Science.gov

Sample records for high-capacity optical storage

  1. Photodimerization in dipeptides for high capacity optical digital storage

    SciTech Connect

    Ramanujam, P.S.; Berg, Rolf H.

    2004-09-06

    We have developed peptide materials with chromophores that undergo cycloaddition, suitable for terabit optical digital storage in a 5.25 in. disc. The rationale behind this design is that the length and rigidity of the backbone can be adjusted to facilitate the formation of a photodimer without large physical movements of the chromophores on exposure to UV light. Initially strongly absorbing films transmit up to 50% of light on irradiation at dimerizing wavelengths. This property can be utilized to record grey levels. An intensity-dependent transmission behavior has been observed that may enable data to be written and read at the same wavelength.

  2. Promising Rapid Access High-Capacity Mass Storage Technique For Diagnostic Information Utilizing Optical Disc

    NASA Astrophysics Data System (ADS)

    Colby, R. L.; Bartuska, A. J.; Herzog, D. G.

    1982-01-01

    The optical disc has become a new technique for mass digital data storage of X-ray images from examinations and films in todays hospitals. Up to 36,000 X-ray images can be stored on one side of a 12-inch disc by melting holes 0.015 mils in size in an ablative material such as tellerium with a laser beam. This unique characteristic makes the disc suitable for storage and retrieval of X-rays in a record and playback system in either a single disc or multiple disc "jukebox" configuration. Doctors, nurses, technicians and other hospital personnel can call up a particular X-ray in less than 0.6 of a second in an on-line single disc system and up to less than 6 seconds in an on-line "jukebox" system. The jukebox is configured to hold up to 100 discs, thus storing 3,600,000 X-rays in hospitals with a bed size of greater than 500. The estimated exposed films on file in those hospitals is 327,400,000 and the estimated annual X-ray exams are 44,300. Thus, a single disc system could be used for an all electronic X-ray scanning system for annual X-ray exams. The jukebox configuration, which has expansion capability for servicing multiple simultaneous user request, can be applied to large archival mass storage. These systems could store the existing exposed films in hospitals with bed size greater than 500 at record and playback data rates of 50 Mb/s with access times of less than 15 seconds.

  3. High capacity hydrogen storage nanocomposite materials

    DOEpatents

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  4. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  5. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  6. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  7. High-capacity hydrogen storage in Al-adsorbed graphene

    NASA Astrophysics Data System (ADS)

    Ao, Z. M.; Peeters, F. M.

    2010-05-01

    A high-capacity hydrogen storage medium—Al-adsorbed graphene—is proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79wt% with average adsorption energy -0.193eV/H2 . Its hydrogen storage capacity is in excess of 6wt% , surpassing U. S. Department of Energy (DOE’s) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

  8. High Capacity High Speed Optical Data Storage System Based on Diffraction-Free Nanobeam. Final Report, 09-02-98 to 03-17-99

    SciTech Connect

    Tin Aye

    1999-06-16

    Physical Optics Corporation (POC) investigated the development of an optical data storage system built around a current well-engineered high-speed optical disk system with an innovative diffraction-free micro-optical element to produce a beam {approximately}250 nm wide with {approximately}4-5 mm depth of focus, allowing the system to address data at {approximately}100 Mbits/second and to store it 100 to 1,000 times more densely ({approximately}10 Gbit/in.{sup 2}) than in present systems. In Phase 1 of this project POC completed a thorough feasibility study by system design and analysis, successfully demonstrated fabrication of the key components, and conducted a proof-of-principle experimental demonstration. Specifically, production of a subwavelength ({approximately}380 nm) large depth of focus ({approximately}4-5 mm) addressing beam was demonstrated by fabricating a special microdiffractive optical element and recording this beam on a standard optical recording disk coated with a photopolymer material.

  9. High Capacity Cathode Materials for Next Generation Energy Storage

    NASA Astrophysics Data System (ADS)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of

  10. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  11. High-capacity hydrogen storage in lithium and sodium amidoboranes

    NASA Astrophysics Data System (ADS)

    Xiong, Zhitao; Yong, Chaw Keong; Wu, Guotao; Chen, Ping; Shaw, Wendy; Karkamkar, Abhi; Autrey, Thomas; Jones, Martin Owen; Johnson, Simon R.; Edwards, Peter P.; David, William I. F.

    2008-02-01

    The safe and efficient storage of hydrogen is widely recognized as one of the key technological challenges in the transition towards a hydrogen-based energy economy. Whereas hydrogen for transportation applications is currently stored using cryogenics or high pressure, there is substantial research and development activity in the use of novel condensed-phase hydride materials. However, the multiple-target criteria accepted as necessary for the successful implementation of such stores have not yet been met by any single material. Ammonia borane, NH3BH3, is one of a number of condensed-phase compounds that have received significant attention because of its reported release of ~12wt% hydrogen at moderate temperatures (~150° C). However, the hydrogen purity suffers from the release of trace quantities of borazine. Here, we report that the related alkali-metal amidoboranes, LiNH2BH3 and NaNH2BH3, release ~10.9wt% and ~7.5wt% hydrogen, respectively, at significantly lower temperatures (~90°C) with no borazine emission. The low-temperature release of a large amount of hydrogen is significant and provides the potential to fulfil many of the principal criteria required for an on-board hydrogen store.

  12. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  13. High-Capacity Hydrogen-Based Green-Energy Storage Solutions for the Grid Balancing

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  14. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stabilitymore » and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  15. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    SciTech Connect

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.

  16. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials.

  17. Reconfigurable high-speed optical signal processing and high-capacity optical transmitter

    NASA Astrophysics Data System (ADS)

    Chitgarha, Mohammad Reza

    The field of optics and photonics enables several technologies including communication, bioimaging, spectroscopy, Ladars, microwave photonics and data processing [1-139]. The ability to use and manipulate large amounts of data is transforming many vital areas of society. The high capacity that optics brought to communications might also bring advantages to increase performance in signal processing by using a novel all-optical implementation of a tapped-delay-line, a fundamental building block for digital signal processing. This all-optical alternative provides real-time processing of amplitude- and phase-encoded optical fields, such that the overall potential speed-up is 10-100 fold faster than individual electronic processors with 5 GHz clock speeds. It can also enhance the optical data generation and transmission techniques by using different optical nonlinear processes to achieve higher baud rate data with more complex modulation format. Here, we demonstrate a reconfigurable high- speed optical tapped-delay-line, enabling several fundamental real-time signal processing functions such as equalization, correlation and discrete Fourier transform. Using nonlinear optics and dispersive elements, continuous tunability in time, amplitude and phase of the tapped-delay-line can be achieved at high speed. We also demonstrate a reconfigurable optical generation of higher-order modulation formats including pulse-amplitude-modulation (PAM) signals and quadrature-amplitude-modulation (QAM) signals [140-195].

  18. Nanomaterials for optical data storage

    NASA Astrophysics Data System (ADS)

    Gu, Min; Zhang, Qiming; Lamon, Simone

    2016-12-01

    The growing amount of data that is generated every year creates an urgent need for new and improved data storage methods. Nanomaterials, which have unique mechanical, electronic and optical properties owing to the strong confinement of electrons, photons and phonons at the nanoscale, are enabling the development of disruptive methods for optical data storage with ultra-high capacity, ultra-long lifetime and ultra-low energy consumption. In this Review, we survey recent advancements in nanomaterials technology towards the next generation of optical data storage systems, focusing on metallic nanoparticles, graphene and graphene oxide, semiconductor quantum dots and rare-earth-doped nanocrystals. We conclude by discussing the use of nanomaterials in data storage systems that do not rely on optical mechanisms and by surveying the future prospects for the field.

  19. High-capacity hydrogen storage of magnesium-decorated boron fullerene

    NASA Astrophysics Data System (ADS)

    Li, J. L.; Hu, Z. S.; Yang, G. W.

    2012-01-01

    By theoretical analysis, we have explored the feasibility of functionalizing boron fullerene (B 80) by adsorbing Mg atoms for the application as hydrogen storage nanomaterials. Our results show that due to the charge transfer from Mg to B atoms Mg atoms reside above the pentagonal faces of the B 80 cage. The electric field induced around the positive charged Mg atoms polarizes H 2 molecules, and the resulting binding is strong enough to adsorb H 2 without dissociation. Further calculations indicated that the 12Mg-decorated-B 80 has a high hydrogen storage capacity storing up to 96 H 2 molecules with an ideal binding energy of 0.20 eV/H 2 according to the approximation of GGA and 0.5 eV/H 2 according to LDA, corresponding to a hydrogen uptake of 14.2%. This suggested a possible method of engineering new structure for high-capacity hydrogen storage materials with the reversible adsorption and desorption of hydrogen molecules.

  20. Free space optical communications for ultra high-capacity PON system

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Sousa, Artur N.; Ferreira, Ricardo; Lima, Mário; Teixeira, António

    2014-08-01

    We experimentally demonstrate a set of ultra-high capacity free space passive optical networks (PONs) using quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) Nyquist pulse shaped and orthogonal frequency-division multiplexing (OFDM) modulations. Moreover, these technologies support up to 10 Gb/s services per user and allow a smooth and full integration between fiber and optical wireless access networks.

  1. High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner.

    PubMed

    Ning, Guoqing; Xu, Chenggen; Mu, Liang; Chen, Guangjin; Wang, Gang; Gao, Jinsen; Fan, Zhuangjun; Qian, Weizhong; Wei, Fei

    2012-07-11

    We report for the first time an experimental investigation of gas storage in porous graphene with nanomeshes. High capacity methane storage (236 v(STP)/v) and a high selectivity to carbon dioxide adsorption were obtained in the nanomesh graphene with a high specific surface area (SSA) and a SSA-lossless tightly stacking manner.

  2. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  3. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    PubMed Central

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  4. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE PAGES

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; ...

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g-1 in half-cells at a scan rate of 5more » mV s-1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g-1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  5. Incorporating magnesium and calcium cations in porous organic frameworks for high-capacity hydrogen storage.

    PubMed

    Wang, Lin; Sun, Yingxin; Sun, Huai

    2011-01-01

    We propose incorporating a bi-functional group consisting of magnesium or calcium cations and a 1,2,4,5-benzenetetroxide anion (C6H2O4(4-)) in porous materials to enhance the hydrogen storage capacity. The C6H2O4M2 bifunctional group is highly stable and polarized, and each group provides 18 (M = Mg) or 22 (M = Ca) binding sites for hydrogen molecules with an average binding energy of ca. 10 kJ mol(-1) per hydrogen molecule based on RIMP2/ TZVPP calculations. Two porous materials (PAF-Mg or PAF-Ca) constructed with the bi-functional groups show remarkable improvement in hydrogen uptakes at normal ambient conditions. At 233 K and 10 MPa, the predicted gravimetric uptakes are 6.8 and 6.4 wt% for PAF-Mg and PAF-Ca respectively. This work reveals that fabricating materials with large numbers of binding sites and relatively low binding energies is a promising approach to achieve high capacity for on-board storage of hydrogen.

  6. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  7. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage.

    PubMed

    Lee, Yoon Jeong; Talapaneni, Siddulu Naidu; Coskun, Ali

    2017-09-13

    Chemical activation of porous/nonporous materials to achieve high surface area sorbents with enhanced textural properties is a very promising strategy. The chemical activation using KOH, however, could lead to broad distribution of pores originating from the simultaneous pore deepening and widening pathways. Accordingly, establishing correlation between the chemical/textural properties of starting porous/nonporous materials and various pore formation mechanisms is quite critical to realize superior porosity and gas uptake properties. Here, we show that the chemical and textural properties of starting porous organic polymers, that is, covalent triazine frameworks (CTF), have profound effect on the resulting porosity of the frameworks. The chemical activation of microporous CTF-1 using KOH at 700 °C enabled the preparation of chemically activated CTF-1, caCTF-1-700, which predominantly showed pore deepening, leading to an increased surface area of 2367 m(2) g(-1) and significantly enhanced gas adsorption properties with CO2 uptake capacities up to 6.0 mmol g(-1) at 1 bar and 1.45 mmol g(-1) at 0.15 bar and 273 K along with a isosteric heats of adsorption (Qst) of 30.6 kJ mol(-1). In addition, a remarkable H2 uptake capacity of 2.46 and 1.66 wt % at 77 and 87 K, 1 bar along with the Qst value of 10.95 kJ mol(-1) at zero coverage was also observed for the caCTF-1-700. Notably, the activation of mesoporous CTF-2 under the same conditions was accompanied by a decrease in its surface area and also in the conversion of mesopores into the micropores, thus leading to a pore deepening/narrowing rather than widening. We attributed this result to the presence of reactive weak spots, triazine moieties, for the chemical activation reaction within the CTF backbone. These results collectively suggest the critical role of chemical and pore characteristics of porous organic polymers in chemical activation to realize solid-sorbents for high capacity gas storage applications.

  8. Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material.

    PubMed

    Park, Eunjun; Yoo, Hyundong; Lee, Jaewoo; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu

    2015-07-28

    SiOx-based materials attracted a great deal of attention as high-capacity Li(+) storage materials for lithium-ion batteries due to their high reversible capacity and good cycle performance. However, these materials still suffer from low initial Coulombic efficiency as well as high production cost, which are associated with the complicated synthesis process. Here, we propose a dual-size Si nanocrystal-embedded SiOx nanocomposite as a high-capacity Li(+) storage material prepared via cost-effective sol-gel reaction of triethoxysilane with commercially available Si nanoparticles. In the proposed nanocomposite, dual-size Si nanocrystals are incorporated into the amorphous SiOx matrix, providing a high capacity (1914 mAh g(-1)) with a notably improved initial efficiency (73.6%) and stable cycle performance over 100 cycles. The highly robust electrochemical and mechanical properties of the dual-size Si nanocrystal-embedded SiOx nanocomposite presented here are mainly attributed to its peculiar nanoarchitecture. This study represents one of the most promising routes for advancing SiOx-based Li(+) storage materials for practical use.

  9. Bismuth as a New Chloride-Storage Electrode Enabling the Construction of a Practical High Capacity Desalination Battery.

    PubMed

    Nam, Do-Hwan; Choi, Kyoung-Shin

    2017-08-16

    Materials that can selectively store Na and Cl ions in the bulk of their structures and release these ions with good cycle stability can enable the construction of a high capacity, rechargeable desalination cell for use in seawater desalination. In this study, the ability of a nanocrystalline Bi foam electrode to serve as an efficient and high capacity Cl-storage electrode using its conversion to BiOCl was investigated. When Bi as a Cl-storage electrode was coupled with NaTi2(PO4)3 as a Na-storage electrode, a new type of rechargeable desalination cell, which is charged during desalination and discharged during salination, was constructed. The resulting Bi-NaTi2(PO4)3 cell was tested under various salination and desalination conditions to investigate advantages and potential limitations of using Bi as a Cl-storage electrode. Slow Cl(-) release kinetics of BiOCl in neutral conditions and an imbalance in Cl and Na storage (i.e., Cl storage requires three electrons/Cl, while Na storage requires one electron/Na) were identified as possible drawbacks, but strategies to address these issues were developed. On the basis of these investigations, optimum desalination and salination conditions were identified where the Bi/NaTi2(PO4)3 cell achieved a desalination/salination cycle at ±1 mA cm(-2) with a net potential input of only 0.20 V. The kinetics of Cl(-) release from BiOCl was significantly improved by the use of an acidic solution, and therefore, a divided cell was used for the salination process. We believe that with further optimizations the Bi/BiOCl electrode will enable efficient and practical desalination applications.

  10. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    The density of digital storage media in our information-intensive society increases by a factor of four every three years, while the rate at which this data can be migrated to viable long-term storage has been increasing by a factor of only four every nine years. Meanwhile, older data stored on increasingly obsolete media, are at considerable risk. When the systems for which the media were designed are no longer serviced by their manufacturers (many of whom are out of business), the data will no longer be accessible. In some cases, older media suffer from a physical breakdown of components - tapes simply lose their magnetic properties after a long time in storage. The scale of the crisis is compatible to that facing the Social Security System. Greater financial and intellectual resources to the development and refinement of new storage media and migration technologies in order to preserve as much data as possible.

  11. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    The density of digital storage media in our information-intensive society increases by a factor of four every three years, while the rate at which this data can be migrated to viable long-term storage has been increasing by a factor of only four every nine years. Meanwhile, older data stored on increasingly obsolete media, are at considerable risk. When the systems for which the media were designed are no longer serviced by their manufacturers (many of whom are out of business), the data will no longer be accessible. In some cases, older media suffer from a physical breakdown of components - tapes simply lose their magnetic properties after a long time in storage. The scale of the crisis is compatible to that facing the Social Security System. Greater financial and intellectual resources to the development and refinement of new storage media and migration technologies in order to preserve as much data as possible.

  12. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage.

    PubMed

    Yao, Xiangdong; Wu, Chengzhang; Du, Aijun; Lu, Gao Qing; Cheng, Huiming; Smith, Sean C; Zou, Jin; He, Yinghe

    2006-06-22

    Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

  13. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Jizhang; Yang, Li; Rousidan, Saibihai; Fang, Shaohua; Zhang, Zhengxi; Hirano, Shin-Ichi

    2013-10-01

    Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1.Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1. Electronic supplementary information (ESI) available: SEM images; N2 adsorption/desorption isotherm; long-term cycling performance at 500 mA g-1 comparison with other literature. See DOI: 10.1039/c3nr03955b

  14. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  15. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA.

    PubMed

    Goldman, Nick; Bertone, Paul; Chen, Siyuan; Dessimoz, Christophe; LeProust, Emily M; Sipos, Botond; Birney, Ewan

    2013-02-07

    Digital production, transmission and storage have revolutionized how we access and use information but have also made archiving an increasingly complex task that requires active, continuing maintenance of digital media. This challenge has focused some interest on DNA as an attractive target for information storage because of its capacity for high-density information encoding, longevity under easily achieved conditions and proven track record as an information bearer. Previous DNA-based information storage approaches have encoded only trivial amounts of information or were not amenable to scaling-up, and used no robust error-correction and lacked examination of their cost-efficiency for large-scale information archival. Here we describe a scalable method that can reliably store more information than has been handled before. We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information of 5.2 × 10(6) bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade.

  16. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity.

    PubMed

    Shin, Weon Ho; Jeong, Hyung Mo; Kim, Byung Gon; Kang, Jeung Ku; Choi, Jang Wook

    2012-05-09

    The increasing demands on high performance energy storage systems have raised a new class of devices, so-called lithium ion capacitors (LICs). As its name says, LIC is an intermediate system between lithium ion batteries and supercapacitors, designed for taking advantages of both types of energy storage systems. Herein, as a quest to improve the Li storage capability compared to that of other existing carbon nanomaterials, we have developed extrinsically defective multiwall carbon nanotubes by nitrogen-doping. Nitrogen-doped carbon nanotubes contain wall defects through which lithium ions can diffuse so as to occupy a large portion of the interwall space as storage regions. Furthermore, when integrated with 3 nm nickel oxide nanoparticles for a further capacity boost, nitrogen doping enables unprecedented cell performance by engaging anomalous electrochemical phenomena such as nanoparticles division into even smaller ones, their agglomeration-free diffusion between nitrogen-doped sites as well as capacity rise with cycles. The final cells exhibit a capacity as high as 3500 mAh/g, a cycle life of greater than 10,000 times, and a discharge rate capability of 1.5 min while retaining a capacity of 350 mAh/g.

  17. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    PubMed Central

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling

    2017-01-01

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms. PMID:28767084

  18. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.

    PubMed

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong

    2017-08-02

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.

  19. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    PubMed

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Towards high-capacity fibre-optic communications at the speed of light in vacuum

    NASA Astrophysics Data System (ADS)

    Poletti, F.; Wheeler, N. V.; Petrovich, M. N.; Baddela, N.; Numkam Fokoua, E.; Hayes, J. R.; Gray, D. R.; Li, Z.; Slavík, R.; Richardson, D. J.

    2013-04-01

    Wide-bandwidth signal transmission with low latency is emerging as a key requirement in a number of applications, including the development of future exaflop-scale supercomputers, financial algorithmic trading and cloud computing. Optical fibres provide unsurpassed transmission bandwidth, but light propagates 31% slower in a silica glass fibre than in vacuum, thus compromising latency. Air guidance in hollow-core fibres can reduce fibre latency very significantly. However, state-of-the-art technology cannot achieve the combined values of loss, bandwidth and mode-coupling characteristics required for high-capacity data transmission. Here, we report a fundamentally improved hollow-core photonic-bandgap fibre that provides a record combination of low loss (3.5 dB km-1) and wide bandwidth (160 nm), and use it to transmit 37 × 40 Gbit s-1 channels at a 1.54 µs km-1 faster speed than in a conventional fibre. This represents the first experimental demonstration of fibre-based wavelength division multiplexed data transmission at close to (99.7%) the speed of light in vacuum.

  1. Iron decorated - functionalized MOF for high-capacity hydrogen storage: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Cha, Moon-Hyun; Ihm, Jisoon

    2011-03-01

    We perform electronic structure calculations for the Fe-decorated, OH-functionalized isoreticular metal organic framework 16 (IRMOF16) to investigate the hydrogen storage capacity. Because of the relatively strong Kubas interaction between Fe and H2 , hydrogen molecule can be adsorbed on the proposed MOF even at room temperature. The reversibly usable storage capacity under ambient conditions reaches 6.0 wt%. Fe has a much lower oxidation tendency than other metals (e.g., Ti, Ca, or Li) used for decorating backbone structures and therefore far more convenient in practical implementation. We also find that the spin flip, which comes from the competition between exchange field splitting and ligand field splitting, plays a significant role in the interaction between Fe and H2 .

  2. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  3. The catalytic reactions in the Cu-Li-Mg-H high capacity hydrogen storage system.

    PubMed

    Braga, M H; El-Azab, A

    2014-11-14

    A family of hydrides, including the high capacity MgH2 and LiH, is reported. The disadvantages these hydrides normally display (high absorption/desorption temperatures and poor kinetics) are mitigated by Cu-hydride catalysis. This paper reports on the synthesis of novel CuLi0.08Mg1.42H4 and CuLi0.08Mg1.92H5 hydrides, which are structurally and thermodynamically characterized for the first time. The CuLi0.08Mg1.42H4 hydride structure in nanotubes is able to hold molecular H2, increasing the gravimetric and volumetric capacity of this compound. The catalytic effect these compounds show on hydride formation and decomposition of CuMg2 and Cu2Mg/MgH2, Li and LiH, Mg and MgH2 is analyzed. The Gibbs energy, decomposition temperature, and gravimetric capacity of the reactions occurring within the Cu-Li-Mg-H system are presented for the first time. First principles and phonon calculations are compared with experiments, including neutron spectroscopy. It is demonstrated that the most advantageous sample contains CuLi0.08Mg1.92 and (Li) ∼ Li2Mg3; it desorbs/absorbs hydrogen according to the reaction, 2CuLi0.08Mg1.42H4 + 2Li + 4MgH2 ↔ 2CuLi0.08Mg1.92 + Li2Mg3 + 8H2 at 114 °C (5.0 wt%) - 1 atm, falling within the proton exchange membrane fuel cell applications window. Finally the reaction 2CuLi0.08Mg1.42H4 + MgH2 ↔ 2CuLi0.08Mg1.92 + 5H2 at 15 °C (4.4 wt%) - 1 atm is found to be the main reaction of the samples containing CuLi0.08Mg1.92 that were analyzed in this study.

  4. Wideband optical storage

    NASA Technical Reports Server (NTRS)

    Heard, H. G.

    1979-01-01

    This paper has five purposes. First, to focus upon the key relationships that bound the technology choices for large, archival, digital storage devices; second, to identify the motivations for selecting the optical technology for a petabit-exabit level storage system (10 to the 15th to 10 to the 18th bits); third, to present a generic example and a specific implementation of a terabit-level optical storage device; fourth, to characterize the global design space constraints that will allow one to build a technology-limited optical store; and fifth, to sketch the outline of the BYTERON concept, a wideband 10 to the 16th to 10 to the 17th bit optical store concept and contrast its performance to that of an optical store that is in operation today

  5. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage.

    PubMed

    Wang, Ping

    2012-04-21

    Ammonia borane (NH(3)BH(3), AB) is a unique molecular crystal containing an intriguingly high density of hydrogen. In the past several years, AB has received extensive attention as a promising hydrogen storage medium. Several strategies have been successfully developed for promoting H(2) release and for suppressing the evolution of volatile by-products from the solid-state thermolysis of AB. Several potentially cost-effective and energy-efficient routes for regenerating AB from the spent fuels have been experimentally demonstrated. These remarkable technological advances offer a promising prospect of using AB-based materials as viable H(2) carriers for on-board application. In this perspective, the recent progresses in promoting H(2) release from the solid-state thermolysis of AB and in developing regeneration technologies are briefly reviewed.

  6. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  7. Yttrium-dispersed C{sub 60} fullerenes as high-capacity hydrogen storage medium

    SciTech Connect

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-28

    Interaction between hydrogen molecules and functionalized C{sub 60} is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C{sub 60} decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H{sub 2} molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H{sub 2} molecule. Consequently, the C{sub 60}Y{sub 12} complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ∼6.30 wt. %.

  8. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  9. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C4N3) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC49, BC7, and BC5, have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  10. Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials

    SciTech Connect

    Damle, A.

    2010-02-03

    The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products

  11. Development and evaluation of a low-cost and high-capacity DICOM image data storage system for research.

    PubMed

    Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori

    2011-04-01

    Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.

  12. Optical information storage in cellular mobile terminals

    NASA Astrophysics Data System (ADS)

    Makela, Jakke S.; Aikio, Janne K.; Vadde, Venkatesh; Kolehmainen, Timo T.; Karioja, Pentti

    2001-11-01

    The trend towards so-called digital convergence (multiple functionality within a single terminal) is opening up a need for high-capacity storage within the cellular mobile terminals (CMT). Solid-state memories and magnetic microdrives are the most commercially mature options. Optical disk technology in this size range is immature, but has a unique potential: no other medium at present has the capability to be simultaneously low-cost, high-capacity, and exchangeable. In this paper, we explore the requirements for the implementation of optical disk storage in a CMT environment. From the technical point of view, these requirements include small form factor, high-enough data density and throughput, low power consumption, robustness, low cost, mass productability, and modularity. Although current technologies may satisfy some of these requirements individually, there is a need for combined optimization of all of these parameters. From the commercial point of view, the most crucial requirement is global standardization. Such standardization is crucial if wide interoperability is wanted (between CMT manufacturers, and even more crucially between CMTs and other appliances). Current optical storage standards are industry-driven and tend to be proprietary and/or incompatible. Even if the technical challenges can be met, optical data storage is not likely to be accepted in CMT applications unless global standardization proceeds more quickly than it is doing at present.

  13. Holographic Optical Data Storage

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  14. Simultaneous high-capacity optical and microwave data transmission over metal waveguides.

    PubMed

    Banan, Behnam; Hai, Mohammed Shafiqul; Berini, Pierre; Liboiron-Ladouceur, Odile

    2015-06-01

    The implementation of power efficient and high throughput chip-to-chip interconnects is necessary to keep pace with the bandwidth demands in high-performance computing platforms. In recent years, considerable effort has been made to optimize inter-chip communications using traditional copper waveguides. Also, optical links are extensively investigated as an alternative technology for fast and efficient data routing. For the first time, we experimentally demonstrate simultaneous microwave and optical high-speed data transmission over metallic waveguides embedded in polymer. The demonstration is significant as it merges two layers of communications onto the same structure towards increased aggregated bandwidth, and energy-efficient data movement.

  15. Optical high-capacity satellite downlinks via high-altitude platform relays

    NASA Astrophysics Data System (ADS)

    Knapek, Markus; Horwath, Joachim; Moll, Florian; Epple, Bernd; Courville, Nicolas; Bischl, Hermann; Giggenbach, Dirk

    2007-09-01

    Earth-observation (EO) satellite missions produce a large amount of data using high-resolution optical or radar sensors. During the last decades the amount of data has steadily increased due to improved sensor technologies with increased temporal resolution, sensor resolution, and pixel count. As a consequence EO satellite missions have become limited by the downlink data rates of microwave communication systems, which are inhibited by spectrum restrictions, manageable antenna sizes, and available transmit power. Optical downlinks from EO satellites with data rates of several Gbps mitigate the limiting effects of microwave communication systems; however optical links do not provide the necessary link availability through the atmosphere due to cloud blockage above the ground station. Apart from diversity concepts with several ground stations or satellite networks, a stratospheric High Altitude Platform (HAP) could act as a relay station to forward the optical communication beam over the last 20km through the atmosphere to the ground station, where short-range, high data-rate microwave systems are feasible. This paper will discuss the capabilities of HAP and GEO relay stations to increase the downlink capacities of LEO satellites. Environmental aspects for the deployment of HAP relays and regulatory/technology issues for a microwave downlink on the last 20km to the ground will be discussed.

  16. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming

  17. Simulations of High-Capacity Long-Haul Optical Transmission Systems

    NASA Astrophysics Data System (ADS)

    Matera, Francesco; Chandy, Rebecca; Carrozzo, Valeria; Ennser, Karin; Maier, Guido; Pattavina, Achille; Settembre, Marina; Siracusa, Domenico; Zannin, Marcelo

    The wider and wider bandwidth required for users stimulates the increase in the bit rate transmission for optical fiber systems (Bergano 2005), and one of the current aims for long-haul links is channel transmission at 100 Gbit/s (Cai et al. 2010). To reach such a capacity, several technological approaches are required, both in terms of advanced modulation formats (Winzer and Essiambre 2006) and also methods to mitigate impairments due to in-line degradation effects, like the ASE noise of optical amplifiers (Agrawal 2007), and dispersive (Elrefaie et al. 1988) and nonlinear fiber effects (Chraplyvy 1990). Concerning advanced transmission and detection formats (Gnauk 2005), the combination of amplitude and phase modulation allows us to use a higher bit rate reducing the signal bandwidth, and therefore, these modulation formats have shown enormous advantages with respect to conventional IM-DD systems. In particular, DQPSK is assumed as one of the most interesting formats since in a bit time, four symbols can be transmitted with a consequent enormous advantage for reduction of dispersive impairments (Fuerst et al. 2006, 2008). Concerning the mitigation of fiber impairments at the end of 1980, the soliton propagation seemed the best solution for long transmission systems (Mollenauer et al. 1991); conversely, the introduction of dispersion compensating devices such as DCF and grating showed that the regime of the periodic chromatic dispersion compensation, also known as dispersion management, was the best method since it is also able to limit the accumulation of nonlinear effects (Lichtman and Evangelides 1994).

  18. On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission.

    PubMed

    Liga, Gabriele; Xu, Tianhua; Alvarado, Alex; Killey, Robert I; Bayvel, Polina

    2014-12-01

    The performance of digital backpropagation (DBP) equalization when applied over multiple channels to compensate for the nonlinear impairments in optical fiber transmission systems is investigated. The impact of a suboptimal multichannel DBP operation is evaluated, where implementation complexity is reduced by varying parameters such as the number of nonlinear steps per span and sampling rate. Results have been obtained for a reference system consisting of a 5×32 Gbaud PDM-16QAM superchannel with 33 GHz subchannel spacing and Nyquist pulse shaping under long-haul transmission. The reduction in the effectiveness of the algorithm is evaluated and compared with the ideal gain expected from the cancellation of the nonlinear signal distortion. The detrimental effects of polarization mode dispersion (PMD) with varying DBP bandwidth are also studied. Key parameters which ensure the effectiveness of multichannel DBP are identified.

  19. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    NASA Astrophysics Data System (ADS)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  20. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    PubMed Central

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808

  1. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    NASA Astrophysics Data System (ADS)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  2. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    SciTech Connect

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-12

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Lastly, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  3. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    DOE PAGES

    Ren, Yongxiong; Li, Long; Wang, Zhe; ...

    2016-09-12

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one atmore » 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Lastly, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.« less

  4. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.

    PubMed

    Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman

    2017-02-28

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    NASA Astrophysics Data System (ADS)

    Willner, Alan E.; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-02-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue 'Optical orbital angular momentum'.

  6. The H{sub 60}Si{sub 6}C{sub 54} heterofullerene as high-capacity hydrogen storage medium

    SciTech Connect

    Yong, Yongliang; Zhou, Qingxiao; Li, Xiaohong; Lv, Shijie

    2016-07-15

    With the great success in Si atoms doped C{sub 60} fullerene and the well-established methods for synthesis of hydrogenated carbon fullerenes, this leads naturally to wonder whether Si-doped fullerenes are possible for special applications such as hydrogen storage. Here by using first-principles calculations, we design a novel high-capacity hydrogen storage material, H{sub 60}Si{sub 6}C{sub 54} heterofullerene, and confirm its geometric stability. It is found that the H{sub 60}Si{sub 6}C{sub 54} heterofullerene has a large HOMO-LUMO gap and a high symmetry, indicating it is high chemically stable. Further, our finite temperature simulations indicate that the H{sub 60}Si{sub 6}C{sub 54} heterofullerene is thermally stable at 300 K. H{sub 2} molecules would enter into the cage from the Si-hexagon ring because of lower energy barrier. Through our calculation, a maximum of 21 H{sub 2} molecules can be stored inside the H{sub 60}Si{sub 6}C{sub 54} cage in molecular form, leading to a gravimetric density of 11.11 wt% for 21H{sub 2}@H{sub 60}Si{sub 6}C{sub 54} system, which suggests that the hydrogenated Si{sub 6}C{sub 54} heterofullerene could be suitable as a high-capacity hydrogen storage material.

  7. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1991-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Several other optical tape drive development programs are underway, including one using the IBM 3480 style cartridge at LaserTape Systems. In order to understand the significance and potential of this step change in recording technology, it is useful to review the historical progress of optical storage. This has been slow to encroach on magnetic storage, and has not made any serious dent on the world's mountains of paper and microfilm. Some of the reasons for this are the long time needed for applications developers, systems integrators, and end users to take advantage of the potential storage capacity; access time and data transfer rate have traditionally been too slow for high-performance applications; and optical disk media has been expensive compared with magnetic tape. ICI's strategy in response to these concerns was to concentrate its efforts on flexible optical media; in particular optical tape. The manufacturing achievements, media characteristics, and media lifetime of optical media are discussed.

  8. An open, parallel I/O computer as the platform for high-performance, high-capacity mass storage systems

    NASA Technical Reports Server (NTRS)

    Abineri, Adrian; Chen, Y. P.

    1992-01-01

    APTEC Computer Systems is a Portland, Oregon based manufacturer of I/O computers. APTEC's work in the context of high density storage media is on programs requiring real-time data capture with low latency processing and storage requirements. An example of APTEC's work in this area is the Loral/Space Telescope-Data Archival and Distribution System. This is an existing Loral AeroSys designed system, which utilizes an APTEC I/O computer. The key attributes of a system architecture that is suitable for this environment are as follows: (1) data acquisition alternatives; (2) a wide range of supported mass storage devices; (3) data processing options; (4) data availability through standard network connections; and (5) an overall system architecture (hardware and software designed for high bandwidth and low latency). APTEC's approach is outlined in this document.

  9. Application of Optical Frequency Comb in High-Capacity Long Distance Optical Communication for China-Pakistan Economic Corridor

    NASA Astrophysics Data System (ADS)

    Latif, Zahid; Jianqiu, Zeng; Ullah, Rahat; Pathan, Zulfiqar Hussain; Latif, Shahid

    2017-08-01

    The current study examines the fiber optic connectivity from Chinese boundary to Rawalpindi and proposes a novel technique for carrying large capacity triple play services across China Pakistan economic corridor (CPEC). With the help of this technique, various wavelength data services can be extended to Pakistan, which can decrease the low bandwidth, poor connectivity and low speed problems of data transfer in Pakistan. This study contributes toward the existing literature in a way that this novel technique of data transmission not only relaxes the laying of fiber optic cable but also reduces the total cost of the project. The proposed technique proposes the deployment of optical frequency comb technique for 820 km CPEC route which could support 4 Tbps data. From the perspective of time energy consumption, the assessment suggests that the laying of fiber optic cable in CPEC is feasible with the existing route at the lowest cost between the two sovereign countries.

  10. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    SciTech Connect

    Yildirim, Taner

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  11. Optical Disks Compete with Videotape and Magnetic Storage Media: Part II.

    ERIC Educational Resources Information Center

    Urrows, Henry; Urrows, Elizabeth

    1988-01-01

    Describes capabilities of Digi-Data's high-capacity computer storage tape drive, Gigastore, and FileTek's Storage Machine/1. Optical digital disk (ODD) leaders' reactions, opinions, and new products are reported. A directory of 13 ODD sources is included. (MES)

  12. Optical Disks Compete with Videotape and Magnetic Storage Media: Part II.

    ERIC Educational Resources Information Center

    Urrows, Henry; Urrows, Elizabeth

    1988-01-01

    Describes capabilities of Digi-Data's high-capacity computer storage tape drive, Gigastore, and FileTek's Storage Machine/1. Optical digital disk (ODD) leaders' reactions, opinions, and new products are reported. A directory of 13 ODD sources is included. (MES)

  13. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.

    PubMed

    Vermeulen, Paul; van Thiel, Emile F M J; Notten, Peter H L

    2007-01-01

    In the search for hydrogen-storage materials with a high gravimetric capacity, Mg(y)Ti((1-y)) alloys, which exhibit excellent kinetic properties, form the basis for more advanced compounds. The plateau pressure of the Mg--Ti--H system is very low (approximately 10(-6) bar at room temperature). A way to increase this pressure is by destabilizing the metal hydride. The foremost effect of incorporating an additional element in the binary Mg--Ti system is, therefore, to decrease the stability of the metal hydride. A model to calculate the effect on the thermodynamic stability of alloying metals was developed by Miedema and co-workers. Adopting this model offers the possibility to select promising elements beforehand. Thin films consisting of Mg and Ti with Al or Si were prepared by means of e-beam deposition. The electrochemical galvanostatic intermittent titration technique was used to obtain pressure-composition isotherms for these ternary materials and these isotherms reveal a reversible hydrogen-storage capacity of more than 6 wt. %. In line with the calculations, substitution of Mg and Ti by Al or Si indeed shifts the plateau pressure of a significant part of the isotherms to higher pressures, while remaining at room temperature. It has been proven that, by controlling the chemistry of the metal alloy, the thermodynamic properties of Mg-based hydrides can be regulated over a wide range. Hence, the possibility to increase the partial hydrogen pressure, while maintaining a high gravimetric capacity creates promising opportunities in the field of hydrogen-storage materials, which are essential for the future of the hydrogen economy.

  14. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Manju, Unnikrishnan; Mahanty, Sourindra

    2015-08-05

    Metal organic frameworks (MOFs) with diverse structural chemistry are being projected as futuristic electrode materials for Li-ion batteries. In this work, we report synthesis of Mn-1,3,5-benzenetricarboxylate MOF by a simple solvothermal method and its application as an anode material for the first time. Scanning electron microscopy of the synthesized MOF shows a bar shaped morphology where these bars, about 1 μm wide and of varied lengths between 2 and 20 μm, are made of porous sheets containing mesoporous walls and macroporous channels. The MOF anode, when examined in the potential window of 0.01-2.0 V versus Li/Li(+), shows high specific capacities of 694 and 400 mAh g(-1) at current densities of 0.1 and 1.0 A g(-1) along with good cyclability, retention of capacity, and sustenance of the MOF network. Ex situ X-ray diffraction, Fourier transform infrared, and X-ray photoelectron spectroscopy studies on the electrode material at different states of charge suggest that the usual conversion reaction for Li storage might not be applicable in this case. Conjugated carboxylates being weakly electron withdrawing ligands with a stronger π-π interaction, a probable alternative Li storage mechanism has been proposed that involves the organic moiety. The present results show promise for applying Mn-1,3,5-benzenetricarboxylate MOF as high performance <2 V anode.

  15. First-principles prediction of high-capacity, thermodynamically reversible hydrogen storage reactions based on (NH4)2B12H12

    NASA Astrophysics Data System (ADS)

    Sun, Wenhao Q.; Wolverton, C.; Akbarzadeh, A. R.; Ozolins, V.

    2011-02-01

    We use a combination of first-principles density functional calculations along with the recently developed grand canonical linear programing method to predict a novel, high-capacity hydrogen storage reaction with thermodynamics suitable for near-ambient reversible storage. Unlike the vast majority of previously proposed complex hydrides, which typically rely on a hydrogen-containing anionic unit, our reaction is based on an ammonium-containing hydride, (NH4)2B12H12, which contains increased storage capacity due to both anionic and cationic hydrogen-containing complexes. The predicted decomposition of this hydride is a two-step reaction sequence: (NH4)2B12H12 → 2BN + ½B20H16 + 6H2 →2BN + 10B + 10H2, which possesses a theoretical gravimetric capacity of 11.3 wt% H2, a single-crystal volumetric density of 52 g H2/L, and T=300 K reaction enthalpies of 17 and 33 kJ/mol H2, respectively, which are well-suited for near-ambient reversible storage. The combination of these three attributes in a single material makes this decomposition reaction sequence highly promising.

  16. Ab initio design of Ca-decorated organic frameworks for high capacity molecular hydrogen storage with enhanced binding

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Lee, Kyuho; Kim, Yong-Hyun; Zhang, S. B.

    2009-07-01

    Ab initio calculations show that Ca can decorate organic linkers of metal-organic framework, MOF-5, with a binding energy of 1.25 eV. The Ca-decorated MOF-5 can store molecular hydrogen (H2) in both high gravimetric (4.6 wt %) and high volumetric (36 g/l) capacities. Even higher capacities (5.7 wt % and 45 g/l) can be obtained in a rationally designed covalent organic framework system, COF-α, with decorated Ca. Both density functional theory and second-order Møller-Plesset perturbation calculations show that the H2 binding in these systems is significantly stronger than the van der Waals interactions, which is required for H2 storage at near ambient conditions.

  17. Ab initio Design of Ca-Decorated Organic Frameworks for High Capacity Molecular Hydrogen Storage with Enhanced Binding

    SciTech Connect

    Sun, Y. Y.; Lee, K.; Kim, Y. H.; Zhang, S. B.

    2009-01-01

    Ab initio calculations show that Ca can decorate organic linkers of metal-organic framework, MOF-5, with a binding energy of 1.25 eV. The Ca-decorated MOF-5 can store molecular hydrogen (H{sub 2}) in both high gravimetric (4.6 wt %) and high volumetric (36 g/l) capacities. Even higher capacities (5.7 wt % and 45 g/l) can be obtained in a rationally designed covalent organic framework system, COF-{alpha}, with decorated Ca. Both density functional theory and second-order Moller-Plesset perturbation calculations show that the H{sub 2} binding in these systems is significantly stronger than the van der Waals interactions, which is required for H{sub 2} storage at near ambient conditions.

  18. Calcium as a superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage

    SciTech Connect

    Yoon, Mina; Yang, Shenyuan; Hicke, Christian; Wang, Enge; Geohegan, David B; Zhang, Zhenyu

    2008-01-01

    We explore theoretically the feasibility of functionalizing carbon nanostructures for hydrogen storage, focusing on the coating of C60 fullerenes with light alkaline-earth metals. Our first-principles density functional theory studies show that both Ca and Sr can bind strongly to the C60 surface, and highly prefer monolayer coating, thereby explaining existing experimental observations. The strong binding is attributed to an intriguing charge transfer mechanism involving the empty d levels of the metal elements. The charge redistribution, in turn, gives rise to electric fields surrounding the coated fullerenes, which can now function as ideal attractors upon molecular hydrogen adsorption with binding strengths strong enough for potential room temperature applications but weak enough to avoid H2 dissociation. With a hydrogen uptake of >8.4wt% on Ca32C60, Ca is superior to all the recently suggested metal coating elements.

  19. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    NASA Astrophysics Data System (ADS)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  20. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts.

    PubMed

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg(-1); ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria--absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH(2) has a ΔHf~75 kJ mol(-1)), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  1. Optical Storage Performance Modeling and Evaluation.

    ERIC Educational Resources Information Center

    Behera, Bailochan; Singh, Harpreet

    1990-01-01

    Evaluates different types of storage media for long-term archival storage of large amounts of data. Existing storage media are reviewed, including optical disks, optical tape, magnetic storage, and microfilm; three models are proposed based on document storage requirements; performance analysis is considered; and cost effectiveness is discussed.…

  2. Optical storage device

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1991-01-01

    A new holographic image storage device which uses four-wave mixing in two photorefractive crystals is described. Photorefractive crystals promise information storage densities on the order of 10(exp 9) to 10(exp 12) bits per cubic centimeter at real-time rates. Several studies in recent years have investigated the use of photorefractive crystals for storing holographic image information. However, all of the previous studies have focused on techniques for storing information in a single crystal. The disadvantage of using a single crystal is that the read process is destructive. Researchers have developed techniques for fixing the information in a crystal so that it may be read many times. However, when fixed, the information cannot be readily erased and overwritten with new information. It two photorefractive crystals are used, holographic image information may be stored dynamically. That is, the stored image information may be read out more than once, and it may be easily erased and overwritten with new image information.

  3. Optical Storage Technology Subgroup (FIMUG)

    DTIC Science & Technology

    1990-04-01

    PROCUREMENT INSTRUMENT IDEyTiFiCAT,ON NUMBER ORGANIZATION (If applicable) US Army Corps of Engineers I 8c. ADDRESS (Citv. State, and ZIP Code) I0 SOURCE OF... Engineering , and Automation) are considered in relation to the current level of optical technology, and options for the US Army Corps of Engi- neers are... Engineer - ing, and Automation are provided in the report. Conclusions General conclusions are as follow: a. The use of optical storage technologies can

  4. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  5. Optical Storage Developments--Write-Once Media.

    ERIC Educational Resources Information Center

    Edwards, Ian C.

    1987-01-01

    Discusses the user benefits of write-once optical storage devices; describes typical applications in archival storage, one-off complex instruction sets, and information storage and retrieval systems; and identifies current trends toward standardization of equipment. (CLB)

  6. Optical storage in lithium niobate

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1976-01-01

    Holographic storage and retrieval using photorefractive media (electro-optic ferroelectric materials), particularly iron-doped lithium niobate with its enhanced sensitivity, are discussed. Refractive index changes induced by exposure to light render the materials useful for read-write memories and read-write memory simulation. Resolution, dark storage time, write and erase times, reversibility, and noise levels of the materials are examined. The laser source, deflection system, hololens, page composer, and detector array of the holographic memory system are described. High SNR and two orders of magnitude improvement in speed are reported over earlier experimental prototypes, but the system is still too slow to meet practical needs.

  7. Optical storage in quantized media

    NASA Astrophysics Data System (ADS)

    Djotyan, G. P.; Sandor, N.; Bakos, J. S.; Sörlei, Zs.

    2011-07-01

    The schemes of storing of images in quantum states of atoms being used nowadays are based on electromagnetically induced transparency. The images are stored in the collective atomic coherence with the storage time limited by different relaxation processes in the system with the transverse relaxation being the most detrimental among them. In this communication, we present a method of coherent writing of optical information (a transverse image) into the populations instead of the coherences of the metastable atomic states. The method is based on an action of a sequence of frequency chirped laser pulses on an atom with lambda-structure of working levels. Such storage results in drastic increase of the storage time. The reading out of the stored information is performed by measuring the population of one of the metastable atomic states.

  8. Optical system storage design with diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Kostuk, Raymond K.; Haggans, Charles W.

    1993-01-01

    Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.

  9. Multiwavelength optical storage of diarylethene PMMA films

    NASA Astrophysics Data System (ADS)

    Guo, Haobo; Zhang, Fushi; Sun, Fan; Pu, Shouzhi; Zhou, Xinhong

    2003-04-01

    Current applied optical storage technologies are all based on the heat effect of the recording laser, i.e., heat-mode optical storage. In the present work, photon-mode optical storage using photochromic diarylethene materials was investigated. Two diarylethene molecules dispersed into PMMA together was used as storage material. The recording layer was spin-coated on a glass substrate with Al reflective layer. Two laser beams of 532 nm and 650 nm were used in recording and readout by simultaneously writing and reading, and the reading lasers detected signals with high S/N ratio. Multi-wavelength storage was realized with the diarylethene PMMA film.

  10. Development of high-capacity U-type pulse tube cryocoolers for a cold optics system in space applications

    NASA Astrophysics Data System (ADS)

    Dang, H. Z.; Li, S. S.; Wang, L. B.; Yang, K. X.; Shen, W. B.; Wu, Y. N.

    2010-04-01

    A robust U-type pulse tube cryocooler has been developed to replace the heavy and cumbersome passive radiator system for cooling the cold optics component of a sophisticated infrared sensors system used in a weather satellite. The U-type other than coaxial arrangement is chosen to obtain a robust and simple system, and also to avoid the potential loss introduced by the possible mismatch of the temperature profiles of pulse tube and regenerator as well. Besides the conventional integral "U"-shaped cold tip, a novel detachable two-half cold head is designed to enhance cooling performance. Some fine grooves are engraved in the cold head using electro discharge machining technology, which can not only increase the heat transfer area, but also serve as a straightener for the turbulence introduced by the flow reversal. The cooler is powered by a 7.5 cc dual opposed piston compressor and the overall weight is less than 11 kg. It can lift over 8.0W of heat at 150K with 87 W of electric input power and at 310 K of reject temperature. The design considers, experimental results, and performance analyses are presented.

  11. ICI optical data storage tape: An archival mass storage media

    NASA Technical Reports Server (NTRS)

    Ruddick, Andrew J.

    1993-01-01

    At the 1991 Conference on Mass Storage Systems and Technologies, ICI Imagedata presented a paper which introduced ICI Optical Data Storage Tape. This paper placed specific emphasis on the media characteristics and initial data was presented which illustrated the archival stability of the media. More exhaustive analysis that was carried out on the chemical stability of the media is covered. Equally important, it also addresses archive management issues associated with, for example, the benefits of reduced rewind requirements to accommodate tape relaxation effects that result from careful tribology control in ICI Optical Tape media. ICI Optical Tape media was designed to meet the most demanding requirements of archival mass storage. It is envisaged that the volumetric data capacity, long term stability and low maintenance characteristics demonstrated will have major benefits in increasing reliability and reducing the costs associated with archival storage of large data volumes.

  12. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  13. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  14. The Open Approach to Optical Storage.

    ERIC Educational Resources Information Center

    Noordenbos, Meino G.

    1987-01-01

    Discusses the need for user oriented optical storage systems to deal with information storage in offices, and describes the Megadoc system. The features described include hardware configurations, microcomputer applications, the ability to read microfilm or microfiche documents, equipment standards, and current systems software. (CLB)

  15. Diffused holographic information storage and retrieval using photorefractive optical materials

    NASA Astrophysics Data System (ADS)

    McMillen, Deanna Kay

    Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and

  16. Optical data storage and metallization of polymers

    NASA Technical Reports Server (NTRS)

    Roland, C. M.; Sonnenschein, M. F.

    1991-01-01

    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described.

  17. Superresolution applied to optical data storage systems

    NASA Astrophysics Data System (ADS)

    Walker, Edwin Parker

    1999-09-01

    This dissertation investigates superresolution applications in optical data storage systems. The performance of standard and superresolving magneto-optic data storage system are quantified by scalar diffraction modeling and experiments. Classical resolution measures are reviewed. Background on superresolution definitions and their conceptual development in scanning optical microscopes, optical data storage, and image processing is presented. Figures of merit for quantifying the performance of the systems are reviewed, such as system transfer function, two-point response, focused spot size, and signal-to-noise ratio. The description of the scalar diffraction modeling used to simulate an optical data storage system is reviewed. Operation of the magneto-optic data storage system and tradeoffs of superresolving techniques are discussed. The signal and noise spatial distribution in the pupil of an optical data storage system are shown to be different. For a particular spatial frequency bandwidth, the signal and noise are concentrated in different regions of the pupil. This understanding allows the use of optical filters that partially equalize the system transfer function and increase the signal-to-noise ratio. The main superresolution techniques investigated are those that increase the transmission of the higher spatial frequencies, or equalize the system transfer function, without changing the system cutoff frequency. The optical methods used to achieve superresolution are amplitude and phase filters placed in strategic system locations. One location influences the properties of the focused spot such as the irradiance distribution and width of the central core. Another location does not change the focused spot at all, but does change the signal and noise properties of the system. Electronic filtering techniques are also used to increase the transmission of the high spatial frequencies. The amplitude and phase filter sensitivities to aberration are also investigated

  18. Optical Storage and Retrieval of Library Material.

    ERIC Educational Resources Information Center

    Folen, Doris R.; Stackpole, Laurie E.

    1993-01-01

    Describes the newly installed optical disk storage system at the Naval Research Laboratory's Research Library and Technical Information Center. Planning and design of the system, the conversion of 140,000 reports to optical disk, the information retrieval process, and future plans are covered. (Contains nine references.) (KRN)

  19. Liquid crystals for holographic optical data storage.

    PubMed

    Matharu, Avtar S; Jeeva, Shehzad; Ramanujam, P S

    2007-12-01

    A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity, is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo-reversion between trans- and cis-states. Although the final polymer may not be liquid crystalline, irradiation can induce ordered domains. The mesogens act in a co-operative manner, enhancing refractive indices and birefringences. Surface relief gratings are discussed as a consequence of holographic storage. Cholesteric polymers comprising azobenzene are briefly highlighted. Irradiation causing cis-trans-isomerisation can be used to control helix pitch. A brief mention of liquid crystals is also made since these materials may be of future interest since they are optically transparent and amenable to photo-induced anisotropy.

  20. Holographic Optical Storage Using Photorefractive Polymers

    NASA Technical Reports Server (NTRS)

    Hayden, L. Michael; Strutz, Shane J.; Harris, Kristi; Ayachitula, Rajani

    2000-01-01

    The task for this report is to perform the basic research and develop a prototype benchtop holographic optical storage system based on photochromic and/or photorefractive polymers so that both permanent and erasable images may be stored and retrieved in the same mixed polymer medium. The task consist of: assembly and setup of the benchtop holographic storage system, including lasers, optics, and other ancillary equipment in a laboratory setting; and research and development of a suitable polymer matrix that will allow practical storage and retrieval of digital data. This will necessitate molecular design of the matrices involved and subsequent physics test to verify the characteristics of the matrices provide practical storage and retrieval.

  1. Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Lu, Haiyan; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-10-01

    Stannous sulfide@reduced graphene oxide (SnS@RGO) composite is successfully synthesized via a facile precipitation route. The structural and morphological characterizations reveal SnS@RGO composites are composed of SnS nanoparticles of the size 5-10 nm, which are uniformly anchored on the surface of RGO. The electrochemical measurements demonstrate the reversible capacity of the SnS@RGO composite - that includes contributions from the conversion reaction of SnS to Sn and NaxS and the alloying reaction of Sn to NaxSn. The SnS@RGO electrode exhibits a reversible capacity of 457 mAh g-1 at 20 mA g-1, superior cycling stability (94% capacity retention over 100 cycles at 100 mA g-1) and adequate rate performance. Compared to the neat SnS nanoparticles, the enhanced electrochemical performance of the SnS@RGO composite is primarily due to the incorporation of RGO as a highly conductive, flexible component as well as possessing a large available surface area, which provides desirable properties such as improved electronic contact between active materials, aggregation suppression of intermediate products, and alleviation of the volume change during sodiation and desodiation. Encouraging experimental results suggest that the SnS@RGO composite is a promising material to achieve a high-capacity and stable anode for NIBs.

  2. Optical Data Storage Capabilities of Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Gary, Charles

    1998-01-01

    We present several measurements of the data storage capability of bacteriorhodopsin films to help establish the baseline performance of this material as a medium for holographic data storage. In particular, we examine the decrease in diffraction efficiency with the density of holograms stored at one location in the film, and we also analyze the recording schedule needed to produce a set of equal intensity holograms at a single location in the film. Using this information along with the assumptions about the performance of the optical system, we can estimate potential data storage densities in bacteriorhodopsin.

  3. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  4. Biomolecular optical data storage and data encryption.

    PubMed

    Fischer, Thorsten; Neebe, Martin; Juchem, Thorsten; Hampp, Norbert A

    2003-03-01

    The use of bacteriorhodopsin (BR) as an active layer in write-once-read-many optical storage is presented. This novel feature of BR materials may be used on a wide variety of substrates, among them transparent substrates but also paper and plastics. The physical basis of the recording process is polarization-sensitive two-photon absorption. As an example for this new BR application, an identification card equipped with an optical recording strip is presented, which has a capacity of about 1 MB of data. The recording density currently used is 125 kB/cm2, which is far from the optical limits but allows operation with cheap terminals using plastic optics. In the examples given, data are stored in blocks of 10 kB each. A special optical encryption procedure allows the stored data to be protected from unauthorized reading. The molecular basis of this property is again the polarization-sensitive recording mechanism. The unique combination of optical storage, photochromism, and traceability of the BR material is combined on the single-molecule level. BR introduces a new quality of storage capability for applications with increased security and anticounterfeiting requirements.

  5. Optical storage media data integrity studies

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1994-01-01

    Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.

  6. Optical storage media data integrity studies

    NASA Astrophysics Data System (ADS)

    Podio, Fernando L.

    1994-03-01

    Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.

  7. Optical Imaging versus Paper Records Storage.

    ERIC Educational Resources Information Center

    Baldygo, Robert

    1999-01-01

    States that the maintenance and storage of paper documents has many inherent weaknesses, including hidden costs and attached risks. Asserts that document imaging is a viable, up-to-date technology that could eliminate many of these costs and risks. Describes the system benefits, scope, requirements, and costs and the legality of optically stored…

  8. Photonic nanojet-enabled optical data storage.

    PubMed

    Kong, Soon-Cheol; Sahakian, Alan; Taflove, Allen; Backman, Vadim

    2008-09-01

    We show that our recently reported microwave photonic jet technique for detection of deeply subwavelength pits in a metal substrate can be extended to optical wavelengths for purposes of high-density data storage. Three-dimensional finite-difference time-domain computational solutions of Maxwell's equations are used to optimize the photonic nanojet and pit configuration to account for the Drude dispersion of an aluminum substrate in the spectral range near lambda= 400 nm. Our results show that nanojet-illuminated pits having lateral dimensions of only 50 nm x 80 nm yield a contrast ratio 27 dB greater than previously reported using a lens system for pits of similar area. Such pits are much smaller than BluRay features. The high detection contrast afforded by the photonic nanojet could potentially yield significant increases in data density and throughput relative to current commercial optical data-storage systems while retaining the basic geometry of the storage medium.

  9. ``H2 sponge'': pressure as a means for reversible high-capacity hydrogen storage in nanoporous Ca-intercalated covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Sun, Jia Tao; Meng, Sheng

    2015-03-01

    We explore the potential and advantages of Ca-intercalated covalent organic framework-1 (CaCOF-1) as a 3-dimensional (3D) layered material for reversible hydrogen storage. Density functional theory calculations show that by varying the interlayer distance of CaCOF-1, a series of metastable structures can be achieved with the interlayer distance falling in the range of 4.3-4.8 Å. When four hydrogen molecules are adsorbed on each Ca, a high hydrogen uptake of 4.54 wt% can be produced, with the binding energy falling in the ideal range of 0.2-0.6 eV per H2. While H2 absorption is a spontaneous process under H2 rich conditions, tuning the interlayer distance by reasonable external pressure could compress CaCOF-1 to release all of the hydrogen molecules and restore the material to its original state for recyclable use. This provides a new method for gradual, controllable extraction of hydrogen molecules in covalent organic frameworks, satisfying the practical demand for reversible hydrogen storage at ambient temperatures.We explore the potential and advantages of Ca-intercalated covalent organic framework-1 (CaCOF-1) as a 3-dimensional (3D) layered material for reversible hydrogen storage. Density functional theory calculations show that by varying the interlayer distance of CaCOF-1, a series of metastable structures can be achieved with the interlayer distance falling in the range of 4.3-4.8 Å. When four hydrogen molecules are adsorbed on each Ca, a high hydrogen uptake of 4.54 wt% can be produced, with the binding energy falling in the ideal range of 0.2-0.6 eV per H2. While H2 absorption is a spontaneous process under H2 rich conditions, tuning the interlayer distance by reasonable external pressure could compress CaCOF-1 to release all of the hydrogen molecules and restore the material to its original state for recyclable use. This provides a new method for gradual, controllable extraction of hydrogen molecules in covalent organic frameworks, satisfying the

  10. Challenges and opportunities for optical storage

    NASA Astrophysics Data System (ADS)

    Chen, Di

    2005-09-01

    Optical technique for data storage was driven from the challenges to achieve data storage performance required by the user. The first attempt to address the recording density improvement over HDD using magneto-optic technology started over thirty years ago. Subsequent efforts to develop 15", 12" and 5 and 1/4" WORM disc drives met with limited success. Advances in semiconductor lasers, lithography, and auto focusing and tracking techniques finally allow the development of the Compact Disc to answer the call for improvement in audio recording technology and data distribution in mid to late 1980. Recordable and erasable technology then followed with the introduction of CD-R, CD-RW and MO drives and media. By early 1990, advances in high density recording with the use of shorter wavelength lasers, larger n.a. lenses, improved lithographic and data compression techniques, allows the development of 4.7 GB DVD drives and discs to answer the challenge for recording 2-hour high quality movies on a CD size disc. Recordable and erasable DVD became available in 2000, and Dual Layer DVD was introduced last year . With the advent of HDTV and movie in recent years, Storage of 25 GB data in a DVD disc is needed. Blue-ray and HD-DVD are the leading technologies to answer this challenge. Looking to the future, optical storage areal density of one to two orders of magnitude improvement will be required to compete with HDD which is now reaching 133 Gb/in2 . In addition, high data transfer rate of 1Gb/s, data security, copy protection, ease of use, cost and standards issues sums up the monumental challenges facing the optical recording industry in the years to come. Some of the leading technologies, such as multi-layer, new encoding schemes, volume recording, near-field optics, micro-optics, domain expansion, UV laser, holographic storage, could provide the answers. Meeting these challenges, optical storage could become the dominant recording technology to satisfy the data storage

  11. Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Wang, D. H.; Tang, W. J.; Xia, X. H.; Zhang, Y. J.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2016-03-01

    A unique MoS2-based composite composed of MoS2 nanosheets wrapped by a conductive polypyrrole (PPY) layer and closely incorporated within reduced graphene oxide (rGO) nanosheets is prepared by all-solution method. As a free-binder electrode for lithium-ion batteries, the ternary electrode delivers an initial discharge capacity of 1428 mAh g-1, maintains 1070 mAh g-1 after 400 cycles at a current density of 200 mA g-1, and also exhibits superior rate capacity of 600 mAh g-1 at a high current density of 2000 A g-1. The enhanced electrochemical performance is attributed to the advantageous combination of the 3D hierarchically rGO skeleton and in-situ formed conductive PPY coating. This design route represents a new direction for high-performance lithium ion batteries and related energy storage application with advanced nanostructured materials.

  12. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage.

    PubMed

    Ye, Fangmin; Du, Gaohui; Jiang, Zhoufeng; Zhong, Yijun; Wang, Xiaodong; Cao, Qingping; Jiang, J Z

    2012-12-07

    A sheet-on-sheet reduced graphene oxide-β-In(2)S(3) (RGO-In(2)S(3)) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In(2)S(3) sheets and the effective combination of β-In(2)S(3) and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In(2)S(3) composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries.

  13. Optical storage characters of bacteriorhodopsin molecule film

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yang, Qing; Wu, Hongcai; Hou, Xun

    2002-04-01

    The photochromic retinal protein bacteriorhodopsin (BR) is found in the cell membrane of Halobacterium salinarium. It is the key protein for photosynthetic growth of H.salinarium. BR shows an exceptional stability towards chemical, thermal, and photochemical degradation. The photochromic properties of Bacteriorhodopsin provide the possibility of application in optical information storage. Photoexcition of the O-state of BR, which has an all-trans confirmation, leads to a state with 9-cis configuration, which is thermally stable. The 9-cis containing photoproduct of the O-state was named P-state. It absorbs at 490 nm and can be photochemically reconverted to the initial state. We propose a system of optical information storage in a BR polymer film, which is a reversible optical data recording material and can be rewritten over 106 times without degradation of the film. A three-wavelength EDRAW (Erase Direct Read After Write) experiment was performed. The photoexcited P(490) state shows a permanent storage property confirmed by our contrast ratio experiments. The result of long-term information storage in BR films more than 1 year is obtained.

  14. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage

    NASA Astrophysics Data System (ADS)

    Ye, Fangmin; Du, Gaohui; Jiang, Zhoufeng; Zhong, Yijun; Wang, Xiaodong; Cao, Qingping; Jiang, J. Z.

    2012-11-01

    A sheet-on-sheet reduced graphene oxide-β-In2S3 (RGO-In2S3) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In2S3 sheets and the effective combination of β-In2S3 and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In2S3 composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries.A sheet-on-sheet reduced graphene oxide-β-In2S3 (RGO-In2S3) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In2S3 sheets and the effective combination of β-In2S3 and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In2S3 composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries. Electronic supplementary information (ESI) available: Synthesis, characterization and electrochemical measurements of RGO-In2S3 composites and pure β-In2S3 electrode materials, SEM image, XRD pattern, EDX data, TGA results, BET data, cyclic voltammogram, Coulombic efficiency and analysis of AC impedence spectra data. See DOI: 10.1039/c2nr32174b

  15. Optical Pickup Feeding Velocity Profile Design of Optical Disk Storage

    NASA Astrophysics Data System (ADS)

    Park, Juhn Ho; Seo, Heui-Sik; Lee, Jung Joon; Min, Byunghoon; Son, Heuigi

    2001-03-01

    Residual vibrations and jerks of a pickup body caused by the flexibility of an optical pickup feeding system in optical disk storage may degrade the quality of reading and writing, and increase the track access time. In this study, a feeding velocity profile that suppresses the residual vibrations and jerks is calculated and applied to a stepping-motor-driven feeding system. The calculated feeding velocity profile shows good results compared to the conventional feeding velocity profile of trapezoidal shape.

  16. Cobalt carbonate dumbbells for high-capacity lithium storage: A slight doping of ascorbic acid and an enhancement in electrochemical performances

    NASA Astrophysics Data System (ADS)

    Zhao, Shiqiang; Wei, Shanshan; Liu, Rui; Wang, Yuxi; Yu, Yue; Shen, Qiang

    2015-06-01

    Synthesis of materials with desirable nanostructures is a hot research topic owing to their enhanced performances in contrast to the bulk counterparts. Herein, dumbbell-shaped cobalt carbonate (CoCO3) nano architectures and the bulk counterpart of CoCO3 rhombohedra are prepared via a facile hydrothermal route in the presence and absence of ascorbic acid (AA), respectively. By comparison, it has been found that: the addition of AA in the hydrothermal crystallization system changes the shape of the building blocks from Co2CO3(OH)2 nanosheets to CoCO3 nanoparticles, and then further influences the final configuration of the products. When applied as anodes of lithium ion batteries, CoCO3 dumbbells deliver a 100th capacity of 1042 mAh g-1 at 200 mA g-1 and even exhibit a long-term value of 824 mAh g-1 over 500 cycles at 1000 mA g-1, which are much higher than the rhombohedral counterparts with corresponding 540 and 481 mAh g-1 respectively. The much higher capacity, better cycling stability and enhanced rate performance of CoCO3 dumbbells can be attributed to the higher specific surface area, smaller charge transport resistance and better structure stability resulting from the slight doping (∼4.6 wt%) of AA, and also relate with a novel lithium storage mechanism in CoCO3.

  17. Encrypted optical storage with angular multiplexing.

    PubMed

    Matoba, O; Javidi, B

    1999-12-11

    We present the first, to our knowledge, demonstration of an encrypted optical storage based on double-random phase encoding by using angular multiplexing in a photorefractive material. Original two-dimensional data are encrypted by use of two random phase codes located in the input and the Fourier planes and are then stored holographically in a LiNbO(3):Fe crystal. The retrieval of the original data can be achieved with a phase-conjugated readout scheme. We demonstrate the encryption and the decryption of multiple frames of two-dimensional digital data by using angular multiplexing. We also evaluate numerically the influence of the bandwidth of the optical system on the decrypted digital data. The bit error rate as a function of the optical system bandwidth is presented.

  18. Balloon borne optical disk mass storage system

    NASA Technical Reports Server (NTRS)

    Vanek, M. D.; Jennings, D. A.

    1991-01-01

    An on-board data recording system for balloon-borne interferometer using a vacuum operable, ruggedized WORM optical drive is presented. This system, as presently under development, provides 320 Mbytes of data storage (or approximately 11 hrs at the 64 kbits/sec telemetry rate of the experiment). It has the capability of recording the unmodified telemetry bit system as transmitted or doing some preprocessing of the data onboard. The system is compact and requires less than 28 watts of battery power to operate.

  19. Optical information storage of bacteriorhodopsin molecule film

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Li, Baofang; Hou, Xun; Li, XingChang; Jiang, Long; Sanio, Markus; Hampp, Norbert A.

    2000-11-01

    The photochromic retinal protein bacteriorhodopsin (BR) is found in the cell membrane of Halobacterium salinarium. It is the key protein for photosynthetic growth of H.salinarium. BR shows an exceptional stability towards chemical, thermal, and photochemical degradation. In this paper, we propose a system of optical information storage in a BR polymer film. A three- wavelength EDRAW (Erase Direct Read After Write) experiment was performed. The photoexcited P(490) state shows a permanent storage property confirmed by our contrast ratio experiments. We have performed the reversible operations of 'write' and 'erase' with the BR polymer film over hundreds of cycles in our experiments. The readout contrast ratio is very sensitive to the intensity and wavelength of probe beam and the recorded data can be readout from 530 to approximately 630 nm with different contrast ratio. Within the range of 570 to approximately 600 nmm, the better contrast ratio can be obtained. Considering the erasing effect for the reason of absorption of P state, both higher contrast ratio and nondestructive reading can be realized by using 594 nm as the readout wavelength. The experimental result such BR material is very suitable for long-term photochromic information storage.

  20. Multi-wavelength optical storage of diarylethene PMMA film

    NASA Astrophysics Data System (ADS)

    Guo, Haobo; Zhang, Fushi; Wu, Guo-shi; Sun, Fan; Pu, Shouzhi; Mai, Xuesong; Qi, Guosheng

    2003-05-01

    Current commercial optical storage technologies are all based on the heat effect of the recording laser, i.e., heat-mode optical storage. In the present work, photon-mode optical storage using photochromic diarylethene materials was investigated. Two diarylethene derivatives were dispersed into PMMA solution, and spin-coated on a glass substrate with Al reflective layer as the recording layer. Two laser beams of 532 and 650 nm were used in recording and readout simultaneously, and signals with high S/ N ratio were detected. Multi-wavelength optical storage was realized with the diarylethene PMMA film.

  1. Special Reports: Optical Disks: Mass Storage of Information.

    ERIC Educational Resources Information Center

    McLeod, Jonah

    1984-01-01

    Examines trends in the mass storage of information using optical disks, focusing on applications and various types of systems. Includes a list of optical disk drive products with manufacturer, product, capacity, and access time. (JN)

  2. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  3. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  4. Multi-wavelength multi-level optical storage

    NASA Astrophysics Data System (ADS)

    Wullert, John R., II

    Current digital information storage technologies offer rapid access and seemingly ever-increasing capacities. New storage techniques that improve the data rate of high-density storage technologies are attractive, particularly for cost-sensitive services such as video on demand. Wavelength multiplexing of optical information storage has the potential to increase storage capacity, density and data rate. This dissertation addresses the design, simulation and fabrication of a multi-wavelength, multi-level optical storage structure that has the potential to increase the capacity, density and data rate of optical storage. Multi-wavelength, multi-layer optical storage is a technique for storing data in many separate layers in a medium, where each layer responds to a unique optical wavelength. This approach builds on the strengths of current optical storage technologies and addresses some of their limitations. Multiple layers of storage increase the high storage density possible with optical techniques and the parallelism of wavelength multiplexing improves the relatively low data rate. Multi-wavelength, multi-level optical storage has been investigated theoretically and experimentally. The experimental results provide the first demonstration of optical storage using three wavelengths to read three separate layers of information. These read-only optical memories were based on dielectric mirrors of silicon dioxide, magnesium oxide and aluminum oxide. The layers were designed to be read with semiconductor lasers of 635, 780 and 980 nanometers. The prototype devices exhibited open margins between the on and off states for all eight combinations of the presence and absence of the three mirrors. Theoretical simulations were employed to assess the dynamic operation of multi-wavelength storage devices. Through systematic simulations, variations in the thickness and refractive index of the layers in the structure were identified as the primary noise mechanism and a critical

  5. Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.

  6. Experimental study of optical storage characteristics of photochromic material: pyrrylfulgide

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Yao, Baoli; Chen, Yi; Han, Yong; Wang, Congmin; Wang, Yingli; Menke, Neimule; Chen, Guofu; Fan, Meigong

    2003-04-01

    Optical data storage is a frontier in the information science. Currently, there are mainly two kinds of storage materials, i.e., thermal-optic and photonic materials. The storage methods are divided into serial and parallel modes. In the market, the mature technique is CD-RW, which uses the thermal-optic material and serial method. The storage density of the CD-RW is restricted by the size of material particles, the conduction of heat, etc. Besides, the recording speed is seriously limited by the process of heating. Photonic materials and parallel method will be the trend in the optical data storage. Because it is based on the photon reaction on the molecule scale, the storage density and speed will be greatly increased. In this paper, a new kind of organic photochromic material -- pyrrylfulgide was studied. A parallel optical data storage system was established. Using the pyrrylfulgide/PMMA film as a recording medium, micro-images and binary digital information could be recorded, readout and erased in this parallel system. The recorded information on the film can be kept for at least 8 months in dark at room temperature. So far, the storage density is 3 x 107 bit/cm2.

  7. First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium (presentation had varying title: Accelerating Development of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations)

    SciTech Connect

    Alapati, S.; Johnson, J.K.; Sholl, D.S.; Dai, B. --last author not shown on publication, only presentation

    2007-10-31

    Favorable thermodynamics are a prerequisite for practical H2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH4, which will release 8.9 wt.% H2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts.

  8. Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall

    1998-01-01

    The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.

  9. Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall

    1998-01-01

    The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.

  10. A new tape product for optical data storage

    NASA Technical Reports Server (NTRS)

    Larsen, T. L.; Woodard, F. E.; Pace, S. J.

    1993-01-01

    A new tape product has been developed for optical data storage. Laser data recording is based on hole or pit formation in a low melting metallic alloy system. The media structure, sputter deposition process, and media characteristics, including write sensitivity, error rates, wear resistance, and archival storage are discussed.

  11. Storage Technology: A Review of Options and Their Implications for Electronic Publishing.

    ERIC Educational Resources Information Center

    Arnold, Stephen E.

    1991-01-01

    Describes computer storage devices and suggests implications for electronic publishing. Highlights include magnetic storage media, including digital audio tape (DAT); high-capacity magnetic drives; optical storage technologies, including CD-ROM and WORM; magneto-optical drives; and a sidebar that discusses other storage technologies. (21…

  12. Quasi-light storage for optical data packets.

    PubMed

    Schneider, Thomas; Preußler, Stefan

    2014-02-06

    Today's telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.

  13. Low-cost medical image storage and manipulation using optical disk subsystems

    NASA Astrophysics Data System (ADS)

    Glenn, William V., Jr.; Marx, Peter S.

    1990-08-01

    Traditionally, medical imaging has required large capital investments into workstations and storage subsystems. Many vendors have chosen to offer proprietary systems which are expensive to develop and costly to the institutions which purchase them. Our experience has been that this is unnecessary; most traditional imaging functions in the digital modalities of computed tomography (CT) and magnetic resonance imaging (MM) can be performed using off-the-shelf hardware with relatisely inexpensive software. In order to reduce the cost of medical imaging, our approach has been to choose computers and storage subsystems that are efficient, inexpensive, and easy-to-use (after all, the users are interested in practicing medicine, not computer science.) With these goals in mind, we chose to use a general purpose computer (the Apple Macintosh Ilci) with two types of high-capacity optical storage devices (both magneto-optical and write once, read multiple (WORM) disc subsystems.) We have developed a powerful, yet user-friendly medical imaging workstation oriented towards radiologists, orthopadic surgeons, neurosurgeons, and other users of medical images. In addition to providing inexpensive storage, the workstation is capable of multiplanar reformatting (MPR), 3D MM angiography, and other image processing functions. The resulting images may be annotated, windowed, and filmed on to 14x17" radiology film for presentation to the referring physicians and their patients. This system can be considered to be a picture archiving and communication system (PACS) for private physicians and small clinics; further, it is small enough for desktop environments and inexpensive enough for clinicians to purchase.

  14. Optical Digital Disks as Mass Storage Media.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    1983-01-01

    Describes the optical digital disk, which stores machine-readable information in digitized form, and discusses their production, cost, present and future applications. The major companies currently active in the disk field are noted. (MBR)

  15. Optical Digital Disks as Mass Storage Media.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    1983-01-01

    Describes the optical digital disk, which stores machine-readable information in digitized form, and discusses their production, cost, present and future applications. The major companies currently active in the disk field are noted. (MBR)

  16. Plasmonic nano-structures for optical data storage.

    PubMed

    Mansuripur, M; Zakharian, A R; Lesuffleur, A; Oh, Sang-Hyun; Jones, R J; Lindquist, N C; Im, Hyungsoon; Kobyakov, A; Moloney, J V

    2009-08-03

    We propose a method of optical data storage that exploits the small dimensions of metallic nano-particles and/or nano-structures to achieve high storage densities. The resonant behavior of these particles (both individually and in small clusters) in the presence of ultraviolet, visible, and near-infrared light may be used to retrieve pre-recorded information by far-field spectroscopic optical detection. In plasmonic data storage, a very short (approximately few femtoseconds) laser pulse is focused to a diffraction-limited spot over a small region of an optical disk containing metallic nano-structures. The digital data stored in each bit-cell, comprising multiple bits of information, modifies the spectrum of the incident light pulse. This spectrum is subsequently detected, upon reflection/transmission, with the aid of an optical spectrum analyzer. We present theoretical as well as preliminary experimental results that confirm the potential of plasmonic nano-structures for high-density optical data storage applications.

  17. Bacteriorhodopsin films for optical signal processing and data storage

    NASA Technical Reports Server (NTRS)

    Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)

    1996-01-01

    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.

  18. Holographic diversity interferometry for optical storage.

    PubMed

    Okamoto, Atsushi; Kunori, Keisuke; Takabayashi, Masanori; Tomita, Akihisa; Sato, Kunihiro

    2011-07-04

    This study proposes holographic diversity interferometry (HDI), a system that combines information from spatially dispersed plural image sensors to reconstruct complex amplitude distributions of light signals. HDI can be used to generate four holographic interference fringes having different phases, thus enabling optical phase detection in a single measurement. Unlike conventional phase-shifting digital holography, this system does not require piezoelectric elements and phase shift arrays. In order to confirm the effectiveness of HDI, we generated optical signals having multilevel phases and amplitudes by using two SLMs and performed an experiment for detection and demodulation with HDI.

  19. Micro-optic lens for data storage

    NASA Technical Reports Server (NTRS)

    Milster, T. D.; Trusty, R. M.; Wang, M. S.; Froehlich, F. F.; Erwin, J. Kevin

    1991-01-01

    A new type of microlens for data storage applications that has improved off-axis performance is described. The lens consists of a micro Fresnel pattern on a curved substrate. The radius of the substrate is equal to the focal length of the lens. If the pattern and substrate are thin, the combination satisfies the Abbe sine condition. Therefore, the lens is free of coma. We analyze a 0.5 numerical aperture, 0.50 mm focal length lens in detail. A 0.16 numerical aperture lens was fabricated holographically, and results are presented.

  20. Optical Disk for Digital Storage and Retrieval Systems.

    ERIC Educational Resources Information Center

    Rose, Denis A.

    1983-01-01

    Availability of low-cost digital optical disks will revolutionize storage and retrieval systems over next decade. Three major factors will effect this change: availability of disks and controllers at low-cost and in plentiful supply; availability of low-cost and better output means for system users; and more flexible, less expensive communication…

  1. Interactive Optical Disc Systems: Part 1: Analog Storage.

    ERIC Educational Resources Information Center

    Hessler, David W.

    1984-01-01

    Details distinction between digital and analog data, advantages of analog storage, and optical disc use to store analog data. Configuration and potential of three levels of laser disc systems are explained. Selection of display devices for use with laser disc systems and accessing audio data are addressed. (Continued in next issue.) (EJS)

  2. Current developments in optical data storage with organic dyes.

    PubMed

    Mustroph, Heinz; Stollenwerk, Manfred; Bressau, Volker

    2006-03-20

    The main motivation for the development of digital data storage has been the improvement in play-back quality and the increase in storage capacity. In 1982 Philips and Sony introduced the first technically and economically successful system based on this-the compact disc (CD) and a compatible player. A very broad diversity of optical data recording formats are available today, and a difference is drawn between prerecorded, recordable, and rewritable media. This Review gives an overview of the systems used, the main features of production, and then concentrates on the properties of the organic dyes that are used in recordable systems. Dyestuffs chemistry has gained the reputation of having become a mature field of activity. Is this prejudice or a justified swan song for dyestuffs chemistry? When applications in optical data storage are considered, it is evident that even today progresses such as CD-R and DVD/R would not be feasible without functional dyes.

  3. Optical distortions in electron/positron storage rings

    SciTech Connect

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine.

  4. Surface-Enhanced Raman Optical Data Storage system

    DOEpatents

    Vo-Dinh, T.

    1991-03-12

    A method and apparatus for a Surface-Enhanced Raman Optical Data Storage (SERODS) System are disclosed. A medium which exhibits the Surface Enhanced Raman Scattering (SERS) phenomenon has data written onto its surface of microenvironment by means of a write-on procedure which disturbs the surface or microenvironment of the medium and results in the medium having a changed SERS emission when excited. The write-on procedure is controlled by a signal that corresponds to the data to be stored so that the disturbed regions on the storage device (e.g., disk) represent the data. After the data is written onto the storage device it is read by exciting the surface of the storage device with an appropriate radiation source and detecting changes in the SERS emission to produce a detection signal. The data is then reproduced from the detection signal. 5 figures.

  5. Surface-enhanced raman optical data storage system

    DOEpatents

    Vo-Dinh, Tuan

    1991-01-01

    A method and apparatus for a Surface-Enhanced Raman Optical Data Storage (SERODS) System is disclosed. A medium which exhibits the Surface Enhanced Raman Scattering (SERS) phenomenon has data written onto its surface of microenvironment by means of a write-on procedure which disturbs the surface or microenvironment of the medium and results in the medium having a changed SERS emission when excited. The write-on procedure is controlled by a signal that corresponds to the data to be stored so that the disturbed regions on the storage device (e.g., disk) represent the data. After the data is written onto the storage device it is read by exciting the surface of the storage device with an appropriate radiation source and detecting changes in the SERS emission to produce a detection signal. The data is then reproduced from the detection signal.

  6. Read stability in magneto-optical storage

    NASA Astrophysics Data System (ADS)

    Yardy, R.; Finkelstein, Blair I.; McDaniel, Terry W.

    1990-08-01

    The stability of the read-back signal from an magneto-optical (MO) disk system was investigated as a function of read power, bias field, temperature, and number of read passes. At 2 mW read power and with the bias field turned "on," signal amplitude and jitter degraded markedly at the upper end of the American National Standards Institute (ANSI) temperature range. Signal amplitude erasure depends on bias field and peak temperature of the active layer. Jitter, however, is also dependent on the thermal gradients in the active layer.

  7. Method and apparatus for bistable optical information storage for erasable optical disks

    DOEpatents

    Land, Cecil E.; McKinney, Ira D.

    1990-01-01

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  8. Method and apparatus for bistable optical information storage for erasable optical disks

    DOEpatents

    Land, C.E.; McKinney, I.D.

    1988-05-31

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in a lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk. 10 figs.

  9. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    NASA Astrophysics Data System (ADS)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  10. Magneto-optic data storage in the '90s

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Arnold W.

    1991-03-01

    Introduction of rewritable optical drives and disks during the late 1980's expanded the range of data storage applications for which optical recording is a preferred technology. The high density and reliability intrinsic in optical recording are combined with the ability to erase and rewrite data as in magnetic recording. Since it does not require flying a magnetic head in proximity to the media surface, rewritable optical media is removable and the risk of damage by a head crash or multiple uses is eliminated. Data can be written, read, erased, and rewritten millions of times without damage. Magneto optic (MO) recording is used in rewritable optical drives/media due to the advantages in speed and durability it offers relative to other methods (phase change, physical changes in polymers). MO drives and media are now available from several companies worldwide. 3M is a major supplier of media (disks) which are produced at it's Vadnais Heights, Minnesota facility. Each media cartridge offers 650MBytes of removable data storage on a two sided 130mm disk.

  11. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  12. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  13. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  14. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  15. Surface-enhanced raman optical data storage system

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  16. Surface-Enhanced Raman Optical Data Storage system

    DOEpatents

    Vo-Dinh, T.

    1994-06-28

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  17. Information storage and retrieval for probe storage using optical diffraction patterns

    NASA Astrophysics Data System (ADS)

    van Honschoten, Joost W.; de Jong, Henri W.; Koelmans, Wabe W.; Parnell, Thomas P.; Zaboronski, Oleg

    2011-11-01

    A method for fast information retrieval from a probe storage device is considered. It is shown that information can be stored and retrieved using the optical diffraction patterns obtained by the illumination of a large array of cantilevers by a monochromatic light source. In thermo-mechanical probe storage, the information is stored as a sequence of indentations on the polymer medium. To retrieve the information, the array of probes is actuated by applying a bending force to the cantilevers. Probes positioned over indentations experience deflection by the depth of the indentation, probes over the flat media remain un-deflected. Thus the array of actuated probes can be viewed as an irregular optical grating, which creates a data-dependent diffraction pattern when illuminated by laser light. We develop a low complexity modulation scheme, which allows the extraction of information stored in the pattern of indentations on the media from Fourier coefficients of the intensity of the diffraction pattern. We then derive a low-complexity maximum-likelihood sequence detection algorithm for retrieving the user information from the Fourier coefficients. The derivation of both the modulation and the detection schemes is based on the Fraunhofer formula for data-dependent diffraction patterns. The applicability of Fraunhofer diffraction theory to the optical set-up relevant for probe storage is established both theoretically and experimentally. We confirm the potential of the optical readout technique by demonstrating that the impairment characteristics of probe storage channels (channel noise, global positioning errors, small indentation depth) do not lead to an unacceptable increase in data recovery error rates. We also show that for as long as the Fresnel number F ≤ 0.1, the optimal channel detector derived from Fraunhofer diffraction theory does not suffer any significant performance degradation.

  18. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  19. Synthesis & Studies of New Non-Destructive Read-Out Materials for Optical Storage and Optical Switches

    DTIC Science & Technology

    2005-12-31

    studied This organic storage system, consists of two different molecular components chemically bonded to each other, a polar photochromic fulgimide...and an oxazine dye, to form a composite molecule that retains the photochromic and spectroscopic properties of each individual molecular component yet...15. NUMBER OF PAGES Optical Storage media, Non-destructive readout materials, 20 3D optical storage, Photochromic composite molecule, Optical 16

  20. DWT-Based High Capacity Audio Watermarking

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mehdi; Megías, David

    This letter suggests a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition, for which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and then, for embedding, the wavelet samples are changed based on the average of the relevant frame. The experimental results show that the method has very high capacity (about 5.5kbps), without significant perceptual distortion (ODG in [-1, 0] and SNR about 33dB) and provides robustness against common audio signal processing such as added noise, filtering, echo and MPEG compression (MP3).

  1. Optical Disc Utilized As A Data Storage System For Reconnaissance

    NASA Astrophysics Data System (ADS)

    Herzog, Donald G.

    1984-01-01

    Electra-optic and Radar sensing reconnaissance systems have many advantages including remote transmission and image data processing that conventional film camera systems do not have. However, data storage and retrieval that was naturally and easily accomplished with film must now be accommodated by other techniques. The optical disc data storage and retrieval systems offer significant advantage towards fulfilling this need. This paper will provide an overview description of the technology, some of the fundamental alternatives of configuration approach, and some examples of where it may be considered in the reconnaissance system. Silver halide film has been and still is the work horse of the image based reconnaissance field. It will not be replaced in the near future either, but rather a gradual transition to total electronic systems is expected. It is not the intent of this paper to debase film, because in fact it has its advantages. We have learned to optimize its advantages and minimize its disadvantages. However optical disc systems have a definite role to play in the reconnaissance field.

  2. Rewritable three-dimensional holographic data storage via optical forces

    SciTech Connect

    Yetisen, Ali K.; Montelongo, Yunuen; Butt, Haider

    2016-08-08

    The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.

  3. Rewritable three-dimensional holographic data storage via optical forces

    NASA Astrophysics Data System (ADS)

    Yetisen, Ali K.; Montelongo, Yunuen; Butt, Haider

    2016-08-01

    The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.

  4. Optical properties of a photopolymer film for digital holographic storage

    NASA Astrophysics Data System (ADS)

    Shin, Changwon; Kim, Junghoi; Kim, Nam; Lee, Hyojin; Kim, Eunkyoung

    2005-09-01

    Tir- and mono functional monomers were dispersed in a solution of polysulfone in organic solvent containing a photo initiator and other additives. New photopolymer film was prepared by dispersing acrylic monomer in a polysulfone matrix. The Polysulfone was adopted as a binder since it affords transparent thick films with low dimensional changes during holographic recording. Optical property of the photopolymer showed high diffraction efficiency (>90%) under an optimized optical condition at 532nm laser. The angular selectivity for angular multiplexing page oriented holographic memories (POHMs), the maximum diffraction efficiency of the material during holographic recording, the diffraction efficiency of the films as a function of an incident angle of two beams, exposure energy for saturation of the holographic material and application for holographic data storage will be discussed.

  5. Health information management using optical storage technology: case studies.

    PubMed

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  6. Eternal 5D optical data storage in glass (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kazansky, Peter G.; Cerkauskaite, Ausra; Drevinskas, Rokas; Zhang, Jingyu

    2016-09-01

    A decade ago it has been discovered that during femtosecond laser writing self-organized subwavelength structures with record small features of 20 nm, could be created in the volume of silica glass. On the macroscopic scale the self-assembled nanostructure behaves as a uniaxial optical crystal with negative birefringence. The optical anisotropy, which results from the alignment of nano-platelets, referred to as form birefringence, is of the same order of magnitude as positive birefringence in crystalline quartz. The two independent parameters describing birefringence, the slow axis orientation (4th dimension) and the strength of retardance (5th dimension), are explored for the optical encoding of information in addition to three spatial coordinates. The slow axis orientation and the retardance are independently manipulated by the polarization and intensity of the femtosecond laser beam. The data optically encoded into five dimensions is successfully retrieved by quantitative birefringence measurements. The storage allows unprecedented parameters including hundreds of terabytes per disc data capacity and thermal stability up to 1000°. Even at elevated temperatures of 160oC, the extrapolated decay time of nanogratings is comparable with the age of the Universe - 13.8 billion years. The recording of the digital documents, which will survive the human race, including the eternal copies of Universal Declaration of Human Rights, Newton's Opticks, Kings James Bible and Magna Carta, is a vital step towards an eternal archive. Additionally, a number of projects (such as Time Capsule to Mars, MoonMail, and the Google Lunar XPRIZE) could benefit from the technique's extreme durability, which fulfills a crucial requirement for storage on the Moon or Mars.

  7. Laser Card For Compact Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Drexler, Jerome

    1982-05-01

    The principal thrust of the optical data storage industry to date has been the 10 billion bit optical disc system. Mass memory has been the primary objective. Another objective that is beginning to demand recognition is compact memory of 1 million to 40 million bits--on a wallet-size, laser recordable card. Drexler Technology has addressed this opportunity and has succeeded in demonstrating laser writing and readback using a 16 mm by 85 mm recording stripe mounted on a card. The write/read apparatus was developed by SRI International. With this unit, 5 micron holes have been recorded using a 10 milliwatt, 830 nanometer semiconductor-diode laser. Data is entered on an Apple II keyboard using the ASCII code. The recorded reflective surface is scanned with the same laser at lower power to generate a reflected bit stream which is converted into alphanumerics and which appear on the monitor. We are pleased to report that the combination of the DREXONTM laser recordable card ("Laser Card"), the semiconductor-diode laser, arrays of large recorded holes, and human interactive data rates are all mutually compatible and point the way forward to economically feasible, compact, data-storage systems.

  8. New optical fibres for high-capacity optical communications

    PubMed Central

    Richardson, D. J.

    2016-01-01

    Researchers are within a factor of 2 or so from realizing the maximum practical transmission capacity of conventional single-mode fibre transmission technology. It is therefore timely to consider new technological approaches offering the potential for more cost-effective scaling of network capacity than simply installing more and more conventional single-mode systems in parallel. In this paper, I review physical layer options that can be considered to address this requirement including the potential for reduction in both fibre loss and nonlinearity for single-mode fibres, the development of ultra-broadband fibre amplifiers and finally the use of space division multiplexing. PMID:26809569

  9. SERODS: a new medium for high-density optical data storage

    NASA Astrophysics Data System (ADS)

    Vo-Dinh, Tuan; Stokes, David L.

    1998-10-01

    A new optical dada storage technology based on the surface- enhanced Raman scattering (SERS) effect has been developed for high-density optical memory and three-dimensional data storage. With the surface-enhanced Raman optical data storage (SERODS) technology, the molecular interactions between the optical layer molecules and the nanostructured metal substrate are modified by the writing laser, changing their SERS properties to encode information as bits. Since the SERS properties are extremely sensitive to molecular nano- environments, very small 'spectrochemical holes' approaching the diffraction limit can be produced for the writing process. The SERODS device uses a reading laser to induce the SERS emission of molecules on the disk and a photometric detector tuned to the frequency of the RAMAN spectrum to retrieve the stored information. The results illustrate that SERODS is capable of three-dimensional data storage and has the potential to achieve higher storage density than currently available optical data storage systems.

  10. Large Format Multifunction 2-Terabyte Optical Disk Storage System

    NASA Technical Reports Server (NTRS)

    Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.

    1996-01-01

    The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.

  11. Certification of ICI 1012 optical data storage tape

    NASA Technical Reports Server (NTRS)

    Howell, J. M.

    1993-01-01

    ICI has developed a unique and novel method of certifying a Terabyte optical tape. The tape quality is guaranteed as a statistical upper limit on the probability of uncorrectable errors. This is called the Corrected Byte Error Rate or CBER. We developed this probabilistic method because of two reasons why error rate cannot be measured directly. Firstly, written data is indelible, so one cannot employ write/read tests such as used for magnetic tape. Secondly, the anticipated error rates need impractically large samples to measure accurately. For example, a rate of 1E-12 implies only one byte in error per tape. The archivability of ICI 1012 Data Storage Tape in general is well characterized and understood. Nevertheless, customers expect performance guarantees to be supported by test results on individual tapes. In particular, they need assurance that data is retrievable after decades in archive. This paper describes the mathematical basis, measurement apparatus and applicability of the certification method.

  12. The NASA CSTI High Capacity Power Project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements are presented, along with revised goals and project timelines recently developed.

  13. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  14. Production of high-capacity adenovirus vectors.

    PubMed

    Kreppel, Florian

    2014-01-01

    High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.

  15. A Bibliography of the Literature on Optical Storage Technology. Final Report.

    ERIC Educational Resources Information Center

    Park, James R.

    Compiled to serve as a working tool for those involved in optical storage research, planning, and development, this bibliography contains nearly 700 references related to the optical storage and retrieval of digital computer data. Citations are divided into two major groups covering the general and patent literatures. Each citation includes the…

  16. Holographic memory module with ultra-high capacity and throughput

    SciTech Connect

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  17. The NASA CSTI High Capacity Power Program

    NASA Astrophysics Data System (ADS)

    Winter, Jerry M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  18. The NASA CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1991-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  19. The NASA CSTI High Capacity Power Program

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  20. Review of ultra-high density optical storage technologies for big data center

    NASA Astrophysics Data System (ADS)

    Hao, Ruan; Liu, Jie

    2016-10-01

    In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.

  1. Flexible storage medium for write-once optical tape

    NASA Technical Reports Server (NTRS)

    Strandjord, Andrew J. G.; Webb, Steven P.; Perettie, Donald J.; Cipriano, Robert A.

    1993-01-01

    A write-once data storage media was developed which is suitable for optical tape applications. The media is manufactured using a continuous film process to deposit a ternary alloy of tin, bismuth, and copper. This laser sensitive layer is sputter deposited onto commercial plastic web as a single-layer thin film. A second layer is sequentially deposited on top of the alloy to enhance the media performance and act as an abrasion resistant hard overcoat. The media was observed to have laser write sensitivities of less than 2.0 njoules/bit, carrier-to-noise levels of greater than 50dB's, modulation depths of approximately 100 percent, read-margins of greater than 35, uniform grain sizes of less than 200 Angstroms, and a media lifetime that exceeds 10 years. Prototype tape media was produced for use in the CREO drive system. The active and overcoat materials are first sputter deposited onto three mil PET film in a single pass through the vacuum coating system, and then converted down into multiple reels of 35mm x 880m tape. One mil PET film was also coated in this manner and then slit and packaged into 3480 tape cartridges.

  2. Flexible storage medium for write-once optical tape

    NASA Technical Reports Server (NTRS)

    Strandjord, Andrew J. G.; Webb, Steven P.; Perettie, Donald J.; Cipriano, Robert A.

    1993-01-01

    A write-once data storage media was developed which is suitable for optical tape applications. The media is manufactured using a continuous film process to deposit a ternary alloy of tin, bismuth, and copper. This laser sensitive layer is sputter deposited onto commercial plastic web as a single-layer thin film. A second layer is sequentially deposited on top of the alloy to enhance the media performance and act as an abrasion resistant hard overcoat. The media was observed to have laser write sensitivities of less than 2.0 njoules/bit, carrier-to-noise levels of greater than 50dB's, modulation depths of approximately 100 percent, read-margins of greater than 35, uniform grain sizes of less than 200 Angstroms, and a media lifetime that exceeds 10 years. Prototype tape media was produced for use in the CREO drive system. The active and overcoat materials are first sputter deposited onto three mil PET film in a single pass through the vacuum coating system, and then converted down into multiple reels of 35mm x 880m tape. One mil PET film was also coated in this manner and then slit and packaged into 3480 tape cartridges.

  3. Turbo Decoding with Run Length Limited Code for Optical Storage

    NASA Astrophysics Data System (ADS)

    Yamada, Eiji; Iwaki, Tetsuo; Yamaguchi, Takeshi

    2002-03-01

    A new turbo decoding method with a run length limited (RLL) code for optical storage is proposed. The system entails a trellis code that joins the RLL code, the non-return-to-zero inverse (NRZI) conversion, and the partial response (PR) channel as the inner code. The inner a posteriori probability (APP) decoder is able to utilize the extrinsic information fed back from the output of the outer decoder. A turbo-coded (1, 7)RLL-constrained PR2 channel was simulated. The full, partial, and serial turbo decoding systems with the inner APP decoder achieved coding gains of 4.7 dB, 4.3 dB, and 3.3 dB, respectively, over the uncoded (1, 7)RLL-constrained PR2 channel at a bit error rate (BER) of 10-5. The full and partial turbos were also improved by 1.2 dB and 0.8 dB, respectively, over the partial turbo with the RLL soft-input soft-output (SISO) decoder at a BER of 10-5.

  4. Delivery of video-on-demand services using local storages within passive optical networks.

    PubMed

    Abeywickrama, Sandu; Wong, Elaine

    2013-01-28

    At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.

  5. High capacity heat pipe performance demonstration

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A high capacity heat pipe which will operate in one-g and in zero-g is investigated. An artery configuration which is self-priming in one-g was emphasized. Two artery modifications were evolved as candidates to achieve one-g priming and will provide the very high performance: the four artery and the eight artery configurations. These were each evaluated analytically for performance and priming capability. The eight artery configuration was found to be inadequate from a performance standpoint. The four artery showed promise of working. A five-inch long priming element test article was fabricated using the four artery design. Plexiglas viewing windows were made on each end of the heat pipe to permit viewing of the priming activity. The five-inch primary element would not successfully prime in one-g. Difficulties on priming in one-g raised questions about zero-g priming. Therefore a small test element heat pipe for verifying that the proposed configuration will self-prime in zero-g was fabricated and delivered.

  6. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  7. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  8. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  9. High-Capacity Communications from Martian Distances

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali

    2007-01-01

    High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.

  10. High Capacity Two-Stage Coaxial Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Jaco, C.; Nguyen, T.; Tward, E.

    2008-03-01

    The High Capacity Cryocooler Qualification unit (HCCQ) provides large capacity cooling at both 35 K and 85 K for space applications in which focal planes and optics require cooling. The compressor is scaled from the High Energy Cryocooler (HEC) compressor and is capable of using input powers up to 700 W. The two coaxial pulse tube cold heads are integrated with the compressor into an integral cryocooler. A thermal strap between the cold heads improves efficiency and can be positioned to provide cooling for a wide range of applied loads. The cooler will be acceptance tested at space qualification levels that include thermal performance mapping over a range of reject temperatures and power levels and launch vibration testing.

  11. Optical Disks Compete with Videotape and Magnetic Storage Media: Part I.

    ERIC Educational Resources Information Center

    Urrows, Henry; Urrows, Elizabeth

    1988-01-01

    Describes the latest technology in videotape cassette systems and other magnetic storage devices and their possible effects on optical data disks. Highlights include Honeywell's Very Large Data Store (VLDS); Exabyte's tape cartridge storage system; standards for tape drives; and Masstor System's videotape cartridge system. (LRW)

  12. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  13. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  14. Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A.

    2013-02-01

    A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.

  15. Light storage in a cold atomic ensemble with a high optical depth

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho

    2017-06-01

    A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.

  16. High-Capacity Photorefractive Neural Network Implementing a Kohonen Topological Map

    NASA Astrophysics Data System (ADS)

    Frauel, Yann; Pauliat, Gilles; Villing, André; Roosen, Gérald

    2001-10-01

    We designed and built a high-capacity neural network based on volume holographic interconnections in a photorefractive crystal. We used this system to implement a Kohonen topological map. We describe and justify our optical setup and present some experimental results of self-organization in the learning database.

  17. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  18. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  19. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  20. Ultra-High Capacity Networking Enabled By Optical Technologies

    DTIC Science & Technology

    2003-08-01

    available component that monolithically integrated the EAM (electro absorption modulator). Liquid crystal switch (dynamic) To band or wavelength...Ratovelomanana, A. Enard, G. Glastre, D. Rondi, R. Blondeau “Wavelength conversion by optimized monolithic integrated Mach-Zehnder interferometer,” IEEE...been integrated by various groups. In order to fabricate these devices, both monolithic and hybrid technologies have been used. The first

  1. Optical data storage for high-speed data processing and archiving

    NASA Astrophysics Data System (ADS)

    Boldis, M.; Uherek, F.; Chovan, J.

    2010-12-01

    With the invention of first laser before 50 years has been proved generation of intense, focused and narrow light beam of one wavelength, also at the same time were fulfilled assumptions for creation memories on light base - Optical Data Storages. Contemporary dynamic memories operate on base electrical impulses, manufactured as matrix arranged MOSFET transistors with capacitors, and reach time delay (latency time) in ones nanoseconds. Transfer data rates are above ones of Gbps. Current storages are approaching technologically threshold parameters, what may be barrier to further development, whereas Optical Data storages multiple exceed transfer data rates of contemporary memories, not require reverse O/E/O signal transformation, operate in pico-seconds (ps) and work at low energetic levels of femto- Joules. New end-user services lay still bigger emphasis for transferred and stored data volumes, transfer rates, quality of transmission and data processing, whereby they partly pushing out contemporary storages and create place for optical memory elements used in telecommunication networks and in devices. Optical storages with their several-fold higherdensity, high transmission rates, better quality and small dimensions are becoming a new trend for dynamic buffer or balancing memories, used for long-term data archiving in plasmonic nano-structures within Holographic Data storages.

  2. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  3. Optical Disk Technology for Large Scale Mass Storage.

    DTIC Science & Technology

    1985-12-01

    rules. It is sufficient to say that the various encoding techniques provide the system’s designer with several advantages. 8. . . .-. ERROR MANAGEMENT ...characterize due to its variable nature. It is not the *intention to dismiss the characterization of the hardware and software for *error management ...system designer. The most difficult step in managing the error budget in an optical disk 2 *system is otingahigh quality media. An optical disk

  4. Chip-Scale Controlled Storage All-Optical Memory

    DTIC Science & Technology

    2007-02-01

    the spectral width in the EIT scheme yields the T2 dephasing time of the two upper states of the “V” system. Since the upper states of our double-V...Express, vol. 13 (24), pp. 9909- 9915 , November 2005. 12. A. V. Uskov and C. Chang-Hasnain, “Slow and superluminal light in semiconductor optical...Quantum-Well Waveguide via Coherent Population Oscillation,” Optics Express 13 (24), pp. 9909- 9915 , Nov. 2005. 8. Phedon Palinginis, Shanna

  5. The non-continuous optical signal identification and data storage on the case of atmospheric disturbances

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Liu, Yong-kai; Ma, Jing; Tan, Li-ying

    2013-08-01

    In the link of satellite to ground laser communication, light signals received by ground terminal receivers are susceptible to interference due to the impact of atmospheric turbulence, and it will result in the degradation of communication quality or even interruption. In this situation, the conventional communication detection device would not be able to analyze the link performance. Thus, it is necessary to develop a set of non-continuous optical signal recognition and storage devices which could work under adverse atmospheric conditions and do the online analysis of the impact of atmospheric on the link of satellite to ground laser. Since the interruption of the optical signal will cause the logical disorders of the high data rate storage system, which uses the CDR output clock as the system clock, general storage device cannot meet the demand of effective storage for communication. In this paper, the usage of FPGA optical signal recovered clock frequency discriminator identified the impact of non-continuous communication signal of atmospheric disturbances effectively. Through the optimization of the system hardware design and software control, we achieved the identification and storage of the laser communication optical signal data while the factor of atmospheric scintillation varying from 0 to 1.5 and the communication data rate being 600Mbps.

  6. Optical residue addition and storage units using a Hughes liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Habiby, S. F.; Collins, S. A., Jr.

    1984-01-01

    Optical addition and storage units are described in this paper. These units are implemented using the Hughes Liquid Crystal Light Valve (LCLV) as a spatial light modulator using residue arithmetic for a numerical representation. The main hardware components of the design, besides the light valve, include an array of single-mode optical fibers that provide input information, a polarizing prism in combination with quarter-wave and half-wave retarders for residue arithmetic implementation in the adder, and a holographic array for spatial stability in the storage unit.

  7. High-Density Optical Data Storage Enabled by the Photonic Nanojet from a Dielectric Microsphere

    NASA Astrophysics Data System (ADS)

    Kong, Soon-Cheol; Sahakian, Alan V.; Taflove, Allen; Backman, Vadim

    2009-03-01

    We discuss the usage of the photonic nanojet to detect deeply subwavelength pits in a metal substrate for the purpose of high-density optical data storage. Three-dimensional finite-difference time-domain (FDTD) computational solutions of Maxwell's equations are used to analyze and design the system. We find that nanojet-illuminated pits having lateral dimensions of only 100×150 nm2 yield a 40-dB contrast ratio. The FDTD simulation results show that pit-depth modulation and pit-width modulation can significantly increase the optical data-storage capacity.

  8. Digitizing Stereoscopic Optic Nerve Head Photographs for Storage and Viewing Using a Personal Computer

    PubMed Central

    Nesher, Ronit; Zacharopoulos, Ioannis; Assia, Ehud I.; Schuman, Joel S.

    2007-01-01

    Careful examination and monitoring of optic nerve head changes is essential in the treatment of patients with glaucoma. This often results in accumulation of numerous photographs and required appropriate storage space. A simple, inexpensive, and efficient means of storing and viewing stereoscopic optic nerve head photographs is described. Images were acquired with a fundus camera, on a color slide film. Slides were then scanned and digitized. A handheld stereoscope was used for stereoscopic viewing on a computer monitor. A scanning resolution of 300 dpi appeared optimal. At this resolution, the storage utilization was 16 kilobytes and the scanning time was 160 seconds per patient. PMID:16156151

  9. Six-dimensional optical storage utilizing wavelength selective, polarization sensitive, and reflectivity graded Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Liu, Shangqing

    2014-09-01

    An optical storage system which stores data in three spacial and three physical dimensions is designed and investigated. Its feasibility has been demonstrated by theoretical derivation and numerical calculation. This system has comprehensive advantages including very large capacity, ultrafast throughputs, relatively simple structure and compatibility with CD and DVD. It's an actually practicable technology. With two-photon absorption writing/erasing and optical coherence tomography reading, its storage capacity is over 32 Tbytes per DVD sized disk, and its reading speed is over 25 Gbits/s with high signal-to-noise ratio of over 76 dB. The larger capacity of over 1 Pbyte per disk is potential.

  10. Digitizing stereoscopic optic nerve head photographs for storage and viewing using a personal computer.

    PubMed

    Nesher, Ronit; Zacharopoulos, Ioannis; Assia, Ehud I; Schuman, Joel S

    2005-01-01

    Careful examination and monitoring of optic nerve head changes is essential in the treatment of patients with glaucoma. This often results in accumulation of numerous photographs and required appropriate storage space. A simple, inexpensive, and efficient means of storing and viewing stereoscopic optic nerve head photographs is described. Images were acquired with a fundus camera, on a color slide film. Slides were then scanned and digitized. A handheld stereoscope was used for stereoscopic viewing on a computer monitor. A scanning resolution of 300 dpi appeared optimal. At this resolution, the storage utilization was 16 kilobytes and the scanning time was 160 seconds per patient.

  11. Storage and control of optical photons using Rydberg polaritons.

    PubMed

    Maxwell, D; Szwer, D J; Paredes-Barato, D; Busche, H; Pritchard, J D; Gauguet, A; Weatherill, K J; Jones, M P A; Adams, C S

    2013-03-08

    We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon interactions. Through the collective read-out of these pseudospin rotations it is shown that the microwave field modifies the long-range interactions between polaritons. This technique provides a powerful interface between the microwave and optical domains, with applications in quantum simulations of spin liquids, quantum metrology and quantum networks.

  12. High-density optical disks for long-term information storage

    NASA Astrophysics Data System (ADS)

    Petrov, Viacheslav; Kryuchyn, Andriy; Gorbov, Ivan

    2011-09-01

    Optical discs are widely used for storage of archival data represented in a digital form. Long-term storage of information recorded on standard CDs is provided by periodical rewriting (once in 3-5 years) on the new carriers. High-stable lightsensitive materials and special reflective metal coatings are proposed to use for increasing the information storage terms of the optical discs. The conducted researches have showed that the application of vitreous chalcogenide semiconductors in optical WORM discs assures the data storage terms up to 30 years. Substantially larger terms of data storage can be realized on the optical ROM carriers. Attainment of the guaranteed data storage terms within several hundreds years is provided in such carriers by applying high-stable materials substrates and information should be represented in the form of a micro-relief structure on the substrate surface. Sapphire, quartz, silicon, glass-ceramics and other materials can be utilized for manufacturing substrates of optical BD discs (and other subsequent high-density disc formats). These materials allow creating substrates characterized with increased melting temperature, chemical and mechanical resistance. Furthermore, using the mentioned materials for substrates production permits applying high temperature materials, such as chrome and nickel, to creation of high-stable refractive layers and demonstrating the sufficient mechanical adhesion between the refractive layer and the substrate. Modern methods of thermo-lithography offers creating of nano-size images on photo-resist layer deposited on the substrates. Those images can be transformed to the nano-size relief structures on the surface of the high-stable materials substrates by techniques of reactive ion-beam etching.

  13. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    DOEpatents

    Land, Cecil E.

    1990-01-01

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.

  14. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    DOEpatents

    Land, C.E.

    1990-07-31

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.

  15. Efficient synthesis of a new unsymmetrical photochromic diarylethene for optical recording storage

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Liu, Gang; Liu, Weijun

    2011-11-01

    A novel unsymmetrical photochromic diarylethene bearing a benzothiazole unit, 1-[ (2,5-dimethyl-3-thienyl) ]-2-[(2-methyl-5-(2-benzothiazole)-3-thienyl)]perfluoroyclopentene (1O) have been synthesized. Its photochromic, fluorescence and optical strorage properties were investigated. The compound exhibited obviously photochromism both in hexane and in PMMA film. In hexane, the fluorescence intensity of 1O declined along with the photochromism upon irradiation with 297 nm light. This new photochromic system also exhibited remarkable optical storage characters.

  16. Efficient synthesis of a new unsymmetrical photochromic diarylethene for optical recording storage

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Liu, Gang; Liu, Weijun

    2012-01-01

    A novel unsymmetrical photochromic diarylethene bearing a benzothiazole unit, 1-[ (2,5-dimethyl-3-thienyl) ]-2-[(2-methyl-5-(2-benzothiazole)-3-thienyl)]perfluoroyclopentene (1O) have been synthesized. Its photochromic, fluorescence and optical strorage properties were investigated. The compound exhibited obviously photochromism both in hexane and in PMMA film. In hexane, the fluorescence intensity of 1O declined along with the photochromism upon irradiation with 297 nm light. This new photochromic system also exhibited remarkable optical storage characters.

  17. Optical response of photopolymer materials for holographic data storage applications.

    PubMed

    Sheridan, J T; Gleeson, M R; Close, C E; Kelly, J V

    2007-01-01

    We briefly review the application of photopolymer recording materials in the area of holographic data storage. In particular we discuss the recent development of the Non-local Polymerisation Driven Diffusion model. Applying this model we develop simple first-order analytic expressions describing the spatial frequency response of photopolymer materials. The assumptions made in the derivation of these formulae are described and their ranges of validity are examined. The effects of particular physical parameters of a photopolymer on the material response are discussed.

  18. Controllable high bandwidth storage of optical information in a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Jayaseelan, Maitreyi; Schultz, Justin T.; Murphree, Joseph D.; Hansen, Azure; Bigelow, Nicholas P.

    2016-05-01

    The storage and retrieval of optical information has been of interest for a variety of applications including quantum information processing, quantum networks and quantum memories. Several schemes have been investigated and realized with weak, narrowband pulses, including techniques using EIT in solid state systems and both hot and cold atomic vapors. In contrast, we investigate the storage and manipulation of strong, high bandwidth pulses in a Bose-Einstein Condensate (BEC) of ultracold 87 Rb atoms. As a storage medium for optical pulses, BECs offer long storage times and preserve the coherence properties of the input information, suppressing unwanted thermal decoherence effects. We present numerical simulations of nanosecond pulses addressing a three-level lambda system on the D2 line of 87 Rb. The signal pulse is stored as a localized spin excitation in the condensate and can be moved or retrieved by reapplication of successive control pulses. The relative Rabi frequencies and areas of the pulses and the local atomic density in the condensate determine the storage location and readout of the signal pulse. Extending this scheme to use beams with a variety of spatial modes such as Hermite- and Laguerre-Gaussian modes offers an expanded alphabet for information storage.

  19. Optically Addressed Nanostructures for High Density Data Storage

    DTIC Science & Technology

    2005-10-14

    advanced several approaches to calculate the clique-based capacity of these structures. We have considered and bounded statistical cross-talk between...positioned in the requisite matrix using optical tweezer technologies . This fabrication approach is being analyzed further to understand its limitations... gain -doublet in which a pair of Lorentzian gain lines are used to achieve significant pulse delay relative to a single-line system. A factor of 6.25

  20. The Use of WORM Optical Disc Storage for Newspaper Cuttings in a Public Library.

    ERIC Educational Resources Information Center

    Fulton, Alan R.

    1990-01-01

    Describes the collection of the Local History Department of the Central Library in Aberdeen (which includes 2,300 volumes of locally produced newspapers and 101,000 sheets of press cuttings) and the use of an optical disk system to help solve the problems of storage and access to these materials. (CLB)

  1. Coumarin-Containing Polymers for High Density Non-Linear Optical Data Storage.

    PubMed

    Gindre, Denis; Iliopoulos, Konstantinos; Krupka, Oksana; Evrard, Marie; Champigny, Emilie; Sallé, Marc

    2016-01-26

    Optical data storage was performed with various thin polymer films containing coumarin-based derivatives and by using femtosecond laser pulses as well as two-photon absorption processes. Exploring the photodimerization attribute of coumarin derivatives and using appropriate irradiation wavelengths, recording/erasing processes could be carried out in the same area. Second harmonic generation microscopy was used to read the stored information.

  2. Reversible two-photon optical data storage in coumarin-based copolymers.

    PubMed

    Iliopoulos, Konstantinos; Krupka, Oksana; Gindre, Denis; Sallé, Marc

    2010-10-20

    A functionalized polymer film allowing for a complete and straightforward second-harmonic generation (SHG)-assisted high-contrast writing-reading-erasing-writing sequence is proposed. The whole process is supported by the reversible photoinduced dimerization of a coumarin chromophore and enables efficient optical data storage that can be detected only by SHG imaging.

  3. Implementing Optical Storage: How to Select a Document Image Management System.

    ERIC Educational Resources Information Center

    O'Connor, Mary Ann

    1991-01-01

    Describes document image management systems that are used for optical storage to facilitate information retrieval. Document image management applications are described, considerations in evaluating system features and functions are presented, and criteria for evaluating vendors of document image management systems are suggested. (two references)…

  4. Advanced multilayer optical data storage: origins and future prospect

    NASA Astrophysics Data System (ADS)

    Esener, Sadik

    2008-02-01

    Fifty years have elapsed since the first concepts in volumetric memories have been put forward. Nowadays, the perceived need for low cost removable TB/disk storage systems is one more time fueling the development of 3D media, recording and readout systems. This paper, by reviewing some of the key historic moments and accomplishments in the development of volumetric recording systems attempts to shine light on possible future developments and directions while paying a tribute to many of the researchers that have contributed to the development of this field: in particular to Dr. Hans J. Coufal who for many years has provided vision, guidance, and leadership by leading recent INSIC Technology Roadmap efforts and organizing this conference. He is and will be greatly missed at a time when our common dreams may become a commercial reality.

  5. High-capacity dense space division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Mizuno, Takayuki; Miyamoto, Yutaka

    2017-02-01

    In this paper, we review space division multiplexing (SDM) transmission experimental demonstrations and associated technologies. In past years, SDM achieved high capacity transmission through increased spatial multiplicity, and long-haul transmission through improved transmission performance. More recently, dense SDM (DSDM) with a large spatial multiplicity exceeding 30 was demonstrated with multicore technology. Various types of multicore and multimode SDM fibers, amplification, and spatial multi/demultiplexers have helped achieve high-capacity DSDM transmission.

  6. Implementation of an optical disk system for medical record storage.

    PubMed

    Mahoney, M E

    1990-09-01

    MARS was a joint developmental effort between Maine Medical Center and Advanced Healthcare Systems, Inc. It has taken nearly three years to get the system (hardware, software, and staff) to a point where it can now meet daily production requirements. This project was truly unique, so there was no opportunity to learn from the experiences of others. The optical disk system has been an attractive solution to some of the problems experienced at Maine Medical Center. The result was worth the effort in terms of both dollars and other less quantifiable benefits that have had a positive impact on patient care.

  7. Optimizing the optical field distribution of near-field SIL optical storage system using five-zone binary phase filters

    NASA Astrophysics Data System (ADS)

    Fang, Chaolong; Zhang, Yaoju; Zhu, Haiyong

    2012-06-01

    Five-zone binary phase filters (FBPFs) are proposed for decreasing the spot size and/or increasing the focal depth of the near-field optical storage system with a hemisphere solid immersion lens (SIL). The design of filters is based on the vector diffraction theory and the MATLAB optimizing toolbox. Three FBPFs with rotationally symmetrical pupil function have been designed, where the one FBPF is for increasing the focal depth as big as possible, the second FBPF is for improving the resolution as high as possible, and the third FBPF integrate the increase of focal depth with the improvement of resolution. Numerical results show that compared with the three-zone amplitude filter, the designed five-zone binary phase-only filters have more prominent performances in improving the focal depth and the resolution of the near-field SIL optical storage system.

  8. New method of two-photon multi-layer optical disc storage

    NASA Astrophysics Data System (ADS)

    Jiang, Bing; Shen, Zhaolong; Cai, Jianwen; Tang, Huohong; Xing, Hui; Huang, Wenhao

    2006-02-01

    Multi-layer data storage based on nonlinear effect caused by two-photon absorption is an attractive approach in the field of mass data storage. A two-photon multi-layer optical disc storage system with disc rotation structure has been proposed. The multi-layer fluorescent disc used in this system consists of three layers. A transparent substrate (under layer) and a thin reflective layer (middle layer) are bonded together forming a kind of structure similar to DVD disc, which is necessary to servo the vertical and radial deviation. Two-photon bits are recorded in top layer. The storage system has two modules: servo module and confocal module. The former keeps following the vertical and radial deviations by means of focusing and tracking servo technologies used in current two-dimensional optical storage devices, so the system can be compatible with CD/DVD. According to the driving signal of actuators in servo pick-up, the confocal module can also follow the disc deviation in both recording and reading processes. The servo module has been finished and the result of preliminary experiment is presented. Using the actuator and the objective lens (NA 0.6) in SANYO pick-up, we successfully recorded and read three data layers in photobleaching material with a homemade femtosecond laser. The layer separation was 15μm and the transverse bit separation was 4 μm.

  9. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  10. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  11. Optical phase information writing and storage in populations of metastable quantum states

    SciTech Connect

    Djotyan, G. P.; Sandor, N.; Bakos, J. S.; Soerlei, Zs.

    2009-10-15

    We propose a scheme for robust writing and storage of optical phase information in populations of metastable states of the atoms with a tripod structure of levels by using frequency-chirped laser pulses. The method provides much longer storage times compared with the schemes based on the collective atomic spin coherences. A negligible excitation of the atom provides immunity to decoherence induced by decay of the excited states. The method is robust against small-to-medium variations in the laser pulse intensity and speed of the chirp and, being insensitive to resonance conditions, it is effective both in homogeneously and inhomogeneously broadened media.

  12. Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths.

    PubMed

    Jia, Xiaojun; Yan, Zhihui; Duan, Zhiyuan; Su, Xiaolong; Wang, Hai; Xie, Changde; Peng, Kunchi

    2012-12-21

    Entangled states of light including low-loss optical fiber transmission and atomic resonance frequencies are essential resources for future quantum information networks. We present the experimental achievement on the three-color entanglement generation at 852, 1550, and 1440 nm wavelengths for optical continuous variables. The entanglement generation system consists of two cascaded nondegenerated optical parametric oscillators (NOPOs). The flexible selectivity of nonlinear crystals in the two NOPOs and the tunable property of NOPO provide large freedom for the frequency selection of three entangled optical beams. The presented system will hopefully be developed as a practical entangled source to be used in quantum-information networks with atomic storage units and long fiber transmission lines.

  13. High capacity anode materials for lithium ion batteries

    DOEpatents

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  14. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  15. Photorefractive Three-Dimensional Disks for Optical Data Storage and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Li, Hsin-Yu Sidney

    This thesis is on the application of 3-D photorefractive crystals disks for holographic optical data storage and optical neural networks. Chapter 1 gives some introductory background and motivation for the materials given in this thesis. In Chapter 2, the coupled-mode analysis and Born's approximation in anisotropic crystals is reviewed. The results are similar to that of isotropic materials. However, there are approximations that are often neglected in the literature. Chapter 3 starts with the description of the holographic 3-D disk for data storage, and analyzes the various alignment errors and tolerance problems for a 3-D disk system. Of particular interest is the effects in image reconstruction caused by rotational angle error. An optimum configuration is found that minimizes this error. Chapter 4 examines the data storage density of 3-D disks and volume holographic storage systems that utilize wavelength/angle and spatial multiplexing. The maximum storage density and the geometry that achieves this density is derived. Chapter 5 discusses the diffraction efficiency of 3-D disks fabricated with photorefractive crystals. Practical geometries and crystal orientations for achieving maximum uniform diffraction efficiency are given and compared to the maximum obtainable diffraction efficiencies using arbitrary cut crystals. Experimental results are shown. Also derived in this chapter are the double grating effect from crystal anisotropy, and the optimum configuration for getting maximum diffraction efficiency using the 90 degree recording geometry. The Khuktarev band-transport model of the photorefractive effect is examined briefly with emphasis on the anisotropy of the material. The proper expression for the permittivity term in the space-charge field formula is derived. Chapter 6 gives an example of an optical neural network that uses photorefractive crystals. It is the real time face-recognition system. The setup and experiments are described. Some properties of

  16. Molecular Electronics for Frequency Domain Optical Storage. Persistent Spectral Hole-Burning. A Review.

    DTIC Science & Technology

    1985-03-25

    if applicable) Office of Naval Research IBM Almaden Research Center Chemistry Division, Code 1113 6c. ADDRESS (City, State, and ZIP Code) 7b...NOTATION Journal of Molecular Electronics 17. .* COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number) FIEL GRUP SB...GOUP Molecular electronics, spectral hole-burning, frequency I I domain. optical storage, solid state photo chemistry , * I photon gating. 19. ABSTRACT

  17. Two-Photon Optical Storage in Photorefractive Polymers in the Near-Infrared Spectral Range

    NASA Astrophysics Data System (ADS)

    Day, Daniel; Gu, Min; Smallridge, Andrew

    We report the use of a polymer-based photorefractive material for three-dimensional bit optical data storage using near-infrared illumination. The research was conducted using photorefractive materials that were fabricated in two polymer matrices: poly(N-vinylcarbazole) (PVK) and poly(Methyl Methacrylate) (PMMA). The recording samples also consisted of the following compounds in various proportions: 2,5-dimethyl-4-(p-nitrophenylazo)anisole (DMNPAA), 2,4,7-trinitro-9-fluorenone (TNF) and N-ethylcarbazole (ECZ). Two-photon excitation was used as the recording mechanism to achieve rewritable bit data storage in a photorefractive polymer. As a result of two-photon excitation, the quadratic dependence of the excitation on the incident intensity produces an excitation volume that is confined to the focal region in both the transverse and axial directions. The use of ultrashort pulsed lasers, while effective, is not a practical solution for an optical data storage system. This research demonstrates the ability to produce three-dimensional rewritable bit data storage using continuous-wave illumination. Using this technology it has been possible to achieve a density of 88 Gbits/cm3, which in the future could be increased to 3.5 Tbits/cm3.

  18. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    NASA Astrophysics Data System (ADS)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  19. Nonlinear Optical Properties of Bacteriorhodopsin and Retinal Chromophores and Their Applications for Optical Information Storage and Processing.

    NASA Astrophysics Data System (ADS)

    Chen, Zhongping

    Retinal, a conjugated polyene, plays a crucial role in biology. Both the visual pigments and the energy transducing protein, bacteriorhodopsin (BR) have a form of retinal as their chromophores. Because visual excitation and energy transduction in these systems is initiated by the promotion of retinal to an excited electronic state, information about the excited-state structure of retinal and the effect of chromophore/protein interactions on this structure are essential to understanding the functions of these systems. In this thesis, surface second harmonic (SH) generation is used to measure the light-induced dipole moment changes of a series of retinal derivatives that were designed and synthesized to model specific components of chromophore/protein interactions. In addition, we report an in situ probe of the dipole moment change of the retinal chromophore bound in BR by SH generation from oriented purple membranes. The dipole moment changes of various forms of BR, including light-adapted, dark-adapted, blue, and acid purple membrane, were measured and compared. These results, combined with the results from model compounds, elucidate the effects of the chromophore/protein interactions on light-induced charge redistribution and give insight on the fundamental nature of light excitation and energy storage in SR and rhodopsin. Furthermore, the dependence of the molecular hyperpolarizability of the conjugated molecules on donor/acceptor strength, protonation, conjugate length, planarity, and nonconjugate charges is investigated. Our study shows for the first time that nonconjugated charges have a very large effect on the nonlinear optical properties of conjugated molecules. BR has interesting photochromic characteristics, very large optical nonlinearities, and a unique optoelectrical property where the polarity of the photovoltage depends on both its photochromic state and the excitation wavelength. These unique characteristics coupled with its high stability make BR

  20. Ultra-high density optical data storage in common transparent plastics

    PubMed Central

    Kallepalli, Deepak L. N.; Alshehri, Ali M.; Marquez, Daniela T.; Andrzejewski, Lukasz; Scaiano, Juan C.; Bhardwaj, Ravi

    2016-01-01

    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc. PMID:27221758

  1. Ultra-high density optical data storage in common transparent plastics

    NASA Astrophysics Data System (ADS)

    Kallepalli, Deepak L. N.; Alshehri, Ali M.; Marquez, Daniela T.; Andrzejewski, Lukasz; Scaiano, Juan C.; Bhardwaj, Ravi

    2016-05-01

    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.

  2. Ultra-high density optical data storage in common transparent plastics.

    PubMed

    Kallepalli, Deepak L N; Alshehri, Ali M; Marquez, Daniela T; Andrzejewski, Lukasz; Scaiano, Juan C; Bhardwaj, Ravi

    2016-05-25

    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.

  3. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  4. Conversion of Hard-Copy Documents to Digital Format Utilizing Optical Scanners and Optical Storage Media

    DTIC Science & Technology

    1989-03-01

    algorithms, known as Modified Huffman (MH) and Modified Read (MR) encoding. ( Matlin , 1988, p. 75) 1. Modified Huffman Encoding Also known as one...Thesis, Naval Postgraduate School, Monterey, California, June 1987. Matlin , Mark, "Image Compression for Document Storage," ESD: The Electronic System

  5. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    NASA Astrophysics Data System (ADS)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  6. Waveguide optical scanner with increased deflection sensitivity for optical data storage

    NASA Astrophysics Data System (ADS)

    Chen, Qibao; Chiu, Yi; Devasahayam, Adrian J.; Seigler, Michael A.; Lambeth, David N.; Schlesinger, Tuviah E.; Stancil, Daniel D.

    1994-10-01

    Waveguide electrooptic (EO) beam scanners are of interest for applications requiring high speed, high throughput, low power consumption, and modest deflection. Such devices can be used in high performance optical recording and laser printer heads. We are pursuing a novel waveguide device structure in which prisms are formed by ferroelectric domain inversion in a substrate containing a planar waveguide. The device uses TM optical modes in z-cut substrates and is therefore compatible with waveguides used for high-efficiency optical second harmonic generation (SHG).

  7. Ultrathin reduced graphene oxide films for high performance optical data storage

    NASA Astrophysics Data System (ADS)

    Xing, Fei; Yang, Yong; Zhu, Siwei; Yuan, Xiaocong

    2015-10-01

    Optical data storage (ODS) represents revolutionary progress for the field of information storage capacity. When the thickness of data recording layer is similar to a few nanometer even atomic scale, the data point dimension can decrease to the minimum with stable mechanical property. Thus the new generation of ODS requires data recording layer in nanoscale to improve areal storage density, so that the more digital information can be stored in limited zone. Graphene, a novel two-dimensional (2D) material, is a type of monolayer laminated structure composed of carbon atoms and is currently the thinnest known material (the thickness of monolayer graphene is 3.35 Å). It is an ideal choice as a active layer for ODS media. Reduced graphene oxide, a graphene derivative, has outstanding polarization-dependent absorption characteristics under total internal reflection (TIR). The strong broadband absorption of reduced graphene oxide causes it to exhibit different reflectance for transverse electric (TE) and transverse magnetic (TM) modes under TIR, and the maximum reflectance ratio between TM and TE modes is close to 8 with 8 nm reduced graphene oxide films. It opens a door for a high signal to noise ratio (SNR) graphene-based optical data storage. Here, 8 nm high-temperature reduced graphene oxide (h-rGO) films was used for the ultrathin active layer of ODS. The data writing was performed on the h-rGO active layer based on photolithography technology. Under TIR, a balanced detection technology in the experiment converts the optical signals into electric signals and simultaneously amplifies them. The reading results show a stable SNR up to 500, and the graphene-based ODS medium has a high transparency performance.

  8. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system

    NASA Astrophysics Data System (ADS)

    Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin

    2014-02-01

    A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.

  9. Optical readout of hydrogen storage in films of Au and Pd

    NASA Astrophysics Data System (ADS)

    Nishijima, Yoshiaki; Shimizu, Shogo; Kurihara, Keisuke; Hashimoto, Yoshikazu; Takahashi, Hajime; Balčytis, Armandas; Seniutinas, Gediminas; Okazaki, Shinji; Juodkazytė, Jurga; Iwasa, Takeshi; Taketsugu, Tetsuya; Tominaga, Yoriko; Juodkazis, Saulius

    2017-10-01

    For hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequential layer-by-layer fashion on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 micrometers wavelength light. Increase of optical transmission was observed for hydrogenated Pd-rich films of 10-30 nm thickness. Up to a three times slower hydrogen release took place as compared with the hydrogen uptake. Composition ratio of Au:Pd and thermal treatment of films provided control over the optical extinction changes and hydrogen uptake/release time constants. Higher uptake and release rates were observed in the annealed Au:Pd films as compared to those deposited at room temperature and were faster for the Au-richer films. Three main parameters relevant for sensors: sensitivity, selectivity, stability (reproducibility) are discussed together with the hydrogenation mechanism in Au:Pd alloys.

  10. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.

    PubMed

    Ahluwalia, Balpreet Singh; McCourt, Peter; Oteiza, Ana; Wilkinson, James S; Huser, Thomas R; Hellesø, Olav Gaute

    2015-01-07

    Red blood cells squeeze through micro-capillaries as part of blood circulation in the body. The deformability of red blood cells is thus critical for blood circulation. In this work, we report a method to optically squeeze red blood cells using the evanescent field present on top of a planar waveguide chip. The optical forces from a narrow waveguide are used to squeeze red blood cells to a size comparable to the waveguide width. Optical forces and pressure distributions on the cells are numerically computed to explain the squeezing process. The proposed technique is used to quantify the loss of blood deformability that occurs during blood storage lesion. Squeezing red blood cells using waveguides is a sensitive technique and works simultaneously on several cells, making the method suitable for monitoring stored blood.

  11. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials.

    PubMed

    Bruder, Friedrich-Karl; Hagen, Rainer; Rölle, Thomas; Weiser, Marc-Stephan; Fäcke, Thomas

    2011-05-09

    Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed.

  12. Acousto-optic parallel read/write head for optical disk data storage.

    PubMed

    McLeod, Robert R; Walter, Sarah K

    2006-09-20

    Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.

  13. Acousto-optic parallel read/write head for optical disk data storage

    NASA Astrophysics Data System (ADS)

    McLeod, Robert R.; Walter, Sarah K.

    2006-09-01

    Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.

  14. Development of photorefractive polymers for real-time optical information storage

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, D.; Palanisamy, P. K.; Kannan, P.

    1999-03-01

    A large number of strong nonlinear optical and electro optical molecules and crystals are identified recently. With the discovery of the photorefractive (PR) effect and early realization of its potential utility, PR materials are of considerable interest for the development of all optical devices, such as high density optical data storage and image processing techniques. Organic materials are known to show strong electro optic effects. In organic materials, the properties required for the PR effect including photosensitivity, photoconductivity and electro optic response are provided by different molecules. As a result, the properties can be optimized separately, unlike in inorganic PR crystals such as LiNbO3. This paper describes the utilization of third order non-linearity induced in Xanthene dye doped gelatin and poly (eosin acrylate) & poly (eosin acrylate-co-isobutyl acrylate) films resulting in direct storage without the need for any further processing i.e., no wet chemical or post thermal/photochemical processing are required. With required amount of solvent and monomer in the presence of benzoyl peroxide (initiator), polymerization reaction was carried out under nitrogen atmosphere. Polymer samples were characterized by NMR, IR, FT-IR & TGA. The polymers were soluble in THF, DMSO, DMF & DMAC solvents and form good optical quality films by spin as well as dip coating. Polymer thin films were prepared with different concentrations of polymer solution onto the glass slides. The UV-visible absorption spectra of the spin coated polymer films showed a maximum at 538 nm. In our simplest optical system, Q- switched, second harmonic Nd-YAG laser light at wavelength 532 nm was used for recording. Two beams split from the same laser were made to superpose with path difference less than the coherent length. One of the beam acted as information carrying beam while the other acted as reference beam. In this present study, we report the direction formation of surface

  15. A high capacity satellite switched TDMA microwave switch matrix

    NASA Technical Reports Server (NTRS)

    Cory, B. J.; Berkowitz, M.

    1981-01-01

    A description is given of the conceptual design of a high-capacity satellite switched-time division multiple access (SS-TDMA) microwave switch matrix fabricated with GaAs monolithic microwave integrated circuits (MMICs), including integration of both microwave and control logic circuits into the monolithic design. The technology required for a 30/20 GHz communications system includes an on-board SS-TDMA switch matrix. A conceptual design study that has been completed for a wideband, high-capacity (typically 100 x 100) channel switch matrix using technology anticipated for 1987 is described, noting that the study resulted in a switch matrix design concept using a coupled crossbar architecture implemented with MMIC. The design involves basic building block MMIC, permitting flexible growth and efficient wraparound redundancy to increase reliability.

  16. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  17. High-capacity transmission over multi-core fibers

    NASA Astrophysics Data System (ADS)

    Awaji, Yoshinari; Sakaguchi, Jun; Puttnam, Benjamin J.; Luís, Ruben S.; Mendinueta, Jose Manuel Delgado; Klaus, Werner; Wada, Naoya

    2017-02-01

    The ultimate transmission capacity of standard single-mode fiber (SSMF) is limited by fiber nonlinearity which prevents increasing transmission power and finite amplifier bandwidth. In order to overcome such limitation, space-division multiplexing (SDM) has been proposed. Multi-core fiber (MCF) is a strong candidate to realize practical SDM transmission system because of high isolation of individual spatial modes sharing the same cladding, which enables ultra-high capacity transmission in cooperation with wide band WDM.

  18. High Capacity Two-Stage Pulse Tube (PREPRINT)

    DTIC Science & Technology

    2006-11-01

    International Cryogenic Material Conferences, TBD, Chattanooga, TN Government Purpose Rights 14. ABSTRACT The High Capacity Cryocooler (HCC) provides large...High Energy Cryocooler (HEC) compressor and is capable of using input powers up to 700 W. The two linear pulse tube cold heads are integrated with the...compressor into an integral cryocooler . A thermal strap between the cold heads improves efficiency and can be positioned to provide cooling for a

  19. New composite blue sensitive materials for high resolution optical data storage

    NASA Astrophysics Data System (ADS)

    Criante, L.; Castagna, R.; Vita, F.; Lucchetta, D. E.; Simoni, F.; Frohmann, S.; Feid, T.; Orlic, S.

    2007-09-01

    In the last three decades several kinds of organic mixtures for holographic recording were developed in order to achieve a new class of DVD-like optical memories for high-density optical data storage. The holographic materials should satisfy the following requirements: high sensitivity to blue light, low losses, high spatial resolution and long term stability. To this aim we developed new organic photosensitive mixtures based on only three components. We recorded high spatial frequency reflection gratings up to 7400 lines/mm with blue laser light (405 nm) by using a conventional holographic setup. We obtained a macro grating diffraction efficiency up to 67%, refractive index modulation over 0.01, optical shrinkage < 2 % and overall losses ~5%. In order to characterize data-storage materials independently on the experimental conditions, the sensitivity has been evaluated through the S parameter which takes into account the diffraction efficiency, recording light intensity, exposure time and sample thickness. The amazing obtained values of S >10 5 cm/J evidences a very fast recording process with a very low writing intensity (less than 20 mW/cm2) corresponding to a recording energy density of few mJ/cm2. The performance of these materials have been also tested in the microholographic geometry.

  20. Inspection of commercial optical devices for data storage using a three Gaussian beam microscope interferometer

    SciTech Connect

    Flores, J. Mauricio; Cywiak, Moises; Servin, Manuel; Juarez P, Lorenzo

    2008-09-20

    Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near {lambda}. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices.

  1. Inspection of commercial optical devices for data storage using a three Gaussian beam microscope interferometer.

    PubMed

    Flores, J Mauricio; Cywiak, Moisés; Servín, Manuel; Juárez, Lorenzo

    2008-09-20

    Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near lambda. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices.

  2. Ferro-/Ferri-Exchange Coupled Magnetic Double Layers For High Density Magneto-optical Data Storage

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ying; Wang, Jing; Yang, Jun-He

    2009-10-01

    PtCo/TbFeCo ferro-/ferri-exchange coupled double layer film (ECDL) was fabricated for high density magneto-optical (MO) data storage. At room temperature (RT), the PtCo film is in-plane magnetized and acts as a mask layer. However, at elevated temperature, it turns to be out-of-plane magnetized because of the strong exchange coupling interactions with the TbFeCo layer. Therefore, this ECDL film has a magnetically induced superresolution (MSR) effect. Combining it with the good Kerr signal at short wavelength, the PtCo/TbFeCo film can be a good candidate for blue laser-MSR MO data storage.

  3. Optical memory development. Volume 2: Gain-assisted holographic storage media

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Mezrich, R. S.

    1972-01-01

    Thin deformable films were investigated for use as the storage medium in a holographic optical memory. The research was directed toward solving the problems of material fatigue, selective heat addressing, electrical charging of the film surface and charge patterning by light. A number of solutions to these problems were found but the main conclusion to be drawn from the work is that deformable media which employ heat in the recording process are not satisfactory for use in a high-speed random-access read/write holographic memory. They are, however, a viable approach in applications where either high speed or random-access is not required.

  4. Rapid production of structural color images with optical data storage capabilities

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohamad; Jiang, Hao; Qarehbaghi, Reza; Naghshineh, Mohammad; Kaminska, Bozena

    2015-03-01

    In this paper, we present novel methods to produce structural color image for any given color picture using a pixelated generic stamp named nanosubstrate. The nanosubstrate is composed of prefabricated arrays of red, green and blue subpixels. Each subpixel has nano-gratings and/or sub-wavelength structures which give structural colors through light diffraction. Micro-patterning techniques were implemented to produce the color images from the nanosubstrate by selective activation of subpixels. The nano-grating structures can be nanohole arrays, which after replication are converted to nanopillar arrays or vice versa. It has been demonstrated that visible and invisible data can be easily stored using these fabrication methods and the information can be easily read. Therefore the techniques can be employed to produce personalized and customized color images for applications in optical document security and publicity, and can also be complemented by combined optical data storage capabilities.

  5. Achieve both multiwavelength and multilevel optical storage on compact disk by diarylethene

    NASA Astrophysics Data System (ADS)

    Liu, Xuedong; Pu, Shouzhi; Zhao, Fuqun; Qi, Guosheng; Zhang, Fushi

    2005-01-01

    The novel photochromism, diarylethene derivatives, 1,2-bis(2,5-dimethyl-thien-3-yl)perfluoro cyclopentene (1a) and 1,2-bis(2-methyl-5-carbonylphenyl)-thien-3-yl) perfluorocyclo pentene(2a) were synthesized. And the PC discs of these two diarylethenes were prepared by spin-coating and vacuum evaporating method. To some extent, the high density recording was carried out the multi-wavelength and multi-level optical storage system. On the PC disc, single-wavelength and eight-level recording was realized by 2a, and two laser beams of 532nm and 650nm were used in two-wavelength eight-level recording and readout simultaneously. The results show that the reflectivity differences between the recording region and unrecording region is greater than 50%. The creation is that the two-wavelength and four-step optical recording on the PC disc achieved first time.

  6. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  7. Development of a high capacity variable conductance heat pipe.

    NASA Technical Reports Server (NTRS)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  8. Colloidal silica films for high-capacity DNA arrays

    NASA Astrophysics Data System (ADS)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  9. Surface-micromachined optical polarizers for magneto-optical data storage

    NASA Astrophysics Data System (ADS)

    Pu, Chuan; Zhu, Zuhua; Lo, Yu-Hwa

    1998-07-01

    Polarizers and polarization beam splitters are the most important devices in magneto-optical readout system. With a commercially available foundry polysilicon surface micromachining process (Multi-User Means ProcesS, or MUMPS) offered by MCNC (Mems Center at North Carolina), we have realized, on a single Si chip, an integrated polarization beam splitting system with a binary phase Fresnel lens for collimation. Polarization extinction ratios of 10 dB for the transmitted light and over 20 dB for the reflected light have been achieved. The whole system is prealigned using Computer-Aided Design on a Si substrate and is then lifted up perpendicular to the substrate after structure release.

  10. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.

    PubMed

    Wang, Wei; Kumta, Prashant N

    2010-04-27

    Lithium-ion batteries have witnessed meteoric advancement the last two decades. The anode area has seen unprecedented research activity on Si and Sn, the two anode alternatives to currently used carbon following the initial seminal work by Fuji on tin oxide nanocomposites. Recent reports on silicon nanowires, porous Si, and amorphous Si coatings on graphite nanofibers (GNF) have been very encouraging. High capacity and long cycle life anodes are still, however, elusive and much needed to meet the ever increasing energy storage demands of modern society. Herein, we report for the first time the synthesis of novel 1D heterostructures comprising vertically aligned multiwall CNTs (VACNTs) containing nanoscale amorphous/nanocrystalline Si droplets deposited directly on VACNTs with clearly defined spacing using a simple two-step liquid injection CVD process. A hallmark of these single reactor derived heterostructures is an interfacial amorphous carbon layer anchoring the nanoscale Si clusters directly to the VACNTs. The defined spacing of nanoscale Si combined with their tethered CNT architecture allow for the silicon to undergo reversible electrochemical alloying and dealloying with Li with minimal loss of contact with the underlying CNTs. The novel heterostructures thus exhibit impressive reversible stable capacities approximately 2050 mAh/g with very good rate capability and an acceptable first cycle irreversible loss approximately 20% comparable to graphitic anodes indicating their promise as high capacity Li-ion anodes. Although warranting further research, particularly with regard to long-term cycling, it can be envisaged that optimization of this simple approach could lead to reversible high capacity next generation Li-ion anodes.

  11. Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors.

    PubMed

    Rizzolo, S; Périsse, J; Boukenter, A; Ouerdane, Y; Marin, E; Macé, J-R; Cannas, M; Girard, S

    2017-08-18

    We present an innovative architecture of a Rayleigh-based optical fibre sensor for the monitoring of water level and temperature inside storage nuclear fuel pools. This sensor, able to withstand the harsh constraints encountered under accidental conditions such as those pointed-out during the Fukushima-Daiichi event (temperature up to 100 °C and radiation dose level up to ~20 kGy), exploits the Optical Frequency Domain Reflectometry technique to remotely monitor a radiation resistant silica-based optical fibre i.e. its sensing probe. We validate the efficiency and the robustness of water level measurements, which are extrapolated from the temperature profile along the fibre length, in a dedicated test bench allowing the simulation of the environmental operating and accidental conditions. The conceived prototype ensures an easy, practical and no invasive integration into existing nuclear facilities. The obtained results represent a significant breakthrough and comfort the ability of the developed system to overcome both operating and accidental constraints providing the distributed profiles of the water level (0-to-5 m) and temperature (20-to-100 °C) with a resolution that in accidental condition is better than 3 cm and of ~0.5 °C respectively. These new sensors will be able, as safeguards, to contribute and reinforce the safety in existing and future nuclear power plants.

  12. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  13. Monolayer optical memory cells based on artificial trap-mediated charge storage and release

    NASA Astrophysics Data System (ADS)

    Lee, Juwon; Pak, Sangyeon; Lee, Young-Woo; Cho, Yuljae; Hong, John; Giraud, Paul; Shin, Hyeon Suk; Morris, Stephen M.; Sohn, Jung Inn; Cha, Seungnam; Kim, Jong Min

    2017-03-01

    Monolayer transition metal dichalcogenides are considered to be promising candidates for flexible and transparent optoelectronics applications due to their direct bandgap and strong light-matter interactions. Although several monolayer-based photodetectors have been demonstrated, single-layered optical memory devices suitable for high-quality image sensing have received little attention. Here we report a concept for monolayer MoS2 optoelectronic memory devices using artificially-structured charge trap layers through the functionalization of the monolayer/dielectric interfaces, leading to localized electronic states that serve as a basis for electrically-induced charge trapping and optically-mediated charge release. Our devices exhibit excellent photo-responsive memory characteristics with a large linear dynamic range of ~4,700 (73.4 dB) coupled with a low OFF-state current (<4 pA), and a long storage lifetime of over 104 s. In addition, the multi-level detection of up to 8 optical states is successfully demonstrated. These results represent a significant step toward the development of future monolayer optoelectronic memory devices.

  14. Monolayer optical memory cells based on artificial trap-mediated charge storage and release.

    PubMed

    Lee, Juwon; Pak, Sangyeon; Lee, Young-Woo; Cho, Yuljae; Hong, John; Giraud, Paul; Shin, Hyeon Suk; Morris, Stephen M; Sohn, Jung Inn; Cha, SeungNam; Kim, Jong Min

    2017-03-24

    Monolayer transition metal dichalcogenides are considered to be promising candidates for flexible and transparent optoelectronics applications due to their direct bandgap and strong light-matter interactions. Although several monolayer-based photodetectors have been demonstrated, single-layered optical memory devices suitable for high-quality image sensing have received little attention. Here we report a concept for monolayer MoS2 optoelectronic memory devices using artificially-structured charge trap layers through the functionalization of the monolayer/dielectric interfaces, leading to localized electronic states that serve as a basis for electrically-induced charge trapping and optically-mediated charge release. Our devices exhibit excellent photo-responsive memory characteristics with a large linear dynamic range of ∼4,700 (73.4 dB) coupled with a low OFF-state current (<4 pA), and a long storage lifetime of over 10(4) s. In addition, the multi-level detection of up to 8 optical states is successfully demonstrated. These results represent a significant step toward the development of future monolayer optoelectronic memory devices.

  15. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.; Cerza, M. R., Jr.; Hall, J. B.

    1986-01-01

    High capacity honeycomb panel heat pipes were investigated as heat rejection radiators on future space platforms. Starting with a remnant section of honeycomb panel measuring 3.05-m long by 0.127-m wide that was originally designed and built for high-efficiency radiator fins, features were added to increase thermal transport capacity and thus permit test evaluation as an integral heat transport and rejection radiator. A series of subscale panels were fabricated and reworked to isolate individual enhancement features. Key to the enhancement was the addition of a liquid sideflow that utilizes pressure priming. A prediction model was developed and correlated with measured data, and then used to project performance to large, space-station size radiators. Results show that a honeycomb panel with 5.08-cm sideflow spacing and core modification will meet the design load of a 50 kW space heat rejection system.

  16. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  17. Testing of a high capacity research heat pipe

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests were performed on a high-capacity channel-wick heat pipe to assess the transport limitations of v-grooves and the effects of boiling. The results showed that transport can vary significantly (less than 50 W) under similar conditions and the continuous boiling was observed at power levels as low as 40 W. In addition, some evidence was found to support the predictions using a groove transport model which shows that transport increases with lower groove densities and longer evaporators. However, due to transport variations, these results were not consistent throughout the program. When a glass fiber wick was installed over the grooves, a relatively low transport level was achieved (80 to 140 W). Based on these results and the identification of some potential causes for them, several design suggestions were recommended for reducing the possibility of boiling and improving groove transport.

  18. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    PubMed Central

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; Tour, James M.; Kent, Thomas A.

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS such as superoxide and hydroxyl radicals, show no reactivity toward nitric oxide, and can be functionalized with targeting moieties without loss of activity. Given these properties, we propose that PEG-HCCs offer an exciting new area of study for treatment of numerous ROS-induced human pathologies. PMID:25175886

  19. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.; Cerza, M. R., Jr.; Hall, J. B.

    1986-01-01

    High capacity honeycomb panel heat pipes were investigated as heat rejection radiators on future space platforms. Starting with a remnant section of honeycomb panel measuring 3.05-m long by 0.127-m wide that was originally designed and built for high-efficiency radiator fins, features were added to increase thermal transport capacity and thus permit test evaluation as an integral heat transport and rejection radiator. A series of subscale panels were fabricated and reworked to isolate individual enhancement features. Key to the enhancement was the addition of a liquid sideflow that utilizes pressure priming. A prediction model was developed and correlated with measured data, and then used to project performance to large, space-station size radiators. Results show that a honeycomb panel with 5.08-cm sideflow spacing and core modification will meet the design load of a 50 kW space heat rejection system.

  20. High-capacity reversible watermarking for 2D vector data

    NASA Astrophysics Data System (ADS)

    Voigt, Michael; Yang, Bian; Busch, Christoph

    2005-03-01

    This paper describes an efficient and high-capacity reversible 2-D vector data embedding method, which provides a promising solution to GIS (geographic information system) data hiding and authentication applications with a high requirement of fidelity or bit-by-bit exactness of the original 2-D vector data (point coordinates). All proposed methods are performed in the DCT-domain. For the realization of this task a bit-shift scheme is applied and a distortion limited scheme is used to guarantee a maximal deviation between the original map and the modified one. To achieve more capacity we combine the bit-shifting scheme with our former one which makes use of the strong correlation between geographic data.

  1. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  2. Preparation and optical properties of BaFCl:Eu 2+ X-ray storage phosphor

    NASA Astrophysics Data System (ADS)

    Secu, M.; Matei, L.; Serban, T.; Apostol, E.; Aldica, Gh; Silion, C.

    2000-11-01

    A new method for the preparation of BaFCl:Eu 2+ has been developed. A coprecipitation chemical reaction between BaCl 2 and NaF acidified aqueous solution has been used. Doping with Eu 2+ was carried out by adding EuF 3 during preparation time. A thermal treatment in vacuum similar to those used in the sintering process of supraconductive ceramics was used in order to accomplish the chemical reaction and to improve the homogeneity of europium ion distribution. Finally, a fine powder consisting of microcrystalline, 4-5 μm grains was obtained. The product has been checked by X-ray diffractometry and characterised by optical methods. Photoluminescence (PL) measurements attest the europium impurification and oxygen contamination during preparation, which has a great importance for the photostimulability properties of the compound. Photostimulated luminescence (PSL) of the X-irradiated samples shows good performance as X-ray storage phosphor.

  3. Systems Issues Pertaining to Holographic Optical Data Storage in Thick Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Oezcan, Meric; Smithey, Daniel T.; Crew, Marshall; Lau, Sonie (Technical Monitor)

    1998-01-01

    The optical data storage capacity and raw bit-error-rate achievable with thick photochromic bacteriorhodopsin (BR) films are investigated for sequential recording and read- out of angularly- and shift-multiplexed digital holograms inside a thick blue-membrane D85N BR film. We address the determination of an exposure schedule that produces equal diffraction efficiencies among each of the multiplexed holograms. This exposure schedule is determined by numerical simulations of the holographic recording process within the BR material, and maximizes the total grating strength. We also experimentally measure the shift selectivity and compare the results to theoretical predictions. Finally, we evaluate the bit-error-rate of a single hologram, and of multiple holograms stored within the film.

  4. Systems Issues Pertaining to Holographic Optical Data Storage in Thick Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Oezcan, Meric; Smithey, Daniel T.; Crew, Marshall; Lau, Sonie (Technical Monitor)

    1998-01-01

    The optical data storage capacity and raw bit-error-rate achievable with thick photochromic bacteriorhodopsin (BR) films are investigated for sequential recording and read- out of angularly- and shift-multiplexed digital holograms inside a thick blue-membrane D85N BR film. We address the determination of an exposure schedule that produces equal diffraction efficiencies among each of the multiplexed holograms. This exposure schedule is determined by numerical simulations of the holographic recording process within the BR material, and maximizes the total grating strength. We also experimentally measure the shift selectivity and compare the results to theoretical predictions. Finally, we evaluate the bit-error-rate of a single hologram, and of multiple holograms stored within the film.

  5. Ring-toric lens for focus-error sensing in optical data storage.

    PubMed

    Descour, M R; Simon, D I; Yeh, W H

    1999-03-10

    We discuss the design and performance of diffractive ring-toric lenses for focus-error sensing in optical data storage. A ring-toric lens images a point source of light to a ring-shaped image. Focus-error sensing is accomplished by means of monitoring the change in ring radius: The ring expands in response to a diverging wave front, and the ring contracts in response to a converging wave front. We describe the use of a segmented phi detector to generate a focus-error signal (FES). We found that the FES slope, a measure of sensitivity to disk defocus, is higher for the ring-toric lenses described in this paper than for other techniques such as the astigmatic and the obscuration methods. We measured an FES slope of 0.7 per micrometer of disk defocus (microm(-1)). The corresponding theoretical FES slope is 0.96 microm(-1).

  6. MeV ion-beam analysis of optical data storage films

    NASA Technical Reports Server (NTRS)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  7. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    PubMed

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  8. Optical data storage system with a planoellipsoidal solid immersion mirror illuminated directly by a point light source.

    PubMed

    Zhang, Yaoju

    2006-12-01

    A new solid immersion mirror called the planoellipsoidal (PE) solid immersion mirror (SIM) for the near-field optical storage is proposed and developed. The PE SIM has a small aperture on the apex of the ellipsoidal surface. The intensity distribution of the transmitted field is calculated by using the vector diffraction theory. Compared with a conventional solid immersion lens (SIL), the proposed PE SIM has the following features. A PE SIM replaces three optical elements of the collimator, objective, and SIL in a conventional SIL optical storage system, so that the optical system equipped with the PE SIM is not only simple in its assembly but is also effective in making an optical head unit. The PE SIM obtains light from a point light source and focuses it directly on the recording layer, which may be useful for a compact optical data storage system. The convex ellipsoidal surface of the PE SIM can reduce the risk of the SIM touching the surface of the recording medium. In addition, the spreading of the spot size with the increase of distance is very small in the PE SIM.

  9. Optical Storage Systems for Records and Information Management: Overview, Recommendations and Guidelines for Local Governments. Local Government Records Technical Information Series. Number 45.

    ERIC Educational Resources Information Center

    Schwartz, Stanley F.

    This publication discusses optical storage, a term encompassing technologies that use laser-produced light to record and store information in digital form. The booklet also discusses how optical storage systems relate to records management, in particular to the management of local government records in New York State. It describes components of…

  10. Demonstration of a high-capacity turboalternator for a 20 K, 20 W space-borne Brayton cryocooler

    NASA Astrophysics Data System (ADS)

    Zagarola, M.; Cragin, K.; Deserranno, D.

    2014-01-01

    NASA is considering multiple missions involving long-term cryogenic propellant storage in space. Liquid hydrogen and oxygen are the typical cryogens as they provide the highest specific impulse of practical chemical propellants. Storage temperatures are nominally 20 K for liquid hydrogen and 90 K for liquid oxygen. Heat loads greater than 10 W at 20 K are predicted for hydrogen storage. Current space cryocoolers have been developed for sensor cooling with refrigeration capacities less than 1 W at 20 K. In 2011, Creare Inc. demonstrated an ultra-low-capacity turboalternator for use in a turbo-Brayton cryocooler. The turboalternator produced up to 5 W of turbine refrigeration at 20 K; equivalent to approximately 3 W of net cryocooler refrigeration. This turboalternator obtained unprecedented operating speeds and efficiencies at low temperatures benefitting from new rotor design and fabrication techniques, and new bearing fabrication techniques. More recently, Creare applied these design and fabrication techniques to a larger and higher capacity 20 K turboalternator. The turboalternator was tested in a high-capacity, low temperature test facility at Creare and demonstrated up to 42 W of turbine refrigeration at 20 K; equivalent to approximately 30 W of net cryocooler refrigeration. The net turbine efficiency was the highest achieved to date at Creare for a space-borne turboalternator. This demonstration was the first step in the development of a high-capacity turbo-Brayton cryocooler for liquid hydrogen storage. In this paper, we will review the design, development and testing of the turboalternator.

  11. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media.

    PubMed

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-28

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG.

  12. Semiconductor/Solid Electrolyte Junctions for Optical Information Storage. Electrochromic Effects on Heptylviologen Incorporated within a Solid Polymer Electrolyte Cell.

    DTIC Science & Technology

    1986-05-15

    cathode5 . Electrochromic devices based upon these electrochemically reversible viologen redox couples would greatly benefit by their incorporation...electrolyte analogs. Here we wish to discuss some recent work from our laboratory on solid- state electrochromic cells in which heptyl viologen (HV2+) was...OPTICAL INFORMATION STORAGE. ELECTROCHROMIC EFFECTS QN HEPTYLVIOLOGEN INCORPORATED WITHIN A SOLID POLYMER ELECTROLYTE CELL By Anthony F. Sammells and

  13. Java-Library for the Access, Storage and Editing of Calibration Metadata of Optical Sensors

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Kresse, W.

    2016-06-01

    The standardization of the calibration of optical sensors in photogrammetry and remote sensing has been discussed for more than a decade. Projects of the German DGPF and the European EuroSDR led to the abstract International Technical Specification ISO/TS 19159-1:2014 "Calibration and validation of remote sensing imagery sensors and data - Part 1: Optical sensors". This article presents the first software interface for a read- and write-access to all metadata elements standardized in the ISO/TS 19159-1. This interface is based on an xml-schema that was automatically derived by ShapeChange from the UML-model of the Specification. The software interface serves two cases. First, the more than 300 standardized metadata elements are stored individually according to the xml-schema. Secondly, the camera manufacturers are using many administrative data that are not a part of the ISO/TS 19159-1. The new software interface provides a mechanism for input, storage, editing, and output of both types of data. Finally, an output channel towards a usual calibration protocol is provided. The interface is written in Java. The article also addresses observations made when analysing the ISO/TS 19159-1 and compiles a list of proposals for maturing the document, i.e. for an updated version of the Specification.

  14. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  15. High-speed optoelectronic IC for multi-standards of optical storage system

    NASA Astrophysics Data System (ADS)

    Cha, Sanghyun; Jeong, Hawoong; Go, Chaedong; Park, Deukhee; Lee, Changseok; Kwon, Kyoungsoo; Lee, Jeashin

    2010-05-01

    The conventional scheme of optical pick-up unit (OPU) should require two or three optoelectronic integrated circuits (OEICs) to cover triple-wavelength λ =780nm, 650nm and 405nm). In order to reduce cost and waste of resources, onechip solution of the OEIC is required. In this paper, the OEIC is designed which can cover triple-wavelength and three optical storage standards which are compact disk (CD), digital versatile disk (DVD) and Blue-Ray. The OEIC has dualarrays of photodiodes because focus of laser is varied depending on wavelength. One of arrays senses the laser of λ =780nm and another senses the lasers of λ =650nm and λ =405nm. For low power consumption and small die area, one wideband transimpedance amplifier (TIA) is used for two photodiodes which are for CD and DVD or Blue-Ray, respectively. And two small size switches are included to select photodiodes. The PIN fingerdiode with N+ fingercathode is integrated to guarantee high performances for λ =405nm and 650nm. And the isolation area between adjacent photodiodes is made by floated P+ implant for reducing power-loss. The measured cutoff bandwidth of the OEIC is 210MHz for λ =405nm. The OEIC is fabricated in a 0.6- μm BiCMOS technology and dissipates 150mW for a single supply voltage of 5V. The active area is 1.4x1.2mm2.

  16. LEPTON ACCELERATORS AND COLLIDERS: Linear optics calibration and nonlinear optimization during the commissioning of the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Tian, Shun-Qiang; Zhang, Wen-Zhi; Li, Hao-Hu; Zhang, Man-Zhou; Hou, Jie; Zhou, Xue-Mei; Liu, Gui-Min

    2009-06-01

    Phase I commissioning of the SSRF storage ring on 3.0 GeV beam energy was started at the end of December 2007. A lot of encouraging results have been obtained so far. In this paper, calibrations of the linear optics during the commissioning are discussed, and some measured results about the nonlinearity given. Calibration procedure emphasizes correcting quadrupole magnetic coefficients with the Linear Optics from Closed Orbit (LOCO) technique. After fitting the closed orbit response matrix, the linear optics of the four test modes is substantially corrected, and the measured physical parameters agree well with the designed ones.

  17. Archive Storage Media Alternatives.

    ERIC Educational Resources Information Center

    Ranade, Sanjay

    1990-01-01

    Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…

  18. High-capacity quantum Fibonacci coding for key distribution

    NASA Astrophysics Data System (ADS)

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca; Sergienko, Alexander V.

    2013-03-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source, as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols, reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of OAM used.

  19. High-capacity turbo-Brayton cryocoolers for space applications

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; McCormick, John A.

    2006-02-01

    Long-life, high-capacity cryocoolers may be needed for future space systems utilizing stored cryogens. The cooling requirements for planetary and extraterrestrial exploration missions, extended-life orbital transfer vehicles, and space depots may range from 10 W to 50 W at temperatures between 20 K and 120 K. Turbo-Brayton cryocoolers are ideal for these systems because they are lightweight, compact and very efficient at high cooling loads due to the high power density of rotary machines. These benefits are in addition to their inherent attributes of high reliability; negligible vibration; long, maintenance-free lifetimes; flexibility in integrating with spacecraft systems; and ability to directly cool remote and distributed loads. To date, space-borne turbo-Brayton technology has been developed for low cooling loads. The first space implementation of a turbo-Brayton cryocooler was in the NICMOS Cooling System (NCS). The NCS has been operational on the Hubble Space Telescope for over 3.5 years without any degradation. It provides 7 W of cooling at 70 K. The scaling of the technology to higher capacities is the subject of this paper.

  20. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.

    PubMed

    Wu, Min; Cui, Yi; Bhargav, Amruth; Losovyj, Yaroslav; Siegel, Amanda; Agarwal, Mangilal; Ma, Ying; Fu, Yongzhu

    2016-08-16

    An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High capacity color barcodes using dot orientation and color separability

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Monga, Vishal; Sharma, Gaurav

    2009-02-01

    Barcodes are widely utilized for embedding data in printed format to provide automated identification and tracking capabilities in a number of applications. In these applications, it is desirable to maximize the number of bits embedded per unit print area in order to either reduce the area requirements of the barcodes or to offer an increased payload, which in turn enlarges the class of applications for these barcodes. In this paper, we present a new high capacity color barcode. Our method operates by embedding independent data in two different printer colorant channels via halftone-dot orientation modulation. In the print, the dots of the two colorants occupy the same spatial region. At the detector, however, by using the complementary sensor channels to estimate the colorant channels we can recover the data in each individual colorant channel. The method therefore (approximately) doubles the capacity of encoding methods based on a single colorant channel and provides an embedding rate that is higher than other known barcode alternatives. The effectiveness of the proposed technique is demonstrated by experiments conducted on Xerographic printers. Data embedded at a high density by using the two cyan and yellow colorant channels for halftone dot orientation modulation is successfully recovered by using the red and blue channels for the detection, with an overall symbol error rate that is quite small.

  2. Tracking inhomogeneity in high-capacity lithium iron phosphate batteries

    NASA Astrophysics Data System (ADS)

    Paxton, William A.; Zhong, Zhong; Tsakalakos, Thomas

    2015-02-01

    Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery under operating conditions. In this paper, we use EDXRD with ultrahigh energy synchrotron radiation to track inhomogeneity in a cycled high-capacity lithium iron phosphate cell under in-situ and operando conditions. A sequence of depth-profile x-ray diffraction spectra are collected with 40 μm resolution as the cell is discharged. Additionally, nine different locations of the cell are tracked independently throughout a second discharge process. In each case, a two-peak reference intensity ratio analysis (RIR) was used on the LiFePO4 311 and the FePO4 020 reflections to estimate the relative phase abundance of the lithiated and non-lithiated phases. The data provide a first-time look at the dynamics of electrochemical inhomogeneity in a real-world battery. We observe a strong correlation between inhomogeneity and overpotential in the galvanic response of the cell. Additionally, the data closely follow the behavior that is predicted by the resistive-reactant model originally proposed by Thomas-Alyea. Despite a non-linear response in the independently measured locations, the behavior of the ensemble is strikingly linear. This suggests that effects of inhomogeneity can be elusive and highlights the power of the EDXRD technique.

  3. Archival storage solutions for PACS

    NASA Astrophysics Data System (ADS)

    Chunn, Timothy

    1997-05-01

    While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.

  4. High Capacity Na+/H+ Exchange Activity in Mineralizing Osteoblasts

    PubMed Central

    Liu, Li; Schlesinger, Paul H.; Slack, Nicole M.; Friedman, Peter A.; Blair, Harry C.

    2015-01-01

    Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na+ with N-methyl-d-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+-free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO3- alkalinized osteoblasts, and pH recovered in medium containing CI-, with or without Na+, in keeping with Na+-independent CI-/HCO3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with CI-/HCO3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na+/H+ exchange via NHE1 and NHE6. PMID:21413028

  5. High capacity implantable data recorders: system design and experience in canines and Denning black bears.

    PubMed

    Laske, Timothy G; Harlow, Henry J; Werder, Jon C; Marshall, Mark T; Iaizzo, Paul A

    2005-11-01

    Implantable medical devices have increasingly large capacities for storing patient data as a diagnostic aid and to allow patient monitoring. Although these devices can store a significant amount of data, an increased ability for data storage was required for chronic monitoring in recent physiological studies. Novel high capacity implantable data recorders were designed for use in advanced physiological studies of canines and free-ranging black bears. These hermitically sealed titanium encased recorders were chronically implanted and programmed to record intrabody broadband electrical activity to monitor electrocardiograms and electromyograms, and single-axis acceleration to document relative activities. Changes in cardiac T-wave morphology were characterized in the canines over a 6 month period, providing new physiological data for the design of algorithms and filtering schemes that could be employed to avoid inappropriate implantable defibrillator shocks. Unique characteristics of bear hibernation physiology were successfully identified in the black bears, including: heart rate, respiratory rate, gross body movement, and shiver An unanticipated high rejection rate of these devices occurred in the bears, with five of six being externalized during the overwintering period, including two devices implanted in the peritoneal cavity. High capacity implantable data recorders were designed and utilized for the collection of long-term physiological data in both laboratory and extreme field environments. The devices described were programmable to accommodate the diverse research protocols. Additionally, we have described substantial differences in the response of two species to a common device. Variations in the foreign body response of different mammals must be identified and taken into consideration when choosing tissue-contacting materials in the application of biomedical technology to physiologic research.

  6. High capacity oxide/ferroelectric/oxide stacks for on-chip charge storage

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Alpay, S. P.; Mantese, J. V.

    2006-07-01

    A thermodynamic model coupled with an electrostatic analysis of dielectric-ferroelectric-dielectric sandwich structures shows that high capacitance densities can be achieved when the total dielectric thickness reaches a critical fraction. For such cases, the induced polarization in the linear dielectrics (e.g., SiO2, Ta2O5, HfO2, Al2O3, and ZrO2) increases the overall permittivity until the internal electric field in the ferroelectric layer suppresses the spontaneous polarization of the ferroelectric. Beyond this critical fraction, the ferroelectric layer can no longer induce polarization in the dielectric layers. We specifically determine the critical fraction required for Ba1-xSrxTiO3 (0

  7. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.

    PubMed

    Gu, Yan; Xu, Yi; Wang, Yong

    2013-02-01

    Graphene-wrapped CoS nanoparticles are synthesized by a solvothermal approach. The product is significantly different from porous CoS microspheres prepared in the absence of graphene under similar preparation conditions. The CoS microspheres and CoS/graphene composite are fabricated as anode materials for lithium-ion batteries. The CoS/graphene composite is found to be better suitable as an anode in terms of higher capacity and better cycling performances. The nanocomposite exhibits an unprecedented high reversible capacity of 1056 mA h/g among all cobalt sulfide-based anode materials. Good cycling performances are also observed at both small and high current rates.

  8. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  9. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework.

    PubMed

    Xiao, Bo; Wheatley, Paul S; Zhao, Xuebo; Fletcher, Ashleigh J; Fox, Sarah; Rossi, Adriano G; Megson, Ian L; Bordiga, S; Regli, L; Thomas, K Mark; Morris, Russell E

    2007-02-07

    Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.

  10. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Londer, H.; Myneni, G. R.; Adderley, P.; Bartlok, G.; Setina, J.; Knapp, W.; Schleussner, D.

    2006-05-01

    Current "Non evaporable getters" (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 °C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  11. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed Central

    Bezanilla, F

    1985-01-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form. PMID:3978213

  12. Experiments on the data recording of optical waveguide multilayer storage devices

    NASA Astrophysics Data System (ADS)

    Liang, Zhongcheng; Ding, Dongyan; Xie, Haiyan; Gu, Minfen; Chen, Jiabi; Zhuang, Songlin

    2005-12-01

    The basic principles of optical waveguide multilayer storage (WMS) device include recording data in the form of waveguide defects, reading data by collecting the scatter light from the waveguide defects, and restraining the cross talk between layers by taking the benefit of the waveguide structure. In this paper, we give some experimental results obtained by three different approaches of data recording. They are laser direct writing, photolithography and hot embossing. In the first method, a laser beam is focused on the top of a polymer film. The thermal effect alters the medium property locally at the focus point, which acts as the defect in the waveguide structure. The second method resorts to the processes of photolithography to record pits on the photoresist layer. The process of hot embossing is similar to the fabrication of CD-ROM, however, the data pits deeper than the wavelength are embossed on the polymer surface to increase the scattering efficiency. WMS devices based on different data writing methods are presented and the data scattering patterns are observed. The comparison between the different data writing approaches is made and discussed as well.

  13. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm.

    PubMed

    Bien-Aimé, K; Belin, C; Gallais, L; Grua, P; Fargin, E; Néauport, J; Tovena-Pecault, I

    2009-10-12

    The impact of storage conditions on laser induced damage density at 351 nm on bare fused polished silica samples has been studied. Intentionally outgassing of polypropylene pieces on silica samples was done. We evidenced an important increase of laser induced damage density on contaminated samples demonstrating that storage could limit optics lifetime performances. Atomic Force Microscopy (AFM) and Gas Chromatography -Mass Spectrometry (GC-MS) have been used to identify the potential causes of this effect. It shows that a small quantity of organic contamination deposited on silica surface is responsible for this degradation. Various hypotheses are proposed to explain the damage mechanism. The more likely hypothesis is a coupling between surface defects of optics and organic contaminants.

  14. Structural and optical properties of In doped Se-Te phase-change thin films: A material for optical data storage

    NASA Astrophysics Data System (ADS)

    Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin; Dwivedi, D. K.

    2016-02-01

    Se75-xTe25Inx (x = 0, 3, 6, & 9) bulk glasses were obtained by melt quench technique. Thin films of thickness 400 nm were prepared by thermal evaporation technique at a base pressure of 10-6 Torr onto well cleaned glass substrate. a-Se75-xTe25Inx thin films were annealed at different temperatures for 2 h. As prepared and annealed films were characterized by X-ray diffraction and UV-Vis spectroscopy. The X-ray diffraction results show that the as-prepared films are of amorphous nature while it shows some poly-crystalline structure in amorphous phases after annealing. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the extinction and absorption coefficient of these films. It was found that the mechanism of optical absorption follows the rule of allowed non-direct transition. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. The optical band gap is found to decrease with increase in annealing temperature in the present glassy system. It happens due to crystallization of amorphous films. The decrease in optical band gap due to annealing is an interesting behavior for a material to be used in optical storage. The optical band gap has been observed to decrease with the increase of In content in Se-Te glassy system.

  15. Development of high capacity Stirling type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Imura, J.; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K.; Ohashi, Y.; Nomachi, H.; Okumura, N.; Nagaya, S.; Tamada, T.; Hirano, N.

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were #150, 200, 250, 350 and 400. Using #250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  16. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts.

    PubMed

    Lv, Chenyan; Masuda, Taro; Yang, Haixia; Sun, Lei; Zhao, Guanghua

    2011-12-01

    We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.

  17. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.

    PubMed

    Zhang, Juan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-12-23

    Sodium-ion batteries (SIBs) have attracted considerable attention as an alternative energy-storage technology in recent years. Developing advanced sodium storage anode materials with appropriate working potential, high capacity, and good cycling performance is very important. Herein, we demonstrate a nanostructured tellurium@carbon (nano-Te@C) composite by confining nano-Te molecules in the space of carbon micropores as an attractive anode material for SIBs. The nano-Te@C anode presents an appropriate redox potential in the range of 1.05-1.35 V (vs Na(+)/Na), which avoids the Na dendrite problem and achieves a high reversible capacity of 410 mA h g(-1) on the basis of a two-electron redox reaction mechanism. Notably, the nano-Te@C exhibits an admirable long-term cycling stability with a high capacity retention of 90% for 1000 cycles (i.e., ultralow capacity decay of 0.01% per cycle). The excellent electrochemical property of nano-Te@C benefits from the high electroactivity from the nanostructure design and the effective confinement of the microporous carbon host. In addition, a Na-ion full cell by using nano-Te@C as anode and Na2/3Ni1/3Mn2/3O2 as cathode is demonstrated for the first time and exhibits a remarkable capacity retention up to 95% after 150 cycles. The results put new insights for the development of advanced SIBs with long-cycle lifespan.

  18. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation

    PubMed Central

    Riley, Nicholas M.; Mullen, Christopher; Weisbrod, Chad R.; Sharma, Seema; Senko, Michael W.; Zabrouskov, Vlad; Westphall, Michael S.; Syka, John E.P.; Coon, Joshua J.

    2015-01-01

    Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately three fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase. PMID:26589699

  19. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    SciTech Connect

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs.

  20. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    PubMed

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  1. Use of optical storage for patent image retrieval: the U.S. Patent and Trademark Office's automated patent system

    NASA Astrophysics Data System (ADS)

    Jacobson, Stephen R.

    1990-08-01

    The Automated Patent System (APS) was designed, among other things, to assist the patent examiner in performing the patent search. It is a fully distributed system that uses custom-built high-resolution dual-display intelligent workstations, optical file servers, mainframes, and support computers networked together using Ethernet technology. The system is composed of two parts which are highly integrated: a full text search system and a patent image retrieval system. When fully deployed, APS will have an image data base of up to 30 terabytes being accessed from over 1000 workstations. The U.S. Patent and Trademark Office (PTO) has had problems with their optical drives, and although they are fairly stable today, we still experience a moderately high hardware failure rate. The optical drive problems include media instability, hardware design errors, vendor problems, and configuration control failures. We intend to purchase additional drives in the future, and are re-evaluating the exclusive use of optical storage in light of recent advances in magnetic storage technology.

  2. Optical cell for combinatorial in situ Raman spectroscopic measurements of hydrogen storage materials at high pressures and temperatures.

    PubMed

    Hattrick-Simpers, Jason R; Hurst, Wilbur S; Srinivasan, Sesha S; Maslar, James E

    2011-03-01

    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH(4))(2) and nano-LiBH(4)-LiNH(2)-MgH(2) hydrogen storage systems at elevated temperatures and pressures are reported.

  3. Green-Light Static Rewritable Optical Storage Properties of a Novel CuTCNQ Derivative Thin Film

    NASA Astrophysics Data System (ADS)

    Huang, Wu-Qiao; Wu, Yi-Qun; Gu, Dong-Hong; Gan, Fu-Xi

    2003-12-01

    A novel charge-transfer complex film: copper-(n-propyl ester 7,7,8,8- tetracyanoquinodimethane-2,5-ylene-(3-propionic acid)) (Cu-TCNQ(C2H4COOC3H7)2) was prepared by spin-coating. Absorption spectra, green-light (514.5 nm) static rewritable optical recording properties and rewritable mechanism of this film were studied. The results show that there are two strong absorption peaks at 388 nm and 675 nm, which can be assigned to electronic transitions in anion radical TCNQ(C2H4COOC3H7)2-. Green-light optical storage experimental results of this film were as follows: write-in power was 9 mW, pulse duration was 80 ns erasing power was 4 mW, pulse duration was 500 ns the reflectivity contrast Cgeq15% number of write-erase cycles Ngeq100. It is found that the realization of rewritable optical storage of the Cu-TCNQ(C2H4COOC3H7)2 film is related to the reversible changes of the optical properties, which is caused by the reversible charge transfer between copper and n-propyl ester 7,7,8,8- tetracyanoquinodimethane-2,5-ylene-(3-propionic acid) in the complex through inducement of laser irradiation.

  4. Optical cell for combinatorial in situ Raman spectroscopic measurements of hydrogen storage materials at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Hattrick-Simpers, Jason R.; Hurst, Wilbur S.; Srinivasan, Sesha S.; Maslar, James E.

    2011-03-01

    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH4)2 and nano-LiBH4-LiNH2-MgH2 hydrogen storage systems at elevated temperatures and pressures are reported.

  5. Development of High Capacity Split Stirling Cryocooler for HTS

    NASA Astrophysics Data System (ADS)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  6. Design, Installation and Post-Implementation Assessment of an Optical Disc Based Storage and Retrieval System for Images of Engineering Contract Documents.

    ERIC Educational Resources Information Center

    Ashford, J. H.; Masters, A. M.

    1992-01-01

    Describes an image storage system for contract documentation in the Engineering Directorate of Thames Water Utilities (England) which uses optical disc storage and a relational database for indexing and retrieval of nearly 500,000 pages in compressed image format, and provides end user access through 7 workstations. Requirements, feasibility…

  7. Design, Installation and Post-Implementation Assessment of an Optical Disc Based Storage and Retrieval System for Images of Engineering Contract Documents.

    ERIC Educational Resources Information Center

    Ashford, J. H.; Masters, A. M.

    1992-01-01

    Describes an image storage system for contract documentation in the Engineering Directorate of Thames Water Utilities (England) which uses optical disc storage and a relational database for indexing and retrieval of nearly 500,000 pages in compressed image format, and provides end user access through 7 workstations. Requirements, feasibility…

  8. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Christine P.

    The market for higher data rate communication is driving the semiconductor industry to develop new techniques of writing at smaller scales, while continuing to scale bandwidth at low power consumption. Silicon photonic (SiPh) devices offer a potential solution to the electronic interconnect bandwidth bottleneck. SiPh leverages the technology commensurate of decades of fabrication development with the unique functionality of next-generation optical interconnects. Finer fabrication techniques have allowed for manufacturing physical characteristics of waveguide structures that can support multiple modes in a single waveguide. By refining modal characteristics in photonic waveguide structures, through mode multiplexing with the asymmetric y-junction and microring resonator, higher aggregate data bandwidth is demonstrated via various combinations of spatial multiplexing, broadening applications supported by the integrated platform. The main contributions of this dissertation are summarized as follows. Experimental demonstrations of new forms of spatial multiplexing combined together exhibit feasibility of data transmission through mode-division multiplexing (MDM), mode-division and wavelength-division multiplexing (MDM-WDM), and mode-division and polarization-division multiplexing (MDM-PDM) through a C-band, Si photonic platform. Error-free operation through mode multiplexers and demultiplexers show how data can be viably scaled on multiple modes and with existing spatial domains simultaneously. Furthermore, we explore expanding device channel support from two to three arms. Finding that a slight mismatch in the third arm can increase crosstalk contributions considerably, especially when increasing data rate, we explore a methodical way to design the asymmetric y-junction device by considering its angles and multiplexer/demultiplexer arm width. By taking into consideration device fabrication variations, we turn towards optimizing device performance post

  9. Holography for information storage and processing

    NASA Astrophysics Data System (ADS)

    Burr, Geoffrey W.

    2003-11-01

    We review recent progress made towards two types of holographic data storage systems. The first offers the potential for simultaneous search of an entire database by performing multiple optical correlations between stored data pages and a search argument. This content-addressable retrieval produces one analog correlation score for each stored volume hologram. We review work we have performed on fuzzy encoding techniques, experimental demonstrations of hardware-level database searching, on the measurement of true inner-products, on architectures in which massively-parallel searches could be implemented, and on quantifying the inherent speed-fidelity tradeoffs. The second system offers read-write, fast-access data storage. We review systems architectures for extending this high density to high capacity using phase-conjugate readout and signal processing to relieve alignment and distortion constraints.

  10. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Novel Bilayer Structures for Short Wavelength High Density Magneto-Optical Data Storage

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ying; Wang, Jing; Wang, Zhan-Yong; Yang, Jun-He

    2008-06-01

    We report a novel bi-layer thin film structure for high density magneto-optical (MO) data storage, which combines the advantages of blue wavelength and magnetically induced superresolution (MSR) recording. A double-layer system of exchange-coupled light rare-earth (LRE) element doped NdGdFeCo and traditional TbFeCo is used as the recording medium. The experimental results demonstrate that this NdGdFeCo/TbFeCo double layer has large Kerr rotation under blue wavelength. Centre aperture detection (CAD) MSR effect with temperature rising is also observed. Theoretical calculation is also carried out to verify the experimental results. These results collectively suggest that the new bilayer structure is very promising in next generation high density MO data storage.

  11. Compensation and Improvement of Intensity and Distribution in Reconstructed Image Using Adaptive Optics in Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Muroi, Tetsuhiko; Sekiguchi, Sayaka; Kinoshita, Nobuhiro; Ishii, Norihiko; Shimidzu, Naoki; Kamijo, Koji; Booth, Martin; Juskaitis, Rimas; Wilson, Tony

    2008-07-01

    We applied a genetic algorithm to adaptive optics to improve the intensity and distribution of reconstructed images in holographic data storage. This is a kind of combinatorial optimisation. In holographic data storage, the photopolymer recording medium shrinks during light curing and this shrinkage distorts the recorded interference fringes, which degrades the reconstructed data images. Although it is possible to compensate for the degradation in the reconstructed image by using adaptive optics, it has been difficult to compensate for the shrinkage distortion by using normal feedback control because the relationship between the reconstructed image and deformable mirror input is nonlinear. With our method, the inverse variance coefficient in a reconstructed image with bits that are all “1” increased from 10.3 to 14.7 dB, an improvement of 4.4 dB. Moreover, the intensity average of the reconstructed image with compensation was 1.7 times higher than the average without compensation. These results show that the combination of adaptive optics and a genetic algorithm is very effective for improving reconstructed images.

  12. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    SciTech Connect

    Jensen, Craig; McGrady, Sean; Severa, Godwin; Eliseo, Jennifer; Chong, Marina

    2013-05-31

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH3), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH3 and γ-AlD3. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190 º C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the

  13. High-Capacity Angularly Multiplexed Holographic Memory Operating at the Single-Photon Level

    NASA Astrophysics Data System (ADS)

    Chrapkiewicz, Radosław; DÄ browski, Michał; Wasilewski, Wojciech

    2017-02-01

    We experimentally demonstrate an angularly multiplexed holographic memory capable of intrinsic generation, storage, and retrieval of multiple photons, based on an off-resonant Raman interaction in warm rubidium-87 vapors. The memory capacity of up to 60 independent atomic spin-wave modes is evidenced by analyzing angular distributions of coincidences between Stokes and time-delayed anti-Stokes light, observed down to the level of single spin-wave excitation during the several-microsecond memory lifetime. We also propose how to practically enhance rates of single- and multiple-photon generation by combining our multimode emissive memory with existing fast optical switches.

  14. Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape

    SciTech Connect

    Wang, Hao; Lunt, Barry M.; Gates, Richard J.; Asplund, Matthew C.; Shutthanandan, V.; Davis, Robert C.; Linford, Matthew R.

    2013-09-11

    A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized by optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.

  15. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor); Bailey, Sean W.

    2002-01-01

    Satellite ocean color missions require an abundance of high-quality in situ measurements for bio-optical and atmospheric algorithm development and post-launch product validation and sensor calibration. To facilitate the assembly of a global data set, the NASA Sea-viewing Wide Field-of-view (SeaWiFS) Project developed the Seafaring Bio-optical Archive and Storage System (SeaBASS), a local repository for in situ data regularly used in their scientific analyses. The system has since been expanded to contain data sets collected by the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project, as part of NASA Research Announcements NRA-96-MTPE-04 and NRA-99-OES-99. SeaBASS is a well moderated and documented hive for bio-optical data with a simple, secure mechanism for locating and extracting data based on user inputs. Its holdings are available to the general public with the exception of the most recently collected data sets. Extensive quality assurance protocols, comprehensive data and system documentation, and the continuation of an archive and relational database management system (RDBMS) suitable for bio-optical data all contribute to the continued success of SeaBASS. This document provides an overview of the current operational SeaBASS system.

  16. Laser Optical Disk: The Coming Revolution in On-Line Storage.

    ERIC Educational Resources Information Center

    Fujitani, Larry

    1984-01-01

    Review of similarities and differences between magnetic-based and optical disk drives includes a discussion of the electronics necessary for their operation; describes benefits, possible applications, and future trends in development of laser-based drives; and lists manufacturers of laser optical disk drives. (MBR)

  17. Application of Electron Beams in Space for Energy Storage and Optical Beam Generation,

    DTIC Science & Technology

    1978-04-01

    MIRROR -DRIFT __ SPACE BUNCHER OUTPUT RADIATION Fig. 6-Optical klystron I/ // CATCHER MAGNET - / PAIR OF CORNER MAGNETSI ~FORM AN ACHROMATIC SERVCO.Rl I...optical link will be unable to penetrate heavy cloud formations and will thus present availability problems in most regions of the world. CONCLUDING

  18. Development of a software interface for optical disk archival storage for a new life sciences flight experiments computer

    NASA Technical Reports Server (NTRS)

    Bartram, Peter N.

    1989-01-01

    The current Life Sciences Laboratory Equipment (LSLE) microcomputer for life sciences experiment data acquisition is now obsolete. Among the weaknesses of the current microcomputer are small memory size, relatively slow analog data sampling rates, and the lack of a bulk data storage device. While life science investigators normally prefer data to be transmitted to Earth as it is taken, this is not always possible. No down-link exists for experiments performed in the Shuttle middeck region. One important aspect of a replacement microcomputer is provision for in-flight storage of experimental data. The Write Once, Read Many (WORM) optical disk was studied because of its high storage density, data integrity, and the availability of a space-qualified unit. In keeping with the goals for a replacement microcomputer based upon commercially available components and standard interfaces, the system studied includes a Small Computer System Interface (SCSI) for interfacing the WORM drive. The system itself is designed around the STD bus, using readily available boards. Configurations examined were: (1) master processor board and slave processor board with the SCSI interface; (2) master processor with SCSI interface; (3) master processor with SCSI and Direct Memory Access (DMA); (4) master processor controlling a separate STD bus SCSI board; and (5) master processor controlling a separate STD bus SCSI board with DMA.

  19. Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect

    SciTech Connect

    Climente, Juan I.; Planelles, Josep

    2014-05-12

    We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.

  20. Optical disk uses in criminal identification systems

    NASA Astrophysics Data System (ADS)

    Sypherd, Allen D.

    1990-08-01

    A significant advancement in law enforcement tools has been made possible by the rapid and innovative development of electronic imaging for criminal identification systems. In particular, development of optical disks capable of high-capacity and random-access storage has provided a unique marriage of application and technology. Fast random access to any record, non-destructive reading of stored images, electronic sorting and transmission of images and an accepted legal basis for evidence are a few of the advantages derived from optical disk technology. This paper discusses the application of optical disk technology to both Automated Fingerprint Identification Systems (AFIS) and Automated Mugshot Retrieval Systems (AMRS). The following topics are addressed in light of AFIS and AMRS user requirements and system capabilities: Write once vs. rewritable, gray level and storage requirements, multi-volume library systems, data organization and capacity trends.

  1. VUV optical ring resonator for Duke storage ring free electron laser

    SciTech Connect

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  2. Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications

    NASA Astrophysics Data System (ADS)

    Futami, Fumio

    2014-10-01

    Quantum Enigma Cipher is an epoch-making concept in the cryptography that may break the Shannon limit of the cryptography. Yuen-2000 (Y-00) protocol is a first generation toward the Quantum Enigma Cipher that overcomes the Shannon limit in cryptography relying on macroscopic quantum effects. Current Y-00 cipher is an encryption scheme where noise masking blocks an eavesdropper's reading of the physical ciphertext consisting of the mathematical structure. No such masking effect is realized only by using the mathematical encryption, because mathematical ciphertexts are composed of binary signals, "0" or "1" or deterministic symbols, and they are correctly discriminated. Y-00 cipher is one of the candidates to provide high transmission performance and a provable security simultaneously in the real world. In our present, Y-00 cipher, mathematical cipher and physical phenomena are combined. It features multi-level signaling by mathematical cipher and noise masking to hide the ciphertext in the quantum noise and other channel noise. In the paper, transmission performance of Y-00 cipher is experimentally investigated. A running test for 60 days of Y-00 cipher transceiver at 2.5 Gbit/s is demonstrated. In addition, a trial of a current direct modulation scheme using 4096 signal levels for realizing a compact Y-00 transceiver is demonstrated. Furthermore, a wavelength-division multiplexing transmission of Y-00 cipher is experimentally demonstrated, and 100-Gbit/s Y-00 cipher transmission is successfully transmitted over 120 km.

  3. Channel simulation and development of signal processing techniques for a scanner-based optical storage system

    NASA Astrophysics Data System (ADS)

    Pillai, Usha; Vijaya Kumar, Bhagavatula

    1998-10-01

    A scanner-based storage system employs a head mounted on a scanner which oscillates over the moving media. The head moves in an approximately sinusoidal path relative to the media at a high frequency, time-multiplexing the read/write signals of several tracks. The resulting multi-channel readback can yield higher data rates over a conventional system with a head that moves linearly relative to the media. Scanner-based storage systems are not commercially available at present. We are envisioning a system that uses an opto-electronic scanner, developed at CMU, in which the deflection of a laser beam is controlled by an input voltage. Since no mechanical motion is involved, this scanner has a high bandwidth which makes it well suited to our application.

  4. Optimized six-dimensional optical storage: a practicable way to large capacity and fast throughputs

    NASA Astrophysics Data System (ADS)

    Liu, Shangqing

    2015-08-01

    An optimized six-dimensional storage system has been investigated theoretically. The system uses multiple beams to create overlapped micro gratings as each storage cell. The cell capacity depends exponentially on the beam wavelength number. With two-photon absorption writing, coherence tomography reading and superresolving beam focusing, this system has extra-large capacity of >1 Pbyte per DVD sized disk (potential ~60 Pbytes per disk), extra-fast reading speed of >117 Gbits/s with high signal-to-noise ratio of >66 dB, large cell sizes (~0.3μm × 6μm) which greatly reduce data addressing difficulties and a standard drive like structure compatible with the CD and DVD disks.

  5. Eternal 5D data storage by ultrafast laser writing in glass

    NASA Astrophysics Data System (ADS)

    Zhang, J.; ČerkauskaitÄ--, A.; Drevinskas, R.; Patel, A.; Beresna, M.; Kazansky, P. G.

    2016-03-01

    Securely storing large amounts of information over relatively short timescales of 100 years, comparable to the span of the human memory, is a challenging problem. Conventional optical data storage technology used in CDs and DVDs has reached capacities of hundreds of gigabits per square inch, but its lifetime is limited to a decade. DNA based data storage can hold hundreds of terabytes per gram, but the durability is limited. The major challenge is the lack of appropriate combination of storage technology and medium possessing the advantages of both high capacity and long lifetime. The recording and retrieval of the digital data with a nearly unlimited lifetime was implemented by femtosecond laser nanostructuring of fused quartz. The storage allows unprecedented properties including hundreds of terabytes per disc data capacity, thermal stability up to 1000 °C, and virtually unlimited lifetime at room temperature opening a new era of eternal data archiving.

  6. Storage capacity of an optically formed spatial filter for character recognition.

    PubMed

    Burckhardt, C B

    1967-08-01

    Optical spatial filtering has been proposed as a means of character recognition. The cross correlations between the unknown character and a number of stored masks are performed optically. In this paper an estimate is derived for the capacity of such a system, i.e., the number of masks one can store. Two estimates are made for the capacity. One holds for a noiseless optical system. The derivation of the second estimate takes into account noise of the photographic plate. Noise measurements of Kodak 649F plates are given. A numerical example shows the order of magnitude of the capacity. While, in our specific example, a capacity of several hundred thousand is computed for the noiseless system, this figure is reduced by two orders of magnitudes for the noisy system.

  7. Improved optical storage properties of NaAlSiO4: Tb3+ induced by Bi3+

    NASA Astrophysics Data System (ADS)

    Zhou, Junhe; Yu, Xue; Wang, Ting; Zhou, Dacheng; Qiu, Jianbei

    2016-07-01

    NaAlSiO4: Tb3+, Bi3+ phosphor was synthesized with green long persistent luminescence (LPL) and photo-stimulated luminescence (PSL) observed. The influence of metal ion Bi3+ on the optical storage properties of NaAlSiO4: Tb3+ was investigated in detail. The emitter Tb3+ introduced two kinds of traps located at 350 K (TA) and 440 K (TB) in the thermoluminescence (TL) glow curve. Bi3+ as a codopant ion introduced a new trap peaking at 390 K (TC), which contributed to the improved LPL properties. Besides, owing to the existence of deep and stable trap TB, green PSL can still be observed after 72 h since the excitation was stopped. Accordingly, the mechanism of LPL and PSL process was discussed briefly.

  8. Body Temperature Controlled Optical and Thermal Information Storage Light Scattering Display with Fluorescence Effect and High Mechanical Strength.

    PubMed

    Chen, Si; Tong, Xiaoqian; He, Huiwen; Ma, Meng; Shi, Yanqin; Wang, Xu

    2017-04-05

    A kind of body temperature controlled optical and thermal information storage light scattering display based on super strong liquid crystalline physical gel with special "loofah-like gel network" was successfully prepared. Such liquid crystal (LC) gel was obtained by mixing a dendritic gelator (POSS-G1-BOC), an azobenzene compound (2Azo2), and a phosphor tethered liquid crystalline host (5CB), which could show its best contrast ratio at around human body temperature under UV light because of the phosphor's fluorescence effect. The gel also has quite strong mechanical strength, which could be used in wearable device field especially under sunlight, even under the forcing conditions as harsh as being centrifuged for 10 min at the speed of 2000 r/min. The whole production process of such a display is quite simple and could lead to displays at any size through noncontact writing. We believe it will have wide applications in the future.

  9. Holographic data storage crystals for the LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1992-01-01

    Lithium niobate is a significant electro-optic material, with potential applications in ultra high capacity storage and processing systems. Lithium niobate is the material of choice for many integrated optical devices and holographic mass memory systems. For crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of these crystals contained volume holograms. Although the crystals suffered the surface damage characteristics of most of the other optical components on the Georgia Tech tray, the crystals were recovered intact. The holograms were severely degraded because of the lengthy exposure, but the bulk properties are being investigated to determine the spaceworthiness for space data storage and retrieval systems.

  10. Holographic data storage crystals for the LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1992-01-01

    Lithium niobate is a significant electro-optic material, with potential applications in ultra high capacity storage and processing systems. Lithium niobate is the material of choice for many integrated optical devices and holographic mass memory systems. For crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of these crystals contained volume holograms. Although the crystals suffered the surface damage characteristics of most of the other optical components on the Georgia Tech tray, the crystals were recovered intact. The holograms were severely degraded because of the lengthy exposure, but the bulk properties are being investigated to determine the spaceworthiness for space data storage and retrieval systems.

  11. Using Optical Disk as the Storage Media Device for the Master Personnel Files.

    DTIC Science & Technology

    1986-04-01

    EVALUATI ON OF OPTI CAL DISKS * Background------------------------------------------------ 4 Materials Used/Embedding Information Process -------------5...Mater ial s Used-------------------------------------- 5 Embedding Information Process ---------------------- 6 * Opt ical Disk Capabilities...EMBEDDING INFORMATION PROCESS The optical disk looks very similar to the common phonograph record but is composed of a material that undergoes an

  12. Optical Discs for Storage and Access in ARL Libraries. SPEC KIT 133.

    ERIC Educational Resources Information Center

    Holibaugh, Ralph

    This SPEC (Systems and Procedures Exchange Center) kit provides a sample of excerpts from technical and planning documents contributed by 40 Association of Research Libraries (ARL) member libraries that are planning to install or have already implemented optical disc technology. Selected to represent a variety of media and applications, the…

  13. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing

  14. Medical image digital archive: a comparison of storage technologies

    NASA Astrophysics Data System (ADS)

    Chunn, Timothy; Hutchings, Matt

    1998-07-01

    A cost effective, high capacity digital archive system is one of the remaining key factors that will enable a radiology department to eliminate film as an archive medium. The ever increasing amount of digital image data is creating the need for huge archive systems that can reliably store and retrieve millions of images and hold from a few terabytes of data to possibly hundreds of terabytes. Selecting the right archive solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, conformance to open standards, archive availability and reliability, security, cost, achievable benefits and cost savings, investment protection, and more. This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. New technologies will be discussed, such as DVD and high performance tape. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on random and pre-fetch retrieval time will be analyzed. The concept of automated migration of images from high performance, RAID disk storage devices to high capacity, NearlineR storage devices will be introduced as a viable way to minimize overall storage costs for an archive.

  15. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.

    PubMed

    Zhou, Sa; Yang, Xiaogang; Lin, Yongjing; Xie, Jin; Wang, Dunwei

    2012-01-24

    The performance of advanced energy conversion and storage devices, including solar cells and batteries, is intimately connected to the electrode designs at the nanoscale. Consider a rechargeable Li ion battery, a prevalent energy storage technology, as an example. Among other factors, the electrode material design at the nanoscale is key to realizing the goal of measuring fast ionic diffusion and high electronic conductivity, the inherent properties that determine power rates, and good stability upon repeated charge and discharge, which is critical to the sustainable high capacities. Here we show that such a goal can be achieved by forming heteronanostructures on a radically new platform we discovered, TiSi(2) nanonets. In addition to the benefits of high surface area, good electrical conductivity, and superb mechanical strength offered by the nanonet, the design also takes advantage of how TiSi(2) reacts with O(2) upon heating. The resulting TiSi(2)/V(2)O(5) nanostructures exhibit a specific capacity of 350 Ah/kg, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles of charge and discharge. These figures indicate that a cathode material significantly better than V(2)O(5) of other morphologies is produced.

  16. Encrypted optical storage with wavelength-key and random phase codes.

    PubMed

    Matoba, O; Javidi, B

    1999-11-10

    An encrypted optical memory system that uses a wavelength code as well as input and Fourier-plane random phase codes is proposed. Original data are illuminated by a coherent light source with a specified wavelength and are then encrypted with two random phase codes before being stored holographically in a photorefractive material. Successful decryption requires the use of a readout beam with the same wavelength as that used in the recording, in addition to the correct phase key in the Fourier plane. The wavelength selectivity of the proposed system is evaluated numerically. We show that the number of available wavelength keys depends on the correlation length of the phase key in the Fourier plane. Preliminary experiments of encryption and decryption of optical memory in a LiNbO(3):Fe photorefractive crystal are demonstrated.

  17. Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants

    NASA Astrophysics Data System (ADS)

    Chen, Si; Chen, Yining; Tong, Xiaoqian; Wu, Bozhen; Ma, Meng; Shi, Yanqin; Wang, Xu

    2016-11-01

    A room temperature optical image storage device based on a novel kind of chiral azobenzene liquid crystal compound (Azo-CC) dopant was reported in this paper, which could realize room temperature photocatalytic phase transition when doping in host liquid crystal E7. With a comparation of the referential achiral compound (Azo-ACC), the chemical structure, liquid crystalline and photoresponsive properties of the compounds were characterized by 1H-NMR, POM and UV-vis, respectively. The result showed that the compound with chiral group (Azo-CC) exhibited better photoresponsive properties than the referential achiral compound (Azo-ACC), indicating the introduction of chiral group is the key factor to provide E7 host room temperature photosensitive properties, which could not only made the liquid crystal molecular reoriented but also could change the whole nematic host liquid crystal to helical-twisted matrix. In addition, to understand the optical-switching behavior into detail, the photoisomerization dynamics of the systems o was also analyzed.

  18. Mechanics of high-capacity electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  19. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.

    PubMed

    Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu

    2015-08-26

    Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).

  20. Optical and thermal properties of nickel(II) hydrazone complex for recordable blu-ray storage

    NASA Astrophysics Data System (ADS)

    Chen, Zhimin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi

    2009-08-01

    A nickel(II) hydrazone complex was synthesized in order to obtain a suitable optical recording medium for the new generation recordable blu-ray disk. Smooth thin films of the nickel(II) hydrazone complex were prepared by using the spin-coating method. Absorption and reflectance spectra of the thin films were evaluated in the wavelength 300-700 nm. Thermal properties of the nickel(II) complex were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Optical constants (complex refractive indices N=n+ik) and thickness of the thin film, prepared on single-crystal silicon substrate, were investigated on a rotating analyzer-polarizer scanning ellipsometer in the wavelength 285-705 nm. In addition, in order to examine its possible use as a blu-ray recording medium, the spin-coated film of the nickel(II) complex was prepared on K9 glass substrate with a silver reflective layer, and was studied by static optical recording testing system with a 406.7 nm laser. It is found that the absorption spectra of the thin film has an strong absorption band in the wavelength region 360-420 nm and a moderate absorbance at the 405 nm side, which indicates that the absorption of the film is well matched with the laser wavelength of the 405 nm. The reflectance spectra show that a high reflectivity of the thin film at 405 nm wavelength can be obtained by an optimum film thickness and an appropriate metal reflective layer. The thin film of the nickel(II) complex gives a high n value of 1.62 and a low k value of 0.33, corresponding to the wavelength of the blue laser of 405 nm. Measurements of the thermal properties show that the nickel(II) complex holds a high thermal stability (~ 300 °C) and a sharp weight loss which are helpful to fabricate a small and sharp recording mark edge. The results of the static optical recording test, using the nickel(II) complex thin film as the recording layer, demonstrate that high reflectivity contrast (>50 %) can be obtained at

  1. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  2. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  3. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  4. Helicity-dependent all-optical switching in hybrid metal-ferromagnet structures for ultrafast magnetic data storage

    NASA Astrophysics Data System (ADS)

    Cheng, Feng

    The emerging Big Data era demands the rapidly increasing need for speed and capacity of storing and processing information. Standalone magnetic recording devices, such as hard disk drives (HDDs), have always been playing a central role in modern data storage and continuously advancing. Recognizing the growing capacity gap between the demand and production, industry has pushed the bit areal density in HDDs to 900 Giga-bit/square-inch, a remarkable 450-million-fold increase since the invention of the first hard disk drive in 1956. However, the further development of HDD capacity is facing a pressing challenge, the so-called superparamagnetic effect, that leads to the loss of information when a single bit becomes too small to preserve the magnetization. This requires new magnetic recording technologies that can write more stable magnetic bits into hard magnetic materials. Recent research has shown that it is possible to use ultrafast laser pulses to switch the magnetization in certain types of magnetic thin films. Surprisingly, such a process does not require an externally applied magnetic field that always exists in conventional HDDs. Furthermore, the optically induced magnetization switching is extremely fast, up to sub-picosecond (10 -12 s) level, while with traditional recording method the deterministic switching does not take place shorter than 20 ps. It's worth noting that the direction of magnetization is related to the helicity of the incident laser pulses. Namely, the right-handed polarized laser pulses will generate magnetization pointing in one direction while left-handed polarized laser pulses generate magnetization pointing in the other direction. This so-called helicity-dependent all-optical switching (HD-AOS) phenomenon can be potentially used in the next-generation of magnetic storage systems. In this thesis, I explore the HD-AOS phenomenon in hybrid metal-ferromagnet structures, which consist of gold and Co/Pt multilayers. The experiment results show

  5. Optical storage in azobenzene-containing epoxy polymers processed as Langmuir Blodgett films.

    PubMed

    Fernández, Raquel; Mondragon, Iñaki; Sanfelice, Rafaela C; Pavinatto, Felippe J; Oliveira, Osvaldo N; Oyanguren, Patricia; Galante, María J

    2013-04-01

    In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n=0.03) and the azochromophore Disperse Orange 3 (DO3) cured with two monoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LB method may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery.

  6. Useful laser source criteria for optical storage employing extended eye-diagram jitter theory

    NASA Astrophysics Data System (ADS)

    Kubota, Shigeo; Oka, Michio; Eguchi, Naoya; Fukumoto, Atsushi; Akiyama, Yoshiyuki

    1995-03-01

    In view of the recent progress in visible lasers for next-generation optical disks, we describe the influence of source wavelength, aberration, and noise on eye-diagram jitter, which determines the ultimate disk density. The analysis indicates that the sources used in a readout of a 6 \\times areal density, (4,22) run-length-limited code with a minimum mark length of 0.4 mu m must have a wavelength that satisfies the Nyquist condition of relationship between the spot size and the minimum mark length, a wave-front aberration of less than 0.035 rms lambda , and relative intensity noise of less than -125 dB/Hz.

  7. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  8. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect

    Yang, Xi; Huang, Xiaobiao

    2016-05-13

    Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.

  9. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  10. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE PAGES

    Yang, Xi; Huang, Xiaobiao

    2016-05-13

    Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.

  11. Application of optical remote sensing techniques to quantify emissions from urban oil wells, storage tanks, and other small stationary sources

    NASA Astrophysics Data System (ADS)

    Pikelnaya, O.; Polidori, A.; Tisopulos, L.; Mellqvist, J.; Samuelsson, J.; Robinson, R. A.; Innocenti, F.; Perry, S.

    2016-12-01

    Oil fields in the Los Angeles Basin remain very productive even after more than a century-long history of exploration. There are currently over 5,000 active oil wells the South Coast Air Basin (SCAB), with a large portion placed in close proximity of residences, schools and other sensitive receptors. Gaseous emissions from oil wells and equipment related to oil extraction can have a significant impact on air quality. The South Coast Air Quality Management District (SCAQMD) and other state regulatory agencies have a number of rules aimed to reduce Volatile Organic Compound (VOC) emissions and to minimize potential impacts to nearby communities. However, little information is available on the effectiveness of current control measures and magnitude of emissions remain largely unknown. To fill this knowledge gap, in the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Kassay Field Services Inc. conducted a comprehensive five-week study to measure gaseous emissions from oil wells, oil pumps, intermediate storage tanks, and other small point sources. A combination of optical remote sensing (ORS) techniques was used to detect and quantify emissions VOCs, methane, nitrogen oxides (NOx) and other gaseous pollutants. Fluxsense used Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy to survey a large number of oil extraction sites and other small emission sources within SCAB. Similarly, Kassay Field Services carried out open-path FTIR measurements to complement observations provided by Fluxsense. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system on a smaller sub-set of sources to validate the emission results provided by Fluxsense and Kassay. During this presentation we will discuss the results of this joined measurement effort and the potential impacts of the observed emissions on neighboring communities. Additionally

  12. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

    SciTech Connect

    Dooling, J.; Harkay, K.; Ivanyushenkov, Y.; Sajaev, V.; Xiao, A.; Vella, Andrea K.

    2015-01-01

    We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are near critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.

  13. Effects of Chain Parameters on Kinetics of Photochromism in Acrylic-Spiropyran Copolymer Nanoparticles and Their Reversible Optical Data Storage.

    PubMed

    Sharifian, Mohammad Hossain; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-08-15

    Chemical bonding between photochromic compounds and polymer matrices will induce several consitions such as photostability, photoreversibility, elimination of dye aggregation, and undesirable negative photochromism. In such polymeric systems, the switching rate and photoisomerization are closely dependent on several parameters like chain flexibility, steric restrictions, polarity, and even proticity of the surrounding medium. Here, copolymerization of a synthesized spiropyran-based monomer with butyl acrylate (BA) and methyl methacrylate (MMA) comonomers was carried out with various compositions of MMA and BA through emulsion polymerization, and the corresponding photoisomerization kinetics were studied. Particle sizes and their distributions were analyzed by dynamic light scattering, and morphologies were investigated by scanning and transmission electron microscopic analyses. The results showed the particles are spherical with diameter 62-82 nm. Differential scanning calorimetric thermograms were employed to determine Tg of the prepared copolymers, which ranged from -23 to 93 °C. The kinetics of photoisomerization was then studied by UV-vis spectroscopy. Finally, a latex containing spiropyran/acrylic copolymer with Tg of about 0 °C and optimum rate of coloration and decoloration was considered in reversible optical data storage studies due to its fast photochromism and good film-formation properties.

  14. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    PubMed Central

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-01-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world. PMID:27857146

  15. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    PubMed

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.

  16. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    NASA Astrophysics Data System (ADS)

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-11-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world.

  17. Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution

    NASA Astrophysics Data System (ADS)

    Fakhry, Moutaz; Granik, Yuri; Adam, Kostas; Lai, Kafai

    2011-11-01

    As the demand for taking Source Mask Optimization (SMO) technology to the full-chip level is increasing, the development of a flow that overcomes the limitations which hinder this technology's moving forward to the production level is a priority for Litho-Engineers. The aim of this work is to discuss advantages of using a comprehensive novel SMO flow that outperforms conventional techniques in areas of high capacity simulations, resist modeling and the production of a final manufacturable mask. We show results that indicate the importance of adding large number of patterns to the SMO exploration space, as well as taking into account resist effects during the optimization process and how this flow incorporates the final mask as a production solution. The high capacity of this flow increases the number of patterns and their area by a factor of 10 compared to other SMO techniques. The average process variability band is improved up to 30% compared to the traditional lithography flows.

  18. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    PubMed Central

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method. PMID:22400000

  19. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    SciTech Connect

    Shwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1994-09-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets.

  20. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-11-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  1. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  2. System for non-disruptive high-capacity indexed data embedding and recovery using multimedia signal covers

    NASA Astrophysics Data System (ADS)

    Collins, James C.; Agaian, Sos S.

    2011-06-01

    Over the past several years there has been an apparent shift in research focus in the area of digital steganography and steganalysis - a shift from primarily image based methods to a new focus on broader multimedia techniques. More specifically the area of digital audio steganography is of prime interest. We introduce a new high capacity, covert channel data embedding and recovery system for digital audio carrier files using a key based encoding and decoding method. It will be shown that the added information file is interleaved within the carrier file and is fully indexed allowing for segmented extraction and recovery of data at chosen start and stop points in the sampled stream. The original audio quality is not affected by the addition of this covert data. The embedded information can also be secured by a binary key string or cryptographic algorithm and resists statistical analytic detection attempts. We will also describe how this new method can be used for data compression and expansion applications in the transfer and storage of digital multimedia to increase the overall data capacity and security.

  3. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration.

    PubMed

    Agostini, Marco; Lim, Du Hyun; Sadd, Matthew; Fasciani, Chiara; Navarra, Maria Assunta; Panero, Stefania; Brutti, Sergio; Matic, Aleksandar; Scrosati, Bruno

    2017-09-11

    Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium-sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g(-1) ) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur-carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  5. The development of a high-capacity instrument module heat transport system, appendixes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.

  6. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  7. Joint synchronization and high capacity data hiding for 3D meshes

    NASA Astrophysics Data System (ADS)

    Itier, Vincent; Puech, William; Gesquière, Gilles; Pedeboy, Jean-Pierre

    2015-03-01

    Three-dimensional (3-D) meshes are already profusely used in lot of domains. In this paper, we propose a new high capacity data hiding scheme for vertex cloud. Our approach is based on very small displacements of vertices, that produce very low distortion of the mesh. Moreover this method can embed three bits per vertex relying only on the geometry of the mesh. As an application, we show how we embed a large binary logo for copyright purpose.

  8. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M.

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1-ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g-1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2-→O22-) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

  9. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  10. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  11. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  12. Optical Storage System for 0.4 mm Substrate Media Using 405 nm Laser Diode and Numerical Aperture 0.60/0.65 Objective Lens

    NASA Astrophysics Data System (ADS)

    Ko, Jungwan; Park, In Sik; Yoon, Du-Seop; Chung, Chong-Sam; Kim, Yoon-Gi; Ro, Myong-Do; Doh, Tae-Yong; Shin, Dong-Ho

    2001-03-01

    The most important application of the blue-laser optical storage system is the recording high-definition digital broadcasting. For this application, the next-generation blue laser optical storage system requires a data capacity of at least 2 h of a digital broadcasting data stream with a data transfer rate of 23.5 megabits per second (Mbps). In addition to the capacity goal, system compatibility with the conventional digital versatile disc (DVD) system as well as the compact disc (CD) system is important. In order to satisfy the requirements of blue-laser optical storage, a system for media with a substrates thickness of 0.4 mm was proposed, and improved molding technology, crosstalk cancellation technology, dynamic tilt compensation technology and quadrature phase shift keying (QPSK) modulated wobble addressing method were developed for the system. We confirm the feasibility of the proposed system for media with a 0.4 mm substrate using a 405 nm blue laser diode and objective lens with a numerical aperture (NA) of 0.6 (0.65 for rewritable system).

  13. Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high-capacity energy storage.

    PubMed

    Kwon, Oh Seok; Kim, Taejoon; Lee, Jun Seop; Park, Seon Joo; Park, Hyun-Woo; Kang, Minjeong; Lee, Ji Eun; Jang, Jyongsik; Yoon, Hyeonseok

    2013-01-28

    Herein, 3D nanohybrid architectures consisting of MnO(x) nanocrystals, carbon nanofibers (CNFs), and graphene sheets are fabricated. MnO(x) -decorated CNFs (MCNFs) with diameters of about 50 nm are readily obtained via single-nozzle co-electrospinning, followed by heat treatment. The MCNFs are then intercalated between graphene sheets, yielding the ternary nanohybrid MCNF/reduced graphene oxide (RGO). This straightforward synthesis process readily affords product on a scale of tens of grams. The ultrathin CNFs, which might be a promising alternative to carbon nanotubes (CNTs), overcome the low electrical conductivity of the excellent pseudocapacitive component, MnO(x) . Furthermore, the graphene sheets separated by the MCNFs boost the electrochemical performance of the nanohybrid electrodes. These nanohybrid electrodes exhibit enhanced specific capacitances compared with a sheet electrode fabricated of MCNF-only or RGO-only. Evidently, the RGO sheet acts as a conductive channel inside the nanohybrid, while the intercalated MCNFs increase the efficiency of the ion and charge transfer in the nanohybrid. The proposed nanohybrid architectures are expected to lay the foundation for the design and fabrication of high-performance electrodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Agile Thermal Management STT-RX, Modified Magnesium Hydride and Calcium Borohydride for High-Capacity Thermal Energy Storage (PREPRINT)

    DTIC Science & Technology

    2011-12-01

    variety of areas from intermittent solar energy harvesting to thermal management of transient, high- flux heat loads. A variety of passive materials...have been developed and employed for TES including paraffin waxes, water tanks, and low-capacity reversible metal hydrides, among others. Paraffin...example materials that exceed 1 MJ/kg are water (liquid-vapor) and metal hydride (MgH2). Regarding water , the slow kinetics of boiling/evaporation

  15. Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage.

    PubMed

    Hu, Lin; Yan, Nan; Chen, Qianwang; Zhang, Ping; Zhong, Hao; Zheng, Xinrui; Li, Yan; Hu, Xianyi

    2012-07-16

    Herein we report a novel facile strategy for the fabrication of Co(3)O(4) porous nanocages based on the Kirkendall effect, which involves the thermal decomposition of Prussian blue analogue (PBA) Co(3)[Co(CN)(6)](2) truncated nanocubes at 400 °C. Owing to the volume loss and release of internally generated CO(2) and N(x) O(y) in the process of interdiffusion, Co(3)O(4) nanocages with porous shells and containing nanoparticles were finally obtained. When evaluated as electrode materials for lithium-ion batteries, the as-prepared Co(3)O(4) porous nanocages displayed superior battery performance. Most importantly, capacities of up to 1465 mA h g(-1) are attained after 50 cycles at a current density of 300 mA g(-1). Moreover, this simple synthetic strategy is potentially competitive for scaling-up industrial production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Permanent Electronic Storage of Angiographic Images in the Catheterization Laboratory: High-Resolution and Real-Time Acquisition on Optical Laserdiscs.

    PubMed

    Azancot; Krone; Eiferman; Guermonprez; Metzger; Le Dref O; Steg; Bonan; Lesperance; Hudon; Friolo; Beaufils

    1997-03-01

    The use of electronic ÒfilmlessÓ media for long-term archiving of coronary angiograms has been impeded by the problems of image storage and data transfer among institutions. Although long-term analogue storage of the images is presently feasible, and much less costly than digital storage, processing has been limited to a 625 lines video format, not optimal for high quality images. We developed a bi-directional 1249/625 lines converter, able to store and to replay high resolution (1249 lines) video images, from Component Record Video (CRV) Optical Laser (Analogue) Videodisks. Image quality and medical relevance were evaluated five ways: 1) Outside experts compared 593 static images stored on CRV discs to the same images stored in a high-resolution digital format blinded to source of image. The four experts found no visual or medical difference in 98% of evaluated images and minor differences in the remainder. The differences in the remaining images were not consistent among experts. 2) Two of the experts also compared the enhanced CRV optically stored image to the image obtained on simultaneously recorded 35mm cine film, and found the enhanced CRV stored image to be superior or similar, but never inferior to the film image. 3) 90 representatives from 63 outside institutions compared images from both a digital hard drive and the enhanced CRV optical (analogue) storage displayed at a Windows based digital workstation. During the test they were blinded as to the source of the images. The representatives found no difference in image resolution, quality, diagnostic accuracy, and medical relevance. 4) We evaluated quantitative coronary angiography (QCA) on standard coronary test phantoms using enhanced CRV stored images digitally processed. The correlation of the enhanced CRV image to the actual size of the phantom vessels was similar to the results obtained in the literature from digitally stored images. 5) 78 arterial measurements ranging 0.65 to 4.85 mm were

  17. High Capacity Communications From Martian Distances. Part 1; Spacecraft Link Design Analysis

    NASA Technical Reports Server (NTRS)

    Vyas, Hemali N.; Schuchman, Leonard; Orr, Richard; Williams, Wallace Dan; Collins, Michael; Noreen, Gary

    2006-01-01

    High capacity space communications has been a desire for Human Exploration and Science missions. Current Mars missions operate at data rates of 120 kbps for telemetry downlink and it is desirable to study high rate communication links in the range of 100 Mbps to 1 Gbps data rates from Martian distances. This paper will present some assumed scenarios along with link design assumptions and link analysis for high capacity communications from Mars. The paper will focus on RF subsystems namely antenna and power for the downlink communication from a relay orbiter at Mars. The relay orbiter will communicate with the low orbit spacecrafts at Mars or any Martian surface elements such as robots, and relay the data back to the ground networks on Earth. The study will dive into the spacecraft downlink system design and communication link analysis between the relay orbiter and ground network on Earth for data rates ranging from 100 Mbps to 1 Gbps based on the assumed scenarios and link assumptions. With high rate links at larger distances, there will be a significant impact on the antenna and power requirements and the link design will make an attempt to minimize the mass of the RF subsystem on the spacecraft. The results of this study will be presented for three data rates 1 Gbps, 500 Mbps and 100 Mbps at maximum Mars to Earth distance of 2.67AU. The design will use a Ka-band downlink with 90% link availability, along with various ground network G/T assumptions and possible bandwidth efficient modulations. The paper will conclude with what types of high rate communication links are feasible from Martian distances and also identify a range of requirements for antenna and power technologies for these high capacity communications from Mars.

  18. High Capacity Communications From Martian Distances. Part 1; Spacecraft Link Design Analysis

    NASA Technical Reports Server (NTRS)

    Vyas, Hemali N.; Schuchman, Leonard; Orr, Richard; Williams, Wallace Dan; Collins, Michael; Noreen, Gary

    2006-01-01

    High capacity space communications has been a desire for Human Exploration and Science missions. Current Mars missions operate at data rates of 120 kbps for telemetry downlink and it is desirable to study high rate communication links in the range of 100 Mbps to 1 Gbps data rates from Martian distances. This paper will present some assumed scenarios along with link design assumptions and link analysis for high capacity communications from Mars. The paper will focus on RF subsystems namely antenna and power for the downlink communication from a relay orbiter at Mars. The relay orbiter will communicate with the low orbit spacecrafts at Mars or any Martian surface elements such as robots, and relay the data back to the ground networks on Earth. The study will dive into the spacecraft downlink system design and communication link analysis between the relay orbiter and ground network on Earth for data rates ranging from 100 Mbps to 1 Gbps based on the assumed scenarios and link assumptions. With high rate links at larger distances, there will be a significant impact on the antenna and power requirements and the link design will make an attempt to minimize the mass of the RF subsystem on the spacecraft. The results of this study will be presented for three data rates 1 Gbps, 500 Mbps and 100 Mbps at maximum Mars to Earth distance of 2.67AU. The design will use a Ka-band downlink with 90% link availability, along with various ground network G/T assumptions and possible bandwidth efficient modulations. The paper will conclude with what types of high rate communication links are feasible from Martian distances and also identify a range of requirements for antenna and power technologies for these high capacity communications from Mars.

  19. Prospects for Spinel-Stabilized, High-Capacity Lithium-Ion Battery Cathodes

    SciTech Connect

    Croy, Jason R.; Park, Joong Sun; Shin, YoungHo; Yonemoto, Bryan T.; Balasubramanian, Mahalingam; Long, Brandon R.; Ren, Yang; Thackeray, Michael M.

    2016-12-01

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  20. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    SciTech Connect

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  1. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    DOE PAGES

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho; ...

    2016-10-13

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  2. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  3. High-capacity packet-switched fabrics: introduction to the focus issue

    NASA Astrophysics Data System (ADS)

    Smiljanic, Aleksandra

    2003-07-01

    Growth in Internet Protocol (IP) traffic is bringing about a need for larger packet switches. Merely adding more small switches to the network to handle the increased IP traffic is an inefficient solution, since the effective capacity of a router falls when packets must pass through many routers—the number of futile transit ports falls with increased switch size. In addition, control is simpler in networks with a smaller number of nodes. In this Focus Issue, authors from NEC, Alcatel, Lucent Technologies, and Chiaro Networks examine designs that enable high-capacity packet switches.

  4. High capacity image steganography method based on framelet and compressive sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Moyan; He, Zhibiao

    2015-12-01

    To improve the capacity and imperceptibility of image steganography, a novel high capacity and imperceptibility image steganography method based on a combination of framelet and compressive sensing (CS) is put forward. Firstly, SVD (Singular Value Decomposition) transform to measurement values obtained by compressive sensing technique to the secret data. Then the singular values in turn embed into the low frequency coarse subbands of framelet transform to the blocks of the cover image which is divided into non-overlapping blocks. Finally, use inverse framelet transforms and combine to obtain the stego image. The experimental results show that the proposed steganography method has a good performance in hiding capacity, security and imperceptibility.

  5. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho; Yonemoto, Bryan T.; Balasubramanian, Mahalingam; Long, Brandon R.; Ren, Yang; Thackeray, Michael M.

    2016-12-01

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich "layered-layered-spinel" (LLS) material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (∼200 mAh g-1) and good energy densities (>700 Wh kgoxide-1) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  6. Holography and Optical Storage

    NASA Astrophysics Data System (ADS)

    Imlau, Mirco; Fally, Martin; Burr, Geoffrey W.; Sincerbox, Glenn T.

    The term holography is composed of the Greek words holos (= whole) and graphein (= to record, to write), and thus summarizes the key aspects of its underlying principle: recording the complete wavefront of an object, i.e., its intensity as well as its phase. Interference and diffraction phenomena are employed to record and retrieve the full information, a technique pioneered by Dennis Gabor in 1948. He was honored with the Nobel prize in Physics in 1971, reflecting the general impact of holography on modern physics.

  7. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    SciTech Connect

    Dudenhoefer, J.E.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  8. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  9. High capacity embedding with indexed data recovery using adjunctive numerical relations in multimedia signal covers

    NASA Astrophysics Data System (ADS)

    Collins, James C.; Agaian, Sos S.

    2013-05-01

    We introduce a technique for covertly embedding data throughout an audio file using redundant number system decomposition across non-standard digital bit-lines. This bit-line implementation integrates an index recoverable embedded algorithm with an extended bit level representation that achieves a high capacity data channel within an audio multimedia file. It will be shown this new steganography method has minimal aural distortive affects while preserving both first and second order cover statistics, making it less susceptible to most steganalysis attacks. Our research approach involves reviewing the common numerical methods used in common binary-based algorithms. We then describe basic concepts and challenges when attempting to implement complex embedding algorithms that are based on redundant number systems. Finally, we introduce a novel class of numerical based multiple bit-line decomposition systems, which we define as Adjunctive Numerical Representations. The system is primarily described using basic PCM techniques in uncompressed audio files however extended applications for alternate multimedia is addressed. This new embedding system will not only provide the statistical stability required for effective steganography but will also give us an improvement in the embedding capacity in this class of multimedia carrier files. This novelty of our approach is demonstrated by an ability to embed high capacity covert data while simultaneously providing a means for rapid, indexed data recovery.

  10. Crack-resistant polyimide coating for high-capacity battery anodes

    NASA Astrophysics Data System (ADS)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  11. High-capacity lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes

    NASA Astrophysics Data System (ADS)

    Ohsaki, Takahisa; Kanda, Motoya; Aoki, Yoshiyasu; Shiroki, Hiroyuki; Suzuki, Shintaro

    We have developed high-capacity lithium-ion cells using graphitized mesophase-pitch-based carbon fiber (MCF) as an anode material. The graphitized MCF is a highly graphitized carbon fiber with a radial-like texture in the cross section. This structure contributes to the rapid diffusion of lithium ions inside the carbon fiber. The diffusion coefficient of lithium ions in the graphitized MCF was one order of magnitude larger than those for graphite, resulting in an excellent high-rate performance of the carbon electrode. The graphitized MCF anode showed larger capacity, a higher rate capability, and better reversibility than the graphite anode. The 863448 size (8.6 mm × 34 mm × 48 mm) prismatic cell with the graphitized MCF anode exhibited a large capacity of > 1000 mAh. At 3 A discharge, the prismatic cell had 95% of its capacity at 0.5 A discharge with a mid-discharge voltage of 3.35 V. The cell maintained > 85% of its initial capacity after 500 cycles and showed high capacity at -20 °C. It has thus been demonstrated that the prismatic cell using the graphitized MCF anode has excellent performance, and is an attractive choice for the power sources of cellular phones and other appliances.

  12. Integration and flight demonstration of a high-capacity monogroove heat-pipe radiator

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.

    1984-01-01

    The cancellation of the TDRS-B satellite as the payload for the eighth Space Shuttle mission provided a unique opportunity to demonstrate on-orbit operation of the high-capacity monogroove heat pipe used in the space constructible radiator subsystem. In less than 4 months, a flight experiment was conceived, designed, fabricated, tested, integrated with a payload carrier, installed in the Orbiter Challenger payload bay, and successfully operated in flight. Still color photographs and direct crew visual observation of color changes in a pattern of temperature-sensitive liquid-crystal tapes provided the temperature data necessary to verify successful on-orbit startup and orbital transient response of the heat pipe when subjected to a heat load from its attached electrical heaters. This successful on-orbit demonstration verified analytical design tools and provided confidence in the use of high-capacity heat pipes for future space applications. The flight experiment hardware and the integration and test activities that led to the flight are described, and the actual flight results are compared to analytical performance predictions.

  13. Programmatic status of NASA's CSTI High Capacity Power Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Department Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  14. Programmatic status of NASA's CSTI High Capacity Power Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Department Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  15. High-capacity, transient retention of direction-of-motion information for multiple moving objects

    PubMed Central

    Shooner, Christopher; Tripathy, Srimant P.; Bedell, Harold E.; Öğmen, Haluk

    2011-01-01

    The multiple-object tracking paradigm (MOT) has been used extensively for studying dynamic visual attention, but the basic mechanisms which subserve this capability are as yet unknown. Among the unresolved issues surrounding MOT are the relative importance of motion (as opposed to positional) information and the role of various memory mechanisms. We sought to quantify the capacity and dynamics for retention of direction-of-motion information when viewing a multiple-object motion stimulus similar to those used in MOT. Observers viewed three to nine objects in random linear motion and then reported motion direction after motion ended. Using a partial-report paradigm and varying the parameters of set size and time of retention, we found evidence for two complementary memory systems, one transient with high capacity and a second sustained system with low capacity. For the transient high-capacity memory, retention capacity was equally high whether object motion lasted several seconds or a fraction of a second. Also, a graded deterioration in performance with increased set size lends support to a flexible-capacity theory of MOT. PMID:20884557

  16. High-capacity, transient retention of direction-of-motion information for multiple moving objects.

    PubMed

    Shooner, Christopher; Tripathy, Srimant P; Bedell, Harold E; Ogmen, Haluk

    2010-06-01

    The multiple-object tracking paradigm (MOT) has been used extensively for studying dynamic visual attention, but the basic mechanisms which subserve this capability are as yet unknown. Among the unresolved issues surrounding MOT are the relative importance of motion (as opposed to positional) information and the role of various memory mechanisms. We sought to quantify the capacity and dynamics for retention of direction-of-motion information when viewing a multiple-object motion stimulus similar to those used in MOT. Observers viewed three to nine objects in random linear motion and then reported motion direction after motion ended. Using a partial-report paradigm and varying the parameters of set size and time of retention, we found evidence for two complementary memory systems, one transient with high capacity and a second sustained system with low capacity. For the transient high-capacity memory, retention capacity was equally high whether object motion lasted several seconds or a fraction of a second. Also, a graded deterioration in performance with increased set size lends support to a flexible-capacity theory of MOT.

  17. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Chenglong; Wang, Qidi; Lu, Yaxiang; Hu, Yong-Sheng; Li, Baohua; Chen, Liquan

    2017-05-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A2MO3-family layered compounds (A  =  Li, Na; M  =  Mn4+, Ru4+, etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible.

  18. Digital image storage.

    PubMed

    Wallack, Seth

    2008-01-01

    Digital image archival requires less physical storage space, allows for rapid storage and retrieval and avoids loss in image quality over time or with image duplication compared with film storage. Because medical imaging data are critically important and, by law, must be stored in a safe, accessible manner, it is imperative not to have one computer error destroy all copies of the image data. Several options for image storage media are available including magnetic tape, optical media, spinning disks and solid state. Other considerations include on-site vs. off-site storage, redundancy, on-line vs. off-line storage, and removable storage media for disaster recovery. The different storage media can be used in different configurations to provide sufficient protection of digital data. Choose a storage system that will keep your data safe from unauthorized access, hardware failure, and clinic disasters.

  19. Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Ukita, Masahiro; Sakuma, Ryo; Nakanishi, Makoto; Fujii, Tatsuo; Imanishi, Nobuyuki; Takada, Jun

    2016-10-01

    A high-capacity and high-rate-capability anode material for lithium-ion batteries, silicon-doped iron oxyhydroxide or 2-line ferrihydrite (2Fh), was prepared by mixing iron nitrate powder, tetraethyl orthosilicate, 2-propanol, and ammonium hydrogen carbonate powder at room temperature. The design of this material was inspired by a bacteriogenic product, a nanometric amorphous iron-based oxide material containing small amounts of structural Si. The atomistic structure of the prepared Si-doped 2Fh was strongly affected by the Si molar ratio [x = Si/(Fe + Si)]. Its crystallinity gradually decreased as the Si molar ratio increased, with a structural variation from nanocrystalline to amorphous at x = 0.25. The sample with x = 0.20 demonstrated the best Li storage performance. The developed material exhibited a high capacity of ∼400 mAh g-1 at the 25th cycle in the voltage range of 0.3-3.0 V and at a current rate of 9 A g-1, which was three times greater than that of the Si-free 2Fh. This indicates that Si-doping into the 2Fh structure realizes good rate capability, which are presumably because of the specific nanocomposite structure of iron-based electrochemical centers embedded in the Si-based amorphous matrix, generated by reversible Li insertion/deinsertion process.

  20. SeaWiFS technical report series. Volume 20: The SeaWiFS bio-optical archive and storage system (SeaBASS), part 1

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Mcclain, Charles R.; Firestone, James K.; Westphal, Todd L.; Yeh, Eueng-Nan; Ge, Yuntao; Firestone, Elaine R.

    1994-01-01

    This document provides an overview of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-Optical Archive and Storage System (SeaBASS), which will serve as a repository for numerous data sets of interest to the SeaWiFS Science Team and other approved investigators in the oceanographic community. The data collected will be those data sets suitable for the development and evaluation of bio-optical algorithms which include results from SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs), prelaunch characterization of the SeaWiFS instrument by its manufacturer -- Hughes/Santa Barbara Research Center (SBRC), Marine Optical Characterization Experiment (MOCE) cruises, Marine Optical Buoy (MOBY) deployments and refurbishments, and field studies of other scientists outside of NASA. The primary goal of the data system is to provide a simple mechanism for querying the available archive and requesting specific items, while assuring that the data is made available only to authorized users. The design, construction, and maintenance of SeaBASS is the responsibility of the SeaWiFS Calibration and Validation Team (CVT). This report is concerned with documenting the execution of this task by the CVT and consists of a series of chapters detailing the various data sets involved. The topics presented are as follows: 1) overview of the SeaBASS file architecture, 2) the bio-optical data system, 3) the historical pigment database, 4) the SIRREX database, and 5) the SBRC database.

  1. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    NASA Technical Reports Server (NTRS)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  2. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  3. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  4. Graphdiyne as a high-capacity lithium ion battery anode material

    NASA Astrophysics Data System (ADS)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Lee, Hosik; Nam, Jaewook; Kwon, Yongkyung; Lee, Hoonkyung

    2013-12-01

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp2 hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C6Li7.31 and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g-1/2032 mAh cm-3, much greater than the values of ˜372 mAh g-1/˜818 mAh cm-3, ˜1117 mAh g-1/˜1589 mAh cm-3, and ˜744 mAh g-1 for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  5. Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang

    The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.

  6. DTCWT based high capacity steganography using coefficient replacement and adaptive scaling

    NASA Astrophysics Data System (ADS)

    Sathisha, N.; Priya, R.; Babu, K. Suresh; Raja, K. B.; Venugopal, K. R.; Patnaik, L. M.

    2013-12-01

    The steganography is used for secure communication. In this paper we propose Dual Tree Complex Wavelet Transform (DTCWT) based high capacity steganography using coefficient replacement and adaptive scaling. The DTCWT is applied on cover image and Lifting Wavelet Transform2 (LWT2) is applied on payload to convert spatial domain into transform domain. The new concept of replacing HH sub band coefficients of DTCWT of cover image by LL sub band coefficients of payload is introduced to generate intermediate stego object. The adaptive scaling factor is used based on entropy of cover image to scale down intermediate stego object coefficient values to generate final stego object. It is observed that the capacity and security are increased in the proposed algorithm compared to existing algorithms.

  7. Phase-separated silicon-tin nanocomposites for high capacity negative electrodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Xingcheng; Wang, John S.; Liu, Ping; Sachdev, Anil K.; Verbrugge, Mark W.; Haddad, Daad; Balogh, Michael P.

    2012-09-01

    Both silicon and tin have a high specific capacity (3600 mAh g-1 for Li15Si4 and 992 mAh g-1 for Li22Sn5 respectively) and are among the most attractive materials for potential negative electrodes in lithium ion batteries. However, mechanical degradation induced by the large volume expansion during the cycling has limited their practical application. In this work, we developed a new class of Si-Sn nanocomposites with unique phase-separated nanostructure, where the amorphous Si nanoparticles are thermodynamically precipitated out from Si-Sn alloy and embedded within the Sn matrix. The phase separation-induced nanostructure provides the capability to mitigate the mechanical degradation, by preventing the nucleation and propagation of microcracks during lithiation. The nanocomposite electrode exhibits relative high capacity (1400 mAh g-1) and excellent cycling stability with the optimum composition and nanostructure.

  8. Robust High-Capacity Audio Watermarking Based on FFT Amplitude Modification

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mehdi; Megías, David

    This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods.

  9. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors.

    PubMed

    Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin

    2012-01-11

    We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.

  10. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  11. A high capacity multiple watermarking scheme based on Fourier descriptor and Sudoku

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Huimin

    2015-12-01

    Digital watermark is a type of technology to hide some significant information which is mainly used to protect digital data. A high capacity multiple watermarking method is proposed, which adapts the Fourier descriptor to pre-process the watermarks, while a Sudoku puzzle is used as a reference matrix in embedding process and a key in extraction process. It can dramatically reduce the required capacity by applying Fourier descriptor. Meanwhile, the security of watermarks can be guaranteed due to the Sudoku puzzle. Unlike previous algorithms applying Sudoku puzzle in spatial domain, the proposed algorithm works in transformed domain by applying LWT2.In addition, the proposed algorithm can detect the temper location accurately. The experimental results demonstrated that the goals mentioned above have been achieved.

  12. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Abe, Hidetoshi; Kubota, Masaaki; Nemoto, Miyu; Masuda, Yosuke; Tanaka, Yuichi; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-12-01

    A high-capacity thick cathode has been studied as one of ways to improve the energy density of lithium secondary batteries. In this study, the LiFePO4 cathode with a capacity per unit area of 8.4 m Ah cm-2 corresponding to four times the capacity of conventional cathodes has been developed using a three-dimensional porous aluminum current collector called "FUSPOROUS". This unique current collector enables the smooth transfer of electrons and Li+-ions through the thick cathode, resulting in a good rate capability (discharge capacity ratio of 1.0 C/0.2 C = 0.980) and a high charge-discharge cycle performance (80% of the initial capacity at 2000th cycle) even though the electrode thickness is 400 μm. To take practical advantage of the developed thick cathode, conceptual designs for a 10-Ah class cell were also carried out using graphite and lithium-metal anodes.

  13. Toward an ideal polymer binder design for high-capacity battery anodes.

    PubMed

    Wu, Mingyan; Xiao, Xingcheng; Vukmirovic, Nenad; Xun, Shidi; Das, Prodip K; Song, Xiangyun; Olalde-Velasco, Paul; Wang, Dongdong; Weber, Adam Z; Wang, Lin-Wang; Battaglia, Vincent S; Yang, Wanli; Liu, Gao

    2013-08-14

    The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multifunctionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy, and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electronically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in nonconductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive.

  14. A high-capacity model for one shot association learning in the brain

    PubMed Central

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs. PMID:25426060

  15. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    NASA Astrophysics Data System (ADS)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  16. Synthesization of high-capacity auto-associative memories using complex-valued neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Jiao; Wang, Xiao-Yan; Long, Hai-Xia; Yang, Xu-Hua

    2016-12-01

    In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503338, 61573316, 61374152, and 11302195) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F030005).

  17. Lamprey parasitism of sharks and teleosts: high capacity urea excretion in an extant vertebrate relic.

    PubMed

    Wilkie, Michael P; Turnbull, Steven; Bird, Jonathan; Wang, Yuxiang S; Claude, Jaime F; Youson, John H

    2004-08-01

    We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates.

  18. High-cost, high-capacity backbone for global brain communication.

    PubMed

    van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf

    2012-07-10

    Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.

  19. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

    PubMed

    Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2010-08-16

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

  20. Molecular-level interactions of an azopolymer and poly(dodecylmethacrylate) in mixed Langmuir and Langmuir-Blodgett films for optical storage.

    PubMed

    Ceridório, Lucinéia F; Balogh, Débora T; Caseli, Luciano; Cardoso, Marcos R; Viitala, Tapani; Mendonça, Cleber R; Oliveira, Osvaldo N

    2010-06-01

    The applicability of azopolymers in optical storage can be extended through the use of nanostructured films produced with the Langmuir-Blodgett (LB) technique, but the film properties need to be optimized since these polymers generally do not form stable Langmuir films to be transferred onto solid substrates. Here, photoinduced birefringence was investigated for mixed Langmuir-Blodgett films from the homopolymers 4-[N-ethyl-N-(2-methacryloxyethyl)]-4'-nitroazobenzene (HPDR1-MA) and poly(dodecylmethacrylate) (HPDod-MA). The interactions between these polymers were studied in Langmuir and LB films. Surface pressure-area isotherms pointed to molecular-level interactions for proportions of 51 mf%, 41 mf% and 31 mf% of HPDR1-MA. Phase segregation was not apparent in the BAM images, in which the morphology of the blend film was clearly different from that of the Langmuir films of neat homopolymers. Through PM-IRRAS, we noted that the interaction between the azopolymer and HPDod-MA affected the orientation of carbonyl groups. Strong interactions for the mixture with 41 mf% of poly(dodecylmethacrylate) led to stable Langmuir films that were transferred onto solid supports as LB films. The photoinduced birefringence of 101-layer mixed LB films show features that make these films useful for optical storage, with the advantage of short writing times in comparison to other azopolymer films.

  1. Photonic integrated devices for high-capacity data-center interconnect

    NASA Astrophysics Data System (ADS)

    de Farias, Giovanni B.; Freitas, Alexandre P.; Buscamante, Yesica R. R.; Moura, Uiara C.; Motta, Diogo de A.; Santana, Henrique F.; Chiuchiarelli, Andrea; de Carvalho, Luis H. H.; Reis, Jacklyn D.

    2017-01-01

    Emerging short-reach data center interconnect (typically in the range of tens of km) is a scenario wherein the capacity has to be maximized over point-to-point optical links without intermediate optical amplification, i.e. unrepeated links. For this application, cost and compactness of the optical transceiver form factor to fit the faceplate density requirement are essential to keep up with the bandwidth demand inside hyper-scale data centers. For the optical module to fit in the current dimensions of client routers without compromising the performance, both the electronics and the optics have to be efficiently designed. As far as the opto-electronic is concerned, photonic integrated circuits (PIC) have been discussed in the community so that all the photonic functionalities are performed accordingly with the physical dimensions, power budget and performance specifications. This paper addresses the basic building blocks of silicon photonics coherent optical transceivers, from the design to experimental validation. In addition to the silicon optical modulator, basic components such as polarization splitter-rotators (PSRs) and optical filters will be addressed.

  2. INVESTIGATION OF INORGANIC PHOTOTROPIC MATERIALS AS A BI-OPTIC ELEMENT APPLICABLE IN HIGH DENSITY STORAGE COMPUTER MEMORIES

    DTIC Science & Technology

    A general valuation of the various types of phototropic (i.e., reversible, light induced, color producing) phenomenon is given regarding the...application of phototropic material to bioptic high density storage media for compu er memories. The inorganic ’’F’’ center type phototropic systems were

  3. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  4. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  5. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  6. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g{sup −1}/2032 mAh cm{sup −3}, much greater than the values of ∼372 mAh g{sup −1}/∼818 mAh cm{sup −3}, ∼1117 mAh g{sup −1}/∼1589 mAh cm{sup −3}, and ∼744 mAh g{sup −1} for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  7. A high capacity mobile communications satellite system for the first generation MSS

    NASA Astrophysics Data System (ADS)

    Wiedeman, R. A.

    A low-cost high-capacity dual-band mobile communications satellite system using existing equipment is proposed for the first generation MSS. Cost effectiveness and the requirements of beam optimization and passive intermodulation avoidance dictated the choice of two single band satellites for separate UHF and L-band coverage of North America. Similar designs for the two satellites, based on the Intelsat V and Insat/Arabsat configurations, will achieve over 6000 5-kHz SCPC, communications channels for the system. The 12 beam UHF and 17 beam L-band satellites achieve up to a three-fold frequency reuse of the FCC allocated MSS frequency spectrum. Spacecraft design features include separate 9.1 m antennas for sending and receiving, SAW filters for channel noise attenuation, an integrated bipropellant propulsion system, and a 3.8 kW 10-year electrical power subsystem with a solar array. The satellites are compatible with the STS, Ariane, and other expendable boosters.

  8. Fast and simple high-capacity quantum cryptography with error detection

    PubMed Central

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-01-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth. PMID:28406240

  9. Fast and simple high-capacity quantum cryptography with error detection.

    PubMed

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A

    2017-04-13

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  10. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  11. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  12. MEO based secured, robust, high capacity and perceptual quality image watermarking in DWT-SVD domain.

    PubMed

    Gunjal, Baisa L; Mali, Suresh N

    2015-01-01

    The aim of this paper is to present multiobjective evolutionary optimizer (MEO) based highly secured and strongly robust image watermarking technique using discrete wavelet transform (DWT) and singular value decomposition (SVD). Many researchers have failed to achieve optimization of perceptual quality and robustness with high capacity watermark embedding. Here, we achieved optimized peak signal to noise ratio (PSNR) and normalized correlation (NC) using MEO. Strong security is implemented through eight different security levels including watermark scrambling by Fibonacci-Lucas transformation (FLT). Haar wavelet is selected for DWT decomposition to compare practical performance of wavelets from different wavelet families. The technique is non-blind and tested with cover images of size 512x512 and grey scale watermark of size 256x256. The achieved perceptual quality in terms of PSNR is 79.8611dBs for Lena, 87.8446 dBs for peppers and 93.2853 dBs for lake images by varying scale factor K1 from 1 to 5. All candidate images used for testing namely Lena, peppers and lake images show exact recovery of watermark giving NC equals to 1. The robustness is tested against variety of attacks on watermarked image. The experimental demonstration proved that proposed method gives NC more than 0.96 for majority of attacks under consideration. The performance evaluation of this technique is found superior to all existing hybrid image watermarking techniques under consideration.

  13. High-capacity method for hiding data in the discrete cosine transform domain

    NASA Astrophysics Data System (ADS)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  14. A high-capacity steganography scheme for JPEG2000 baseline system.

    PubMed

    Zhang, Liang; Wang, Haili; Wu, Renbiao

    2009-08-01

    Hiding capacity is very important for efficient covert communications. For JPEG2000 compressed images, it is necessary to enlarge the hiding capacity because the available redundancy is very limited. In addition, the bitstream truncation makes it difficult to hide information. In this paper, a high-capacity steganography scheme is proposed for the JPEG2000 baseline system, which uses bit-plane encoding procedure twice to solve the problem due to bitstream truncation. Moreover, embedding points and their intensity are determined in a well defined quantitative manner via redundancy evaluation to increase hiding capacity. The redundancy is measured by bit, which is different from conventional methods which adjust the embedding intensity by multiplying a visual masking factor. High volumetric data is embedded into bit-planes as low as possible to keep message integrality, but at the cost of an extra bit-plane encoding procedure and slightly changed compression ratio. The proposed method can be easily integrated into the JPEG2000 image coder, and the produced stego-bitstream can be decoded normally. Simulation shows that the proposed method is feasible, effective, and secure.

  15. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    DOE PAGES

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon andmore » Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less

  16. Hiding clinical information in medical images: A new high capacity and reversible data hiding technique.

    PubMed

    Parah, Shabir A; Ahad, Farhana; Sheikh, Javaid A; Bhat, G M

    2017-02-01

    A new high capacity and reversible data hiding scheme for e-healthcare applications has been presented in this paper. Pixel to Block (PTB) conversion technique has been used as an effective and computationally efficient alternative to interpolation for the cover image generation to ensure reversibility of medical images. A fragile watermark and Block Checksum (computed for each 4×4 block) have been embedded in the cover image for facilitating tamper detection and tamper localization, and hence content authentication at receiver. The EPR, watermark data and checksum data has been embedded using Intermediate Significant Bit Substitution (ISBS) to avoid commonly used LSB removal/replacement attack. Non-linear dynamics of chaos have been put to use for encrypting the Electronic Patient Record (EPR)/clinical data and watermark data for improving the security of data embedded. The scheme has been evaluated for perceptual imperceptibility and tamper detection capability by subjecting it to various image processing and geometric attacks. Experimental results reveal that the proposed system besides being completely reversible is capable of providing high quality watermarked images for fairly high payload. Further, it has been observed that the proposed technique is able to detect and localise the tamper. A comparison of the observed results with that of some state-of-art schemes show that our scheme performs better.

  17. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.

    PubMed

    Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela

    2017-01-17

    Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems.

  18. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  19. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  20. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment

    PubMed Central

    Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela

    2017-01-01

    Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems. PMID:28049820

  1. Origin of voltage decay in high-capacity layered oxide electrodes.

    PubMed

    Sathiya, M; Abakumov, A M; Foix, D; Rousse, G; Ramesha, K; Saubanère, M; Doublet, M L; Vezin, H; Laisa, C P; Prakash, A S; Gonbeau, D; VanTendeloo, G; Tarascon, J-M

    2015-02-01

    Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g(-1) exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

  2. High capacity carbon anode for dry polymer lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kawakubo, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2013-03-01

    A high capacity carbon anode with good cyclability for dry polymer lithium-ion batteries was obtained by the co-addition of vapor grown carbon fiber (VGCF) and carbon nanotubes (CNTs) into a composite carbon electrode of spherical mesocarbon microbeads (MCMB) and a lithium ion conducting binder of polyethylene oxide (PEO) with Li(CF3SO2)2N (LiTFSI). An electrode with MCMB, PEO19LiTFSI and VGCF exhibits high reversible capacity of over 330 mAh g-1, but poor cycling performance; the capacity retention was 71% at the 50th cycle. In contrast, the electrode with MCMB, PEO19LiTFSI, VGCF and CNTs has excellent cycling performance with a reversible capacity of ca. 310 mAh g-1 and reversible capacity retention of 97% at the 50th cycle. The thin and long CNTs could be useful to maintain electrical contact in the cathode matrix during the volume change caused by lithium insertion and extraction into or from the MCMB.

  3. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    SciTech Connect

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.; Reichmanis, Elsa

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon and Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.

  4. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    SciTech Connect

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.; Reichmanis, Elsa

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon and Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.

  5. Fast and simple high-capacity quantum cryptography with error detection

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  6. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    PubMed

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multiresidue analysis of pesticides in vegetables and fruits using a high capacity absorbent polymer for water.

    PubMed

    Obana, H; Akutsu, K; Okihashi, M; Kakimoto, S; Hori, S

    1999-08-01

    A single extraction and a single clean-up procedure was developed for multi-residue analysis of pesticides in non-fatty vegetables and fruits. The method involves the use of a high capacity absorbent polymer for water as a drying agent in extraction from wet food samples and of a graphitized carbon column for clean-up. A homogeneously chopped food sample (20 g) and polymer (3 g) were mixed to absorb water from the sample and then 10 min later the mixture was vigorously extracted with ethyl acetate (100 ml). The extract (50 ml), separated by filtration, was loaded on a graphitized carbon column without concentration. Additional ethyl acetate (50 ml) was also eluted and both eluates were concentrated to 5 ml for analysis. The procedure for sample preparation was completed within 2 h. In a recovery test, 107 pesticides were spiked and average recoveries were more than 80% from asparagus, orange, potato and strawberry. Most pesticides were recovered in the range 70-120% with usually less than a 10% RSD for six experiments. The results indicated that a single extraction with ethyl acetate in the presence of polymer can be applied to the monitoring of pesticide residues in foods.

  8. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury.

    PubMed

    Chin, Andrew; Mourier, Johann; Rummer, Jodie L

    2015-01-01

    Wound healing is important for sharks from the earliest life stages, for example, as the 'umbilical scar' in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) 'umbilical scar' healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status.

  9. Optical disk archiving using a personal computer: a solution to image storage problems in diagnostic imaging departments.

    PubMed

    Parkin, A; Norwood, H; Erdentug, A; Hall, A J

    1990-01-01

    The paper describes an approach to solving the problem of providing a large-capacity image archive for diagnostic imaging departments at reasonable cost. Optical disk stores, when fitted retrospectively to scanners, are very expensive and may not be compatible with existing computer hardware. We describe the use of an industry standard personal computer (PC) linked to a standard 5 1/4-in. optical disk drive as a 'stand-alone' image store. Image data are transferred from the scanner using 8-in. floppy disks, and these are read into the PC using an attached 8-in. floppy disk drive and then transferred to the optical disk. The patient details (patient name, ID, date, etc.) are entered into a database program held on the PC and these are used to generate a reference pointer to the optical disk file through which the data can be retrieved. Data retrieval involves entering the patient details into the data base and inserting a blank 8-in. floppy disk into the drive attached to the PC. A sector copy is then made from the optical disk to the 8-in. floppy disk, which can then be used at the viewing station at the scanner. The system is flexible since it can accept data from a variety of sources in any format; it is also low cost and operates independently of the scanner. The hardware is industry standard, ensuring low maintenance costs.

  10. Light shutters and electro-optical storage devices from antiferroelectric liquid crystals of bent-shape molecules

    NASA Astrophysics Data System (ADS)

    Jakli, Antal; Chien, Liang-Chi; Kruerke, Daniel; Rauch, Sebastian; Sawade, Hans; Bault, Philippe; Heppke, Gerd; Fodor-Csorba, Katalin; Nair, Geetha G.

    2003-04-01

    Novel scattering-type displays using antiferroelectric smectic phases of liquid crystals of bent-shape molecules are reviewed and discussed. There can be two distinct states racemic and chiral that work in opposite ways. The racemic structure is scattering in the OFF state and is optically clear under sufficiently large (E~4-6V/m) electric fields. The chiral structure is transparent at zero fields and scattering in the field ON state. These two structures may be reversibly interchanged implying their use in devices that consume energy only during switching from one stable state to the other. After summarizing the previous results on the film thickness, driving voltage and temperature dependences of the light shutters, new results will be presented on a banana smectic material, which has an optically isotropic transparent antiferroelectric OFF state. We show that the optically isotropic and transparent OFF state can be reversibly switched to birefringent and scattering ferroelectric states in less than hundred microseconds.

  11. High Capacity Single Table Performance Design Using Partitioning in Oracle or PostgreSQL

    DTIC Science & Technology

    2012-03-01

    Indicators ( KPIs ) 13  5.  Conclusion 14  List of Symbols, Abbreviations, and Acronyms 15  Distribution List 16 iv List of Figures Figure 1. Oracle...Figure 7. Time to seek and return one record. 4. Additional Key Performance Indicators ( KPIs ) In addition to pure response time, there are other...Laboratory ASM Automatic Storage Management CPU central processing unit I/O input/output KPIs key performance indicators OS operating system

  12. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    PubMed

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa.

  13. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    PubMed

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  14. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  15. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics.

    PubMed

    Shen, Jianliang; Xu, Rong; Mai, Junhua; Kim, Han-Cheon; Guo, Xiaojing; Qin, Guoting; Yang, Yong; Wolfram, Joy; Mu, Chaofeng; Xia, Xiaojun; Gu, Jianhua; Liu, Xuewu; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2013-11-26

    Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines, and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.

  16. First Clinical Experience with a High-Capacity Implantable Infusion Pump for Continuous Intravenous Chemotherapy

    SciTech Connect

    Damascelli, Bruno; Patelli, Gianluigi; Frigerio, Laura F.; Lanocita, Rodolfo; Di Tolla, Giuseppe; Marchiano, Alfonso; Spreafico, Carlo; Garbagnati, Francesco; Bonalumi, Maria G.; Monfardini, Lorenzo; Ticha, Vladimira; Prino, Aurelio

    1999-01-15

    Purpose: To evaluate the efficiency of a new high-capacity pump for systemic venous chemotherapy and to verify the quality of implantation by interventional radiology staff. Methods: A total of 47 infusion pumps with a 60-ml reservoir and variable flow rates (2, 6, 8, or 12 ml/24 hr) were implanted by radiologists in 46 patients with solid tumor metastases requiring treatment with a single, continuously infused cytostatic agent. The reservoir was refilled transcutaneously, usually once weekly. The flow accuracy of the pump was assessed from actual drug delivery recorded on 34 patients over a minimum observation period of 180 days. Results: No early complications occurred in any of the 47 implants in 46 patients. A total of 12 (25.53%) complications occurred between 3 and 24 months after implantation. Seven (14.90%) of these were due to the external design of the pump, while five (10.63%) were related to the central venous catheter. In the 34 patients available for pump evaluation (follow-up of at least 180 days), the system was used for a total of 14,191 days (range 180-911 days, mean 417.38 days), giving an overall complication rate of 0.84 per 1000 days of operation. The mean flow rate accuracy was 90.26%. Conclusion: The new implantable pump showed good flow rate accuracy and reliable operation. The pump-related complications were related to its external design and have now been corrected by appropriate modifications. From a radiologic and surgical viewpoint, the venous implantation procedure is identical to that of conventional vascular access devices and can be performed by radiologists familiar with these techniques. The current limitations lie in the high cost of the pump and, for certain drugs, the short time between refills.

  17. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury

    PubMed Central

    Chin, Andrew; Mourier, Johann; Rummer, Jodie L.

    2015-01-01

    Wound healing is important for sharks from the earliest life stages, for example, as the ‘umbilical scar’ in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) ‘umbilical scar’ healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status. PMID:27293741

  18. Storage Technology: Present and Future.

    ERIC Educational Resources Information Center

    Goldstein, Charles M.

    1984-01-01

    Reviews terminology inherent in discussing microcomputer storage technologies and addresses aspects of magnetic storage and present and near-future technologies, including floppy disks, Winchester and removable hard disks, optical digital disks, optical video disks, (audio) compact disks, perpendicular magnetic recording, and erasable optical…

  19. Storage Technology: Present and Future.

    ERIC Educational Resources Information Center

    Goldstein, Charles M.

    1984-01-01

    Reviews terminology inherent in discussing microcomputer storage technologies and addresses aspects of magnetic storage and present and near-future technologies, including floppy disks, Winchester and removable hard disks, optical digital disks, optical video disks, (audio) compact disks, perpendicular magnetic recording, and erasable optical…

  20. Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies

    NASA Astrophysics Data System (ADS)

    Åstrand, Per-Olof; Sommer-Larsen, Peter; Hvilsted, Søren; Ramanujam, P. S.; Bak, Keld L.; Sauer, Stephan P. A.

    2000-07-01

    The two lowest singlet excitation energies of 18 azo dyes have been studied by ab initio quantum-chemical methods within the second-order polarization propagator approximation (SOPPA). Various combinations of five-membered rings (furan, thiophene, pyrrole, oxazole, thiazole, and imidazole) have been investigated as diazo components for a potential use in optical data storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have π→π ∗ excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring and a phenyl group as diazo components results in wavelengths in the region 400-435 nm.

  1. Coaxial random-access reading in multilayered optical data storage systems using a pair of counter-propagating pulse-shaped spatial solitons

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-07-01

    Coaxial random-access reading in multilayered optical data storage using a pair of counter-propagating pulse-shaped spatial solitons was experimentally investigated. Counter-propagating second-harmonic spatial solitons, which are formed by focusing titanium sapphire pulsed lasers, induced nonlinear collision and determined the depth readout address in a strontium barium niobate crystal. The nonlinear interaction between the collision and the locally-reversed crystal domains, which represents single-bit data, changed the spectrum and intensity of the transmitted second-harmonic beam. Coaxial random-access reading associated with the spatial soliton of the multilayered bit datum was demonstrated by scanning collision points along the direction of the depth.

  2. External insulation systems for cryogenic storage systems. Volume 1: Optical properties of Kapton and report of process variable study

    NASA Technical Reports Server (NTRS)

    Frank, A. M.

    1974-01-01

    Investigations are conducted into the optical properties of the glass and Kapton substrate materials, and three variables were chosen: deposition rate, sputter gas pressure, and film contamination time. Substrate tests have shown that fabrication of an dielectric broadband reflector would require an extremely complex and expensive filter design.

  3. Integrated optical buffers for packet-switched networks

    NASA Astrophysics Data System (ADS)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  4. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  5. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers.

    PubMed

    Wang, Qianqian; Yu, Linling; Sun, Yan

    2016-04-22

    success in the fabrication of high-capacity protein anion exchangers by grafting GMA onto Sepharose gel.

  6. Technical report: effects of PUVA treatment on the optical properties of blood/tissue storage bags during extracorporeal photochemotherapy.

    PubMed

    Keskin, Ali Umit

    2007-10-01

    Extracorporeal photochemotherapy (photopheresis, ECP) is a novel therapeutic method for patients who do not respond to immunosuppressive medications, and gaining interest in the treatment of Graft-vs-Host Disease. This paper is focused on the optical transmission properties of plastic bags which can be used in an independent (off-line) method of ECP, and reports the results of spectral measurements on various bags of different chemical compositions, with and without PUVA treatment. Regarding their higher and more uniform UVA transmission values, FEP based bags perform superior to the others. Considering its UVB absorption and UVA transmission properties, the EVA bag is a good choice, while Polyimide Kapton-FEP plastic film should not be considered for use in ECP. PUVA treatment of blood bags may affect their optical behaviour, and causes reduction of transmission of the material in UV range of the spectrum.

  7. Role of Nitrogen Doped Graphene for Improved High Capacity Potassium Ion Battery Anodes.

    PubMed

    Share, Keith; Cohn, Adam P; Carter, Rachel; Rogers, Bridget; Pint, Cary L

    2016-10-09

    Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphite to over 350 mAh/g, competitive with anode capacity in commercial lithium-ion batteries and the highest reported anode capacity so far for potassium ion batteries. Control studies distinguish the importance of nitrogen dopant sites as opposed to sp3 carbon defect sites to achieve the improved performance, which also enables > 6X increase in rate performance of doped versus undoped materials. Finally, in-situ Raman spectroscopy studies elucidate the staging sequence for doped and undoped materials and demonstrate the mechanism of the observed capacity enhancement to be correlated with distributed storage at local nitrogen sites in a staged KC8 compound. This study demonstrates a pathway to overcome the limitations of graphitic carbons for anodes in potassium ion batteries by atomically precise engineering of nanomaterials.

  8. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

    PubMed Central

    Vita, Nicolas; Landolfi, Gianpiero; Baslé, Arnaud; Platsaki, Semeli; Lee, Jaeick; Waldron, Kevin J.; Dennison, Christopher

    2016-01-01

    Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 1017 M−1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria. PMID:27991525

  9. Hydroxylamine hydrochloride: A novel anode material for high capacity lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shao, Lianyi; Shu, Jie; Lao, Mengmeng; Lin, Xiaoting; Wu, Kaiqiang; Shui, Miao; Li, Peng; Long, Nengbing; Ren, Yuanlong

    2014-12-01

    H3NOHCl is used for the first time as anode material for lithium-ion batteries. Electrochemical results show that H3NOHCl with particle size of 4-12 μm can deliver an initial charge capacity of 1018.6 mAh g-1, which is much higher than commercial graphite. After 30 cycles, the reversible capacity can be kept at 676.1 mAh g-1 at 50 mA g-1. Up to 50 cycles, H3NOHCl still maintains a lithium storage capacity of 368.9 mAh g-1. Even cycled at 200 mA g-1, H3NOHCl can deliver a charge capacity of 715.7 mAh g-1. It suggests that H3NOHCl has high lithium storage capacity, excellent cycling stability and outstanding rate performance. Besides, the electrochemical reaction between H3NOHCl and Li is also investigated by various ex-situ techniques. It can be found that H3NOHCl irreversibly decomposes into Li3N and LiCl during the initial discharge process and LiNO2 can be formed after a reverse charge process.

  10. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

    NASA Astrophysics Data System (ADS)

    Vita, Nicolas; Landolfi, Gianpiero; Baslé, Arnaud; Platsaki, Semeli; Lee, Jaeick; Waldron, Kevin J.; Dennison, Christopher

    2016-12-01

    Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1-2) × 1017 M-1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.

  11. Improving the precision of linear optics measurements based on turn-by-turn beam position monitor data after a pulsed excitation in lepton storage rings

    NASA Astrophysics Data System (ADS)

    Malina, L.; Coello de Portugal, J.; Persson, T.; Skowroński, P. K.; Tomás, R.; Franchi, A.; Liuzzo, S.

    2017-08-01

    Beam optics control is of critical importance for machine performance and protection. Nowadays, turn-by-turn (TbT) beam position monitor (BPM) data are increasingly exploited as they allow for fast and simultaneous measurement of various optics quantities. Nevertheless, so far the best documented uncertainty of measured β -functions is of about 10‰ rms. In this paper we compare the β -functions of the ESRF storage ring measured from two different TbT techniques—the N-BPM and the Amplitude methods—with the ones inferred from a measurement of the orbit response matrix (ORM). We show how to improve the precision of TbT techniques by refining the Fourier transform of TbT data with properly chosen excitation amplitude. The precision of the N-BPM method is further improved by refining the phase advance measurement. This represents a step forward compared to standard TbT measurements. First experimental results showing the precision of β -functions pushed down to 4‰ both in TbT and ORM techniques are reported and commented.

  12. Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Yanez, Ciceron

    2009-12-01

    Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a

  13. Characterization of a low-pressure high-capacity {sup 129}Xe flow-through polarizer

    SciTech Connect

    Schrank, G.; Ma, Z.; Schoeck, A.; Saam, B.

    2009-12-15

    We describe a low-pressure flow-through apparatus for generating hyperpolarized {sup 129}Xe and report its performance by examining both the output {sup 129}Xe polarization P{sub Xe} by NMR and the in situ Rb polarization profile by optically detected electron paramagnetic resonance. The polarizer is based on a previously presented design employing a long optical pumping cell, lean Xe mixture at low pressure, Rb presaturation, and counterflow of gas with respect to the direction of light propagation. The numerical model to which we compare the polarizer's performance includes the temperature dependence of the Rb-{sup 129}Xe spin-exchange rate, which has not previously been treated. The qualitative trends in the data mostly follow those in the model, although the model predicts P{sub Xe} to be up to a factor of two higher than observed. This discrepancy cannot be attributed to low Rb polarization: the model and the optically detected electron paramagnetic resonance data (acquired at six points along the length of the heated portion of the optical pumping cell) are in reasonable agreement and show typical values of 85%-95%, although measurements also reveal an anomalous region of depressed Rb polarization near the middle of the cell. The highest output {sup 129}Xe polarization P{sub Xe}=84+-16%, was recorded using approx =60 W of frequency-narrowed laser light at a Xe partial pressure (referenced to 20 deg. C) of 1.1+-0.2 mbar, flowing at 1 sccm of Xe; typical values were P{sub Xe}approx =20% flowing at 10 sccm of Xe with approx =30 W of laser light.

  14. Methane storage in metal-organic frameworks.

    PubMed

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  15. Entanglement, teleportation, and single-photon storage with two-level atoms inside an optical parametric oscillator

    SciTech Connect

    Rice, Perry R.

    2005-07-01

    I consider several interesting aspects of a new light source, a two-level atom, or N two-level atoms inside an optical parametric oscillator. I find that in the weak driving limit, detection of a transmitted or fluorescent photon generates a highly entangled state of the atom and the cavity. This entanglement can be used with beam splitters to create more complex quantum states and implement teleportation protocols. Also, one can store a single photon in the atoms, along the lines of recent slow and stopped light proposals and experiments.

  16. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.

    PubMed

    Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong

    2012-12-21

    Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.

  17. Nanovalved Adsorbents for CH4 Storage.

    PubMed

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications.

  18. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  19. Emerging Network Storage Management Standards for Intelligent Data Storage Subsystems

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    This paper discusses the need for intelligent storage devices and subsystems that can provide data integrity metadata, the content of the existing data integrity standard for optical disks and techniques and metadata to verify stored data on optical tapes developed by the Association for Information and Image Management (AIIM) Optical Tape Committee.

  20. Emerging Network Storage Management Standards for Intelligent Data Storage Subsystems

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    This paper discusses the need for intelligent storage devices and subsystems that can provide data integrity metadata, the content of the existing data integrity standard for optical disks and techniques and metadata to verify stored data on optical tapes developed by the Association for Information and Image Management (AIIM) Optical Tape Committee.