Sample records for high-angular resolution diffusion

  1. Correction of eddy current distortions in high angular resolution diffusion imaging.

    PubMed

    Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna

    2013-06-01

    To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.

  2. Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI

    PubMed Central

    Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid

    2017-01-01

    Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329

  3. Development of a High Angular Resolution Diffusion Imaging Human Brain Template

    PubMed Central

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-01-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  4. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T.

    PubMed

    Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert

    2012-04-02

    There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  7. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770

  8. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    PubMed Central

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  9. Approximating high angular resolution apparent diffusion coefficient profiles using spherical harmonics under BiGaussian assumption

    NASA Astrophysics Data System (ADS)

    Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun

    2009-02-01

    Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.

  10. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  11. The large area high resolution gamma ray astrophysics facility - HR-GRAF

    NASA Astrophysics Data System (ADS)

    Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.

    1990-03-01

    The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.

  12. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  13. Angular resolution of the gaseous micro-pixel detector Gossip

    NASA Astrophysics Data System (ADS)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  14. Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI.

    PubMed

    Gulban, Omer F; De Martino, Federico; Vu, An T; Yacoub, Essa; Uğurbil, Kamil; Lenglet, Christophe

    2018-05-10

    Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effects of b-value and number of gradient directions on diffusion MRI measures obtained with Q-ball imaging

    NASA Astrophysics Data System (ADS)

    Schilling, Kurt G.; Nath, Vishwesh; Blaber, Justin; Harrigan, Robert L.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-02-01

    High-angular-resolution diffusion-weighted imaging (HARDI) MRI acquisitions have become common for use with higher order models of diffusion. Despite successes in resolving complex fiber configurations and probing microstructural properties of brain tissue, there is no common consensus on the optimal b-value and number of diffusion directions to use for these HARDI methods. While this question has been addressed by analysis of the diffusion-weighted signal directly, it is unclear how this translates to the information and metrics derived from the HARDI models themselves. Using a high angular resolution data set acquired at a range of b-values, and repeated 11 times on a single subject, we study how the b-value and number of diffusion directions impacts the reproducibility and precision of metrics derived from Q-ball imaging, a popular HARDI technique. We find that Q-ball metrics associated with tissue microstructure and white matter fiber orientation are sensitive to both the number of diffusion directions and the spherical harmonic representation of the Q-ball, and often are biased when under sampled. These results can advise researchers on appropriate acquisition and processing schemes, particularly when it comes to optimizing the number of diffusion directions needed for metrics derived from Q-ball imaging.

  16. Radial q-space sampling for DSI.

    PubMed

    Baete, Steven H; Yutzy, Stephen; Boada, Fernando E

    2016-09-01

    Diffusion spectrum imaging (DSI) has been shown to be an effective tool for noninvasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI is used to improve the angular resolution and accuracy of the reconstructed orientation distribution functions. Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the orientation distribution functions at the same angular location by the Fourier slice theorem. Computer simulations and in vivo brain results demonstrate that radial diffusion spectrum imaging correctly estimates the orientation distribution functions when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. The nominal angular resolution of radial diffusion spectrum imaging depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. Magn Reson Med 76:769-780, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. High angular resolution diffusion imaging with stimulated echoes: compensation and correction in experiment design and analysis.

    PubMed

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-08-01

    Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  18. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    PubMed Central

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  19. Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.

    PubMed

    Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian

    2015-01-01

    High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).

  20. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo, E-mail: giulia.pagliaroli@gssi.infn.it, E-mail: carmelo.evoli@gssi.infn.it, E-mail: francesco.villante@lngs.infn.it

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show thatmore » a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform , thus bringing relevant information on the cosmic ray radial distribution.« less

  1. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).

  2. Time‐efficient and flexible design of optimized multishell HARDI diffusion

    PubMed Central

    Tournier, J. Donald; Price, Anthony N.; Cordero‐Grande, Lucilio; Hughes, Emer J.; Malik, Shaihan; Steinweg, Johannes; Bastiani, Matteo; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Andersson, Jesper; Edwards, A. David; Hajnal, Joseph V.

    2017-01-01

    Purpose Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time‐efficient and flexible diffusion acquisition capability with built‐in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. Methods Complete flexibility in the sampling of diffusion space combined with free choice of phase‐encode‐direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split‐diffusion‐gradient preparation, multiband acceleration, and a restart capacity were added. Results The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high‐angular resolution, maximally time‐efficient (20 min) multishell protocol with 300 diffusion‐weighted volumes was acquired in >400 neonates. An optimal design of a high‐resolution (1.2 × 1.2 mm2) two‐shell acquisition with 54 diffusion weighted volumes was obtained using a split‐gradient design. Conclusion The presented framework provides flexibility to generate time‐efficient and motion‐robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub‐optimal choices. Magn Reson Med 79:1276–1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28557055

  3. Linear Transforms for Fourier Data on the Sphere: Application to High Angular Resolution Diffusion MRI of the Brain

    PubMed Central

    Haldar, Justin P.; Leahy, Richard M.

    2013-01-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603

  4. Quiet echo planar imaging for functional and diffusion MRI

    PubMed Central

    Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.

    2017-01-01

    Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363

  5. Anomalous White Matter Morphology in Adults Who Stutter

    ERIC Educational Resources Information Center

    Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.

    2015-01-01

    Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…

  6. Linear transforms for Fourier data on the sphere: application to high angular resolution diffusion MRI of the brain.

    PubMed

    Haldar, Justin P; Leahy, Richard M

    2013-05-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data.

    PubMed

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-05-15

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way.

  8. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data

    PubMed Central

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-01-01

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674

  9. Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Michailovich, O.; Rathi, Y.

    2014-03-01

    High angular resolution diffusion imaging (HARDI) improves upon more traditional diffusion tensor imaging (DTI) in its ability to resolve the orientations of crossing and branching neural fibre tracts. The HARDI signals are measured over a spherical shell in q-space, and are usually used as an input to q-ball imaging (QBI) which allows estimation of the diffusion orientation distribution functions (ODFs) associated with a given region-of interest. Unfortunately, the partial nature of single-shell sampling imposes limits on the estimation accuracy. As a result, the recovered ODFs may not possess sufficient resolution to reveal the orientations of fibre tracts which cross each other at acute angles. A possible solution to the problem of limited resolution of QBI is provided by means of spherical deconvolution, a particular instance of which is sparse deconvolution. However, while capable of yielding high-resolution reconstructions over spacial locations corresponding to white matter, such methods tend to become unstable when applied to anatomical regions with a substantial content of isotropic diffusion. To resolve this problem, a new deconvolution approach is proposed in this paper. Apart from being uniformly stable across the whole brain, the proposed method allows one to quantify the isotropic component of cerebral diffusion, which is known to be a useful diagnostic measure by itself.

  10. A time-efficient acquisition protocol for multipurpose diffusion-weighted microstructural imaging at 7 Tesla.

    PubMed

    Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus

    2017-12-01

    Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment

    PubMed Central

    Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.

    2014-01-01

    Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644

  12. Radial q-space sampling for DSI

    PubMed Central

    Baete, Steven H.; Yutzy, Stephen; Boada, Fernando, E.

    2015-01-01

    Purpose Diffusion Spectrum Imaging (DSI) has been shown to be an effective tool for non-invasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI (RDSI) is used to improve the angular resolution and accuracy of the reconstructed Orientation Distribution Functions (ODF). Methods Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the ODF at the same angular location by the Fourier slice theorem. Results Computer simulations and in vivo brain results demonstrate that RDSI correctly estimates the ODF when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. Conclusion The nominal angular resolution of RDSI depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. PMID:26363002

  13. Complex Geometric Models of Diffusion and Relaxation in Healthy and Damaged White Matter

    PubMed Central

    Farrell, Jonathan A.D.; Smith, Seth A.; Reich, Daniel S.; Calabresi, Peter A.; van Zijl, Peter C.M.

    2010-01-01

    Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular microenvironment and have not considered important anatomic details. With the advent of higher-order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging (HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility of simulations of diffusion in complex geometries. Our framework is quantitative, does not require specialized hardware, is easily implemented with little programming experience, and is freely available as open-source software. Models may include compartments with different diffusivities, permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary (e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-derived contrasts. PMID:19739233

  14. Quantifying the ultrastructure of carotid arteries using high-resolution micro-diffusion tensor imaging—comparison of intact versus open cut tissue

    NASA Astrophysics Data System (ADS)

    Salman Shahid, Syed; Gaul, Robert T.; Kerskens, Christian; Flamini, Vittoria; Lally, Caitríona

    2017-12-01

    Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p  <  0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.

  15. Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric.

    PubMed

    Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M

    2016-06-01

    This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.

  16. A Hough Transform Global Probabilistic Approach to Multiple-Subject Diffusion MRI Tractography

    PubMed Central

    Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M.; Sapiro, Guillermo

    2011-01-01

    A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. PMID:21376655

  17. lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain.

    PubMed

    Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi

    2014-01-01

    We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.

  18. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders.

    PubMed

    Edlow, Brian L; Takahashi, Emi; Wu, Ona; Benner, Thomas; Dai, Guangping; Bu, Lihong; Grant, Patricia Ellen; Greer, David M; Greenberg, Steven M; Kinney, Hannah C; Folkerth, Rebecca D

    2012-06-01

    The ascending reticular activating system (ARAS) mediates arousal, an essential component of human consciousness. Lesions of the ARAS cause coma, the most severe disorder of consciousness. Because of current methodological limitations, including of postmortem tissue analysis, the neuroanatomic connectivity of the human ARAS is poorly understood. We applied the advanced imaging technique of high angular resolution diffusion imaging (HARDI) to elucidate the structural connectivity of the ARAS in 3 adult human brains, 2 of which were imaged postmortem. High angular resolution diffusion imaging tractography identified the ARAS connectivity previously described in animals and also revealed novel human pathways connecting the brainstem to the thalamus, the hypothalamus, and the basal forebrain. Each pathway contained different distributions of fiber tracts from known neurotransmitter-specific ARAS nuclei in the brainstem. The histologically guided tractography findings reported here provide initial evidence for human-specific pathways of the ARAS. The unique composition of neurotransmitter-specific fiber tracts within each ARAS pathway suggests structural specializations that subserve the different functional characteristics of human arousal. This ARAS connectivity analysis provides proof of principle that HARDI tractography may affect the study of human consciousness and its disorders, including in neuropathologic studies of patients dying in coma and the persistent vegetative state.

  19. The INTEGRAL scatterometer SPI

    NASA Technical Reports Server (NTRS)

    Mandrou, P.; Vedrenne, G.; Jean, P.; Kandel, B.; vonBallmoos, P.; Albernhe, F.; Lichti, G.; Schoenfelder, V.; Diehl, R.; Georgii, R.; hide

    1997-01-01

    The INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) mission's onboard spectrometer, the INTEGRAL spectrometer (SPI), is described. The SPI constitutes one of the four main mission instruments. It is optimized for detailed measurements of gamma ray lines and for the mapping of diffuse sources. It combines a coded aperture mask with an array of large volume, high purity germanium detectors. The detectors make precise measurements of the gamma ray energies over the 20 keV to 8 MeV range. The instrument's characteristics are described and the Monte Carlo simulation of its performance is outlined. It will be possible to study gamma ray emission from compact objects or line profiles with a high energy resolution and a high angular resolution.

  20. HARDI denoising using nonlocal means on S2

    NASA Astrophysics Data System (ADS)

    Kuurstra, Alan; Dolui, Sudipto; Michailovich, Oleg

    2012-02-01

    Diffusion MRI (dMRI) is a unique imaging modality for in vivo delineation of the anatomical structure of white matter in the brain. In particular, high angular resolution diffusion imaging (HARDI) is a specific instance of dMRI which is known to excel in detection of multiple neural fibers within a single voxel. Unfortunately, the angular resolution of HARDI is known to be inversely proportional to SNR, which makes the problem of denoising of HARDI data be of particular practical importance. Since HARDI signals are effectively band-limited, denoising can be accomplished by means of linear filtering. However, the spatial dependency of diffusivity in brain tissue makes it impossible to find a single set of linear filter parameters which is optimal for all types of diffusion signals. Hence, adaptive filtering is required. In this paper, we propose a new type of non-local means (NLM) filtering which possesses the required adaptivity property. As opposed to similar methods in the field, however, the proposed NLM filtering is applied in the spherical domain of spatial orientations. Moreover, the filter uses an original definition of adaptive weights, which are designed to be invariant to both spatial rotations as well as to a particular sampling scheme in use. As well, we provide a detailed description of the proposed filtering procedure, its efficient implementation, as well as experimental results with synthetic data. We demonstrate that our filter has substantially better adaptivity as compared to a number of alternative methods.

  1. Stability of Gradient Field Corrections for Quantitative Diffusion MRI.

    PubMed

    Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A

    2017-02-11

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  2. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  3. On Facilitating the use of HARDI in population studies by creating Rotation-Invariant Markers

    PubMed Central

    Caruyer, Emmanuel; Verma, Ragini

    2014-01-01

    We design and evaluate a novel method to compute rotationally invariant features using High Angular Resolution Diffusion Imaging (HARDI) data. These measures quantify the complexity of the angular diffusion profile modeled using a higher order model, thereby giving more information than classical diffusion tensor-derived parameters. The method is based on the spherical harmonic (SH) representation of the angular diffusion information, and is generalizable to a range of HARDI reconstruction models. These scalars are obtained as homogeneous polynomials of the SH representation of a HARDI reconstruction model. We show that finding such polynomials is equivalent to solving a large linear system of equations, and present a numerical method based on sparse matrices to efficiently solve this system. Among the solutions, we only keep a subset of algebraically independent polynomials, using an algorithm based on a numerical implementation of the Jacobian criterion. We compute a set of 12 or 25 rotationally invariant measures representative of the underlying white matter for the rank-4 or rank-6 spherical harmonics (SH) representation of the apparent diffusion coefficient (ADC) profile, respectively. Synthetic data was used to investigate and quantify the difference in contrast. Real data acquired with multiple repetitions showed that within subject variation in the invariants was less than the difference across subjects - facilitating their use to study population differences. These results demonstrate that our measures are able to characterize white matter, especially complex white matter found in regions of fiber crossings and hence can be used to derive new biomarkers for HARDI and can be used for HARDI-based population analysis. PMID:25465846

  4. SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.

    2014-07-20

    Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradient—in the vicinity of the snow line—of a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulentmore » diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.« less

  5. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  6. A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography.

    PubMed

    Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M; Sapiro, Guillermo

    2011-08-01

    A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A localized Richardson-Lucy algorithm for fiber orientation estimation in high angular resolution diffusion imaging.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong

    2015-05-01

    Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.

  8. Multiframe super resolution reconstruction method based on light field angular images

    NASA Astrophysics Data System (ADS)

    Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao

    2017-12-01

    The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.

  9. Super DIOS: Future X-ray Spectroscopic Mission to Search for Dark Baryons

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Ichinohe, Y.; Kitazawa, S.; Kosaka, K.; Hayakawa, R.; Nunomura, K.; Mitsuda, K.; Yamasaki, N. Y.; Kikuchi, T.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Seki, D.; Otsuka, K.; Ishihara, M.; Osato, K.; Ota, N.; Tomariguchi, M.; Nagai, D.; Lau, E.; Sato, K.

    2018-04-01

    The updated program of the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS), called as Super DIOS, is planned to search for dark baryons in the form of warm-hot intergalactic medium (WHIM) with high-resolution X-ray spectroscopy. The mission will detect redshifted emission lines from OVII, OVIII and other ions, leading to an overall understanding of the physical nature and spatial distribution of dark baryons as a function of cosmological timescale. We have started the conceptual design of the satellite and onboard instruments, focusing on the era of 2030s. The major change will be an improved angular resolution of the X-ray telescope. Super DIOS will have a 10-arcsec resolution, which is an improvement by a factor of about 20 over DIOS. With this resolution, most of the contaminating X-ray sources will be separated, and the level of the diffuse X-ray background will be much reduced after subtraction of point sources. This will give us higher sensitivity to map out the WHIM in emission.

  10. RadioAstron Maser Observations: a Record in Angular Resolution

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team

    2017-06-01

    Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.

  11. Tensor distribution function

    NASA Astrophysics Data System (ADS)

    Leow, Alex D.; Zhu, Siwei

    2008-03-01

    Diffusion weighted MR imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitizing gradients along a minimum of 6 directions, second-order tensors (represetnted by 3-by-3 positive definiite matrices) can be computed to model dominant diffusion processes. However, it has been shown that conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g. crossing fiber tracts. More recently, High Angular Resolution Diffusion Imaging (HARDI) seeks to address this issue by employing more than 6 gradient directions. To account for fiber crossing when analyzing HARDI data, several methodologies have been introduced. For example, q-ball imaging was proposed to approximate Orientation Diffusion Function (ODF). Similarly, the PAS method seeks to reslove the angular structure of displacement probability functions using the maximum entropy principle. Alternatively, deconvolution methods extract multiple fiber tracts by computing fiber orientations using a pre-specified single fiber response function. In this study, we introduce Tensor Distribution Function (TDF), a probability function defined on the space of symmetric and positive definite matrices. Using calculus of variations, we solve for the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, ODF can easily be computed by analytical integration of the resulting displacement probability function. Moreover, principle fiber directions can also be directly derived from the TDF.

  12. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    PubMed Central

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  13. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  14. High angular resolution at LBT

    NASA Astrophysics Data System (ADS)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  15. Description of small-scale fluctuations in the diffuse X-ray background.

    NASA Technical Reports Server (NTRS)

    Cavaliere, A.; Friedland, A.; Gursky, H.; Spada, G.

    1973-01-01

    An analytical study of the fluctuations on a small angular scale expected in the diffuse X-ray background in the presence of unresolved sources is presented. The source population is described by a function N(S), giving the number of sources per unit solid angle and unit apparent flux S. The distribution of observed flux, s, in each angular resolution element of a complete sky survey is represented by a function Q(s). The analytical relation between the successive, higher-order moments of N(S) and Q(s) is described. The goal of reconstructing the source population from the study of the moments of Q(s) of order higher than the second (i.e., the rms fluctuations) is discussed.

  16. Lynx mission concept study

    NASA Astrophysics Data System (ADS)

    Vikhlinin, Alexey

    2018-01-01

    Lynx is an observatory-class mission, featuring high throughput, exquisite angular resolution over a substantial field of view, and high spectral resolution for point and extended X-ray sources. The design requirements provide a tremendous leap in capabilities relative to missions such as Chandra and Athena. Lynx will observe the dawn of supermassive black holes through detection of very faint X-ray sources in the early universe and will reveal the "invisible drivers" of galaxy and structure formation through observations of hot, diffuse baryons in and around the galaxies. Lynx will enable breakthroughs across all of astrophysics, ranging from detailed understanding of stellar activity including effects on habitability of associated planets to population statistics of neutron stars and black holes in the Local Group galaxies, to earliest groups and clusters of galaxies, and to cosmology

  17. Effects of melamine formaldehyde resin and CaCO3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs.

    PubMed

    Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng

    2013-08-01

    Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.

  18. Replicated Wolter-I X-ray Optics for Lightweight, High Angular Resolution, Large Collecting Area X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Joy, M.; Bilbro, J.; Elsner, R.; Jones, W.; Kolodziejczak, J.; Petruzzo, J.; ODell, S.; Weisskopf, M.

    1997-01-01

    The next generation of orbiting x-ray observatories will require high angular resolution telescopes that have an order of magnitude greater collecting area in the 0.1-10 keV spectral region than those currently under construction, but with a much lower weight and cost per unit area. Replicated Wolter-I x-ray optics have the potential to meet this requirement. The currently demonstrated capabilities of replicated Wolter-I optics will be described, and a development plan for creating lightweight, high angular resolution, large effective area x-ray telescopes will be presented.

  19. Predicted sensitivity of the KM3NeT/ARCA detector to a diffuse flux of cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Coniglione, R.; Fusco, L. A.; Stransky, D.

    2016-04-01

    The KM3NeT Collaboration has started the construction of a research infrastructure hosting a network of underwater neutrino detectors in the Mediterranean Sea. Two instruments based on the same technology are being built: KM3NeT/ORCA to measure the neutrino mass hierarchy and to study atmospheric neutrino oscillations and KM3NeT/ARCA to detect high-energy cosmic neutrinos both in diffuse and point source mode. The excellent angular resolution of the ARCA detector, with an instrumented volume of about one Gton, will allow for an unprecedented exploration of the neutrino sky searching for neutrinos coming from defined sources of sky regions, like the Galactic Plane and the Fermi Bubbles. It will also look for diffuse high energy neutrino fluxes following the indication provided by the IceCube signal. This contribution will report on the sensitivity of the KM3NeT/ARCA telescope with particular attention to the region of the Galactic Plane. Comparisons with theoretical expectations are also discussed.

  20. Imaging White Matter in Human Brainstem

    PubMed Central

    Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo. PMID:23898254

  1. Imaging white matter in human brainstem.

    PubMed

    Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.

  2. Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers

    PubMed Central

    Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.

    2010-01-01

    Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321

  3. RadioAstron Science Program Five Years after Launch: Main Science Results

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.

    2017-12-01

    The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).

  4. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.

  5. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; hide

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  6. Development and Initial Evaluation of 7 Tesla Q-Ball Imaging of the Human Brain

    PubMed Central

    Mukherjee, Pratik; Hess, Christopher P.; Xu, Duan; Han, Eric T.; Kelley, Douglas A.; Vigneron, Daniel B.

    2010-01-01

    Diffusion tensor imaging (DTI) noninvasively depicts white matter connectivity in regions where the Gaussian model of diffusion is valid, but yields inaccurate results where diffusion has a more complex distribution, such as fiber crossings. Q-ball imaging (QBI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion with larger numbers of diffusion-encoding directional measurements at higher diffusion-weighting factors (b values). However, the former results in longer acquisition times and the latter results in lower signal-to-noise ratio (SNR). In this project, we developed specialized 7 Tesla acquisition methods utilizing novel radiofrequency pulses, 8-channel parallel imaging EPI, and high-order shimming with a phase-sensitive multichannel B0 field map reconstruction. These methods were applied in initial healthy adult volunteer studies which demonstrated the feasibility of performing 7T QBI. Preliminary comparisons of 3T with 7T within supratentorial crossing white matter tracts document a 79.5% SNR increase for b=3000 s/mm2 (p=0.0001), and a 38.6% SNR increase for b=6000 s/mm2 (p=0.015). Using spherical harmonic reconstruction of the q-ball orientation distribution function at b=3000 s/mm2, 7T QBI allowed accurate visualization of crossing fiber tracts with fewer diffusion-encoding acquisitions than at 3T. The improvement of 7T QBI at b factors as high as 6000 s/mm2 resulted in better angular resolution than 3T for depicting fibers crossing at shallow angles. Although the increased susceptibility effects at 7T caused problematic distortions near brain-air interfaces at the skull base and posterior fossa, these initial 7T QBI studies demonstrated excellent quality in much of the supratentorial brain with significant improvements as compared to 3T acquisitions in the same individuals. PMID:17692489

  7. γ-ray telescopes using conversions to e+e- pairs: event generators, angular resolution and polarimetry

    NASA Astrophysics Data System (ADS)

    Gros, P.; Bernard, D.

    2017-02-01

    We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.

  8. C-Phycocyanin Hydration Water Dynamics in the Presence of Trehalose: An Incoherent Elastic Neutron Scattering Study at Different Energy Resolutions

    PubMed Central

    Gabel, Frank; Bellissent-Funel, Marie-Claire

    2007-01-01

    We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998

  9. SPHERE: SPherical Harmonic Elastic REgistration of HARDI Data

    PubMed Central

    Yap, Pew-Thian; Chen, Yasheng; An, Hongyu; Yang, Yang; Gilmore, John H.; Lin, Weili

    2010-01-01

    In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, the complex orientation information afforded by HARDI makes registration of HARDI images more complicated than scalar images. In particular, the question of how much orientation information is needed for satisfactory alignment has not been sufficiently addressed. Low order orientation representation is generally more robust than high order representation, although the latter provides more information for correct alignment of fiber pathways. However, high order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We present in this paper a HARDI registration algorithm, called SPherical Harmonic Elastic REgistration (SPHERE), which in a principled means hierarchically extracts orientation information from HARDI data for structural alignment. The image volumes are first registered using robust, relatively direction invariant features derived from the Orientation Distribution Function (ODF), and the alignment is then further refined using spherical harmonic (SH) representation with gradually increasing orders. This progression from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information given by diffusion-weighted imaging. Coupled with a template-subject-consistent soft-correspondence-matching scheme, this approach allows robust and accurate alignment of HARDI data. Experimental results show marked increase in accuracy over a state-of-the-art DTI registration algorithm. PMID:21147231

  10. A phenome-wide examination of neural and cognitive function.

    PubMed

    Poldrack, R A; Congdon, E; Triplett, W; Gorgolewski, K J; Karlsgodt, K H; Mumford, J A; Sabb, F W; Freimer, N B; London, E D; Cannon, T D; Bilder, R M

    2016-12-06

    This data descriptor outlines a shared neuroimaging dataset from the UCLA Consortium for Neuropsychiatric Phenomics, which focused on understanding the dimensional structure of memory and cognitive control (response inhibition) functions in both healthy individuals (130 subjects) and individuals with neuropsychiatric disorders including schizophrenia (50 subjects), bipolar disorder (49 subjects), and attention deficit/hyperactivity disorder (43 subjects). The dataset includes an extensive set of task-based fMRI assessments, resting fMRI, structural MRI, and high angular resolution diffusion MRI. The dataset is shared through the OpenfMRI project, and is formatted according to the Brain Imaging Data Structure (BIDS) standard.

  11. Influences of Neural Pathway Integrity on Children's Response to Reading Instruction

    PubMed Central

    Davis, Nicole; Fan, Qiuyun; Compton, Donald L.; Fuchs, Doug; Fuchs, Lynn S.; Cutting, Laurie E.; Gore, John C.; Anderson, Adam W.

    2010-01-01

    As the education field moves toward using responsiveness to intervention to identify students with disabilities, an important question is the degree to which this classification can be connected to a student's neurobiological characteristics. A few functional neuroimaging studies have reported a relationship between activation and response to instruction; however, whether a similar correlation exists with white matter (WM) is not clear. To investigate this issue, we acquired high angular resolution diffusion images from a group of first grade children who differed in their levels of responsiveness to a year-long reading intervention. Using probabilistic tractography, we calculated the strength of WM connections among nine cortical regions of interest and correlated these estimates with participants’ scores on four standardized reading measures. We found eight significant correlations, four of which were connections between the insular cortex and angular gyrus. In each of the correlations, a relationship with children's response to intervention was evident. PMID:21088707

  12. Sparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition

    PubMed Central

    Yeh, Fang-Cheng; Tseng, Wen-Yih Isaac

    2013-01-01

    Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L 2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffusion decomposition, which obtains a sparse solution of fiber ODF by decomposing the diffusion ODF obtained from q-ball imaging (QBI), diffusion spectrum imaging (DSI), or generalized q-sampling imaging (GQI). A simulation study, a phantom study, and an in-vivo study were conducted to examine the performance of diffusion decomposition. The simulation study showed that diffusion decomposition was more accurate than both constrained spherical deconvolution and ball-and-sticks model. The phantom study showed that the angular error of diffusion decomposition was significantly lower than those of constrained spherical deconvolution at 30° crossing and ball-and-sticks model at 60° crossing. The in-vivo study showed that diffusion decomposition can be applied to QBI, DSI, or GQI, and the resolved fiber orientations were consistent regardless of the diffusion sampling schemes and diffusion reconstruction methods. The performance of diffusion decomposition was further demonstrated by resolving crossing fibers on a 30-direction QBI dataset and a 40-direction DSI dataset. In conclusion, diffusion decomposition can improve angular resolution and resolve crossing fibers in datasets with low SNR and substantially reduced number of diffusion encoding directions. These advantages may be valuable for human connectome studies and clinical research. PMID:24146772

  13. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less

  14. Fast Plasma Instrument for MMS: Simulation Results

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the results obtained by the Cluster/PEACE electron spectrometers. The data analyzed was selected because it represented a potential reconnection event as currently published.

  15. A method for optimizing the cosine response of solar UV diffusers

    NASA Astrophysics Data System (ADS)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  16. Astrophysical signatures of leptonium

    NASA Astrophysics Data System (ADS)

    Ellis, Simon C.; Bland-Hawthorn, Joss

    2018-01-01

    More than 1043 positrons annihilate every second in the centre of our Galaxy yet, despite four decades of observations, their origin is still unknown. Many candidates have been proposed, such as supernovae and low mass X-ray binaries. However, these models are difficult to reconcile with the distribution of positrons, which are highly concentrated in the Galactic bulge, and therefore require specific propagation of the positrons through the interstellar medium. Alternative sources include dark matter decay, or the supermassive black hole, both of which would have a naturally high bulge-to-disc ratio. The chief difficulty in reconciling models with the observations is the intrinsically poor angular resolution of gamma-ray observations, which cannot resolve point sources. Essentially all of the positrons annihilate via the formation of positronium. This gives rise to the possibility of observing recombination lines of positronium emitted before the atom annihilates. These emission lines would be in the UV and the NIR, giving an increase in angular resolution of a factor of 104 compared to gamma ray observations, and allowing the discrimination between point sources and truly diffuse emission. Analogously to the formation of positronium, it is possible to form atoms of true muonium and true tauonium. Since muons and tauons are intrinsically unstable, the formation of such leptonium atoms will be localised to their places of origin. Thus observations of true muonium or true tauonium can provide another way to distinguish between truly diffuse sources such as dark matter decay, and an unresolved distribution of point sources. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant and David Cassidy.

  17. Report on the ESO Workshop ''Astronomy at High Angular Resolution''

    NASA Astrophysics Data System (ADS)

    Boffin, H.; Schmidtobreick, L.; Hussain, G.; Berger, J.-Ph.

    2015-03-01

    A workshop took place in Brussels in 2000 on astrotomography, a generic term for indirect mapping techniques that can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei. It appeared to be timely to revisit the topic given the many past, recent and forthcoming improvements in telescopes and instrumentation. We therefore decided to repeat the astrotomography workshop, but to put it into the much broader context of high angular resolution astronomy. Many techniques, from lucky and speckle imaging, adaptive optics to interferometry, are now widely employed to achieve high angular resolution and they have led to an amazing number of new discoveries. A summary of the workshop themes is presented.

  18. Scientific results from COBE

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H., Jr.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.

    1993-01-01

    NASA's Cosmic Background Explorer (COBE) carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background (CMB) radiation on angular scales greater than 7 deg and to conduct a search for a diffuse cosmic infrared background (CIB) radiation with 0.7 deg angular resolution. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the CMB is that of a blackbody of temperature T = 2.73 +/- 0.06 K, with no deviation from a blackbody spectrum greater than 0.25% of the peak brightness. The first year of data from the Differential Microwave Radiometers (DMR) show statistically significant CMB anisotropy. The anisotropy is consistent with a scale invariant primordial density fluctuation spectrum. Infrared sky brightness measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the CIB. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the CIB limits.

  19. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

    PubMed Central

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-01-01

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  20. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  1. The Molecular Envelope around the Red Supergiant VY CMa

    NASA Astrophysics Data System (ADS)

    Muller, S.; Dinh-V-Trung; Lim, J.; Hirano, N.; Muthu, C.; Kwok, S.

    2007-02-01

    We present millimeter interferometric observations of the molecular envelope around the red supergiant VY CMa with the Submillimeter Array (SMA). The high angular resolution (<2") allows us to derive the structure of the envelope as observed in the 1.3 mm continuum, 12CO(2-1), 13CO(2-1), and SO(65-54) lines emission. The circumstellar envelope is resolved into three components: (1) a dense, compact, and dusty central component, embedded in (2) a more diffuse and extended envelope, and (3) a high-velocity component. We construct a simple model, consisting of a spherically symmetric slowly expanding envelope and bipolar outflows with a wide opening angle (~120°) viewed close to the line of sight (i=15deg). Our model can explain the main features of the SMA data and previous single-dish CO multiline observations. An episode of enhanced mass loss along the bipolar direction is inferred from our modeling. The SMA data provide a better understanding of the complicated morphology seen in the optical/IR high-resolution observations.

  2. Taking the Measure of Massive Stars and their Environments with the CHARA Array Long-baseline Interferometer

    NASA Astrophysics Data System (ADS)

    Gies, Douglas R.

    2017-11-01

    Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.

  3. Comparison of multi-fiber reproducibility of PAS-MRI and Q-ball with empirical multiple b-value HARDI

    NASA Astrophysics Data System (ADS)

    Nath, Vishwesh; Schilling, Kurt G.; Blaber, Justin A.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-02-01

    Crossing fibers are prevalent in human brains and a subject of intense interest for neuroscience. Diffusion tensor imaging (DTI) can resolve tissue orientation but is blind to crossing fibers. Many advanced diffusion-weighted magnetic resolution imaging (MRI) approaches have been presented to extract crossing-fibers from high angular resolution diffusion imaging (HARDI), but the relative sensitivity and specificity of approaches remains unclear. Here, we examine two leading approaches (PAS and q-ball) in the context of a large-scale, single subject reproducibility study. A single healthy individual was scanned 11 times with 96 diffusion weighted directions and 10 reference volumes for each of five b-values (1000, 1500, 2000, 2500, 3000 s/mm2) for a total of 5830 volumes (over the course of three sessions). We examined the reproducibility of the number of fibers per voxel, volume fraction, and crossing-fiber angles. For each method, we determined the minimum resolvable angle for each acquisition. Reproducibility of fiber counts per voxel was generally high ( 80% consensus for PAS and 70% for q-ball), but there was substantial bias between individual repetitions and model estimated with all data ( 10% lower consensus for PAS and 15% lower for q-ball). Both PAS and q-ball predominantly discovered fibers crossing at near 90 degrees, but reproducibility was higher for PAS across most measures. Within voxels with low anisotropy, q-ball finds more intra-voxel structure; meanwhile, PAS resolves multiple fibers at greater than 75 degrees for more voxels. These results can inform researchers when deciding between HARDI approaches or interpreting findings across studies.

  4. Optical Reflectance Measurements for Commonly Used Reflectors

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  5. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).

  6. High Resolution Optical Imaging through the Atmosphere

    DTIC Science & Technology

    1989-12-28

    34Iterative Blind Deconvolution Method and its Applications’, Opt. Lett., 13, p.54 7 . Fienup, J.R. 1978, Opt. Lett., 3, 27. Karovska , M., Nisenson, P., and...Noyes, R. (1987), ’High Angular Resolution Speckle Imaging of Alpha Ori", BAAS, Vol.19, No. 2. Karovska , M., Koechlin, L., Nisenson, P., Papaliolios...Publishers. Karovska , M., Nisenson, P., Papaliolios, C., Stendley, C. (1989), "High Angular Speckle Observations of SN1987A. Days 40-580.", BAAS, Vol

  7. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  8. Multi-compartment microscopic diffusion imaging

    PubMed Central

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2017-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay. PMID:27282476

  9. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  10. The High Energy Particle Detector (HEPD) for the CSES satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta

    2016-04-01

    We present the advanced High Energy Particle Detector (HEPD) developed to be installed on the China Seismo-Electromagnetic Satellite (CSES), launch scheduled by the end of 2016. The HEPD instrument aims at studying the temporal stability of the inner Van Allen radiation belts and at investigating precipitation of trapped particles induced by magnetospheric, ionosferic and tropospheric EM emissions, as well as by the seismo-electromagnetic and anthropogenic disturbances. In occasion of many earthquakes and volcanic eruptions, several measurements, on ground and by experiments on LEO satellites revealed: electromagnetic and plasma perturbations, and anomalous increases of high-energy Van Allen charged particle flux. The precipitation of trapped electrons and protons (from a few MeV to several tens of MeV) could be induced by diffusion of particles pitch-angle possibly caused by the seismo-electromagnetic emissions generated before (a few hours) earthquakes. Due to the longitudinal drift along a same L-shell, anomalous particle bursts of precipitating particles could be detected by satellites not only on the epicentral area of the incoming earthquake, but along the drift path. Moreover, the opposite drift directions of positive and negative particles could allow reconstructing the longitude of the earthquake focal area. Although, the earthquake prediction is not within the reach of current knowledge, however the study of the precursors aims at collecting all relevant information that can infer the spatial and temporal coordinates of the seismic events from measurements. At this purposes, it is essential to detect particles in a wide range of energies (because particles of different energies are sensitive to different frequencies of seismo-electromagnetic emissions), with a good angular resolution (in order to separate fluxes of trapped and precipitating particles), and excellent ability to recognize the charge (that determines the direction of the longitudinal drift of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).

  11. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  12. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  13. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; hide

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  14. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  15. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation

    PubMed Central

    Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381

  16. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation.

    PubMed

    Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.

  17. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    PubMed

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  18. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    PubMed Central

    Daianu, Madelaine; Jacobs, Russell E.; Weitz, Tara M.; Town, Terrence C.; Thompson, Paul M.

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals. PMID:26683657

  19. The tensor distribution function.

    PubMed

    Leow, A D; Zhu, S; Zhan, L; McMahon, K; de Zubicaray, G I; Meredith, M; Wright, M J; Toga, A W; Thompson, P M

    2009-01-01

    Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.

  20. Rotational diffusion of a molecular cat

    NASA Astrophysics Data System (ADS)

    Katz-Saporta, Ori; Efrati, Efi

    We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.

  1. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging.

    PubMed

    Hamaide, Julie; De Groof, Geert; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Van Audekerke, Johan; Naeyaert, Maarten; Van Ruijssevelt, Lisbeth; Cornil, Charlotte; Sijbers, Jan; Verhoye, Marleen; Van der Linden, Annemie

    2017-02-01

    Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas-quality anatomical maps that enable a clear delineation of most components of the song control and auditory systems. In conclusion, this study paves the way for longitudinal in vivo and high-resolution ex vivo experiments aimed at disentangling neuroplastic events that characterize the critical period for vocal learning in zebra finch ontogeny. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. High accuracy diffuse horizontal irradiance measurements without a shadowband

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlemmer, J.A; Michalsky, J.J.

    1995-12-31

    The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. Wemore » compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less

  3. High accuracy diffuse horizontal irradiance measurements without a shadowband

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlemmer, J.A.; Michalsky, J.J.

    1995-10-01

    The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from the total horizontal and direct normal irradiance. This method is in error because of the angular (often referred to as cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular responsemore » of the total horizontal pyranometer. The authors compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. The results indicate significant improvement in most cases. The remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less

  4. A High Angular Resolution Survey of Massive Stars in Cygnus OB2: Results from the Hubble Space Telescope Fine Guidance Sensors

    DTIC Science & Technology

    2014-02-01

    F. J. Moffat9, and N. R. Walborn2 1 Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O...Martin Drive, Baltimore, MD 21218, USA; nelan@stsci.edu, walborn@stsci.edu 3 Department of Natural Sciences, University of South Carolina Beaufort, 1 ...Online-only material: figure set 1 . INTRODUCTION Massive stars (10M) play a fundamental role in the evo- lution of the universe, from influencing

  5. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    NASA Astrophysics Data System (ADS)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  6. Tiny twists in time; exploring angular resolution of in situ EBSD orientation microstructures in solar system zircon

    NASA Astrophysics Data System (ADS)

    Moser, D. E.

    2012-12-01

    Kikuchi discovered electron diffraction in samples of calcite in the 1920's, and orientation of lattice planes by Electron Backscatter Diffraction (EBSD) is now routinely measured by automated camera systems at a spatial resolution of tens of nanometers using Field Emission Gun SEM. The current methodology is proving particularly powerful when measuring lattice orientation microstructure in U-Pb geochronology minerals such as zircon and baddeleyite that have experienced high temperature deformation or shock metamorphism. These are among the oldest preserved mineral phases in inner solar system materials, and we have been applying EBSD to rare samples of the Early Earth and grains from extraterrestrial environments such as the Moon and Mars. In these cases the EBSD orientation data are useful for identifying high diffusivity pathways that may have afforded isotopic and trace element disturbance, microstructural proxies for shock metamorphic pressures, as well as resolving glide plane systems in ductile zircon and shear twin mechanisms. Blanket estimates of angular resolution for automated EBSD misorientation measurements are often in the range of 0.5 degrees. In some cases strain giving rise to only a few degrees of lattice misorientation has facilitated 100% Pb-loss. In some cases, however, there is a spatial correlation between trace element or cathodoluminescence zoning in zircon and what appears to be low magnitudes misorientation close to the limits of resolution. Given the proven value of performing EBSD analysis on geochronology minerals, a more thorough exploration of the precision and accuracy of EBSD lattice misorientation measurements is warranted. In this talk the relative weighting of the factors that limit EBSD angular resolution will be investigated, focusing on U-Pb dating minerals such as zircon. These factors include; sample surface preparation, phase symmetry, pseudo-symmetry effects, degree of crystallinity, Kikuchi band contrast and indexing, solid solution effects on unit cell, dimension camera calibration and camera-sample distance, beam conditions and focussing, and general microscope operating conditions (e.g. high vacuum vs. variable pressure). An assessment of potential zircon EBSD reference materials and sample preparation protocols will be presented, along with case studies of zircon orientation microstructures from meteorites and terrestrial craters representative of different strain and thermal environments in the inner solar system.BSD lattice misorientation maps of a) crystal-plastically deformed and partly recrystallized zircon, after Rayner et al. (in prep.), and b) shock-metamorphosed lunar zircon (Darling et al., in prep.).

  7. Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations.

    PubMed

    Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan

    2016-01-01

    Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.

  8. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  9. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE PAGES

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...

    2017-11-15

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  10. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  11. Network of Porosity Formed in Ultrafine-Grained Copper Produced by Equal Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Ribbe, Jens; Baither, Dietmar; Schmitz, Guido; Divinski, Sergiy V.

    2009-04-01

    Radiotracer experiments on diffusion of Ni63 and Rb86 in severely deformed commercially pure copper (8 passes of equal channel angular pressing) reveal unambiguously the existence of ultrafast transport paths. A fraction of these paths remains in the material even after complete recrystallization. Scanning electron microscopy and focused ion beam techniques are applied. Deep grooves are found which are related to original high-energy interfaces. In-depth sectioning near corresponding triple junctions reveals clearly multiple microvoids or microcracks caused by the severe deformation. Long-range tracer penetration over tens of micrometers proves that these submicrometer-large defects are connected by highly diffusive paths and that they appear with significant frequency.

  12. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  13. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  14. A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina

    2018-03-01

    High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.

  15. Lunar Occultations as a Simple Tool for High Angular Resolution Astronomy

    NASA Astrophysics Data System (ADS)

    Richichi, Andrea

    1999-08-01

    At the turn of the millennium, modern astronomy is seeing the creation of several new impressive facilities. Among them, large telescopes and long baseline interferometers are beginning to break the limitations imposed by seeing and to push our angular resolution limits at the level of the millisecond of arc. In this race for the state-of-the-art in angular resolution, one should not forget the considerable aid which has been provided for some decades by the more humble technique of lunar occultations. Although burdened with obvious limitations in the choice of the sources, this latter method has two main features that can make it attractive for the modern amateur astronomer: it is simple, and can be implemented also at realtively small telescopes.

  16. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope.

    PubMed

    Albert, A; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J-J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bourret, S; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coelho, J A B; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Di Palma, I; Domi, A; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; El Bojaddaini, I; Elsässer, D; Enzenhöfer, A; Felis, I; Folger, F; Fusco, L A; Galatà, S; Gay, P; Giordano, V; Glotin, H; Grégoire, T; Gracia Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Lotze, M; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mele, R; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Nezri, E; Organokov, M; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Quinn, L; Racca, C; Riccobene, G; Sánchez-Losa, A; Saldaña, M; Salvadori, I; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schüssler, F; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tayalati, Y; Trovato, A; Turpin, D; Tönnis, C; Vallage, B; Van Elewyck, V; Versari, F; Vivolo, D; Vizzoca, A; Wilms, J; Zornoza, J D; Zúñiga, J

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of [Formula: see text] for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A [Formula: see text] C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of [Formula: see text] is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken [Formula: see text] spectrum and neutrino flavour equipartition at Earth.

  17. Brownian motion of tethered nanowires.

    PubMed

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  18. Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI.

    PubMed

    Bhalerao, Abhir; Westin, Carl-Fredrik

    2007-01-01

    A mapping of unit vectors onto a 5D hypersphere is used to model and partition ODFs from HARDI data. This mapping has a number of useful and interesting properties and we make a link to interpretation of the second order spherical harmonic decompositions of HARDI data. The paper presents the working theory and experiments of using a von Mises-Fisher mixture model for directional samples. The MLE of the second moment of the HvMF pdf can also be related to fractional anisotropy. We perform error analysis of the estimation scheme in single and multi-fibre regions and then show how a penalised-likelihood model selection method can be employed to differentiate single and multiple fibre regions.

  19. The Improved Dual-view Field Goniometer System FIGOS

    PubMed Central

    Schopfer, Jürg; Dangel, Stefan; Kneubühler, Mathias; Itten, Klaus I.

    2008-01-01

    In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF). BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF) from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed. PMID:27873805

  20. The Improved Dual-view Field Goniometer System FIGOS.

    PubMed

    Schopfer, Jürg; Dangel, Stefan; Kneubühler, Mathias; Itten, Klaus I

    2008-08-28

    In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF). BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF) from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed.

  1. THE HIGH-ENERGY, ARCMINUTE-SCALE GALACTIC CENTER GAMMA-RAY SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyakova, M.; Malyshev, D.; Aharonian, F. A.

    2011-01-10

    Employing data collected during the first 25 months of observations by the Fermi-LAT, we describe and subsequently seek to model the very high energy (>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the morphological, spectral, and temporal characteristics of the central source, 1FGL J1745.6-2900. The data show a clear, statistically significant signal at energies above 10 GeV, where the Fermi-LAT has angular resolution comparable to that of HESS at TeV energies. This makes a meaningful joint analysis of the data possible. Our analysis of the Fermi data (alone) does not uncover any statistically significant variabilitymore » of 1FGL J1745.6-2900 at GeV energies on the month timescale. Using the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the coincident, TeV source HESS J1745-290, we show that the spectrum of the central gamma-ray source is inflected with a relatively steep spectral region matching between the flatter spectrum found at both low and high energies. We model the gamma-ray production in the inner 10 pc of the Galaxy and examine cosmic ray (CR) proton propagation scenarios that reproduce the observed spectrum of the central source. We show that a model that instantiates a transition from diffusive propagation of the CR protons at low energy to almost rectilinear propagation at high energies can explain well the spectral phenomenology. We find considerable degeneracy between different parameter choices which will only be broken with the addition of morphological information that gamma-ray telescopes cannot deliver given current angular resolution limits. We argue that a future analysis performed in combination with higher-resolution radio continuum data holds out the promise of breaking this degeneracy.« less

  2. Crossing Fibers Detection with an Analytical High Order Tensor Decomposition

    PubMed Central

    Megherbi, T.; Kachouane, M.; Oulebsir-Boumghar, F.; Deriche, R.

    2014-01-01

    Diffusion magnetic resonance imaging (dMRI) is the only technique to probe in vivo and noninvasively the fiber structure of human brain white matter. Detecting the crossing of neuronal fibers remains an exciting challenge with an important impact in tractography. In this work, we tackle this challenging problem and propose an original and efficient technique to extract all crossing fibers from diffusion signals. To this end, we start by estimating, from the dMRI signal, the so-called Cartesian tensor fiber orientation distribution (CT-FOD) function, whose maxima correspond exactly to the orientations of the fibers. The fourth order symmetric positive definite tensor that represents the CT-FOD is then analytically decomposed via the application of a new theoretical approach and this decomposition is used to accurately extract all the fibers orientations. Our proposed high order tensor decomposition based approach is minimal and allows recovering the whole crossing fibers without any a priori information on the total number of fibers. Various experiments performed on noisy synthetic data, on phantom diffusion, data and on human brain data validate our approach and clearly demonstrate that it is efficient, robust to noise and performs favorably in terms of angular resolution and accuracy when compared to some classical and state-of-the-art approaches. PMID:25246940

  3. Structure of the X-ray source in the Virgo cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Fabricant, D.; Topka, K.; Tucker, W.; Harnden, F. R., Jr.

    1977-01-01

    High-angular-resolution observations in the 0.15-1.5-keV band with an imaging X-ray telescope shows the extended X-ray source in the Virgo cluster of galaxies to be a diffuse halo of about 15 arcmin core radius surrounding M87. The angular structure of the surface brightness is marginally consistent with either of two simple models: (1) an isothermal (or adiabatic or hydrostatic) sphere plus a point source at M87 accounting for 12% of the total 0.5-1.5-keV intensity or (2) a power-law function without a discrete point source. No evidence for a point source is seen in the 0.15-0.28-keV band, which is consistent with self-absorption by about 10 to the 21st power per sq cm of matter having a cosmic abundance. The power-law models are motivated by the idea that radiation losses regulate the accretion of matter onto M87 and can account for the observed difference in the size of the X-ray source as seen in the present measurements and at higher energies.

  4. An angle encoder for super-high resolution and super-high accuracy using SelfA

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after interpolation of 212 (= 4096) divisions through the interpolator.

  5. Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer's Disease: A Diffusion MRI Study with DTI and HARDI Models.

    PubMed

    Wang, Tao; Shi, Feng; Jin, Yan; Yap, Pew-Thian; Wee, Chong-Yaw; Zhang, Jianye; Yang, Cece; Li, Xia; Xiao, Shifu; Shen, Dinggang

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in elderly people. It is an irreversible and progressive brain disease. In this paper, we utilized diffusion-weighted imaging (DWI) to detect abnormal topological organization of white matter (WM) structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels in 26 patients with probable AD and 16 normal control (NC) elderly subjects, using connectivity networks constructed with the diffusion tensor imaging (DTI) model and the high angular resolution diffusion imaging (HARDI) model, respectively. At the global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies in AD at all of the three levels.

  6. HARDI DATA DENOISING USING VECTORIAL TOTAL VARIATION AND LOGARITHMIC BARRIER

    PubMed Central

    Kim, Yunho; Thompson, Paul M.; Vese, Luminita A.

    2010-01-01

    In this work, we wish to denoise HARDI (High Angular Resolution Diffusion Imaging) data arising in medical brain imaging. Diffusion imaging is a relatively new and powerful method to measure the three-dimensional profile of water diffusion at each point in the brain. These images can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber integrity and connectivity. HARDI data is a powerful new extension of diffusion imaging, which goes beyond the diffusion tensor imaging (DTI) model: mathematically, intensity data is given at every voxel and at any direction on the sphere. Unfortunately, HARDI data is usually highly contaminated with noise, depending on the b-value which is a tuning parameter pre-selected to collect the data. Larger b-values help to collect more accurate information in terms of measuring diffusivity, but more noise is generated by many factors as well. So large b-values are preferred, if we can satisfactorily reduce the noise without losing the data structure. Here we propose two variational methods to denoise HARDI data. The first one directly denoises the collected data S, while the second one denoises the so-called sADC (spherical Apparent Diffusion Coefficient), a field of radial functions derived from the data. These two quantities are related by an equation of the form S = SSexp (−b · sADC) (in the noise-free case). By applying these two different models, we will be able to determine which quantity will most accurately preserve data structure after denoising. The theoretical analysis of the proposed models is presented, together with experimental results and comparisons for denoising synthetic and real HARDI data. PMID:20802839

  7. The relationship between Class I and Class II methanol masers at high angular resolution

    NASA Astrophysics Data System (ADS)

    McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.

    2018-06-01

    We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.

  8. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results

    PubMed Central

    Irfanoglu, M. Okan; Walker, Lindsay; Sarlls, Joelle; Marenco, Stefano; Pierpaoli, Carlo

    2013-01-01

    In this work we investigate the effects of echo planar imaging (EPI) distortions on diffusion tensor imaging (DTI) based fiber tractography results. We propose a simple experimental framework that would enable assessing the effects of EPI distortions on the accuracy and reproducibility of fiber tractography from a pilot study on a few subjects. We compare trajectories computed from two diffusion datasets collected on each subject that are identical except for the orientation of phase encode direction, either right–left (RL) or anterior–posterior (AP). We define metrics to assess potential discrepancies between RL and AP trajectories in association, commissural, and projection pathways. Results from measurements on a 3 Tesla clinical scanner indicated that the effects of EPI distortions on computed fiber trajectories are statistically significant and large in magnitude, potentially leading to erroneous inferences about brain connectivity. The correction of EPI distortion using an image-based registration approach showed a significant improvement in tract consistency and accuracy. Although obtained in the context of a DTI experiment, our findings are generally applicable to all EPI-based diffusion MRI tractography investigations, including high angular resolution (HARDI) methods. On the basis of our findings, we recommend adding an EPI distortion correction step to the diffusion MRI processing pipeline if the output is to be used for fiber tractography. PMID:22401760

  9. A measurement of the cosmic microwave background from the high Chilean Andes

    NASA Astrophysics Data System (ADS)

    Miller, Amber Dawn

    A measurement of the angular spectrum of the Cosmic Microwave Background (CMB) between l = 50 and l = 400 is described. Data were obtained using HEMT radiometers at 30 and 40 GHz with angular resolutions of ≈1 deg and ≈0.7 deg respectively and with SIS based receivers at 144 GHz with angular resolution of ≈0.2 deg. Observations were made from Cerro Toco in the Chilean altiplano at an altitude of 17,000 feet in the Northern Chilean Andes. We find that the angular spectrum rises from l = 50 to a peak at l ≈ 200 and falls off at higher angular scales. A peak in the angular spectrum with amplitude, deltaTl ≈ 85muK is thus located for the first time with a single instrument at l ≈ 200. In addition, we find that the detected anisotropy has the spectrum of the CMB. Cosmological implications of this result are discussed.

  10. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates.

    PubMed

    Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi

    2017-04-01

    The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Registration of High Angular Resolution Diffusion MRI Images Using 4th Order Tensors⋆

    PubMed Central

    Barmpoutis, Angelos; Vemuri, Baba C.; Forder, John R.

    2009-01-01

    Registration of Diffusion Weighted (DW)-MRI datasets has been commonly achieved to date in literature by using either scalar or 2nd-order tensorial information. However, scalar or 2nd-order tensors fail to capture complex local tissue structures, such as fiber crossings, and therefore, datasets containing fiber-crossings cannot be registered accurately by using these techniques. In this paper we present a novel method for non-rigidly registering DW-MRI datasets that are represented by a field of 4th-order tensors. We use the Hellinger distance between the normalized 4th-order tensors represented as distributions, in order to achieve this registration. Hellinger distance is easy to compute, is scale and rotation invariant and hence allows for comparison of the true shape of distributions. Furthermore, we propose a novel 4th-order tensor re-transformation operator, which plays an essential role in the registration procedure and shows significantly better performance compared to the re-orientation operator used in literature for DTI registration. We validate and compare our technique with other existing scalar image and DTI registration methods using simulated diffusion MR data and real HARDI datasets. PMID:18051145

  12. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    NASA Astrophysics Data System (ADS)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  13. SU-E-T-510: Calculation of High Resolution and Material-Specific Photon Energy Deposition Kernels.

    PubMed

    Huang, J; Childress, N; Kry, S

    2012-06-01

    To calculate photon energy deposition kernels (EDKs) used for convolution/superposition dose calculation at a higher resolution than the original Mackie et al. 1988 kernels and to calculate material-specific kernels that describe how energy is transported and deposited by secondary particles when the incident photon interacts in a material other than water. The high resolution EDKs for various incident photon energies were generated using the EGSnrc user-code EDKnrc, which forces incident photons to interact at the center of a 60 cm radius sphere of water. The simulation geometry is essentially the same as the original Mackie calculation but with a greater number of scoring voxels (48 radial, 144 angular bins). For the material-specific EDKs, incident photons were forced to interact at the center of a 1 mm radius sphere of material (lung, cortical bone, silver, or titanium) surrounded by a 60 cm radius water sphere, using the original scoring voxel geometry implemented by Mackie et al. 1988 (24 radial, 48 angular bins). Our Monte Carlo-calculated high resolution EDKs showed excellent agreement with the Mackie kernels, with our kernels providing more information about energy deposition close to the interaction site. Furthermore, our EDKs resulted in smoother dose deposition functions due to the finer resolution and greater number of simulation histories. The material-specific EDK results show that the angular distribution of energy deposition is different for incident photons interacting in different materials. Calculated from the angular dose distribution for 300 keV incident photons, the expected polar angle for dose deposition () is 28.6° for water, 33.3° for lung, 36.0° for cortical bone, 44.6° for titanium, and 58.1° for silver, showing a dependence on the material in which the primary photon interacts. These high resolution and material-specific EDKs have implications for convolution/superposition dose calculations in heterogeneous patient geometries, especially at material interfaces. © 2012 American Association of Physicists in Medicine.

  14. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  15. Grazing Incidence Nickel Replicated Optics for Hard X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Peturzzo, J. J., III; Elsner, R. F.; Joy, M. K.; ODell, S. L.; Weisskopf, M. C.

    1997-01-01

    The requirements for future hard x-ray (up to 50 keV) telescopes are lightweight, high angular resolution optics with large collecting areas. Grazing incidence replicated optics are an excellent candidate for this, type of mission, providing better angular resolution, comparable area/unit mass, and simpler fabrication than multilayer-coated foils. Most importantly, the technology to fabricate the required optics currently exists. A comparison of several hard x-ray telescope designs will be presented.

  16. Motivation and Prospects for Spatio-spectral Interferometry in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2013-01-01

    Consensus developed through a series of workshops, starting in 1998. Compelling science case for high angular resolution imaging and spectroscopy, and mission concepts. A robust plan - it has evolved over the years, but has consistently called for high resolution.

  17. DHIGLS: DRAO H I Intermediate Galactic Latitude Survey

    NASA Astrophysics Data System (ADS)

    Blagrave, K.; Martin, P. G.; Joncas, G.; Kothes, R.; Stil, J. M.; Miville-Deschênes, M. A.; Lockman, Felix J.; Taylor, A. R.

    2017-01-01

    Observations of Galactic H I gas for seven targeted regions at intermediate Galactic latitude are presented at 1\\prime angular resolution using data from the DRAO Synthesis Telescope (ST) and the Green Bank Telescope (GBT). The DHIGLS data are the most extensive arcminute-resolution measurements of the diffuse atomic interstellar medium beyond those in the Galactic plane. The acquisition, reduction, calibration, and mosaicking of the DRAO ST data and the cross calibration and incorporation of the short-spacing information from the GBT are described. The high quality of the resulting DHIGLS products enables a variety of new studies in directions of low Galactic column density. We analyze the angular power spectra of maps of the integrated H I emission (column density) from the data cubes for several distinct velocity ranges. In fitting power-spectrum models based on a power law, but including the effects of the synthesized beam and noise at high spatial frequencies, we find exponents ranging from -2.5 to -3.0. Power spectra of maps of the centroid velocity for these components give similar results. These exponents are interpreted as being representative of the three-dimensional density and velocity fields of the atomic gas, respectively. We find evidence for dramatic changes in the H I structures in channel maps over even small changes in velocity. This narrow line emission has counterparts in absorption spectra against bright background radio sources, quantifying that the gas is cold and dense and can be identified as the cold neutral medium phase. Fully reduced DHIGLS H I data cubes and other data products are available at www.cita.utoronto.ca/DHIGLS.

  18. A new model of the microwave polarized sky for CMB experiments

    NASA Astrophysics Data System (ADS)

    Hervías-Caimapo, Carlos; Bonaldi, Anna; Brown, Michael L.

    2016-10-01

    We present a new model of the microwave sky in polarization that can be used to simulate data from cosmic microwave background polarization experiments. We exploit the most recent results from the Planck satellite to provide an accurate description of the diffuse polarized foreground synchrotron and thermal dust emission. Our model can include the two mentioned foregrounds, and also a constructed template of Anomalous Microwave Emission. Several options for the frequency dependence of the foregrounds can be easily selected, to reflect our uncertainties and to test the impact of different assumptions. Small angular scale features can be added to the foreground templates to simulate high-resolution observations. We present tests of the model outputs to show the excellent agreement with Planck and Wilkinson Microwave Anisotropy Probe (WMAP) data. We determine the range within which the foreground spectral indices can be varied to be consistent with the current data. We also show forecasts for a high-sensitivity, high-resolution full-sky experiment such as the Cosmic ORigin Explorer. Our model is released as a PYTHON script that is quick and easy to use, available at http://www.jb.man.ac.uk/chervias.

  19. The X-Ray Optics for the High Angular Resolution Imager (HARI)

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2010-01-01

    This slide presentation shows the basic parameters of the x-ray optics, the housing,a graph of the effective area vs energy, another graph showing the angular off-set vs HEW, and a series of graphs showing the detector offsets and tilts,

  20. The Space High Angular Resolution Probe for the Infrared (SHARP-IR)

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Rizzo, M. J.; Leisawitz, D. T.; Staguhn, J. G.; Dipirro, M.; Mentzell, J. E.; Juanola-Parramon, R.; Dhabal, A.; Mundy, L. G.; Moseley, S. H.; hide

    2016-01-01

    The Space High Angular Resolution Probe for the Infrared (SHARP-IR) is a new mission currently under study. As partof the preparation for the Decadal Survey, NASA is currently undertaking studies of four major missions, but interesthas also been shown in determining if there are feasible sub-$1B missions that could provide significant scientific return.SHARP-IR is being designed as one such potential probe. In this talk, we will discuss some of the potential scientificquestions that could be addressed with the mission, the current design, and the path forward to concept maturation.

  1. Determining neutrino mass from the cosmic microwave background alone.

    PubMed

    Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon

    2003-12-12

    Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

  2. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  3. The Large Deployable Reflector (LDR) report of the Science Coordination Group

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.

  4. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array.

    PubMed

    Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas

    2017-05-01

    High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.

  5. Investigation of the Chromosphere-Corona Interface with the Upgraded Very High Angular Resolution Ultraviolet Telescope (VAULT2.0)

    NASA Astrophysics Data System (ADS)

    Vourlidas, Angelos; Beltran, Samuel Tun; Chintzoglou, Georgios; Eisenhower, Kevin; Korendyke, Clarence; Feldman, Ronen; Moser, John; Shea, John; Johnson-Rambert, Mary; McMullin, Don; Stenborg, Guillermo; Shepler, Ed; Roberts, David

    2016-03-01

    Very high angular resolution ultraviolet telescope (VAULT2.0) is a Lyman-alpha (Lyα; 1216Å) spectroheliograph designed to observe the upper chromospheric region of the solar atmosphere with high spatial (<0.5‧‧) and temporal (8s) resolution. Besides being the brightest line in the solar spectrum, Lyα emission arises at the temperature interface between coronal and chromospheric plasmas and may, hence, hold important clues about the transfer of mass and energy to the solar corona. VAULT2.0 is an upgrade of the previously flown VAULT rocket and was launched successfully on September 30, 2014 from White Sands Missile Range (WSMR). The target was AR12172 midway toward the southwestern limb. We obtained 33 images at 8s cadence at arc second resolution due to hardware problems. The science campaign was a resounding success, with all space and ground-based instruments obtaining high-resolution data at the same location within the AR. We discuss the science rationale, instrument upgrades, and performance during the first flight and present some preliminary science results.

  6. The Galactic Center View with Simbol-X

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Malaguti, G.; Angelini, L.; Cappi, M.; Grandi, P.; Palumbo, G. G. C.; Puccetti, S.

    2009-05-01

    The nature of the hard X-ray emission above 3 keV of the Galactic Centre (GC) is still source of controversy. Recent observations with Chandra are consistent with either a population of discrete sources or with a diffuse non thermal emission or, most likely, a combination of the two. The Simbol-X mission will be equipped with a grazing incident telescope imaging up to ~80 keV, providing an improvement of three orders of magnitude in sensitivity and angular resolution compared with the instruments that have operated so far above 10 keV. This capability will enable to directly disentangle between the discrete source versus the diffuse emission scenarios. This is demonstrated by the Simbol-X simulations of the GC shown here, where the input model includes a list of both diffuse and point sources (both resolved and unresolved) using the input spectrum observed with presently operating X-ray telescopes.

  7. Review and latest news from the VEGA/CHARA facility

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mourard, D.; Perraut, K.; Tallon-Bosc, I.; Meilland, A.; Stee, P.; Ligi, R.; Challouf, M.; Clausse, J.-M.; Berio, P.; Spang, A.

    2014-12-01

    The VEGA instrument located at the focus of the Center for High Angular Resolution Astronomy (CHARA) array in California is a collaborating project between the Lagrange laboratory in Nice, where it has been developed (Mourard et al. 2009, 2011), the IPAG (Grenoble) and CRAL (Lyon) laboratories, and the CHARA group at Mount Wilson Observatory. The outcome from this international collaboration is to provide to the community a visible spectro-interferometer with an unprecedented angular resolution of 0.3 milli-second of arc (mas) together with a spectral resolution of 5000 or 30000. With such an instrument it becomes possible to determine simultaneously the size and the kinematic of the photosphere and/or of the circumstellar environment of the star as a function of the wavelength, which basically means for each spectral channel in the continuum and/or within spectral lines (in Hα for instance). The only limitation is to get enough signal to noise ratio in each spectral channel. We can currently reach a limiting magnitude of 8 in visible in medium spectral resolution (5000) and 4.5 in high resolution (30000). In this proceeding, we illustrate the two main subjects studied with the VEGA instrument, namely (1) how angular diameters are useful to accurately derive the fundamental parameters of stars, (2) how the spectral resolution can allow to study the kinematical structure of stars or even to derive chromatic images of stellar objects.

  8. Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model.

    PubMed

    Afzali, Maryam; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2015-09-30

    Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. The method is applied on the synthetic and real DWI data of control and epileptic subjects. Both experiments illustrate capability of the method in increasing spatial resolution of the data in the ODF field properly. The real dataset show that the method is capable of reliable identification of differences between temporal lobe epilepsy (TLE) patients and normal subjects. The method is compared to existing methods. Comparison studies show that the proposed method generates smaller angular errors relative to the existing methods. Another advantage of the method is that it does not require an iterative algorithm to find the tensors. The proposed method is appropriate for increasing resolution in the ODF field and can be applied to clinical data to improve evaluation of white matter fibers in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The flow patterning capability of localized natural convection.

    PubMed

    Huang, Ling-Ting; Chao, Ling

    2016-09-14

    Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.

  10. DWI filtering using joint information for DTI and HARDI.

    PubMed

    Tristán-Vega, Antonio; Aja-Fernández, Santiago

    2010-04-01

    The filtering of the Diffusion Weighted Images (DWI) prior to the estimation of the diffusion tensor or other fiber Orientation Distribution Functions (ODF) has been proved to be of paramount importance in the recent literature. More precisely, it has been evidenced that the estimation of the diffusion tensor without a previous filtering stage induces errors which cannot be recovered by further regularization of the tensor field. A number of approaches have been intended to overcome this problem, most of them based on the restoration of each DWI gradient image separately. In this paper we propose a methodology to take advantage of the joint information in the DWI volumes, i.e., the sum of the information given by all DWI channels plus the correlations between them. This way, all the gradient images are filtered together exploiting the first and second order information they share. We adapt this methodology to two filters, namely the Linear Minimum Mean Squared Error (LMMSE) and the Unbiased Non-Local Means (UNLM). These new filters are tested over a wide variety of synthetic and real data showing the convenience of the new approach, especially for High Angular Resolution Diffusion Imaging (HARDI). Among the techniques presented, the joint LMMSE is proved a very attractive approach, since it shows an accuracy similar to UNLM (or even better in some situations) with a much lighter computational load. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Interplay between translational diffusion and large-amplitude angular jumps of water molecules

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Yangyang; Zhang, Jian; Wang, Jun; Li, Wenfei; Wang, Wei

    2018-05-01

    Understanding the microscopic mechanism of water molecular translational diffusion is a challenging topic in both physics and chemistry. Here, we report an investigation on the interplay between the translational diffusion and the large-amplitude angular jumps of water molecules in bulk water using molecular dynamics simulations. We found that large-amplitude angular jumps are tightly coupled to the translational diffusions. Particularly, we revealed that concurrent rotational jumps of spatially neighboring water molecules induce inter-basin translational jumps, which contributes to the fast component of the water translational diffusion. Consequently, the translational diffusion shows positional heterogeneity; i.e., the neighbors of the water molecules with inter-basin translational jumps have larger probability to diffuse by inter-basin translational jumps. Our control simulations showed that a model water molecule with moderate hydrogen bond strength can diffuse much faster than a simple Lennard-Jones particle in bulk water due to the capability of disturbing the hydrogen bond network of the surrounding water molecules. Our results added to the understanding of the microscopic picture of the water translational diffusion and demonstrated the unique features of water diffusion arising from their hydrogen bond network structure compared with those of the simple liquids.

  12. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.

    PubMed

    Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M

    2008-11-01

    A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.

  13. A model-based reconstruction for undersampled radial spin echo DTI with variational penalties on the diffusion tensor

    PubMed Central

    Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K

    2015-01-01

    Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167

  14. Toward Precision and Reproducibility of Diffusion Tensor Imaging: A Multicenter Diffusion Phantom and Traveling Volunteer Study.

    PubMed

    Palacios, E M; Martin, A J; Boss, M A; Ezekiel, F; Chang, Y S; Yuh, E L; Vassar, M J; Schnyer, D M; MacDonald, C L; Crawford, K L; Irimia, A; Toga, A W; Mukherjee, P

    2017-03-01

    Precision medicine is an approach to disease diagnosis, treatment, and prevention that relies on quantitative biomarkers that minimize the variability of individual patient measurements. The aim of this study was to assess the intersite variability after harmonization of a high-angular-resolution 3T diffusion tensor imaging protocol across 13 scanners at the 11 academic medical centers participating in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury multisite study. Diffusion MR imaging was acquired from a novel isotropic diffusion phantom developed at the National Institute of Standards and Technology and from the brain of a traveling volunteer on thirteen 3T MR imaging scanners representing 3 major vendors (GE Healthcare, Philips Healthcare, and Siemens). Means of the DTI parameters and their coefficients of variation across scanners were calculated for each DTI metric and white matter tract. For the National Institute of Standards and Technology diffusion phantom, the coefficients of variation of the apparent diffusion coefficient across the 13 scanners was <3.8% for a range of diffusivities from 0.4 to 1.1 × 10 -6 mm 2 /s. For the volunteer, the coefficients of variations across scanners of the 4 primary DTI metrics, each averaged over the entire white matter skeleton, were all <5%. In individual white matter tracts, large central pathways showed good reproducibility with the coefficients of variation consistently below 5%. However, smaller tracts showed more variability, with the coefficients of variation of some DTI metrics reaching 10%. The results suggest the feasibility of standardizing DTI across 3T scanners from different MR imaging vendors in a large-scale neuroimaging research study. © 2017 by American Journal of Neuroradiology.

  15. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2012-04-23

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidencemore » level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.« less

  16. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  17. Slumped glass optics with interfacing ribs for high angular resolution x-ray astronomy: a progress report

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Brizzolari, C.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Breunig, E.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2015-09-01

    The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, as e.g. the proposed Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration, and then stacked in a Wolter-I configuration, through interfacing ribs. The achievable global angular resolution of the optics relies on the surface shape accuracy of the slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments achieved with a dedicated Integration Machine (IMA). In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we will present the results obtained with full illumination X-ray tests for the last developed prototypes.

  18. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  19. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  20. Integral imaging based light field display with enhanced viewing resolution using holographic diffuser

    NASA Astrophysics Data System (ADS)

    Yan, Zhiqiang; Yan, Xingpeng; Jiang, Xiaoyu; Gao, Hui; Wen, Jun

    2017-11-01

    An integral imaging based light field display method is proposed by use of holographic diffuser, and enhanced viewing resolution is gained over conventional integral imaging systems. The holographic diffuser is fabricated with controlled diffusion characteristics, which interpolates the discrete light field of the reconstructed points to approximate the original light field. The viewing resolution can thus be improved and independent of the limitation imposed by Nyquist sampling frequency. An integral imaging system with low Nyquist sampling frequency is constructed, and reconstructed scenes of high viewing resolution using holographic diffuser are demonstrated, verifying the feasibility of the method.

  1. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  2. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    PubMed Central

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-01-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging. PMID:28281655

  3. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  4. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    PubMed

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  5. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    PubMed Central

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-01-01

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595

  6. Angular Multigrid Preconditioner for Krylov-Based Solution Techniques Applied to the Sn Equations with Highly Forward-Peaked Scattering

    NASA Astrophysics Data System (ADS)

    Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.

    2012-01-01

    It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.

  7. Angular intensity and polarization dependence of diffuse transmission through random media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Rosenbluh, M.; Feund, I.

    1993-03-01

    A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.

  8. Isotropic non-white matter partial volume effects in constrained spherical deconvolution.

    PubMed

    Roine, Timo; Jeurissen, Ben; Perrone, Daniele; Aelterman, Jan; Leemans, Alexander; Philips, Wilfried; Sijbers, Jan

    2014-01-01

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High angular resolution diffusion imaging (HARDI) methods have been developed to correctly characterize complex WM fiber configurations, but to date, many of the HARDI methods do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In particular, simulations were performed to demonstrate the effects of varying the diffusion weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our results show that the presence of non-WM tissue signal causes a decrease in the precision of the detected fiber orientations and an increase in the detection of false peaks in CSD. We estimated 35-50% of WM voxels to be affected by non-WM PVEs. For HARDI sequences, which typically have a relatively high degree of diffusion weighting, these adverse effects are most pronounced in voxels with GM PVEs. The non-WM PVEs become severe with 50% GM volume for maximum spherical harmonics orders of 8 and below, and already with 25% GM volume for higher orders. In addition, a low diffusion weighting or SNR increases the effects. The non-WM PVEs may cause problems in connectomics, where reliable fiber tracking at the WM-GM interface is especially important. We suggest acquiring data with high diffusion-weighting 2500-3000 s/mm(2), reasonable SNR (~30) and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs in CSD.

  9. A diffusion-matched principal component analysis (DM-PCA) based two-channel denoising procedure for high-resolution diffusion-weighted MRI

    PubMed Central

    Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.

    2018-01-01

    Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400

  10. The Explorer of Diffuse Galactic Emission (EDGE): Determining the Large-Scale Structure Evolution in the Universe

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Knox, L.; Timbie, P.; Wilson, G.

    2003-01-01

    Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper, we describe the scientific goals, instrumentation, and operation of EDGE, a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will osbserve the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6 arcminute angular resolution over a region -400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololeters (FSB) to provide the compact and efficient multi-colar, high sensitivity radiometer required to achieve its scientific objectives.

  11. MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  12. MIPS - The Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  13. Wide-angle display-type retarding field analyzer with high energy and angular resolutions

    NASA Astrophysics Data System (ADS)

    Muro, Takayuki; Ohkochi, Takuo; Kato, Yukako; Izumi, Yudai; Fukami, Shun; Fujiwara, Hidenori; Matsushita, Tomohiro

    2017-12-01

    Deployments of spherical grids to obtain high energy and angular resolutions for retarding field analyzers (RFAs) having acceptance angles as large as or larger than ±45° were explored under the condition of using commercially available microchannel plates with effective diameters of approximately 100 mm. As a result of electron trajectory simulations, a deployment of three spherical grids with significantly different grid separations instead of conventional equidistant separations showed an energy resolving power (E/ΔE) of 3200 and an angular resolution of 0.6°. The mesh number of the wire mesh retarding grid used for the simulation was 250. An RFA constructed with the simulated design experimentally showed an E/ΔE of 1100 and an angular resolution of 1°. Using the RFA and synchrotron radiation of 900 eV, photoelectron diffraction (PED) measurements were performed for single-crystal graphite. A clear C 1s PED pattern was observed even when the differential energy of the RFA was set at 0.5 eV. Further improvement of the energy resolution was theoretically examined under the assumption of utilizing a retarding grid fabricated by making a large number of radially directed cylindrical holes through a partial spherical shell instead of using a wire mesh retarding grid. An E/ΔE of 14 500 was predicted for a hole design with a diameter of 60 μm and a depth of 100 μm. A retarding grid with this hole design and a holed area corresponding to an acceptance angle of ±7° was fabricated. An RFA constructed with this retarding grid experimentally showed an E/ΔE of 1800. Possible reasons for the experimental E/ΔE lower than the theoretical values are discussed.

  14. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  15. The Advanced Pair Telescope (APT) Mission Concept

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; Buckley, James H.

    2008-01-01

    We present a mission concept for the Advanced Pair Telescope (APT), a high-energy gamma-ray instrument with an order of magnitude improvement in sensitivity, 6 sr field of view, and angular resolution a factor of 3-10 times that of GLAST. With its very wide instantaneous field-of-view and large effective area, this instrument would be capable of detecting GRBs at very large redshifts, would enable a very high resolution study of SNRs and PWN, and could provide hour-scale temporal resolution of transients from many AGN and galactic sources. The APT instrument will consist of a Xe time-projection-chamber tracker that bridges the energy regime between Compton scattering and pair production and will provide an unprecedented improvement in angular resolution; a thick scintillating-fiber trackerlcalorimeter that will provide sensitivity and energy resolution to higher energies and will possess a factor of 10 improvement in geometric factor over GLAST; and an anticoincidence detector using scintillator-tiles to reject charged particles. After the anticipated 10-years of GLAST operation , the APT instrument would provide continued coverage of the critial high-energy gamma-ray band (between 30 MeV to 100 GeV), providing an essential component of broad-band multiwavelength studies of the high-energy universe.

  16. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Miller, M. Coleman; Kotera, Kumiko

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expectedmore » to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ∼10{sup −6} Mpc{sup −3}. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a ∼>5σ detection of UHE neutrino sources with a uniform density, n {sub s} {sub ∼}10{sup −7}−10{sup −5} Mpc{sup −3}, at least ∼100−1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.« less

  17. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  18. Efficient parallel reconstruction for high resolution multishot spiral diffusion data with low rank constraint.

    PubMed

    Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui

    2017-03-01

    To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  20. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffin, Mark A., E-mail: mark.a.goffin@gmail.com; Buchan, Andrew G.; Dargaville, Steven

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specifiedmore » functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.« less

  1. Adaptive optics and interferometry

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Ridgway, Stephen

    1991-01-01

    Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.

  2. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  4. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.

    PubMed

    Gul, M Shahzeb Khan; Gunturk, Bahadir K

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν{sub μ} interacting inside the detector, we reduce the atmospheric background while retainingmore » efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (∼100 TeV) starting event in the sample found that this event alone represents a 2.8 σ deviation from the hypothesis that the data consists only of atmospheric background.« less

  6. The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik

    2018-05-01

    Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

  7. Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI

    PubMed Central

    Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216

  8. Digging deep into the ULIRG phenomenon: When radio beats dust

    NASA Astrophysics Data System (ADS)

    Pérez-Torres, M. A.

    2013-05-01

    Luminous and Ultra-Luminous Infrared Galaxies (U/LIRGs) do also radiate copious amounts of radio emission, both thermal (free-free) and non-thermal (mainly synchrotron). This is very handy since, unlike optical and infra-red observations, radio is not obscured by the ubiquitous dust present in U/LIRGs, which allows a direct view of the ongoing activity in the hearts of those prolific star-forming galaxies. Here, I first justify the need for this high-angular resolution radio studies of local U/LIRGs, discuss the energy budget and the magnetic field, as well as IC and synchrotron losses in U/LIRGs, and present some selected results obtained by our team on high-angular resolution radio continuum studies of U/LIRGs. Among other results, I show the impressive discovery of an extremely prolific supernova factory in the central ˜150 pc of the galaxy Arp 299-A (D = 45 Mpc) and the monitoring of a large number of very compact radio sources in it, the detection and precise location of the long-sought AGN in Arp 299-A. A movie summarizing those results can be found in http://www.iaa.es/ torres/research/arp299a.html. All those results demonstrate that very-high angular resolution studies of nearby U/LIRGs are of high relevance for the comprehension of both local and high-z starbursting galaxies.

  9. Toroidal rotation and ion heating during neutral beam injection in PBX-M

    NASA Astrophysics Data System (ADS)

    Asakura, N.; Fonck, R. J.; Jaehnig, K. P.; Kaye, S. M.; LeBlanc, B.; Okabayashi, M.

    1993-08-01

    Determination of the profiles of the ion temperature and the plasma toroidal rotation has been accomplished by charge exchange recombination spectroscopy in PBX-M. The angular momentum and the thermal ion energy transport have been studied mainly during the H mode phase of a high βp discharge (Ip approx 330 kA, 3.5 × 1019 <= ne <= 6.5 × 1019 m-3) having different heating beam configurations (combination of two perpendicular and two tangential neutral beam injections, abbreviated as 2 perp. NBI and 2 parall. NBI). The toroidal rotation velocity Vphi rises substantially in the region of r/a >= 0.5 after the L-H transition, and the Vphi profile (peakedness) is more highly dependent on the beam configuration than the Ti profile. The angular momentum confinement time varies from 147 ms (rigid rotation for 2 perp. NBI) to 39 ms (viscous rotation for 2 parall. NBI). In contrast, the thermal energy confinement time is 44-48 ms and is almost independent of the configuration. The transport analysis shows that the radial angular momentum diffusion is caused mainly by the viscous losses and that the angular momentum diffusivity χphi is reduced substantially in the outer minor radius region during the 2 perp. NBI H mode. The neoclassical friction effect between the bulk ions and the impurities may influence the χphi profiles locally, where the ion temperature gradient is steep

  10. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    PubMed

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  11. Requirement of spatiotemporal resolution for imaging intracellular temperature distribution

    NASA Astrophysics Data System (ADS)

    Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira

    2017-04-01

    Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.

  12. The Advanced Gamma-ray Imaging System (AGIS)-Science Highlights

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of ~50 atmospheric Cherenkov telescopes distributed over an area of ~1 km2, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of γ-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view (~4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of ~10-13 erg cm-2 sec-1 will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent background rejection and very large effective area, providing the very high sensitivity needed to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  13. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): An eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging.

    PubMed

    Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J

    2017-07-01

    In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3  mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3  mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of a 137Cs at a 20 m distance with 20 seconds of observation time is estimated to be ˜0.2 mCi in spectral mode and ˜20 mCi in Compton imaging mode. These performance parameters fulfilled the requirements of the nuclear security program. Following the Fukushima Dai-ichi Nuclear Power Plant accident of March, 2011, efficient methods to assess levels of radioactive contamination over large areas are needed to aid in clean-up efforts. Although a field study was not initially intended for the HEMI prototype, its portability, low mass, and low power requirements made it a good candidate to test Compton imaging from an aerial platform. The instrument was brought to Japan in August, 2013, allowing for the first test of a Compton imager from a helicopter. The instrument and detectors proved reliable and performed well under high temperature, high humidity, and vibrations. Single-detector hit energy resolutions ranged from 2.5 - 2.8% FWHM at 662 keV. The field testing of the HEMI instrument in Fukushima revealed areas of higher activity of cesium among a diffuse background through aerial-based countrate mapping and through ground measurements. Although the Compton reconstructed events were dominated by random coincidences, preliminary Compton imaging results are promising. A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, e.g., a possible explanation for the excess positron emission from the Galactic Center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. A next-generation telescope requires good energy resolution, good angular resolution, and high sensitivity in order to achieve these objectives. Large-volume CdZnTe detectors are an attractive candidate for a future instrument because of their good absorption, simple design, and minimal or no cooling requirements. Using the benchmarked HEMI CdZnTe detectors, a Compton telescope with a passive coded mask was designed and simulated with the goal of creating a very sensitive instrument that is capable of high angular resolution. The simulated telescope showed achievable energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63 deg. FWHM at 511 keV and 1.30 deg. FWHM at 1809 keV, and is capable of resolving sources to at least 0.2 deg. at lower energies with the use of the coded mask. An initial assessment of the instrument yields an effective area of 183 cm 2 at 511 keV and an anticipated all-sky sensitivity of 3.6 x 10 -6 photons/cm2/s for a broadened 511 keV source over a 2 year observation time. Additionally, combining a coded mask with a Compton imager to improve point source localization for positron detection has been demonstrated. (Abstract shortened by UMI.)

  15. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  16. A lower limit to the accretion disc radius in the low-luminosity AGNNGC 1052 derived from high-angular resolution data

    NASA Astrophysics Data System (ADS)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-07-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  17. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    NASA Astrophysics Data System (ADS)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  18. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul

    2016-08-01

    The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  20. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  1. Compressive light field imaging

    NASA Astrophysics Data System (ADS)

    Ashok, Amit; Neifeld, Mark A.

    2010-04-01

    Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatioangular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient measurements. Here, we describe two architectures for compressive light field imaging that require relatively few photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall exposure time. Our simulation study shows that, compressive light field imagers using the principal component (PC) measurement basis require four times fewer measurements and three times shorter exposure time compared to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.

  2. Super-resolution and ultra-sensitivity of angular rotation measurement based on SU(1,1) interferometers using homodyne detection

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Li, Shitao; Wei, Dong; Gao, Hong; Li, Fuli

    2018-02-01

    We theoretically explore the angular rotation measurement sensitivity of SU(1,1) interferometers with a coherent beam and a vacuum beam input by using orbital angular momentum (OAM). Compared with the OAM in an SU(2) interferometer, the SU(1,1) interferometer employing homodyne detection can further surpass the angular rotation shot noise limit \\tfrac{1}{2l\\sqrt{N}} and improve the resolution and sensitivity of angular rotation measurement. Two models are considered, one is that OAM is carried by a probe beam and the other one is a pump beam with the OAM. The sensitivity can be improved by higher OAM and nonlinear process with a large gain. The resolution can be enhanced in the case that the pump beam has OAM. Moreover, we present a brief discussion on the variation of resolution and sensitivity in the presence of photon loss.

  3. The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    NASA Astrophysics Data System (ADS)

    Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.

    2018-05-01

    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.

  4. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  5. On the survival of zombie vortices in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Lesur, Geoffroy R. J.; Latter, Henrik

    2016-11-01

    Recently it has been proposed that the zombie vortex instability (ZVI) could precipitate hydrodynamical activity and angular momentum transport in unmagnetized regions of protoplanetary discs, also known as `dead zones'. In this Letter we scrutinize, with high-resolution 3D spectral simulations, the onset and survival of this instability in the presence of viscous and thermal physics. First, we find that the ZVI is strongly dependent on the nature of the viscous operator. Although the ZVI is easily obtained with hyperdiffusion, it is difficult to sustain with physical (second order) diffusion operators up to Reynolds numbers as high as 107. This sensitivity is probably due to the ZVI's reliance on critical layers, whose characteristic length-scale, structure, and dynamics are controlled by viscous diffusion. Second, we observe that the ZVI is sensitive to radiative processes, and indeed only operates when the Peclet number is greater than a critical value ˜104, or when the cooling time is longer than ˜10Ω-1. As a consequence, the ZVI struggles to appear at R ≳ 0.3 au in standard 0.01 M⊙ T Tauri disc models, though younger more massive discs provide a more hospitable environment. Together these results question the prevalence of the ZVI in protoplanetary discs.

  6. Localized high-resolution DTI of the human midbrain using single-shot EPI, parallel imaging, and outer-volume suppression at 7 T

    PubMed Central

    Wargo, Christopher J.; Gore, John C.

    2013-01-01

    Localized high-resolution diffusion tensor images (DTI) from the midbrain were obtained using reduced field-of-view (rFOV) methods combined with SENSE parallel imaging and single-shot echo planar (EPI) acquisitions at 7 T. This combination aimed to diminish sensitivities of DTI to motion, susceptibility variations, and EPI artifacts at ultra-high field. Outer-volume suppression (OVS) was applied in DTI acquisitions at 2- and 1-mm2 resolutions, b=1000 s/mm2, and six diffusion directions, resulting in scans of 7- and 14-min durations. Mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in various fiber tract locations at the two resolutions and compared. Geometric distortion and signal-to-noise ratio (SNR) were additionally measured and compared for reduced-FOV and full-FOV DTI scans. Up to an eight-fold data reduction was achieved using DTI-OVS with SENSE at 1 mm2, and geometric distortion was halved. The localization of fiber tracts was improved, enabling targeted FA and ADC measurements. Significant differences in diffusion properties were observed between resolutions for a number of regions suggesting that FA values are impacted by partial volume effects even at a 2-mm2 resolution. The combined SENSE DTI-OVS approach allows large reductions in DTI data acquisition and provides improved quality for high-resolution diffusion studies of the human brain. PMID:23541390

  7. Measurements and calculations of high-angular-momentum satellite transitions in Li 1s photoionization

    NASA Astrophysics Data System (ADS)

    Cheng, W. T.; Kukk, E.; Cubaynes, D.; Chang, J.-C.; Snell, G.; Bozek, J. D.; Wuilleumier, F. J.; Berrah, N.

    2000-12-01

    Lithium 1s photoelectron spectra are reported in high electron and photon energy resolution, with resolved LS term structure of the Li+ 1snl satellite transitions up to n=6. Branching ratios and anisotropy parameters of individual lines, determined over the 85-130 eV photon energy range, are compared with R-matrix calculations and with previous works. The high-angular-momentum satellite lines (L>=2) are found to contribute significantly to the 1snl satellite cross sections for n=3 and 4, and to become the dominant terms for n>=5. The high-angular-momentum lines exhibit the same photon-energy-dependence as the P-lines, providing experimental evidence that the continuum-continuum state coupling (equivalent to virtual electron collision processes) is responsible for the L>=1 terms in the satellite spectrum, in contrast to the electron relaxation (shake-up) mechanism responsible for the S-terms. The angular distribution of the lines in the Li+ 1snl, n=2-6 groups, determined at 110 eV photon energy, is in good agreement with calculations, showing more isotropic distributions for high-angular-momentum lines.

  8. Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.

    PubMed

    Cheng, Jian; Jiang, Tianzi; Deriche, Rachid

    2012-01-01

    In High Angular Resolution Diffusion Imaging (HARDI), Orientation Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two important Probability Density Functions (PDFs) which reflect the water diffusion and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-free multi-shell HARDI method which estimates both EAP and ODF from the diffusion signals with multiple b values. As physical PDFs, ODFs and EAPs are nonnegative definite respectively in their domains S2 and R3. However, existing ODF/EAP estimation methods like SPFI seldom consider this natural constraint. Although some works considered the nonnegative constraint on the given discrete samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonnegative definite in the whole continuous domain. The Riemannian framework for ODFs and EAPs has been proposed via the square root parameterization based on pre-estimated ODFs and EAPs by other methods like SPFI. However, there is no work on how to estimate the square root of ODF/EAP called as the wavefuntion directly from diffusion signals. In this paper, based on the Riemannian framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis representation, we propose a unified model-free multi-shell HARDI method, named as Square Root Parameterized Estimation (SRPE), to simultaneously estimate both the wavefunction of EAPs and the nonnegative definite ODFs and EAPs from diffusion signals. The experiments on synthetic data and real data showed SRPE is more robust to noise and has better EAP reconstruction than SPFI, especially for EAP profiles at large radius.

  9. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.

    PubMed

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-11

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  10. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  11. The CHARA optical array

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.

    1992-11-01

    The Center for High Angular Resolution Astronomy (CHARA) was established in the College of Arts and Sciences at Georgia State University in 1984 with the goals of designing, constructing, and then operating a facility for very high spatial resolution astronomy. The interest in such a facility grew out of the participants' decade of activity in speckle interferometry. Although speckle interferometry continues to provide important astrophysical measurements of a variety of objects, many pressing problems require resolution far beyond that which can be expected from single aperture telescopes. In early 1986, CHARA received a grant from the National Science Foundation which has permitted a detailed exploration of the feasibility of constructing a facility which will provide a hundred-fold increase in angular resolution over what is possible by speckle interferometry at the largest existing telescopes. The design concept for the CHARA Array was developed initially with the contractural collaboration of United Technologies Optical Systems, Inc., in West Palm Beach, Florida, an arrangement that expired in August 1987. In late November 1987, the Georgia Tech Research Institute joined with CHARA to continue and complete the design concept study. Very high-resolution imaging at optical wavelengths is clearly coming of age in astronomy. The CHARA Array and other related projects will be important and necessary milestones along the way toward the development of a major national facility for high-resolution imaging--a true optical counterpart to the Very Large Array. Ground-based arrays and their scientific output will lead to high resolution facilities in space and, ultimately, on the Moon.

  12. Quantum angular momentum diffusion of rigid bodies

    NASA Astrophysics Data System (ADS)

    Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus

    2017-12-01

    We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.

  13. DEVELOPMENT OF THE “RICH CLUB” IN BRAIN CONNECTIVITY NETWORKS FROM 438 ADOLESCENTS & ADULTS AGED 12 TO 30

    PubMed Central

    Dennis, Emily L.; Jahanshad, Neda; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Hickie, Ian; Wright, Margaret J.; Thompson, Paul M.

    2014-01-01

    The ‘rich club’ coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development. PMID:24827471

  14. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  15. Geodesic regression on orientation distribution functions with its application to an aging study.

    PubMed

    Du, Jia; Goh, Alvina; Kushnarev, Sergey; Qiu, Anqi

    2014-02-15

    In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the appropriate gradient terms and employ gradient descent to find the minimizer of this least-squares optimization problem. In addition, we show how to perform statistical testing for determining the significance of the relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic regression of ODFs in normal adults aged 22 years old and above. © 2013 Elsevier Inc. All rights reserved.

  16. Far Infrared All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1998-01-01

    Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.

  17. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  18. Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.

    PubMed

    Cheng, Jian; Basser, Peter J

    2018-01-01

    In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  20. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  1. Forming Disc Galaxies In Major Mergers: Radial Density Profiles And Angular Momentum

    NASA Astrophysics Data System (ADS)

    Peschken, Nicolas; Athanassoula, E.; Rodionov, S. A.; Lambert, J. C.

    2017-06-01

    In Athanassoula et al. (2016), we used high resolution N-body hydrodynamical simulations to model the major merger between two disc galaxies with a hot gaseous halo each, and showed that the remnant is a spiral galaxy. The two discs are destroyed by the collision, but after the merger, accretion from the surrounding gaseous halo allows the building of a new disc in the remnant galaxy. In Peschken et al. (2017), we used these simulations to study the radial surface density profiles of the remnant galaxies with downbending profiles (type II), i.e. composed of an inner and an outer exponential disc separated by a break. We analyzed the effect of angular momentum on these profiles, and found that the inner and outer disc scalelengths, as well as the break radius, all increase linearly with the total angular momentum of the initial merging system. Following the angular momentum redistribution in our simulations, we find that the disc angular momentum is acquired via accretion from the gaseous halo. Furthermore, high angular momentum systems give more angular momentum to their discs, which affects directly their radial density profile.

  2. Characterisation and comparison of event generators for pair conversion: A crucial step for future low energy gamma telescope

    NASA Astrophysics Data System (ADS)

    Gros, P.; Bernard, D.

    2017-05-01

    Gamma ray astronomy suffers from a sensitivity gap between 0.1 and 100Mev. With high angular resolution for the electrons, it will also be possible to probe the linear polarisation of the photons. An accurate simulation is necessary to correctly design and compare these detectors. We establish baseline distributions of key kinematic variables as simulated by a 5D, exact down to threshold, and polarised event generator. We compare them to simulations with the low energy electromagnetic models available in Geant4 and in EGS5. We show that different generators give a different picture of the optimal angular resolution of pair telescopes. We also show that, of all the simulations we used, only the full 5D generator describes accurately the angular asymmetry in the case of polarised photons.

  3. Radial Coherence of Diffusion Tractography in the Cerebral White Matter of the Human Fetus: Neuroanatomic Insights

    PubMed Central

    Xu, Gang; Takahashi, Emi; Folkerth, Rebecca D.; Haynes, Robin L.; Volpe, Joseph J.; Grant, P. Ellen; Kinney, Hannah C.

    2014-01-01

    High angular resolution diffusion imaging (HARDI) demonstrates transient radial coherence of telencephalic white matter in the human fetus. Our objective was to define the neuroanatomic basis of this radial coherence through correlative HARDI- and postmortem tissue analyses. Applying immunomarkers to radial glial fibers (RGFs), axons, and blood vessels in 18 cases (19 gestational weeks to 3 postnatal years), we compared their developmental profiles to HARDI tractography in brains of comparable ages (n = 11). At midgestation, radial coherence corresponded with the presence of RGFs. At 30–31 weeks, the transition from HARDI-defined radial coherence to corticocortical coherence began simultaneously with the transformation of RGFs to astrocytes. By term, both radial coherence and RGFs had disappeared. White matter axons were radial, tangential, and oblique over the second half of gestation, whereas penetrating blood vessels were consistently radial. Thus, radial coherence in the fetal white matter likely reflects a composite of RGFs, penetrating blood vessels, and radial axons of which its transient expression most closely matches that of RGFs. This study provides baseline information for interpreting radial coherence in tractography studies of the preterm brain in the assessment of the encephalopathy of prematurity. PMID:23131806

  4. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    NASA Astrophysics Data System (ADS)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources found in observations but not in models might be an observational artifact caused by the combination of noise, resolution effects, and the steepness of color- and flux density distributions. Our simulation, called Simulated Infrared Dusty Extragalactic Sky (SIDES), is publicly available. Our simulation Simulated Infrared Dusty Extragalactic Sky (SIDES) is available at http://cesam.lam.fr/sides.

  5. A measurement of the large-scale cosmic microwave background anisotropy at 1.8 millimeter wavelength

    NASA Technical Reports Server (NTRS)

    Meyer, Stephan S.; Cheng, Edward S.; Page, Lyman A.

    1991-01-01

    This measurement of the large-scale cosmic microwave background radiation (CMBR) anisotropy places the most stringent constraints to date on fluctuations in the CMBR on angular scales greater than about 4 deg. Using a four-channel bolometric radiometer operating at 1.8, 1.1, 0.63, and 0.44 mm, the diffuse sky brightness over half of the northern hemisphere has been mapped with an angular resolution of 3.8 deg. Analysis of the sky map at the longest wavelength for Galactic latitudes of 15 deg or more yields a 95-percent confidence level upper limit on fluctuations of the CMBR at Delta T/T of 1.6 x 10 to the -5th with a statistical power of 92 percent for Gaussian fluctuations at a correlation angle of 13 deg. Between 3 deg and 22 deg, the upper limit of fluctuations is 4.0 x 10 to the -5th . An anisotropy is detected in the map, but it cannot yet be attributed to primordial sources. The ultimate sensitivity for this experiment is 7 x 10 to the -6th over this angular range for Gaussian fluctuations.

  6. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  7. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases

    USDA-ARS?s Scientific Manuscript database

    Rust, Anthracnose, and angular leaf spot are major diseases of common bean in the world and most particularly in the Americas and Africa, which are the largest common bean production regions of the world. The Mesoamerican black-seeded cultivar Ouro Negro is unusual in that it has resistance to all t...

  8. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  9. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  10. Implications of the SPEAR FUV Maps on Our Understanding of the ISM

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sirk, Martin; Edelstein, Jerry; Seon, Kwangil; Min, Kyoung-Wook; Han, Wonyong

    2009-08-01

    The distribution of a low-density transition temperature (104.5-105.5 K) gas in the interstellar medium conveys the character and evolution of diffuse matter in the Galaxy. This difficult to observe component of the ISM emits mainly in the far-ultraviolet (FUV) (912-1800 A˚) band. We describe spectral maps of FUV emission lines from the highly ionized species CIV and OVI likely to be the dominant cooling mechanisms of transition temperature gas in the ISM. The maps were obtained using an orbital spectrometer, SPEAR, that was launched in 2003 and has observed the FUV sky with a spectral resolution of ~550 and an angular resolution of 10'. We compare distribution of flux in these maps with three basic models of the distribution of transition temperature gas. We find that the median distribution of CIV and OVI emission is consistent with the spatial distribution and line ratios expected from a McKee-Ostriker (MO) type model of evaporative interfaces. However, the intensities are a factor of three higher than would be expected at the MO preferred parameters. Some high intensity regions are clearly associated with supernova remnants and superbubble structures. Others may indicate regions where gas is cooling through the transition temperature.

  11. A challenge for probing the statistics of interstellar magnetic fields: beyond the Planck resolution with Herschel

    NASA Astrophysics Data System (ADS)

    Bracco, Andrea; André, Philippe; Boulanger, Francois

    2015-08-01

    The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.

  12. The nature of radio emission from distant galaxies

    NASA Astrophysics Data System (ADS)

    Richards, Eric A.

    I describe an observational program aimed at understanding the radio emission from distant, rapidly evolving galaxy populations. These observations were carried out at 1.4 and 8.5 GHz with the VLA centered on the Hubble Deep Field. Further MERLIN observations of the HDF region at 1.4 GHz provided an angular resolution of 0.2'' and when combined with the VLA data produced an image with an unprecedented rms noise of 4 μJy. All radio sources detected in the VLA complete sample are resolved with a median angular size of 1-2''. The differential count of the radio sources is marginally sub-Euclidean (γ = -2.4 +/- 0.1) and fluctuation analysis suggests nearly 60 sources per armin2 are present at the 1 μJy level. A correlation analysis indicates spatial clustering among the 371 radio sources on angular scales of 1-40 arcmin. Optical identifications are made primarily with bright (I = 22) disk systems composed of irregulars, peculiars, interacting/merging galaxies, and a few isolated field spirals. Available redshifts span the range 0.2-3. These clues coupled with the steep spectral index of the 1.4 GHz selected sample are indicative of diffuse synchrotron radiation in distant galactic disks. Thus the evolution in the microjansky radio population is driven principally by star-formation. I have isolated a number of optically faint radio sources (about 25% of the overall sample) which remain unidentified to I = 26-28 in the HDF and flanking optical fields. Several of these objects have extremely red counterparts and constitute a new class of radio sources which are candidate high redshift dusty protogalaxies.

  13. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  14. REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems

    NASA Astrophysics Data System (ADS)

    Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.

    1981-12-01

    We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.

  15. The rotation of discs around neutron stars: dependence on the Hall diffusion

    NASA Astrophysics Data System (ADS)

    Faghei, Kazem; Salehi, Fatemeh

    2018-01-01

    In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.

  16. Small FDIRC designs

    DOE PAGES

    Dey, B.; Ratcliff, B.; Va’vra, J.

    2017-02-16

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  17. Small FDIRC designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, B.; Ratcliff, B.; Va’vra, J.

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  18. First results from stellar occultations in the "GAIA era"

    NASA Astrophysics Data System (ADS)

    Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.

    2017-09-01

    Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.

  19. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  20. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    NASA Technical Reports Server (NTRS)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  1. Photoelectron angular distributions from rotationally resolved autoionizing states of N 2

    DOE PAGES

    Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; ...

    2017-12-08

    The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less

  2. Silicon pore optics for the international x-ray observatory

    NASA Astrophysics Data System (ADS)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  3. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchan, A.G., E-mail: andrew.buchan@imperial.ac.uk; Calloo, A.A.; Goffin, M.G.

    2015-09-01

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead theymore » are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.« less

  4. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  5. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    PubMed

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Marine algae are `taught' the basics of angular momentum

    NASA Astrophysics Data System (ADS)

    Allen, John Taylor

    2017-11-01

    Advanced modelling studies and high-resolution observations have shown that flows related to instability of the mesoscale ( 1-10 km scale) may provide both the fertilisation mechanism for nutrient-depleted (oligotrophic) surface waters and a subduction mechanism for the rapid export of phytoplankton biomass to the deep ocean. Here, a detailed multidisciplinary analysis of the data from an example high-resolution observational campaign is presented. The data provide direct observations of the transport of phytoplankton through baroclinic instability. Furthermore, the data confirm that this transport is constrained by the requirement to conserve angular momentum, expressed in a stratified water column as the conservation of potential vorticity. This constraint is clearly seen to produce long thin filaments of phytoplankton populations strained out along isopycnal vorticity annuli associated with mesoscale frontal instabilities.

  7. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  8. Olivier Chesneau's Work on Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Lagadec, E.

    2015-12-01

    During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optical interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.

  9. The Circumstellar Environment of Low Mass Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.

    1997-01-01

    We have obtained the complete SED from 10 microns out to 1.3 mm for all of our sources. We have the FIR imaging data, processed to reveal the maximum angular resolution possible, which allows us to model the disk. To model the disk, we have high resolution millimeter interferometry data.

  10. Theoretical issues on the spontaneous rotation of axisymmetric plasmas

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Zhou, T.

    2014-09-01

    An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes besides the appropriate diffusive and the inward angular momentum transparent terms.

  11. Rotation of the asymptotic giant branch star R Doradus

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Beck, E. De; Olofsson, H.; García-Segura, G.; Villaver, E.; Baudry, A.; Humphreys, E. M. L.; Maercker, M.; Ramstedt, S.

    2018-05-01

    High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution (30 × 42 mas) observations, we have for the first time resolved stellar rotation of an AGB star, R Dor. We measure an angular rotation velocity of ωR sin i = (3.5 ± 0.3) × 10-9 rad s-1, which indicates a rotational velocity of |υrot sin i| = 1.0 ± 0.1 km s-1 at the stellar surface (R* = 31.2 mas at 214 GHz). The rotation axis projected on the plane of the sky has a position angle Φ = 7 ± 6°. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected, we suggest R Dor has a low-mass, close-in companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass-loss characteristics of R Dor.

  12. Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent

    2017-04-01

    We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.

  13. The PILOT optical alignment for its first flight

    NASA Astrophysics Data System (ADS)

    Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.

    2017-12-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

  14. VizieR Online Data Catalog: Draco nebula Herschel 250um map (Miville-Deschenes+, 2017)

    NASA Astrophysics Data System (ADS)

    Miville-Deschenes, M.-A.; Salome, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.

    2017-03-01

    Draco was observed with Herschel PACS (110 and 170um) and SPIRE (250, 350 and 500um) as part of the open-time program "First steps toward star formation: unveiling the atomic to molecular transition in the diffuse interstellar medium" (P.I. M-A Miville-Deschenes). A field of 3.85x3.85 was observed in parallel mode. Unfortunately, an error occurred during the acquisition of the PACS data making them unusable. Therefore, the results presented here are solely based on SPIRE data, especially the 250um map that has the highest angular resolution. (2 data files).

  15. Studying AGN Jets At Extreme Angular Resolution

    NASA Astrophysics Data System (ADS)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  16. Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.

    PubMed

    Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang

    2016-01-15

    Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Center for Adaptive Optics | Jobs

    Science.gov Websites

    , 2015 University of Geneva Adaptive Optics Scientist or Engineer March 16, 2015 NRC-Herzberg Astronomy Max Planck Institute for Astronomy (MPIA) Post-doctoral Fellowships in High-angular Resolution

  18. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ... Radiance Ellipsoid Product. MISR uses this enhanced sensitivity along with the angular variation in signal to monitor particulate ... of MISR's unique capability of providing moderately high spatial resolution, calibrated imagery at very oblique angles. Gradations ...

  19. Imaging Analysis of the Hard X-Ray Telescope ProtoEXIST2 and New Techniques for High-Resolution Coded-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Barthelmy, Scott D.

    2016-01-01

    Wide-field (greater than or approximately equal to 100 degrees squared) hard X-ray coded-aperture telescopes with high angular resolution (greater than or approximately equal to 2 minutes) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without the assistance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: the average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a timescale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to, a high-resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during a high-altitude balloon flight in fall 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with a simulated ideal Poisson background.

  20. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

    PubMed

    Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge

    2014-01-01

    Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  1. Optical encrypted holographic memory using triple random phase-encoded multiplexing in photorefractive LiNbO3:Fe crystal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Chuan; Hu, Guang W.; Russell, Kendra L.; Chang, Chen S.; Chang, Chi Ching

    2000-10-01

    We propose a new holographic memory scheme based on random phase-encoded multiplexing in a photorefractive LiNbO3:Fe crystal. Experimental results show that rotating a diffuser placed as a random phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with angular multiplexing offers further advantages. Storage capabilities can be optimized by using a post-image random phase plate in the path of the object beam. The technique is applied to a triple phase-encoded optical security system that takes advantage of the high angular selectivity of the angular-rotational multiplexing components.

  2. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  3. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  4. "Phoswich Wall": A charged-particle detector array for inverse-kinematic reactions with the Gretina/GRETA γ-ray arrays

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Reviol, W.; Elson, J. M.; Kinnison, J. E.; Izzo, C. J.; Manfredi, J.; Liu, J.; Jung, H. S.; Goerres, J.

    2015-08-01

    A high-efficiency, forward-hemisphere detector system for light charged particles and low-Z heavy ions, as obtained in an accelerator experiment, is described. It consists of four 8×8 pixel multianode photomultiplier tubes with 2.2-mm thick CsI(Tl) and 12 -μm thick fast-plastic scintillation detectors. Its phoswich structure allows individual Z resolution for 1H, 4He, 7Li, 4He+4He, 9Be, 11B, 12C, and 14N ions, which are target-like fragments detected in strongly inverse kinematics. The device design has been optimized for use with a 4π γ-ray array, and the main applications are transfer reactions and Coulomb excitation. A high-angular resolution for the detection of the target-like fragments is achieved which permits angular distributions to be measured in the rest frame of the projectile-like fragment with a resolution of ~ 2 °.

  5. Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys

    DTIC Science & Technology

    2016-03-24

    In addition, the close proximity of side walls had the potential to reflect sound back into the well, thus contributing to the overall measurement... wall reflections. The reduced amplitude for sounds radiated near the side wall may have been the result of the greater angular displacement between...NUWC-NPT Technical Report 12,203 24 March 2016 Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys

  6. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1985-01-01

    Presented are scientific objectives, engineering analysis and design, and results of technology development for a Three-Meter Balloon-Borne Far-Infrared and Submillimeter Telescope. The scientific rationale is based on two crucial instrumental capabilities: high angular resolution which approaches eight arcseconds at one hundred micron wavelength, and high resolving power spectroscopy with good sensitivity throughout the telescope's 30-micron to 1-mm wavelength range. The high angular resolution will allow us to resolve and study in detail such objects as collapsing protostellar condensations in our own galaxy, clusters of protostars in the Magellanic clouds, giant molecular clouds in nearby galaxies, and spiral arms in distant galaxies. The large aperture of the telescope will permit sensitive spectral line measurements of molecules, atoms, and ions, which can be used to probe the physical, chemical, and dynamical conditions in a wide variety of objects.

  7. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  8. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  9. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  10. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    NASA Astrophysics Data System (ADS)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  11. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  12. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; hide

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  13. Lucky Imaging in Astronomy

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Hormuth, Felix

    Lucky Imaging improves the angular resolution of astronomical observations hampered by atmospheric turbulence ("seeing"). Unlike adaptive optics, Lucky Imaging is a passive observing technique with individual integration times comparable to the atmospheric coherence time. Thanks to the advent of essentially noise free "Electron multiplying CCD" detectors, Lucky Imaging saw a renewed interest in the past decade. It is now routinely used at a number of 2-5-m class telescopes, such as ESO's NTT. We review the history of Lucky Imaging, present the technical implementation, describe the data analysis philosophy, and show some recent results obtained with this technique. We also discuss the advantages and limitations of Lucky Imaging compared to other passive and active high angular resolution observing techniques.

  14. A Bayesian approach to distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging.

    PubMed

    Ye, Chuyang; Murano, Emi; Stone, Maureen; Prince, Jerry L

    2015-10-01

    The tongue is a critical organ for a variety of functions, including swallowing, respiration, and speech. It contains intrinsic and extrinsic muscles that play an important role in changing its shape and position. Diffusion tensor imaging (DTI) has been used to reconstruct tongue muscle fiber tracts. However, previous studies have been unable to reconstruct the crossing fibers that occur where the tongue muscles interdigitate, which is a large percentage of the tongue volume. To resolve crossing fibers, multi-tensor models on DTI and more advanced imaging modalities, such as high angular resolution diffusion imaging (HARDI) and diffusion spectrum imaging (DSI), have been proposed. However, because of the involuntary nature of swallowing, there is insufficient time to acquire a sufficient number of diffusion gradient directions to resolve crossing fibers while the in vivo tongue is in a fixed position. In this work, we address the challenge of distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging by using a multi-tensor model with a fixed tensor basis and incorporating prior directional knowledge. The prior directional knowledge provides information on likely fiber directions at each voxel, and is computed with anatomical knowledge of tongue muscles. The fiber directions are estimated within a maximum a posteriori (MAP) framework, and the resulting objective function is solved using a noise-aware weighted ℓ1-norm minimization algorithm. Experiments were performed on a digital crossing phantom and in vivo tongue diffusion data including three control subjects and four patients with glossectomies. On the digital phantom, effects of parameters, noise, and prior direction accuracy were studied, and parameter settings for real data were determined. The results on the in vivo data demonstrate that the proposed method is able to resolve interdigitated tongue muscles with limited gradient directions. The distributions of the computed fiber directions in both the controls and the patients were also compared, suggesting a potential clinical use for this imaging and image analysis methodology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    NASA Technical Reports Server (NTRS)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; hide

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  16. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  17. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  18. A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.; Amman, Mark

    2018-06-01

    A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, such as a possible explanation for the excess positron emission from the Galactic center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter cadmium zinc telluride detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope achieved energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63° FWHM at 511 keV and 1.30° FWHM at 1809 keV, and is capable of resolving sources to at least 0.2° at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton-imaging mode yields an effective area of 183 cm2 at 511 keV and an anticipated all-sky sensitivity of 3.6 × 10-6 photons cm-2 s-1 for a broadened 511 keV source over a two-year observation time. Additionally, combining a coded mask with a Compton imager to improve point-source localization for positron detection has been demonstrated.

  19. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).

  20. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  1. Continuous-tone applications in digital hard-copy output devices

    NASA Astrophysics Data System (ADS)

    Saunders, Jeffrey C.

    1990-11-01

    Dye diffusion technology has made a recent entry into the hardcopy printer arena making it now possible to achieve near-photographic quality images from digital raster image data. Whereas the majority of low cost printers utilizing ink-jet, thermal wax, or dotmatrix technologies advertise high resolution printheads, the restrictions which dithering algorithms apply to these inherently binary printing systems force them to sacrifice spatial resolution capability for tone scale reproduction. Dye diffusion technology allows a fully continuous range of density at each pixel location thus preserving the full spatial resolution capability of the printhead; spatial resolution is not sacrificed for tone scale. This results in images whose quality is far superior to the ink-jet or wax-transfer products; image quality so high in fact, to the unaided eye, dye diffusion images are indistinguishable from their silver-halide counterparts. Eastman Kodak Co. offers a highly refined application of dye diffusion technology in the Kodak XL 7700 Digital Continuous Tone Printer and Kodak EKTATHERM media products. The XL . 7700 Printer represents a serious alternative to expensive laser-based film recorders for applications which require high quality image output from digital data files. This paper presents an explanation of dye diffusion printing, what distinguishes it from other technologies, sensitometric control and image quality parameters, and applications within the industry, particularly that of Airborne Reconnaissance and Remote Sensing.

  2. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  3. Interpreting high time resolution galactic cosmic ray observations in a diffusive context

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Spence, H. E.; Blake, J. B.; Shaul, D. A.

    2009-12-01

    We interpret galactic cosmic ray (GCR) variations near Earth within a diffusive context. The variations occur on time-/size-scales ranging from Forbush decreases (Fds), to substructure embedded within Fds, to smaller amplitude and shorter duration variations during relatively benign interplanetary conditions. We use high time resolution GCR observations from the High Sensitivity Telescope (HIST) on Polar and from the Spectrometer for INTEGRAL (SPI) and also use solar wind plasma and magnetic field observations from ACE and/or Wind. To calculate the coefficient of diffusion, we combine these datasets with a simple convection-diffusion model for relativistic charged particles in a magnetic field. We find reasonable agreement between our and previous estimates of the coefficient. We also show whether changes in the coefficient of diffusion are sufficient to explain the above GCR variations.

  4. High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.

    PubMed

    Muzi, Lanfranco; Siderius, Martin; Quijano, Jorge E; Dosso, Stan E

    2015-01-01

    The seabed reflection loss (shortly "bottom loss") is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data.

  5. Forming disc galaxies in major mergers - III. The effect of angular momentum on the radial density profiles of disc galaxies

    NASA Astrophysics Data System (ADS)

    Peschken, N.; Athanassoula, E.; Rodionov, S. A.

    2017-06-01

    We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, I.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.

  6. Effect of angular momentum alignment and strong magnetic fields on the formation of protostellar discs

    NASA Astrophysics Data System (ADS)

    Gray, William J.; McKee, Christopher F.; Klein, Richard I.

    2018-01-01

    Star-forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently, the formation of protostellar discs is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disc formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming discs, preventing their formation. However, once turbulence is included, discs can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here, we present several high-resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar discs. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported discs are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar discs in the presence of realistic magnetic fields.

  7. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  8. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  9. Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging

    PubMed Central

    Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz

    2013-01-01

    Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951

  10. Anisotropic Diffusion Despeckling for High Resolution SAR Images

    DTIC Science & Technology

    2004-11-01

    Chiang Mai , Thailand 323 Data Processing B-4.2 Anisotropic Diffusion Despeckling for High...18 324 25th ACRS 2004 Chiang Mai , Thailand B-4.2 Data Processing 2 NONLINEAR DIFFUSION FILTERING 2.1...edge-enhancing diffusion model is adopted. |)(|1 σϕ ug ∇= 2.02 =ϕ (4) 25th ACRS 2004 Chiang Mai , Thailand 325 Data

  11. High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions

    PubMed Central

    Holtrop, Joseph L.; Sutton, Bradley P.

    2016-01-01

    Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107

  12. Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra

    NASA Astrophysics Data System (ADS)

    Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2018-03-01

    We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.

  13. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    NASA Technical Reports Server (NTRS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; hide

    2016-01-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  14. The Atacama Cosmology Telescope: The Polarization-sensitive ACTPol Instrument

    NASA Astrophysics Data System (ADS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angilè, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; Coughlin, K. P.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dünner, R.; Fowler, J. W.; Fox, A. E.; Gallardo, P. A.; Gao, J.; Grace, E.; Halpern, M.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hincks, A. D.; Ho, S. P.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Koopman, B.; Li, Dale; Louis, T.; Lungu, M.; Maurin, L.; McMahon, J.; Munson, C. D.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J.; Niemack, M. D.; Niraula, P.; Nolta, M. R.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Staggs, S. T.; Tucker, C.; Uehara, M.; van Lanen, J.; Ward, J. T.; Wollack, E. J.

    2016-12-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  15. A new multidimensional diagnostic method for measuring the properties of intense ion beams

    NASA Astrophysics Data System (ADS)

    Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao

    1996-02-01

    A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.

  16. GridPix detectors: Production and beam test results

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van Bakel, N.; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N. P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-12-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  17. Disentangling X-Ray Emission Processes In Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    This grant is to support analysis of data from the X-ray Multi-mirror Mission (XMM). Specifically, we have been awarded time to observe two young neutron stars, B1823-13 and B1046-58, whose X-ray emission is expected to be a complicated combination of emission from an associated supernova remnant, from a wind-powered synchrotron nebula, from magnetospheric pulsations, and from the surface of the neutron star itself. It is only with XMM's unique combination of spectral, temporal and angular resolution that all these different processes can be separated and studied. Observations of B1823-13 have been conducted and analyzed. We interpret the data as follows: The unpulsed extended non-thermal nature of the central core argues that the extended source of emission corresponds to synchrotron emission from a nebula powered by the pulsar. The temperature of the diffuse component is too high to be interpreted as thermal emission; we rather argue that this extended component is non-thermal emission from a surrounding supernova remnant shell.

  18. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light

    PubMed Central

    Hernández, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.

    2015-01-01

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284

  19. High-Resolution Computed Tomography and Pulmonary Function Findings of Occupational Arsenic Exposure in Workers.

    PubMed

    Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge

    2017-05-05

    The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.

  20. Xenia Mission: Spacecraft Design Concept

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  1. Production of radially and azimuthally polarized polychromatic beams

    NASA Astrophysics Data System (ADS)

    Shoham, A.; Vander, R.; Lipson, S. G.

    2006-12-01

    We describe a system that efficiently provides radially or azimuthally polarized radiation from a randomly polarized source. It is constructed from two conical reflectors and a cylindrical sheet of polarizing film. Envisaged applications include a microscope illuminator for high-resolution surface plasmon resonance microscopy, illumination for high-resolution microlithography, and efficient coupling of a laser source to hollow optical fibers. The angular coherence function of light polarized by the device was measured to evaluate its usefulness for these applications.

  2. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  3. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; hide

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  4. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  5. Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert

    2018-06-01

    We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

  6. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI

    PubMed Central

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-01-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484

  7. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2015-10-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.

  8. Interferometry on a Balloon; Paving the Way for Space-based Interferometers

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  10. Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems.

    PubMed

    Alleyne, Colin J; Kirk, Andrew G; Chien, Wei-Yin; Charette, Paul G

    2008-11-24

    An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.

  11. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  12. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  13. Magnetic Flux Rope Shredding By a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintzoglou, Georgios; Vourlidas, Angelos; Savcheva, Antonia

    We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the Very high Angular resolution Ultraviolet Telescope ( VAULT2.0 ) sounding rocket launch. The refurbished VAULT2.0 is a Ly α ( λ 1216 Å) spectroheliograph launched on 2014 September 30. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low-level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. Nomore » coronal mass ejection was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion that enabled us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope (MFR)-like structure was destroyed during its interaction with the ambient magnetic field, creating downflows of cool plasma and diffuse hot coronal structures reminiscent of “cusps.” We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.« less

  14. Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun

    2009-07-01

    The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.

  15. Research in particles and fields

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1987-01-01

    The astrophysical aspects of cosmic rays and gamma rays and the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons. Particle astrophysics is directed toward the investigation of galactic, solar, interplanetary, and planetary energetic particles and plasmas. The emphasis is on precision measurements with high resolution in charge, mass, and energy. Gamma ray research is directed toward the investigation of galactic, extragalactic, and solar gamma rays with spectrometers of high angular resolution and moderate energy resolution carried on spacecraft and balloons.

  16. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  17. Piezo-based, high dynamic range, wide bandwidth steering system for optical applications

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Feinstein, Alan

    2017-05-01

    Piezoelectric motors and actuators are characterized by direct drive, fast response, high positioning resolution and high mechanical power density. These properties are beneficial for optical devices such as gimbals, optical image stabilizers and mirror angular positioners. The range of applications includes sensor pointing systems, image stabilization, laser steering and more. This paper reports on the construction, properties and operation of three types of piezo based building blocks for optical steering applications: a small gimbal and a two-axis OIS (Optical Image Stabilization) mechanism, both based on piezoelectric motors, and a flexure-assisted piezoelectric actuator for mirror angular positioning. The gimbal weighs less than 190 grams, has a wide angular span (solid angle of > 2π) and allows for a 80 micro-radian stabilization with a stabilization frequency up to 25 Hz. The OIS is an X-Y, closed loop, platform having a lateral positioning resolution better than 1 μm, a stabilization frequency up to 25 Hz and a travel of +/-2 mm. It is used for laser steering or positioning of the image sensor, based on signals from a MEMS Gyro sensor. The actuator mirror positioner is based on three piezoelectric actuation axes for tip tilt (each providing a 50 μm motion range), has a positioning resolution of 10 nm and is capable of a 1000 Hz response. A combination of the gimbal with the mirror positioner or the OIS stage is explored by simulations, indicating a <10 micro-radian stabilization capability under substantial perturbation. Simulations and experimental results are presented for a combined device facilitating both wide steering angle range and bandwidth.

  18. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  19. Research relative to high resolution camera on the advanced X-ray astrophysics facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  20. Transit time spreads in biased paracentric hemispherical deflection analyzers

    NASA Astrophysics Data System (ADS)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  1. High angular resolution and position determinations by infrared interferometry

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.

  2. The High Angular Resolution Multiplicity of Massive Stars

    DTIC Science & Technology

    2009-02-01

    binaries: visual – stars: early-type – stars: individual ( iota Ori, delta Ori, delta Sco) – techniques: interferometric Online-only material...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY

  3. The NGC 1614 interacting galaxy. Molecular gas feeding a "ring of fire"

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Beswick, R. J.; Gallagher, J. S.

    2013-05-01

    Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2-1) emission using the Submillimeter Array (SMA). We compare our 12CO (2-1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region. The most intense 12CO emission occurs in a partial ring with ~230 pc radius around the center of NGC 1614, with an extension to the northwest into the dust lane that contains diffuse molecular gas. We resolve ten giant molecular associations (GMAs) in the ring, which has an integrated molecular mass of ~8 × 108 M⊙. Our interferometric observations filter out a large part of the 12CO (1-0) emission mapped at shorter spacings, indicating that most of the molecular gas is diffuse and that GMAs only exist near and within the circumnuclear ring. The molecular ring is uneven with most of the mass on the western side, which also contains GMAs extending into a pronounced tidal dust lane. The spatial and kinematic patterns in our data suggest that the northwest extension of the ring is a cosmic umbilical cord that is feeding molecular gas associated with the dust lane and tidal debris into the nuclear ring, which contains the bulk of the starburst activity. The astrophysical process for producing a ring structure for the final resting place of accreted gas in NGC 1614 is not fully understood, but the presence of numerous GMAs suggests an orbit-crowding or resonance phenomenon. There is some evidence that star formation is progressing radially outward within the ring, indicating that a self-triggering mechanism may also affect star formation processes. The net result of this merger therefore very likely increases the central concentration of stellar mass in the NGC 1614 remnant giant system.

  4. High Resolution IRAS Maps and IR Emission of M31 -- II. Diffuse Component and Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Xu, C.; Helou, G.

    1995-01-01

    Large-scale dust heating and cooling in the diffuse medium of M31 is studied using the high resolution (HiRes) IRAS maps in conjunction with UV, optical (UBV), and the HI maps. A dust heating/cooling model is developed based on a radiative transfer model which assumes a 'Sandwich' configuration of dust and stars takes account of the effect of dust grain scattering.

  5. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this "SD degradation nonuniformity effect" with respect to angles relies on a "hybrid methodology" using lunar-based calibration to set the reliable long-term baseline. For MODIS, the use of earth targets in the major release Collection 6 to improve calibration coefficients and time-dependent response-versus-scan-angle characterization inherently averts the use of SD and its associated issues. The work further supports that having an open-close operational capability for the space view door can minimize SD degradation and its associated effects due to solar exposure, and thus provide long-term benefits for maintaining calibration and science data accuracy.

  6. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.

  7. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  8. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Cervantes, M. J.

    2012-11-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied - the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular resolution is small. The results from OpenFOAM and CFX are very similar as long as the inlet data resolution is fine enough. CFX seems to be more sensitive to that resolution.

  9. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  10. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  11. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; hide

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  12. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  13. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.

  14. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    NASA Astrophysics Data System (ADS)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  15. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  16. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks

    PubMed Central

    Colon-Perez, Luis M.; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R.; Price, Catherine; Mareci, Thomas H.

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime. PMID:26173147

  17. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks.

    PubMed

    Colon-Perez, Luis M; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R; Price, Catherine; Mareci, Thomas H

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime.

  18. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  19. Brownian self-driven particles on the surface of a sphere

    NASA Astrophysics Data System (ADS)

    Apaza, Leonardo; Sandoval, Mario

    2017-08-01

    We present the dynamics of overdamped Brownian self-propelled particles moving on the surface of a sphere. The effect of self-propulsion on the diffusion of these particles is elucidated by determining their angular (azimuthal and polar) mean-square displacement. Short- and long-times analytical expressions for their angular mean-square displacement are offered. Finally, the particles' steady marginal angular probability density functions are also elucidated.

  20. Improving the realism of white matter numerical phantoms: a step towards a better understanding of the influence of structural disorders in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Ginsburger, Kévin; Poupon, Fabrice; Beaujoin, Justine; Estournet, Delphine; Matuschke, Felix; Mangin, Jean-François; Axer, Markus; Poupon, Cyril

    2018-02-01

    White matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of the employed sequence. In this study, we observe the same frequency-dependence using 3D simulations of the diffusion process in disordered media. We design a novel white matter numerical phantom generation algorithm which constructs biomimicking geometric configurations with few design parameters, and enables to control the level of disorder of the generated phantoms. The influence of various geometrical parameters present in white matter, such as global angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular perpendicular diffusivity frequency dependence was investigated by simulating the diffusion process in numerical phantoms of increasing complexity and fitting the resulting simulated diffusion MR signal attenuation with an adequate analytical model designed for trapezoidal OGSE sequences. This work suggests that angular dispersion and especially beading have non-negligible effects on this extracellular diffusion metrics that may be measured using standard OGSE DW-MRI clinical protocols.

  1. MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V3)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  2. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  3. High resolution optical shaft encoder for motor speed control based on an optical disk pick-up

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.

    1998-08-01

    Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.

  4. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  5. Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.

    PubMed

    Sun, Jiaqi; Sakhaee, Elham; Entezari, Alireza; Vemuri, Baba C

    2015-01-01

    Compressed Sensing (CS) for the acceleration of MR scans has been widely investigated in the past decade. Lately, considerable progress has been made in achieving similar speed ups in acquiring multi-shell high angular resolution diffusion imaging (MS-HARDI) scans. Existing approaches in this context were primarily concerned with sparse reconstruction of the diffusion MR signal S(q) in the q-space. More recently, methods have been developed to apply the compressed sensing framework to the 6-dimensional joint (k, q)-space, thereby exploiting the redundancy in this 6D space. To guarantee accurate reconstruction from partial MS-HARDI data, the key ingredients of compressed sensing that need to be brought together are: (1) the function to be reconstructed needs to have a sparse representation, and (2) the data for reconstruction ought to be acquired in the dual domain (i.e., incoherent sensing) and (3) the reconstruction process involves a (convex) optimization. In this paper, we present a novel approach that uses partial Fourier sensing in the 6D space of (k, q) for the reconstruction of P(x, r). The distinct feature of our approach is a sparsity model that leverages surfacelets in conjunction with total variation for the joint sparse representation of P(x, r). Thus, our method stands to benefit from the practical guarantees for accurate reconstruction from partial (k, q)-space data. Further, we demonstrate significant savings in acquisition time over diffusion spectral imaging (DSI) which is commonly used as the benchmark for comparisons in reported literature. To demonstrate the benefits of this approach,.we present several synthetic and real data examples.

  6. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  7. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE PAGES

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; ...

    2016-12-09

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  8. THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  9. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  10. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding.

    PubMed

    Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila

    2012-05-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In  vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.

  11. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach

    PubMed Central

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-01-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25219683

  12. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach.

    PubMed

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-11-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  13. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  14. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    PubMed

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  15. The X-Ray Surveyor Mission: A Concept Study

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; hide

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  16. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  17. A goal-based angular adaptivity method for thermal radiation modelling in non grey media

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.

    2017-10-01

    This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.

  18. Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsioxane)-based phantoms

    PubMed Central

    Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.

    2015-01-01

    Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra. PMID:25983372

  19. Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms

    NASA Astrophysics Data System (ADS)

    Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.

    2015-03-01

    Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra.

  20. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  1. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    PubMed

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  2. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  3. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  4. Characterization of the angular memory effect of scattered light in biological tissues.

    PubMed

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  5. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  6. Migration Pathways of Thalamic Neurons and Development of Thalamocortical Connections in Humans Revealed by Diffusion MR Tractography.

    PubMed

    Wilkinson, Molly; Kane, Tara; Wang, Rongpin; Takahashi, Emi

    2017-12-01

    The thalamus plays an important role in signal relays in the brain, with thalamocortical (TC) neuronal pathways linked to various sensory/cognitive functions. In this study, we aimed to see fetal and postnatal development of the thalamus including neuronal migration to the thalamus and the emergence/maturation of the TC pathways. Pathways from/to the thalami of human postmortem fetuses and in vivo subjects ranging from newborns to adults with no neurological histories were studied using high angular resolution diffusion MR imaging (HARDI) tractography. Pathways likely linked to neuronal migration from the ventricular zone and ganglionic eminence (GE) to the thalami were both successfully detected. Between the ventricular zone and thalami, more tractography pathways were found in anterior compared with posterior regions, which was well in agreement with postnatal observations that the anterior TC segment had more tract count and volume than the posterior segment. Three different pathways likely linked to neuronal migration from the GE to the thalami were detected. No hemispheric asymmetry of the TC pathways was quantitatively observed during development. These results suggest that HARDI tractography is useful to identify multiple differential neuronal migration pathways in human brains, and regional differences in brain development in fetal ages persisted in postnatal development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Accelerated White Matter Aging in Schizophrenia: Role of White Matter Blood Perfusion

    PubMed Central

    Chiappelli, Joshua; McMahon, Robert; Muellerklein, Florian; Wijtenburg, S. Andrea; White, Michael G.; Rowland, Laura M.; Hong, L. Elliot

    2014-01-01

    Elevated rate of age-related decline in white matter integrity, indexed by fractional anisotropy (FA) from diffusion tensor imaging, was reported in patients with schizophrenia. Its etiology is unknown. We hypothesized that a decline of blood perfusion to the white matter may underlie the accelerated age-related reduction in FA in schizophrenia. Resting white matter perfusion and FA were collected using pseudo-continuous arterial spin labeling and high-angular-resolution diffusion tensor imaging, respectively, in 50 schizophrenia patients and 70 controls (age=18-63 years). Main outcome measures were the diagnosis-by-age interaction on whole-brain white matter perfusion, and FA. Significant age-related decline in brain white matter perfusion and FA were present in both groups. Age-by-diagnosis interaction was significant for FA (p<0.001) but not white matter perfusion. Age-by-diagnosis interaction for FA values remained significant even after accounting for age-related decline in perfusion. Therefore, we replicated the finding of an increased rate of age-related white matter FA decline in schizophrenia, and observed a significant age-related decline in white matter blood perfusion, although the latter did not contribute to the accelerated age-related decline in FA. The results suggest that factors other than reduced perfusion account for the accelerated age-related decline in white matter integrity in schizophrenia. PMID:24680326

  8. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  9. Restoring the spatial resolution of refocus images on 4D light field

    NASA Astrophysics Data System (ADS)

    Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok

    2010-01-01

    This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.

  10. The general relativistic thin disc evolution equation

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.

    2017-11-01

    In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.

  11. Propagation and transmission of optical vortex beams through turbid scattering wall with orbital angular momentums

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Gozali, Richard; Nguyen, Thien An; Alfano, R. R.

    2015-03-01

    Light scattering and transmission of optical Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) states in turbid scattering media were investigated in comparison with Gaussian (G) beam. The scattering media used in the experiments consist of various sizes and concentrations of latex beads in water solutions. The LG beams were generated using a spatial light modulator in reflection mode. The ballistic transmissions of LG and G beams were measured with different ratios of thickness of samples (z) to scattering mean free path (ls) of the turbid media, z/ls. The results show that in the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is large, LG beams show higher transmission than Gaussian beam. In the diffusive region, the LG beams with higher orbital angular momentum L values show higher transmission than the beams with lower L values. The transition points from ballistic to diffusive regions for different scattering media were studied and determined.

  12. MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=17.6 km; Longitude_Resolution=17.6 km; Horizontal_Resolution_Range=10 km - < 50 km or approximately .09 degree - < .5 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly, Daily - < Weekly].

  13. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  14. Programs and Perspectives of Visible Long Baseline Interferometry VEGA/CHARA

    NASA Astrophysics Data System (ADS)

    Mourard, D.; Nardetto, N.; Ligi, R.; Perraut, K.

    VEGA/CHARA is a visible spectro-interferometer installed on the CHARA Array at Mount Wilson Observatory. Combining high spectral resolution (6,000 or 30,000) and high angular resolution (0.3 mas), VEGA/CHARA opens a wide class of astrophysical topics in the stellar physics domain. Circumstellar environments and fundamental parameters with a high precision could be studied. We will present a review of recent results and discuss the programs currently engaged in the field of pulsating stars and more generally for the fundamental stellar parameters. Details could be found at http://www-n.oca.eu/vega/en/publications/index.htm.

  15. Rapidly-Indexing Incremental-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  16. Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.

    PubMed

    Hénault, François

    2010-03-01

    Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils.

  17. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  18. Rotatable Aperture Coronagraph for Exoplanetary Studies (RACES)

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Supriya; Mendillo, Christopher; Mukherjee, Sunip; Martel, Jason; Cook, Timothy; Polidan, Ronald S.; Rafanelli, Gerard L.; Spencer, Susan B.; Wolfe, Douglas w.

    2018-01-01

    We present the design and expected performance of RACES, a suborbital mission concept to directly image exo-Jupiters with a rotatable non-circular aperture telescope. By using a high-aspect ratio elliptical or rectangular primary mirror (2.3m x 0.6m), this mission achieves the same angular resolution and inner working angle as a 2.3m dia telescope. Such an elliptical or rectangular system would fill the volume of a cylindrical launch vehicle more efficiently and by choosing the aspect ratio one can appropriately tailor its light gathering power. RACES can therefore serve as a pathfinder for future larger missions for exoplanetary explorations. For example, the system described here approaches the collecting area of the well studied EXO-C concept and exceeds its angular resolution. The mission concept, design studies, observation strategy and expected target yield for RACES will be presented, as well as simulations of the high contrast vector vortex coronagraph operating with an un-obscured elliptical aperture.

  19. Silicon pore optics for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  20. Lunar Occultations, Setting the Stage for VLTI: The Case Study of CW-Leo (aka IRC+10216)

    NASA Astrophysics Data System (ADS)

    Käufl, Hans Ulrich; Stecklum, Bringfried; Richter, Steffen; Richichi, Andrea

    Lunar occultation allows for a sneak preview of what the VLTI will observe, both with comparable angular resolution and sensitivity. In the thermal infrared ( λ ≈ 10μ m, angular resolution ≤ 0.03^' ') the technique has been pioneered with TIMMI on La Silla. Using this technique several dust shells around Asymptotic Giant Branch stars have been resolved. For the Carbon star CW-Leo (IRC+10 216) high S/N scans will allow for `11/2-dimensional' imaging of the source. At the present state of data reduction the light curves already provide for a very convincing proof of theories on the milli-arcsec scale. In combination with VLTI the technique allows for checks of the visibility calibration and related issues. Moreover, in the (u,v)-plane both techniques are extremely complementary, so that a merging of the data sets appear highly desirable. At La Silla and Paranal ESO a suite of instruments which can be (ab)used for this project is under construction.

  1. In vivo imaging of small animals with optical tomography and near-infrared fluorescent probes

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew R.; Shibata, Yasushi; Kruskal, Jonathan B.; Lenkinski, Robert E.

    2002-06-01

    A developmental optical tomography has been designed for imaging small animals in vivo using near IR fluorophores. The system employs epi-illumination via a 450 W Xe arc lamp, filtered and collimated to illuminate a 10 cm square movable stage. Emission light is filtered then collected by a high- resolution, high quantum efficiency, cooled CCD camera. Stage movement and image acquisition are under the control of a personal computer running system integration and automation software. During an experiment, the anesthetized animal is secured to the stage and up to 200 projections can be acquired over 180 degrees rotation. Angular sampling of the light distribution at a point on the surface is used to determine relative contributions form ballistic and diffuse photons. We have employed the system to investigate a number of applications of in-vivo fluorescent imaging. In dynamic studies, hepatic function has been visualized in nude mice following intravenous injection of indocyanine green (ICG) and cerebrospinal fluid flow as been measured by injection of ICG-lipoprotein conjugate in the subarachnoid space of the lumbar spine followed by dynamic imaging of the brain. Further applications in physiological imaging, cancer detection, and molecular imaging are under investigation in our laboratory.

  2. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  3. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  4. Angular Distribution of light emission in ELVES events

    NASA Astrophysics Data System (ADS)

    Mussa, Roberto

    2017-04-01

    The Pierre Auger Observatory, located in Malargüe (Argentina), is the largest facility (3000 kmq ) for the study of Ultra High Energy Cosmic Rays (E>0.3 EeV). The four sites of the Fluorescence Detector (FD) are continuously observing the night sky with moon fraction below 50% (13% duty cycle) with 100 ns time resolution and a space resolution below one degree. Since 2013, the Observatory has implemented a dedicated trigger for the study of ELVES events, produced by lightning activity in Northern Argentina during summer months. A network of ancillary devices (lidars, cloud cameras, weather stations, lightning sensors, E-field mills) complements the FD data to correct for the variation of atmospheric optical properties. This paper will report about the angular distribution of the light emission around the vertical above the lightning source and compare with existing models.

  5. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  6. Milliarcsecond Astronomy with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Jones, Jeremy; Farrington, Christopher

    2018-01-01

    The Center for High Angular Resolution Astronomy offers 50 nights per year of open access time at the CHARA Array. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. The open access time is part of an NSF/MSIP funded program to open the CHARA Array to the broader astronomical community. As part of the program, we will build a searchable database for the CHARA data archive and run a series of one-day community workshops at different locations across the country to expand the user base for stellar interferometry and encourage new scientific investigations with the CHARA Array.

  7. Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals.

    PubMed

    Ribot, Emeline J; Trotier, Aurélien J; Castets, Charles R; Dallaudière, Benjamin; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain

    2016-02-01

    The goal of this study was to develop a 3D diffusion weighted sequence for free breathing liver imaging in small animals at high magnetic field. Hepatic metastases were detected and the apparent diffusion coefficients (ADC) were measured. A 3D SE-EPI sequence was developed by (i) inserting a water-selective excitation radiofrequency pulse to suppress adipose tissue signal and (ii) bipolar diffusion gradients to decrease the sensitivity to respiration motion. Mice with hepatic metastases were imaged at 7T by applying b values from 200 to 1100 s/mm(2). 3D images with high spatial resolution (182 × 156 × 125 µm) were obtained in only 8 min 32 s. The modified DW-SE-EPI sequence allowed to obtain 3D abdominal images of healthy mice with fat SNR 2.5 times lower than without any fat suppression method and sharpness 2.8 times higher than on respiration-triggered images. Due to the high spatial resolution, the core and the periphery of disseminated hepatic metastases were differentiated at high b-values only, demonstrating the presence of edema and proliferating cells (with ADC of 2.65 × 10(-3) and 1.55 × 10(-3) mm(2)/s, respectively). Furthermore, these metastases were accurately distinguished from proliferating ones within the same animal at high b-values (mean ADC of 0.38 × 10(-3) mm(2)/s). Metastases of less than 1.7 mm(3) diameter were detected. The new 3D SE-EPI sequence enabled to obtain diffusion information within liver metastases. In addition of intra-metastasis heterogeneity, differences in diffusion were measured between metastases within an animal. This sequence could be used to obtain diffusion information at high magnetic field.

  8. Slumped glass optics development with pressure assistance

    NASA Astrophysics Data System (ADS)

    Salmaso, B.; Basso, S.; Civitani, M.; Ghigo, M.; Hołyszko, J.; Spiga, D.; Vecchi, G.; Pareschi, G.

    2016-07-01

    Thin glass mirrors are a viable solution to build future X-ray telescopes with high angular resolution and large collecting area. This approach is very attractive for the optics implementation of future X-ray astronomy projects like the X-ray Surveyor Missions in USA, the XTP mission in China and the FORCE mission in Japan (all this projects could have an European participation). In the case of the X-ray Surveyor Mission, where a sub-arcsec angular resolution is requested, the use of actuators or post correction with sputtering deposition is envisaged. The hot slumping assisted by pressure is an innovative technology developed in our laboratories to replicate a mould figure. Our hot slumping process is based on thin substrates of Eagle XG glass to be thermally formed on Zerodur K20 moulds. This technology is coupled with an integration process able to damp low frequency errors. A continuous improvement in the reduction of the mid-frequency errors led to slumped glass foils with a potential angular resolution evaluated from the metrological data of a few arcsec. High frequency errors have been for a long time a critical point of our technology. In particular, the pressure assistance was leading to a partial replication of the mould micro-roughness, causing a non-negligible contribution to the Point Spread Function (PSF), in the incidence angle and X-ray energy range of operation. Therefore, we developed a new process to further reduce the micro-roughness of slumped glass foils, making now the technology attractive also for telescopes sensitive at higher X-ray energies. This paper provides the latest status of our research.

  9. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained bymore » the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.« less

  10. q-Space Upsampling Using x-q Space Regularization.

    PubMed

    Chen, Geng; Dong, Bin; Zhang, Yong; Shen, Dinggang; Yap, Pew-Thian

    2017-09-01

    Acquisition time in diffusion MRI increases with the number of diffusion-weighted images that need to be acquired. Particularly in clinical settings, scan time is limited and only a sparse coverage of the vast q -space is possible. In this paper, we show how non-local self-similar information in the x - q space of diffusion MRI data can be harnessed for q -space upsampling. More specifically, we establish the relationships between signal measurements in x - q space using a patch matching mechanism that caters to unstructured data. We then encode these relationships in a graph and use it to regularize an inverse problem associated with recovering a high q -space resolution dataset from its low-resolution counterpart. Experimental results indicate that the high-resolution datasets reconstructed using the proposed method exhibit greater quality, both quantitatively and qualitatively, than those obtained using conventional methods, such as interpolation using spherical radial basis functions (SRBFs).

  11. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage.

    PubMed

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.

  13. Intermode light diffusion in multimode optical waveguides with rough surfaces.

    PubMed

    Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R

    2005-06-01

    A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.

  14. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas (more » λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.« less

  15. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  16. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; hide

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  17. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  18. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

    PubMed Central

    Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.

    2013-01-01

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063

  19. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.

  20. Magnetically confined electron beam system for high resolution electron transmission-beam experiments

    NASA Astrophysics Data System (ADS)

    Lozano, A. I.; Oller, J. C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G.

    2018-06-01

    A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.

  1. Diffusion in realistic biophysical systems can lead to aliasing effects in diffusion spectrum imaging.

    PubMed

    Lacerda, Luis M; Sperl, Jonathan I; Menzel, Marion I; Sprenger, Tim; Barker, Gareth J; Dell'Acqua, Flavio

    2016-12-01

    Diffusion spectrum imaging (DSI) is an imaging technique that has been successfully applied to resolve white matter crossings in the human brain. However, its accuracy in complex microstructure environments has not been well characterized. Here we have simulated different tissue configurations, sampling schemes, and processing steps to evaluate DSI performances' under realistic biophysical conditions. A novel approach to compute the orientation distribution function (ODF) has also been developed to include biophysical constraints, namely integration ranges compatible with axial fiber diffusivities. Performed simulations identified several DSI configurations that consistently show aliasing artifacts caused by fast diffusion components for both isotropic diffusion and fiber configurations. The proposed method for ODF computation showed some improvement in reducing such artifacts and improving the ability to resolve crossings, while keeping the quantitative nature of the ODF. In this study, we identified an important limitation of current DSI implementations, specifically the presence of aliasing due to fast diffusion components like those from pathological tissues, which are not well characterized, and can lead to artifactual fiber reconstructions. To minimize this issue, a new way of computing the ODF was introduced, which removes most of these artifacts and offers improved angular resolution. Magn Reson Med 76:1837-1847, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  3. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  4. Magnetic effects in the paraxial regime of elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Edström, Alexander; Lubk, Axel; Rusz, Ján

    2016-11-01

    Motivated by a recent claim [Phys. Rev. Lett. 116, 127203 (2016), 10.1103/PhysRevLett.116.127203] that electron vortex beams can be used to image magnetism at the nanoscale in elastic scattering experiments, using transmission electron microscopy, a comprehensive computational study is performed to study magnetic effects in the paraxial regime of elastic electron scattering in magnetic solids. Magnetic interactions from electron vortex beams, spin polarized electron beams, and beams with phase aberrations are considered, as they pass through ferromagnetic FePt or antiferromagnetic LaMnAsO. The magnetic signals are obtained by comparing the intensity over a disk in the diffraction plane for beams with opposite angular momentum or aberrations. The strongest magnetic signals are obtained from vortex beams with large orbital angular momentum, where relative magnetic signals above 10-3 are indicated for 10 ℏ orbital angular momentum, meaning that relative signals of one percent could be expected with the even larger orbital angular momenta, which have been produced in experimental setups. All results indicate that beams with low acceleration voltage and small convergence angles yield stronger magnetic signals, which is unfortunately problematic for the possibility of high spatial resolution imaging. Nevertheless, under atomic resolution conditions, relative magnetic signals in the order of 10-4 are demonstrated, corresponding to an increase with one order of magnitude compared to previous work.

  5. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  6. Diffusion tensor optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  7. Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.

    2017-12-01

    The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.

  8. Landsat and Sentinel-2A Surface Albedo Estimation and Evaluation Against In Situ Measurements Across the US SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Franch, B.; Skakun, S.; Vermote, E.; Roger, J. C.

    2017-12-01

    Surface albedo is an essential parameter not only for developing climate models, but also for most energy balance studies. While climate models are usually applied at coarse resolution, the energy balance studies, which are mainly focused on agricultural applications, require a high spatial resolution. The albedo, estimated through the angular integration of the BRDF, requires an appropriate angular sampling of the surface. However, Sentinel-2A sampling characteristics, with nearly constant observation geometry and low illumination variation, prevent from deriving a surface albedo product. In this work, we apply an algorithm developed to derive a Landsat surface albedo to Sentinel-2A. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) CMG surface reflectance product (M{O,Y}D09) using the VJB method (Vermote et al., 2009). Sentinel-2A unsupervised classification images are used to disaggregate the BRDF parameters to the Sentinel-2 spatial resolution. We test the results over five different sites of the US SURFRAD network and plot the results versus albedo field measurements. Additionally, we also test this methodology using Landsat-8 images.

  9. Landsat thematic mapper attitude data processing

    NASA Technical Reports Server (NTRS)

    Sehn, G. J.; Miller, S. F.

    1984-01-01

    The Landsat 4 and 5 satellites carry a new, high resolution, seven band thematic mapper imaging instrument. The spacecraft also carry two types of attitude sensors: a gyroscopic internal reference unit (IRU) which senses angular rate from dc to about 2 Hz, and an AC-coupled angular displacement sensor (ADS) measuring angular deviation above 2 Hz. A description of the derivation of the crossover network used to combine and equalize the IRU and ADS data is made. Also described are the digital data processing algorithms which produce the time history of the satellites' attitude motion including the finite impulse response (FIR) implementation of G and F filters; the resampling (interpolation/decimation) and synchronization of the IRU and ADS data; and the axis rotations required as a result of the on-board sensor locations on three orthogonal axes.

  10. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  11. Testing of two source energy balance model under irrigated and dryland conditions using high resolution airborne imagery

    USDA-ARS?s Scientific Manuscript database

    Two Source Model (TSM) calculates the heat and water exchange and interaction between soil-atmosphere and vegetation-atmosphere separately. This is achieved through decomposition of radiometric surface temperature to soil and vegetation component temperatures either from multi-angular remotely sense...

  12. Variations in atmospheric angular momentum and the length of day

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1982-01-01

    Six years of twice daily global analyses were used to create and study a lengthy time series of high temporal resolution angular momentum values. Changes in these atmospheric values were compared to independently determined charges in the rotation rate of the solid Earth. Finally, the atmospheric data was examined in more detail to determine the time and space scales on which variations in momentum occur within the atmosphere and which regions are contributing most to the changes found in the global integral. The data and techniques used to derive the time series of momentum values are described.

  13. Developing Automated Spectral Analysis Tools for Interstellar Features Extractionto Support Construction of the 3D ISM Map

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Lallement, R.; Monreal-Ibero, A.; Chen, H.-C.; Malasan, H. L.; Aprilia; Arifyanto, M. I.; Irfan, M.

    2018-04-01

    One of the ways to obtain a detailed 3D ISM map is by gathering interstellar (IS) absorption data toward widely distributed background target stars at known distances (line-of-sight/LOS data). The radial and angular evolution of the LOS measurements allow the inference of the ISM spatial distribution. For a better spatial resolution, one needs a large number of the LOS data. It requires building fast tools to measure IS absorption. One of the tools is a global analysis that fit two different diffuse interstellar bands (DIBs) simultaneously. We derived the equivalent width (EW) ratio of the two DIBs recorded in each spectrum of target stars. The ratio variability can be used to study IS environmental conditions or to detect DIB family.

  14. Materials characterisation by angle-resolved scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-16

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaN x As 1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with Ge x Si 1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  15. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  16. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian, E-mail: jzheng@ustc.edu.cn

    2016-06-15

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  17. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    NASA Astrophysics Data System (ADS)

    Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.

  18. Hubble Space Telescope Fine Guidance Sensor interferometric observations of the core of 30 doradus

    NASA Technical Reports Server (NTRS)

    Lattanzi, M. G.; Hershey, J. L.; Burg, R.; Taff, L. G.; Holfeltz, S. T.; Bucciarelli, B.; Evans, I. N.; Gilmozzi, R.; Pringle, J.; Walborn, N. R.

    1994-01-01

    We present the results of the first high angular resolution observations taken with a Fine Guidance Sensor (FGS) aboard the Hubble Space Telescope (HST) of a star cluster embedded in very bright background. The strong and complex background around the R136 cluster in the 30 Dor nebula does not prevent the FGS from achieving performance close to its angular resolution limit of approximately 0.015 sec per axis with reliable photometry. These FGS observations establish that the central object in R136a is a triple star with the third component delta V = 1.1 mag fainter than the primary star al approximately 0.08 sec way. We estimate from the grid of models of Maeder (1990) that the present mass of al is between 30 and 80 solar masses, with the main-sequence progenitor between 60 and 120 solar masses.

  19. A Survey of Near-infrared Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Hamano, Satochi; Kobayashi, Naoto; Kawakita, Hideyo; Ikeda, Yuji; Kondo, Sohei; Sameshima, Hiroaki; Arai, Akira; Matsunaga, Noriyuki; Yasui, Chikako; Mizumoto, Misaki; Fukue, Kei; Izumi, Natsuko; Otsubo, Shogo; Takenada, Keiichi

    2018-04-01

    We propose a study of interstellar molecules with near-infrared (NIR) high-resolution spectroscopy as a science case for the 3.6-m Devasthal Optical Telescope (DOT). In particular, we present the results obtained on-going survey of diffuse interstellar bands (DIBs) in NIR with the newly developed NIR high-resolution spectrograph WINERED, which offers a high sensitivity in the wavelength range of 0.91-1.36 µm. Using the WINERED spectrograph attached to the 1.3-m Araki telescope in Japan, we obtained high-quality spectra of a number of early-type stars in various environments, such as diffuse interstellar clouds, dark clouds and star-forming regions, to investigate the properties of NIR DIBs and constrain their carriers. As a result, we successfully identified about 50 new NIR DIBs, where only five fairly strong DIBs had been identified previously. Also, some properties of DIBs in the NIR are discussed to constrain the carriers of DIBs.

  20. Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.

    1997-01-01

    The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).

  1. Rabi like angular splitting in Surface Plasmon Polariton - Exciton interaction in ATR configuration

    NASA Astrophysics Data System (ADS)

    Hassan, Heba; Abdallah, T.; Negm, S.; Talaat, H.

    2018-05-01

    We have studied the coupling of propagating Surface Plasmon Polaritons (SPP) on silver films and excitons in CdS quantum dots (QDs). We employed the Kretschmann-Raether configuration of the attenuated total reflection (ATR) to propagate the SPP on silver film of thickness 47.5 nm at three different wavelengths. The CdS QD have been chemically synthesized with particular size such that its exciton of energy would resonate with SPP. High resolution transmission electron microscopy (HRTEM) and scan tunneling microscopy (STM) were used to measure the corresponding QDs size and confirm its shape. Further confirmation of the size has been performed by the effective mass approximation (EMA) model utilizing the band gap of the prepared QDs. The band gaps have been measured through UV-vis absorption spectra as well as scan tunneling spectroscopy (STS). The coupling has been observed as two branching dips in the ATR spectra indicating Rabi like splitting. To the best of our knowledge, this is the first time that Rabi interaction is directly observed in an ATR angular spectra. This observation is attributed to the use a high resolution angular scan (±0.005°), in addition to the Doppler width of the laser line as well as the energy distribution of the excitons. The effect of three different linker molecules (TOPO, HDA), (Pyridine) and (Tri-butylamine) as surface ligands, on SPP-Exciton interaction has been examined.

  2. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy J.; Duncan, Alastair; Sampson, Christopher C.; Neal, Jeffrey C.; Bates, Paul D.

    2011-01-01

    This paper describes benchmark testing of a diffusive and an inertial formulation of the de St. Venant equations implemented within the LISFLOOD-FP hydraulic model using high resolution terrestrial LiDAR data. The models are applied to a hypothetical flooding scenario in a section of Alcester, UK which experienced significant surface water flooding in the June and July floods of 2007 in the UK. The sensitivity of water elevation and velocity simulations to model formulation and grid resolution are analyzed. The differences in depth and velocity estimates between the diffusive and inertial approximations are within 10% of the simulated value but inertial effects persist at the wetting front in steep catchments. Both models portray a similar scale dependency between 50 cm and 5 m resolution which reiterates previous findings that errors in coarse scale topographic data sets are significantly larger than differences between numerical approximations. In particular, these results confirm the need to distinctly represent the camber and curbs of roads in the numerical grid when simulating surface water flooding events. Furthermore, although water depth estimates at grid scales coarser than 1 m appear robust, velocity estimates at these scales seem to be inconsistent compared to the 50 cm benchmark. The inertial formulation is shown to reduce computational cost by up to three orders of magnitude at high resolutions thus making simulations at this scale viable in practice compared to diffusive models. For the first time, this paper highlights the utility of high resolution terrestrial LiDAR data to inform small-scale flood risk management studies.

  3. Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI

    PubMed Central

    Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland

    2010-01-01

    Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149

  4. Observations of potential ultra high energy gamma-ray sources above 10(15) eV

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.; Perrett, J. C.; Watson, A. A.; West, A. A.

    1985-01-01

    The Haverah Park 50 m water-Cerenkov array has been used to examine a number of periodic sources for ultra high energy gamma-ray emission above 10 to the 15th power eV. The data, recorded between 1 Jan. 1979 and 31 Dec. 1984, feature a modest angular resolution of approx 3 deg with millisecond arrival time resolution post 1982. The sources investigated include the Crab pulsar, Her X-1, Au0115 + 63 and Geminga. All objects have been detected by workers in the TeV region, with varying degrees of confidence.

  5. High-resolution threshold photoionization of N2O

    NASA Technical Reports Server (NTRS)

    Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.

    1991-01-01

    Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.

  6. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  7. Research relative to high energy astrophysics. [large area modular array of reflectors, X-ray spectroscopy, and thermal control

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1984-01-01

    Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.

  8. Particle Number Dependence of the N-body Simulations of Moon Formation

    NASA Astrophysics Data System (ADS)

    Sasaki, Takanori; Hosono, Natsuki

    2018-04-01

    The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.

  9. Dual-Frequency VLBI Study of Centaurus A on Sub-Parsec Scales: The Highest-Resolution View of an Extragalactic Jet

    NASA Technical Reports Server (NTRS)

    Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.; hide

    2011-01-01

    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution

  10. Brownian self-propelled particles on a sphere

    NASA Astrophysics Data System (ADS)

    Apaza-Pilco, Leonardo Felix; Sandoval, Mario

    We present the dynamics of a Brownian self-propelled particle at low Reynolds number moving on the surface of a sphere. The effects of curvature and self-propulsion on the diffusion of the particle are elucidated by determining (numerically) the mean-square displacement of the particle's angular (azimuthal and polar) coordinates. The results show that the long time behavior of its angular mean-square displacement is linear in time. We also see that the slope of the angular MSD is proportional to the propulsion velocity and inverse to the curvature of the sphere. The angular probability distribution function (PDF) of the particle is also obtained by numerically solving its respective Smoluchowski equation.

  11. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartrand, A. M.; McCormack, E. F.; Jacovella, U.

    The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less

  13. Scalar Resonant Relaxation of Stars around a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Fouvry, Jean-Baptiste

    2018-06-01

    In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.

  14. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  15. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging

    NASA Astrophysics Data System (ADS)

    Micó, Vicente; Zalevsky, Zeev

    2010-07-01

    Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The proposed approach can be applied when imaging essentially transparent (low-concentration dilutions) and static (slow dynamics) samples. Validation of the method for both a synthetic object (U.S. Air Force resolution test) to quantify the resolution improvement and a biological specimen (sperm cells biosample) are reported showing the generation of high synthetic numerical aperture values working without lenses.

  16. Bringing the Visible Universe into Focus with Robo-AO

    PubMed Central

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit

    2013-01-01

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078

  17. Bringing the visible universe into focus with Robo-AO.

    PubMed

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit

    2013-02-12

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.

  18. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  19. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.

    PubMed

    Donatini, Fabrice; Pernot, Julien

    2018-03-09

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  20. Nuclear Astrophysics at ELI-NP: the ELISSA prototype tested at Laboratori Nazionali del Sud

    NASA Astrophysics Data System (ADS)

    Guardo, Giovanni Luca; Anzalone, Antonello; Balabanski, Dimiter; Chesnevskaya, Svetlana; Crucillá, Walter; Filipescu, Dan; Gulino, Marisa; La Cognata, Marco; Lattuada, Dario; Matei, Catalin; Pizzone, Rosario Gianluca; Rapisarda, Giuseppe; Romano, Stefano; Spitaleri, Claudio; Taffara, Alessandra; Tumino, Aurora; Xu, Yi

    2018-01-01

    The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility, under construction in Magurele near Bucharest in Romania, will provide high-intensity and high-resolution gamma ray beams that can be used to address hotly debated problems in nuclear astrophysics, such as the accurate measurements of the cross sections of the 24Mg(γ,α)20Ne reaction, that is fundamental to determine the effective rate of 28Si destruction right before the core collapse and the subsequent supernova explosion. For this purpose, a silicon strip detector array (named ELISSA, acronym for Extreme Light Infrastructure Silicon Strip Array) will be realized in a common effort by ELI-NP and Laboratori Nazionali del Sud (INFN-LNS), in order to measure excitation functions and angular distributions over a wide energy and angular range. A prototype of ELISSA was built and tested at INFN-LNS in Catania (Italy) with the support of ELI-NP. In this occasion, we have carried out experiments with alpha sources and with a 11 MeV 7Li beam. Thanks to our approach, the first results of those tests show up a very good energy resolution (better than 1%) and very good position resolution, of the order of 1 mm. Moreover, a threshold of 150 keV can be easily achieved with no cooling.

  1. Eclipse Megamovie Citizen Science: The Diamond Ring

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Mcintosh, S. W.; Martinez Oliveros, J. C.; Pasachoff, J. M.; Peticolas, L. M.; Bender, M.

    2016-12-01

    The 2017 North American total eclipse has begun to encourage many outreach and citizen-science activiites. We describe here a part of the Eclipse Megamovie program, in which we deploy a smartphone app to enable anybody with a GPS-equipped smartphone to record correct images of Baily's Beads (the "Diamond Ring" effect) for subsequent analysis. The multiply oversampled recordings of 2nd and 3rd contacts, across and along the track, will provide material for unique movie representations of the astronomical phenomenon. After the fact, this highly oversampled dataset can be used to confirm and/or extend detailed satellite topography of the Moon from Kaguya and LRO. In addition the high angular resolution inherent in the "knife-edge" motion will provide a unique view of the structure of the solar limb itself. The low angular resolution of the smartphone cameras is a handicap, but excellent time resolution and massive oversampling are great advantages. We anticipate public participation in image selection to get the best sequences of last few-millisecond imagery for the science product here, which can follow the known motions of the solar limb due to p-modes and granulation. No comparable database exists, and so the final product of this crowdsourcing will be a public archive of the data and metadata for future studies.

  2. X-ray optics for the LAMAR facility, an overview. [Large Area Modular Array of Reflectors

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1979-01-01

    The paper surveys the Large Area Modular Array of Reflectors (LAMAR), the concept of which is based on meeting two major requirements in X-ray astronomy, large collecting area and moderately good or better angular resolution for avoiding source confusion and imaging source fields. It is shown that the LAMAR provides the same sensitivity and signal to noise in imaging as a single large telescope having the same area and angular resolution but is a great deal less costly to develop, construct, and integrate into a space mission. Attention is also given to the LAMAR modular nature which will allow for an evolutionary development from a modest size array on Spacelab to a Shuttle launched free flyer. Finally, consideration is given to manufacturing methods which show promise of making LAMAR meet the criteria of good angular resolution, relatively low cost, and capability for fast volume production.

  3. Scientific Benefit of Enlarging Gravitational Wave Detector Networks

    NASA Astrophysics Data System (ADS)

    Chu, Qi; Wen, Linqing; Blair, David

    2012-06-01

    Localising the sources of gravitational waves (GWs) in the sky is crucial to observing the electromagnetic counterparts of GW sources. The localisation capability is poor by a single GW detector yet can be improved by adding more detectors to the detector network. In this paper we review recent studies on scientific benefits of global detector networks and focus on their localisation capability. We employ Wen-Chen's formula to compare this merit of current and future detector networks for localising gravitational wave bursts. We find that the addition of a new detector located in Japan, or India, or Australia will increase angular resolution 3~5 fold with respect to current LIGO-Virgo network, and that the angular resolution improvement by adding a single detector in Australia is comparable to that achieved by adding detectors in both India and Japan. A six-site network achieves a 11-fold improvement in angular resolution compared with the existing three-site network.

  4. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    PubMed

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  5. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    PubMed Central

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-01-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742

  6. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    NASA Astrophysics Data System (ADS)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  7. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    PubMed

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  8. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.

  9. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  10. The Spartan-281 Far Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.

    1988-01-01

    The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.

  11. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    PubMed Central

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity to elucidate more anatomical details of the IFOF. And we provides a new framework for subdividing the IFOF for better understanding its functional role in the human brain. PMID:27721745

  12. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations ofmore » the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.« less

  13. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.

    PubMed

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jun, E-mail: pengjun@cimm.com.cn; Zhang, Li, E-mail: zhangli@cimm.com.cn; School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing

    The moment of inertia calibration system is developed by Changcheng Institute of Metrology and Measurement (CIMM). Rotation table - torsional spring system is used to generate angular vibration, and laser vibrometer is used to measure rotational angle and the vibration period. The object to be measured is mounted on the top of the rotation table. The air-bearing system is elaborately manufactured which reduce the friction of the angular movement and increase measurement accuracy. Heterodyne laser interferometer collaborates with column diffraction grating is used in the measurement of angular movement. Experiment shows the method of measuring oscillating angle and period introducedmore » in this paper is stable and the time resolution is high. When the air damping effect can’t be neglected in moment of inertia measurement, the periodic waveform area ratio method is introduced to calculate damping ratio and obtain the moment of inertia.« less

  15. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  16. A design study for a compact two stage in-flight separator with a high mass resolution and large acceptance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ji-Gwang; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hatanaka, Kichiji

    2015-03-15

    The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of {sup 132}Sn produced by a fission reactionmore » between the primary beam of {sup 238}U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.« less

  17. A design study for a compact two stage in-flight separator with a high mass resolution and large acceptance.

    PubMed

    Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji

    2015-03-01

    The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of (132)Sn produced by a fission reaction between the primary beam of (238)U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.

  18. A design study for a compact two stage in-flight separator with a high mass resolution and large acceptance

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji

    2015-03-01

    The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of 132Sn produced by a fission reaction between the primary beam of 238U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.

  19. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  20. Impulsive Collision Dynamics of CO Super Rotors from an Optical Centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Toro, Carlos; Liu, Qingnan; Mullin, Amy S

    2016-11-18

    We report state-resolved collision dynamics for CO molecules prepared in an optical centrifuge and measured with high-resolution transient IR absorption spectroscopy. Time-resolved polarization-sensitive measurements of excited CO molecules in the J=29 rotational state reveal that the oriented angular momentum of CO rotors is relaxed by impulsive collisions. The translational energy gains for molecules in the initial plane of rotation are threefold larger than for randomized angular momentum orientations, indicating the presence of anisotropic kinetic energy. The transient data show enhanced population for CO molecules in the initial plane of rotation immediately following the optical centrifuge pulse. A comparison with previous CO 2 super rotor studies illustrates the behavior of molecular gyroscopes; spatial reorientation of CO 2 J=76 rotors takes substantially longer than that for CO J=29 rotors, despite similarities in classical rotational period and rotational energy gap. High-resolution transient IR absorption measurements of the CO J=29-39 rotational states show that the collisional depopulation rates increase with J quantum number. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Focused Wind Mass Accretion in Mira AB

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  2. The Low‐Energy Neutral Imager (LENI)

    PubMed Central

    Mitchell, D. G.; Brandt, P. C.‐son.; Andrews, B. G.; Clark, G.

    2016-01-01

    Abstract To achieve breakthroughs in the areas of heliospheric and magnetospheric energetic neutral atom (ENA) imaging, a new class of instruments is required. We present a high angular resolution ENA imager concept aimed at the suprathermal plasma populations with energies between 0.5 and 20 keV. This instrument is intended for understanding the spatial and temporal structure of the heliospheric boundary recently revealed by Interstellar Boundary Explorer instrumentation and the Cassini Ion and Neutral Camera. The instrument is also well suited to characterize magnetospheric ENA emissions from low‐altitude ENA emissions produced by precipitation of magnetospheric ions into the terrestrial upper atmosphere, or from the magnetosheath where solar wind protons are neutralized by charge exchange, or from portions of the ring current region. We present a new technique utilizing ultrathin carbon foils, 2‐D collimation, and a novel electron optical design to produce high angular resolution (≤2°) and high‐sensitivity (≥10−3 cm2 sr/pixel) ENA imaging in the 0.5–20 keV energy range. PMID:27867800

  3. Anatomy of a Photodissociation Region: High angular resolution images of molecular emission in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Tauber, Jan A.; Tielens, A. G. G. M.; Meixner, Margaret; Foldsmith, Paul F.

    1994-01-01

    We present observations of the molecular component of the Orion Bar, a prototypical Photodissociation Region (PDR) illuminated by the Trapezium cluster. The high angular resolution (6 sec-10 sec) that we have achieved by combining single-dish and interferometric observations has allowed us to examine in detail the spatial and kinematic morphology of this region and to estimate the physical characteristics of the molecular gas it contains. Our observations indicate that this PDR can be essentially described as a homogeneously distributed slab of moderately dense material (approximately 5 x 10(exp 4)/cu cm), in which are embedded a small number of dense (greater than 10(exp 6)/cu cm) clumps. The latter play little or no role in determining the thickness and kinetic temperature structure of this PDR. This observational picture is largely supported by PDR model calculations for this region, which we describe in detail in this work. We also find our model predictions of the intensities of a variety of atomic and molecular lines to be in good general agreement with a number of previous observations.

  4. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.

  5. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  6. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    NASA Astrophysics Data System (ADS)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  7. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE PAGES

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...

    2017-02-20

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  8. Coresets vs clustering: comparison of methods for redundancy reduction in very large white matter fiber sets

    NASA Astrophysics Data System (ADS)

    Alexandroni, Guy; Zimmerman Moreno, Gali; Sochen, Nir; Greenspan, Hayit

    2016-03-01

    Recent advances in Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) of white matter in conjunction with improved tractography produce impressive reconstructions of White Matter (WM) pathways. These pathways (fiber sets) often contain hundreds of thousands of fibers, or more. In order to make fiber based analysis more practical, the fiber set needs to be preprocessed to eliminate redundancies and to keep only essential representative fibers. In this paper we demonstrate and compare two distinctive frameworks for selecting this reduced set of fibers. The first framework entails pre-clustering the fibers using k-means, followed by Hierarchical Clustering and replacing each cluster with one representative. For the second clustering stage seven distance metrics were evaluated. The second framework is based on an efficient geometric approximation paradigm named coresets. Coresets present a new approach to optimization and have huge success especially in tasks requiring large computation time and/or memory. We propose a modified version of the coresets algorithm, Density Coreset. It is used for extracting the main fibers from dense datasets, leaving a small set that represents the main structures and connectivity of the brain. A novel approach, based on a 3D indicator structure, is used for comparing the frameworks. This comparison was applied to High Angular Resolution Diffusion Imaging (HARDI) scans of 4 healthy individuals. We show that among the clustering based methods, that cosine distance gives the best performance. In comparing the clustering schemes with coresets, Density Coreset method achieves the best performance.

  9. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images.

    PubMed

    Raffelt, David; Tournier, J-Donald; Rose, Stephen; Ridgway, Gerard R; Henderson, Robert; Crozier, Stuart; Salvado, Olivier; Connelly, Alan

    2012-02-15

    This article proposes a new measure called Apparent Fibre Density (AFD) for the analysis of high angular resolution diffusion-weighted images using higher-order information provided by fibre orientation distributions (FODs) computed using spherical deconvolution. AFD has the potential to provide specific information regarding differences between populations by identifying not only the location, but also the orientations along which differences exist. In this work, analytical and numerical Monte-Carlo simulations are used to support the use of the FOD amplitude as a quantitative measure (i.e. AFD) for population and longitudinal analysis. To perform robust voxel-based analysis of AFD, we present and evaluate a novel method to modulate the FOD to account for changes in fibre bundle cross-sectional area that occur during spatial normalisation. We then describe a novel approach for statistical analysis of AFD that uses cluster-based inference of differences extended throughout space and orientation. Finally, we demonstrate the capability of the proposed method by performing voxel-based AFD comparisons between a group of Motor Neurone Disease patients and healthy control subjects. A significant decrease in AFD was detected along voxels and orientations corresponding to both the corticospinal tract and corpus callosal fibres that connect the primary motor cortices. In addition to corroborating previous findings in MND, this study demonstrates the clear advantage of using this type of analysis by identifying differences along single fibre bundles in regions containing multiple fibre populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis

    NASA Astrophysics Data System (ADS)

    Gu, Fengshou; Yesilyurt, Isa; Li, Yuhua; Harris, Georgina; Ball, Andrew

    2006-08-01

    In order to discriminate small changes for early fault diagnosis of rotating machines, condition monitoring demands that the measurement of instantaneous angular speed (IAS) of the machines be as accurate as possible. This paper develops the theoretical basis and practical implementation of IAS data acquisition and IAS estimation when noise influence is included. IAS data is modelled as a frequency modulated signal of which the signal-to-noise ratio can be improved by using a high-resolution encoder. From this signal model and analysis, optimal configurations for IAS data collection are addressed for high accuracy IAS measurement. Simultaneously, a method based on analytic signal concept and fast Fourier transform is also developed for efficient and accurate estimation of IAS. Finally, a fault diagnosis is carried out on an electric induction motor driving system using IAS measurement. The diagnosis results show that using a high-resolution encoder and a long data stream can achieve noise reduction by more than 10 dB in the frequency range of interest, validating the model and algorithm developed. Moreover, the results demonstrate that IAS measurement outperforms conventional vibration in diagnosis of incipient faults of motor rotor bar defects and shaft misalignment.

  11. One-point fluctuation analysis of the high-energy neutrino sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feyereisen, Michael R.; Ando, Shin'ichiro; Tamborra, Irene, E-mail: m.r.feyereisen@uva.nl, E-mail: tamborra@nbi.ku.dk, E-mail: s.ando@uva.nl

    2017-03-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi , we predict the spectral and anisotropic probability distributions for theirmore » expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to the poor angular resolution of IceCube, and we determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the measured flux are unfavourably affected by the skewness of the blazar flux distribution. One-point event clustering and likelihood analyses of the IceCube HESE data suggest that this method has the potential to dramatically improve over more conventional model-based analyses, especially for the next generation of neutrino telescopes.« less

  12. Advanced Source Deconvolution Methods for Compton Telescopes

    NASA Astrophysics Data System (ADS)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a list-mode approach to get the best angular resolution, to get achieve both at the same time! The second open question concerns the best deconvolution algorithm. For example, several algorithms have been investigated for the famous COMPTEL 26Al map which resulted in significantly different images. There is no clear answer as to which approach provides the most accurate result, largely due to the fact that detailed simulations to test and verify the approaches and their limitations were not possible at that time. This has changed, and therefore we propose to evaluate several deconvolution algorithms (e.g. Richardson-Lucy, Maximum-Entropy, MREM, and stochastic origin ensembles) with simulations of typical observations to find the best algorithm for each application and for each stage of the hybrid reconstruction approach. We will adapt, implement, and fully evaluate the hybrid source reconstruction approach as well as the various deconvolution algorithms with simulations of synthetic benchmarks and simulations of key science objectives such as diffuse nuclear line science and continuum science of point sources, as well as with calibrations/observations of the COSI balloon telescope. This proposal for "development of new data analysis methods for future satellite missions" will significantly improve the source deconvolution techniques for modern Compton telescopes and will allow unlocking the full potential of envisioned satellite missions using Compton-scatter technology in astrophysics, heliophysics and planetary sciences, and ultimately help them to "discover how the universe works" and to better "understand the sun". Ultimately it will also benefit ground based applications such as nuclear medicine and environmental monitoring as all developed algorithms will be made publicly available within the open-source Compton telescope analysis framework MEGAlib.

  13. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less

  14. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  15. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Gubarev, M.; Schwartz, R. A.; Steslicki, M.; Ryan, D.; Turin, P.; Warmuth, A.; White, S. M.; Veronig, A.; Vilmer, N.; Dennis, B. R.

    2016-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a recently proposed Small Explorer (SMEX) mission that will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of two individual x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This SMEX mission is made possible by past experience with similar instruments on two sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI will image the Sun with a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 to 100 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  16. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  17. High energy gamma ray results from the second small astronomy satellite

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.

    1974-01-01

    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.

  18. A Universal Angular Momentum Profile for Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Liao, Shihong; Chen, Jianxiong; Chu, M.-C.

    2017-07-01

    The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.

  19. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.

    2017-12-01

    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  20. Interferometric Gravity Darkening Observations of Vega with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Aufdenberg, J. P.; Merand, A.; Coude Foresto, V.; Absil, O.; Di Folco, E.; Kervella, P.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; ten Brummelaar, T. A.; Turner, N. H.; Berger, D. H.; McAlister, H. A.

    2005-12-01

    We have obtained high-precision interferometric measurements of the A0 V standard star Vega with the Center for High Angular Resolution Astronomy (CHARA) Array and the Fiber Linked Unit for Optical Recombination (FLUOR) beam combiner in the K' band at projected baselines between 103 m and 273 m. The measured squared visibility amplitudes beyond the first lobe are significantly weaker than expected for a slowly rotating star and provide strong evidence for the model of Vega as a rapidly rotating star viewed very nearly pole on. We have constructed a Roche-von Zeipel gravity-darkened model atmosphere which is in generally good agreement with both our interferometric data and archival spectrophotometry. Our model indicates Vega is rotating at ˜92% of its angular break-up rate with an equatorial velocity of ˜275 km s-1. We find a polar effective temperature of ˜10150 K and a pole-to-equator effective temperature difference of ˜2500 K, much larger than the ˜300 K derived by Gulliver, Hill, and Adelman. Our model suggests that Vega's cool equatorial atmosphere may have significant convective flux and predicts a significantly cooler spectral energy distribution for Vega as seen by its surrounding debris disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Michelson Fellowship Program. JPL is managed for NASA by the California Institute of Technology. The CHARA Array is operated by the Center for High Angular Resolution Astronomy with support from Georgia State University and the National Science Foundation, the Keck Foundation and the Packard Foundation.

  1. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    PubMed

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  2. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    PubMed Central

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667

  3. Enhancement of diffusers BRDF accuracy

    NASA Astrophysics Data System (ADS)

    Otter, Gerard; Bazalgette Courrèges-Lacoste, Gregory; van Brug, Hedser; Schaarsberg, Jos Groote; Delwart, Steven; del Bello, Umberto

    2017-11-01

    This paper reports the result of an ESA study conducted at TNO to investigate properties of various diffusers. Diffusers are widely used in space instruments as part of the on-board absolute calibration. Knowledge of the behaviour of the diffuser is therefore most important. From measurements of launched instruments in-orbit it has been discovered that when a diffuser is used in the vacuum of space the BRDF can change with respect to the one in ambient conditions. This is called the air/vacuum effect and has been simulated in this study by measuring the BRDF in a laboratory in ambient as well as vacuum conditions. Another studied effect is related to the design parameters of the optical system and the scattering properties of the diffuser. The effect is called Spectral Features and is a noise like structure superimposed on the diffuser BRDF. Modern space spectrometers, which have high spectral resolution and/or a small field of view (high spatial resolution) are suffering from this effect. The choice of diffuser can be very critical with respect to the required absolute radiometric calibration of an instrument. Even if the Spectral Features are small it can influence the error budget of the retrieval algorithms for the level 2 products. in this presentation diffuser trade-off results are presented and the Spectral Features model applied to the optical configuration of the MERIS instrument is compared to in-flight measurements of MERIS.

  4. Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations

    NASA Astrophysics Data System (ADS)

    Sudevan, Vipin; Aluri, Pavan K.; Yadav, Sarvesh Kumar; Saha, Rajib; Souradeep, Tarun

    2017-06-01

    We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multiphase iterative harmonic space internal-linear-combination (HILC) approach. Our method nullifies a foreground leakage that was present in the old and usual iterative HILC method. In phase 1 of the multiphase technique, we obtain an initial cleaned map using the single iteration HILC approach over the desired portion of the sky. In phase 2, we obtain a final CMB map using the iterative HILC approach; however, now, to nullify the leakage, during each iteration, some of the regions of the sky that are not being cleaned in the current iteration are replaced by the corresponding cleaned portions of the phase 1 map. We bring all input frequency maps to a common and maximum possible beam and pixel resolution at the beginning of the analysis, which significantly reduces data redundancy, memory usage, and computational cost, and avoids, during the HILC weight calculation, the deconvolution of partial sky harmonic coefficients by the azimuthally symmetric beam and pixel window functions, which in a strict mathematical sense, are not well defined. Using WMAP 9 year and Planck 2015 frequency maps, we obtain foreground-cleaned CMB maps and a CMB angular power spectrum for the multipole range 2≤slant {\\ell }≤slant 2500. Our power spectrum matches the published Planck results with some differences at different multipole ranges. We validate our method by performing Monte Carlo simulations. Finally, we show that the weights for HILC foreground minimization have the intrinsic characteristic that they also tend to produce a statistically isotropic CMB map.

  5. Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert

    2016-10-01

    The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.

  6. Detecting Compartmental non-Gaussian Diffusion with Symmetrized Double-PFG MRI

    PubMed Central

    Paulsen, Jeffrey L.; Özarslan, Evren; Komlosh, Michal E.; Basser, Peter J.; Song, Yi-Qiao

    2015-01-01

    Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present Symmetrized Double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time-dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth moment (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics and act as a novel source of contrast to better resolve tissue micro-structure. PMID:26434812

  7. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  8. Data collection and simulation of high range resolution laser radar for surface mine detection

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Chevalier, Tomas; Larsson, Håkan

    2006-05-01

    Rapid and efficient detection of surface mines, IED's (Improvised Explosive Devices) and UXO (Unexploded Ordnance) is of high priority in military conflicts. High range resolution laser radars combined with passive hyper/multispectral sensors offer an interesting concept to help solving this problem. This paper reports on laser radar data collection of various surface mines in different types of terrain. In order to evaluate the capability of 3D imaging for detecting and classifying the objects of interest a scanning laser radar was used to scan mines and surrounding terrain with high angular and range resolution. These data were then fed into a laser radar model capable of generating range waveforms for a variety of system parameters and combinations of different targets and backgrounds. We can thus simulate a potential system by down sampling to relevant pixel sizes and laser/receiver characteristics. Data, simulations and examples will be presented.

  9. Study of Small-Scale Anisotropy of Ultra-High-Energy Cosmic Rays Observed in Stereo by the High Resolution Fly's Eye Detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration

    2004-08-01

    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.

  10. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  11. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  12. Orbital angular momentum modes of high-gain parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Beltran, Lina; Frascella, Gaetano; Perez, Angela M.; Fickler, Robert; Sharapova, Polina R.; Manceau, Mathieu; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.

    2017-04-01

    Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can also be used for imparting rotational motion to particles and providing high resolution in imaging. Due to the conservation of OAM in parametric down-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.

  13. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.

  14. The Analytical Limits of Modeling Short Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Kent, A. J.

    2016-12-01

    Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.

  15. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury

    PubMed Central

    Boyer, Richard B.; Kelm, Nathaniel D.; Riley, D. Colton; Sexton, Kevin W.; Pollins, Alonda C.; Shack, R. Bruce; Dortch, Richard D.; Nanney, Lillian B.; Does, Mark D.; Thayer, Wesley P.

    2015-01-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries. PMID:26323827

  16. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  17. AXIS - A High Angular Resoltuion X-ray Probe Concept Study

    NASA Astrophysics Data System (ADS)

    Mushotzky, Richard; AXIS Study Team

    2018-01-01

    AXIS is a probe-class concept under study to the 2020 Decadal survey. AXIS will extend and enhance the science of high angular resolution x-ray imaging and spectroscopy in the next decade with ~0.3" angular resolution over a 7' radius field of view and an order of magnitude more collecting area than Chandra in the 0.3-12 keV band with a cost consistent with a probe.These capabilities enable major advances in a wide range of science such as: (1) measuring the event horizon scale structure in AGN accretion disks and the spins of supermassive black holes through observations of gravitationally-microlensed quasars; (ii) determining AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) fueling of AGN by probing the Bondi radius of over 20 nearby galaxies; (iv) hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with the ELTs, LSST, ALMA, WFIRST and ATHENA. AXIS utilizes breakthroughs in the construction of lightweight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout rate detectors allowing a robust and cost effective design. The AXIS team welcomes input and feedback from the community in preparation for the 2020 Decadal review.

  18. High resolution of fast-rotating stars across the H-R diagram: photosphere and circumstellar environment

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, Armando

    2014-12-01

    Rotation is a fundamental parameter that governs the physical structure and evolution of stars, for example by generating internal circulations of matter and angular momentum, which in turn change the stellar lifetime. Massive stars (spectral types OBA) are those presenting the highest rotation velocities and thus those for which the consequences of rotation are the strongest. On the external layers of the star, fast-rotation induces in particular (1) a flattening (equatorial radius higher than the polar radius) and (2) a gravity darkening (non-uniform distribution of flux, and thus effective temperature, between the poles and the equator). This important modification in the photospheric physical structure can also drive an anisotropic (axisymmetric) mass and angular momentum loss, originating for example the complex circumstellar environments around Be and supergiant B[e] stars. The techniques of high angular and high spectral resolution allow a detailed study of the effects of rotation on the stellar photosphere and circumstellar environment across the H-R diagram. Thanks to these techniques, and in particular to the optical/infrared long-baseline interferometry, our knowledge on the impact of rotation in stellar physics was highly deepened since the beginning of the XXI century. The results described in this Habilitation Thesis are placed in this context and are the fruit a double approach combining both (1) observation, mainly with the ESO-VLT(I) instruments (e.g. NACO, VISIR, MIDI, AMBER, PIONIER) and (2) astrophysical modeling with different codes, including also radiation transfer (CHARRON, HDUST, FRACS). I present, in particular, the results obtained on three fast-rotating stars: Altair (A7V; delta Scuti), Achernar (B6Ve; Be star), and CPD-57° 2874 (supergiant B[e] star).

  19. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC-based detector system through the (1) design, manufacture, and test of front-end electronics instrument boards and (2) calibration of the detectors to assess their performance and (3) vibration and environmental testing. By the end of this program, multiple detector assemblies will be built and characterized, and can be used as part of future instruments. We propose to augment the existing effort with the development of an anti-coincidence shield for these HEXITEC-based detector assemblies to maximize sensitivity. Designing the anti-coincidence shield is enabled by the addition of a new team member, Wayne Baumgartner, who has recently and fortuitously joined the existing effort. Dr. Baumgartner has valuable and relevant past experience with a similar shield systems developed for NuSTAR and the InFOCμS x-ray telescope. We are asking for a modest amount of additional funding in this proposal year, as it coincides with a key time in the characterization and environmental testing of the detector assemblies. Characterization and environmental testing of the bare assemblies is already funded under the current effort. The addition of this active shield will allow for a more complete detector module vibration and environment test at the end of the existing development program so that this project results in a detector system with a demonstrated TRL of 6: "System/subsystem model or prototype demonstration in a relevant environment."

  20. Coherent-backscatter effect - A vector formulation accounting for polarization and absorption effects and small or large scatterers

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.

    1992-01-01

    Previous theoretical work on the coherent-backscatter effect in the context of speckle time autocorrelation has gone beyond the diffusion approximation and the assumption of isotropic (point) scatterers. This paper extends the theory to include the effects of polarization and absorption, and to give the angular line shape. The results are expressions for angular variations valid for small and large scatterers and linear and circular polarizations, in lossless or lossy media. Calculations show that multiple anisotropic scattering results in the preservation of incident polarization. Application to a problem in radar astronomy is considered. It is shown that the unusual radar measurements (high reflectivity and polarization ratios) of Jupiter's icy Galilean satellites can be explained by coherent backscatter from anisotropic (forward) scatterers.

Top