018-04-01
Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image patches and their corresponding manual truth image patches in order to learn the transformation between them. Following training, the designed network reconstructs denoised and resolution-enhanced image patches for unseen input.
Laghi, A; Iafrate, F; Paolantonio, P; Iannaccone, R; Baeli, I; Ferrari, R; Catalano, C; Passariello, R
2002-04-01
To assess the normal anatomy of the anal sphincter complex using high-resolution MR imaging with phased -array coil. Twenty patients, 13 males and 7 females, ranging in age between 27 and 56 years underwent MRI evaluation of the pelvic region, using a superconductive 1.5 T magnet (maximum gradient strength, 25 mT/m; minimum rise time 600 microseconds, equipped with phased-array coil. High-resolution T2-weighted Turbo Spin Echo sequences (TR, 4055 ms; TE, 132 ms; matrix 390x512; in-plane resolution, 0.67x0.57 mm) were acquired on multiple axial, sagittal and coronal planes. Images were reviewed by two experienced gastrointestinal radiologists in order to evaluate the normal anal sphincter complex. Optimal image quality of the anal sphincter complex was obtained in all cases. Different muscular layers were observed between the upper and lower aspects of the anal canal. In the lower part of the anal canal, internal and external sphincter muscles could be observed; in the upper part, puborectal and internal sphincter muscles were depicted. Good visualization of intersphincteric space, levator ani muscle and ischioanal space was also obtained in all cases. High-resolution MR images with phased-array coil provide optimal depiction of the anal canal and the anal sphincter complex.
Three-dimensional rotational micro-angiography
NASA Astrophysics Data System (ADS)
Patel, Vikas
Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.
Operational characteristics of Wedge and Strip image readout systems
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.
1986-01-01
Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.
Performance evaluation of a two detector camera for real-time video.
Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo
2016-12-20
Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
Sub-pixel spatial resolution wavefront phase imaging
NASA Technical Reports Server (NTRS)
Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)
2012-01-01
A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.
A novel dual-frequency imaging method for intravascular ultrasound applications.
Qiu, Weibao; Chen, Yan; Wong, Chi-Man; Liu, Baoqiang; Dai, Jiyan; Zheng, Hairong
2015-03-01
Intravascular ultrasound (IVUS), which is able to delineate internal structures of vessel wall with fine spatial resolution, has greatly enriched the knowledge of coronary atherosclerosis. A novel dual-frequency imaging method is proposed in this paper for intravascular imaging applications. A probe combined two ultrasonic transducer elements with different center frequencies (36 MHz and 78 MHz) is designed and fabricated with PMN-PT single crystal material. It has the ability to balance both imaging depth and resolution, which are important imaging parameters for clinical test. A dual-channel imaging platform is also proposed for real-time imaging, and this platform has been proven to support programmable processing algorithms, flexible imaging control, and raw RF data acquisition for IVUS applications. Testing results show that the -6 dB axial and lateral imaging resolutions of low-frequency ultrasound are 78 and 132 μm, respectively. In terms of high-frequency ultrasound, axial and lateral resolutions are determined to be as high as 34 and 106 μm. In vitro intravascular imaging on healthy swine aorta is conducted to demonstrate the performance of the dual-frequency imaging method for IVUS applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Purification of Training Samples Based on Spectral Feature and Superpixel Segmentation
NASA Astrophysics Data System (ADS)
Guan, X.; Qi, W.; He, J.; Wen, Q.; Chen, T.; Wang, Z.
2018-04-01
Remote sensing image classification is an effective way to extract information from large volumes of high-spatial resolution remote sensing images. Generally, supervised image classification relies on abundant and high-precision training data, which is often manually interpreted by human experts to provide ground truth for training and evaluating the performance of the classifier. Remote sensing enterprises accumulated lots of manually interpreted products from early lower-spatial resolution remote sensing images by executing their routine research and business programs. However, these manually interpreted products may not match the very high resolution (VHR) image properly because of different dates or spatial resolution of both data, thus, hindering suitability of manually interpreted products in training classification models, or small coverage area of these manually interpreted products. We also face similar problems in our laboratory in 21st Century Aerospace Technology Co. Ltd (short for 21AT). In this work, we propose a method to purify the interpreted product to match newly available VHRI data and provide the best training data for supervised image classifiers in VHR image classification. And results indicate that our proposed method can efficiently purify the input data for future machine learning use.
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.
Fromm, S A; Sachse, C
2016-01-01
Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.
T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm.
Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver
2017-03-14
We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T 1 -weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.
T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm
NASA Astrophysics Data System (ADS)
Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver
2017-03-01
We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.
Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2013-08-07
Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.
Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system
NASA Astrophysics Data System (ADS)
Nuster, Robert; Paltauf, Guenther
2017-07-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
NASA Astrophysics Data System (ADS)
Nuster, Robert; Wurzinger, Gerhild; Paltauf, Guenther
2017-03-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry
Cartier, Sebastian; Kagias, Matias; Bergamaschi, Anna; Wang, Zhentian; Dinapoli, Roberto; Mozzanica, Aldo; Ramilli, Marco; Schmitt, Bernd; Brückner, Martin; Fröjdh, Erik; Greiffenberg, Dominic; Mayilyan, Davit; Mezza, Davide; Redford, Sophie; Ruder, Christian; Schädler, Lukas; Shi, Xintian; Thattil, Dhanya; Tinti, Gemma; Zhang, Jiaguo; Stampanoni, Marco
2016-01-01
MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented. PMID:27787252
3D near-infrared imaging based on a single-photon avalanche diode array sensor
NASA Astrophysics Data System (ADS)
Mata Pavia, Juan; Charbon, Edoardo; Wolf, Martin
2011-07-01
An imager for optical tomography was designed based on a detector with 128×128 single-photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contact-less setup has been conceived in which scanning of the object is not necessary. This enables one to perform high-resolution optical tomography with much higher acquisition rate, which is fundamental in clinical applications. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new imaging system generated a high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take full advantage of it. Images were generated using a new reconstruction algorithm that combined general inverse problem methods with Fourier transforms in order to reduce the complexity of the problem. Simulations show that the potential resolution of the new setup is in the order of millimeters. Experiments have been performed to confirm this potential. Images derived from the measurements demonstrate that we have already reached a resolution of 5mm.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Computational imaging through a fiber-optic bundle
NASA Astrophysics Data System (ADS)
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .