Sample records for high-current density nitrogen

  1. Metal-Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped Content Carbon/Graphene for High Performance Supercapacitors.

    PubMed

    Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai

    2017-01-11

    Design and preparation of carbon-based electrode material with high nitrogen-doping ratio and appropriate density attract much interest for supercapacitors in practical application. Herein, three porous carbon/graphene (NCG Cu , NCG Fe , and NCG Zn ) with high doping ratio of nitrogen have been prepared via directly pyrolysis of graphene oxide (GO)/metal-organic coordination polymer (MOCP) composites, which were formed by reacting 4,4'-bipyridine (BPD) with CuCl 2 , FeCl 3 , and ZnCl 2 , respectively. As-prepared NCG Cu , NCG Fe and NCG Zn showed high nitrogen doping ratio of 10.68, 12.99, and 11.21 at. %; and high density of 1.52, 0.84, and 1.15 g cm -3 , respectively. When as-prepared samples were used as supercapacitor electrodes, NCG Cu , NCG Fe and NCG Zn exhibited high gravimetric specific capacitances of 369, 298.5, 309.5 F g -1 , corresponding to high volumetric specific capacitances of 560.9, 250.7, 355.9 F cm -3 at a current density of 0.5 A g -1 , as well as good cycling stability, nearly 100% of the capacitance retained after 1000 cycles even at a large current density of 10 A g -1 . It is expected that the provided novel strategy can be used to develop electrode materials in high performance energy conversion/storage devices.

  2. Metastable Polymeric Nitrogen: The Ultimate Green High-Energy-Density Material

    DTIC Science & Technology

    2008-06-01

    S. Polynitrogen. Chem. Eng. 2004, 82, 10. 2. Cromer, D. T.; Mills, R. L.; Schiferl , D.; Schwalbe, L. A. The Structure of N2 at 49 kbar and 299K...and Shock-Induced Cooling in Fluid Nitrogen at High Densities and Temperatures. Phys. Rev. Lett. 1986, 57, 2419. 10. Schiferl , D.; Buchsbaum, S...R.; Schiferl , D.; Martin, S.; Vanderborgh, C.; Mills, R. L. Optical Studies of Nitrogen to 130 GPa. Phys. Rev. Lett. 1985, 55, 1464. 12. Olijnyk, H

  3. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    PubMed

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Metastable Polymeric Nitrogen: The Ultimate Green High-Energy-Density Material

    NASA Astrophysics Data System (ADS)

    Ciezak, Jennifer

    2007-06-01

    High-energy-high-density materials offering increased stability, vulnerability, and environmental safety are being aggressively pursued to meet the requirements of the DoD Joint Visions and Future Force. Nearly two decades ago, it was proposed that polymeric nitrogen would exceed all of these requirements and possess nearly five times the energy of any conventional energetic material in use today. The present study details an investigation into nitrogen polymerization using a novel high-pressure approach utilizing sodium azide as the starting material. Due to the weaker bonding structure of the anionic azide chains in comparison to a N-N triple bond, one expects that the azide chains will create single-covalently bonded polymeric networks more easily than diatomic nitrogen. A polymeric form of sodium azide was synthesized at high pressures, but the material was not metastable at ambient conditions, which precluded performance testing. Quantum chemical calculations have indicated stabilization of the polymeric structure at ambient conditions may be possible with the addition of hydrogen. Vibrational spectroscopic characterization suggests that a meta-stable polymeric form of nitrogen has been synthesized under high-pressure using sodium azide/hydrogen as the starting materials. This material remains stable at ambient conditions upwards of two weeks depending on the storage conditions.

  5. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  6. High density nitrogen-vacancy sensing surface created via He{sup +} ion implantation of {sup 12}C diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinsasser, Ed E., E-mail: edklein@uw.edu; Stanfield, Matthew M.; Banks, Jannel K. Q.

    2016-05-16

    We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.

  7. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  8. Generation of high-density biskyrmions by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Licong; Zhang, Ying; He, Min

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  9. Generation of high-density biskyrmions by electric current

    DOE PAGES

    Peng, Licong; Zhang, Ying; He, Min; ...

    2017-06-16

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  10. Enhanced leaf nitrogen status stabilizes omnivore population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2017-01-01

    Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g -1 . We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.

  11. Correcting magnetic probe perturbations on current density measurements of current carrying plasmas.

    PubMed

    Knoblauch, P; Raspa, V; Di Lorenzo, F; Lazarte, A; Clausse, A; Moreno, C

    2010-09-01

    A method to infer the current density distribution in the current sheath of a plasma focus discharge from a magnetic probe is formulated and then applied to experimental data obtained in a 1.1 kJ device. Distortions on the magnetic probe signal caused by current redistribution and by a time-dependent total discharge current are considered simultaneously, leading to an integral equation for the current density. Two distinct, easy to implement, numerical procedures are given to solve such equation. Experimental results show the coexistence of at least two maxima in the current density structure of a nitrogen sheath.

  12. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  13. High-current discharge channel contraction in high density gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of {approx}10{sup 10} A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 {mu}s. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where themore » channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.« less

  14. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density.

    PubMed

    Jhong, Huei-Ru Molly; Tornow, Claire E; Smid, Bretislav; Gewirth, Andrew A; Lyth, Stephen M; Kenis, Paul J A

    2017-03-22

    We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO 2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H 2 (approximately 98 % CO and 2 % H 2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm -2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO 2 reduction as an approach to reduce atmospheric CO 2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  16. Unsteady density-current equations for highly curved terrain

    NASA Technical Reports Server (NTRS)

    Sivakumaran, N. S.; Dressler, R. F.

    1989-01-01

    New nonlinear partial differential equations containing terrain curvature and its rate of change are derived that describe the flow of an atmospheric density current. Unlike the classical hydraulic-type equations for density currents, the new equations are valid for two-dimensional, gradually varied flow over highly curved terrain, hence suitable for computing unsteady (or steady) flows over arbitrary mountain/valley profiles. The model assumes the atmosphere above the density current exerts a known arbitrary variable pressure upon the unknown interface. Later this is specialized to the varying hydrostatic pressure of the atmosphere above. The new equations yield the variable velocity distribution, the interface position, and the pressure distribution that contains a centrifugal component, often significantly larger than its hydrostatic component. These partial differential equations are hyperbolic, and the characteristic equations and characteristic directions are derived. Using these to form a characteristic mesh, a hypothetical unsteady curved-flow problem is calculated, not based upon observed data, merely as an example to illustrate the simplicity of their application to unsteady flows over mountains.

  17. Superconducting current injection transistor with very high critical-current-density edge-junctions

    NASA Astrophysics Data System (ADS)

    van Zeghbroeck, B. J.

    1985-03-01

    A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.

  18. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    PubMed

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yongjie; Li, Xinyu; Hu, Guanghui; Wu, Ting; Luo, Yi; Sun, Lang; Tang, Tao; Wen, Jianfeng; Wang, Heng; Li, Ming

    2017-11-01

    Nitrogen-enriched graphene was fabricated via a facile strategy. Graphene oxide (GO) nanosheets and graphene oxide quantum dots (GQDs) were used as a structure-directing agent and in situ activating agent, respectively, after photoreduction under NH3 atmosphere. The combination of photoreduction and NH3 not only reduced GO and GQD composites (GO/GQDs) within a shorter duration but also doped a high level of nitrogen on the composites (NrGO/GQDs). The nitrogen content of NrGO/GQDs reached as high as 18.86 at% within 5 min of irradiation. Benefiting from the nitrogen-enriched GO/GQDs hybrid structure, GQDs effectively prevent the agglomeration of GO sheets and increased the numbers of ion channels in the material. Meanwhile, the high levels of nitrogen improved electrical conductivity and strengthened the binding energy between GQD and GO sheets. Compared with reduced GO and low nitrogen-doped reduced GO, NrGO/GQD electrodes exhibited better electrochemical characteristics with a high specific capacitance of 344 F g-1 at a current density of 0.25 A g-1. Moreover, the NrGO/GQD electrodes exhibited 82% capacitance retention after 3000 cycles at a current density of 0.8 A g-1 in 6 M KOH electrolyte. More importantly, the NrGO/GQD electrodes deliver a high energy density of 43 Wh kg-1 at a power density of 417 W kg-1 in 1 M Li2SO4 electrolyte. The nitrogen-doped graphene and corresponding supercapacitor presented in this study are novel materials with potential applications in advanced energy storage systems.

  20. DIN 1.7035 Steel Modification with High Intensity Nitrogen Ion Implantation

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Sivin, D. O.; Anan'in, P. S.; Ivanova, A. I.; Uglov, V. V.; Korneva, O. S.

    2018-06-01

    The paper presents research results on the formation of deep ion-modified layers of the grade DIN 1.7035 alloy steel due to a high intensity, repetitively-pulsed nitrogen ion beams with the ion current density of up to 0.5 A/cm2. The formation of a low-energy, high intensity nitrogen ion beam is based on a plasma immersion ion extraction followed by the ballistic focusing in the equipotential drift region. The nitrogen ion implantation in steel specimens is performed at a 1.2 keV energy and 450, 500, 580 and 650°C temperatures during 60 minutes. The morphology, elementary composition and mechanical properties are investigated in deep layers of steel specimens alloyed with nitrogen ions.

  1. Atmospheric concentrations of ammonia and nitrogen dioxide at a tropical coral cay with high seabird density.

    PubMed

    Schmidt, Susanne; Mackintosh, Katrina; Gillett, Rob; Pudmenzky, Alex; Allen, Diane E; Rennenberg, Heinz; Mueller, Jochen F

    2010-02-01

    Ecosystems with high seabird densities can receive extremely high inputs of nitrogen (N) from bird guano. Seabirds deposit up to 1000 kg N ha(-1) y(-1) on Heron Island, a tropical coral cay of the Great Barrier Reef. We quantified atmospheric concentrations of ammonia (NH(3)) and nitrogen dioxide (NO(2)) with passive air samplers at beach, woodland and forest along a gradient of low, intermediate and high bird densities, respectively. NO(2) concentrations at all studied sites were generally low (average 0.2-2.3 microg NO(2) m(-3)) and similar to other ecosystems. An exception was the main traffic zone of helicopter and barge traffic which had elevated concentrations (average 6.2, maximum 25 microg NO(2) m(-3)) comparable to traffic-intense urban areas elsewhere. Increasing average NH(3) concentrations from 0.7 to 17 microg NH(3) m(-3) was associated with greater seabird nesting density. In areas of intermediate and high bird density, NH(3) concentrations were substantially higher than those typically detected in natural and agricultural systems, supporting the notion that seabird guano is a major source of NH(3). The steep decline of NH(3) concentrations in areas with low bird density indicates that trans-island transport of NH(3) is low. NH(3) may not only be re-deposited in close vicinity of the source but is also transported vertically as concentrations above the tree canopy averaged 7.5 microg NH(3) m(-3). How much guano-derived NH(3) contributes to reefal waters via the possible transfer path water --> land --> water remains to be established. We discuss atmospheric concentrations of NH(3) and NO(2) in context of N-based gaseous pollutants and effects on vegetation.

  2. High voltage and high current density vertical GaN power diodes

    DOE PAGES

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  3. Three-Dimensional Nitrogen-Doped Hierarchical Porous Carbon as an Electrode for High-Performance Supercapacitors.

    PubMed

    Tang, Jing; Wang, Tao; Salunkhe, Rahul R; Alshehri, Saad M; Malgras, Victor; Yamauchi, Yusuke

    2015-11-23

    A facile and sustainable procedure for the synthesis of nitrogen-doped hierarchical porous carbons with a three-dimensional interconnected framework (NHPC-3D) was developed. The strategy, based on a colloidal crystal-templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self-polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well-preserved nitrogen doping after heat treatment. The obtained NHPC-3D possesses a high surface area of 1056 m(2)  g(-1) , a large pore volume of 2.56 cm(3)  g(-1) , and a high nitrogen content of 8.2 wt %. The NHPC-3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g(-1) at a current density of 2 A g(-1) . The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g(-1) in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion-transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC-3D as a promising candidate for electrode materials in supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  5. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  6. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    PubMed

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterization and Performance of a High-Current-Density Ion Implanter with Magnetized Hollow-Cathode Plasma Source

    NASA Astrophysics Data System (ADS)

    Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai

    1998-10-01

    In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.

  8. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  9. Transport critical current measurement apparatus using liquid nitrogen cooled high-Tc superconducting magnet with variable temperature insert

    NASA Astrophysics Data System (ADS)

    Nishijima, G.; Kitaguchi, H.; Tshuchiya, Y.; Nishimura, T.; Kato, T.

    2013-01-01

    We have developed an apparatus to investigate transport critical current (Ic) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)2Sr2Ca2Cu3O10 (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating Ic measurement environment for a high-Tc superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  10. Characterization of nitrogen effects in high energy density weldments of Nitronic 40 stainless steel

    NASA Astrophysics Data System (ADS)

    Pfeif, Erik Andrew

    Variation in the welding environment for laser beam welding and electron beam welding can alter the resulting weld chemical composition, microstructure and therefore the mechanical properties. The room temperature mechanical properties of Nitronic 40 stainless steel weld metal from three different heats containing 0.24, 0.28, and 0.31 wt. pct. nitrogen were evaluated for continuous mode Ytterbium doped Fiber laser welds conducted with argon and nitrogen shielding gases, and for electron beam welds. The bulk nitrogen contents were monitored and the resulting properties were then related to microstructural features measured using Electron BackScatter Diffraction (EBSD). Traditional tensile testing of weld metal is conducted on composite tensile bars consisting of base metal and weld metal often leading to failure in the region adjacent to the weld due to strength mismatch at the weld interface. These tests provide composite strength but do not specifically determine the mechanical properties of the heterogeneous weld metal. In this research, microtensile testing was conducted to characterize the properties of the different regions of the weld. The microtensile testing procedures were developed using two geometries of tensile bars measuring the properties through the thickness of 3 mm full penetration welds. In all cases an increase in the strength of the weld metal was found to occur, though the electron beam welds exhibited a higher strength than the laser welds. Standard predictive equations were found to under-predict the strength of the laser welds, even when average grain size or intercept distances were measured. The contribution of nitrogen solid solution strengthening was consistent at approximately 513 MPa per wt. pct. nitrogen. Similar cooling rates and heat inputs allow for a comparison across high energy density welding techniques. Though microstructural differences through the depth of the weld metal were observed as nitrogen vaporization decreased and

  11. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  12. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  13. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    PubMed

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    PubMed

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  15. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    NASA Astrophysics Data System (ADS)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  16. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  17. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes.

    PubMed

    Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H

    2014-02-01

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  18. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  19. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    PubMed

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  20. High Energy Density Lithium Primary Cells Using Nitrogen Containing Polymer Positives.

    DTIC Science & Technology

    1983-12-01

    the charges were stabilized on heteroatoms, particularly nitro- gen. A positive charge would be stored in the form of an ammonium ion. in a high...operate reversibly. 2.0 POLYMERIC CATHODES A polymer which might be expected to exemplify charge stabilization by nitrogen is poly-N-methylpyrrole (PMP...This material is electronically conductive and might store one charge per nitrogen atom. ox. PMP;4 N3 red. I N + N+ An additional, seductive attraction

  1. Liquid Nitrogen as Fast High Voltage Switching Medium

    NASA Astrophysics Data System (ADS)

    Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.

    2002-12-01

    Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).

  2. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  3. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  4. Modifying Current Collectors to Produce High Volumetric Energy Density and Power Density Storage Devices.

    PubMed

    Khani, Hadi; Dowell, Timothy J; Wipf, David O

    2018-06-27

    We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm -3 with corresponding power densities in the range of 9.17-425.58 mW cm -3 . This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm -3 ) and better than some commercial supercapacitors (<1 mWh cm -3 ). 1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.

  5. What happens in Josephson junctions at high critical current densities

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  6. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens.

    PubMed

    Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel

    2017-02-08

    The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13 C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect - mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L -1 ) and volumetric ectoine yields (up to 4.21 g L -1 ) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic

  7. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  8. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon-Golcher, Edwin

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum valuesmore » for a K + beam of ~90 mA/cm 2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm +) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (ε n ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.« less

  9. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  10. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors.

    PubMed

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-16

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m(2) g(-1) present high specific capacities of the 308 and 200 F g(-1) in KOH electrolyte at current densities of 0.1 and 10 A g(-1), respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g(-1) at 0.1 A g(-1) and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  11. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    PubMed Central

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  12. Incorporation of Ca and P on anodized titanium surface: Effect of high current density.

    PubMed

    Laurindo, Carlos A H; Torres, Ricardo D; Mali, Sachin A; Gilbert, Jeremy L; Soares, Paulo

    2014-04-01

    This study systematically evaluated the surface and corrosion characteristics of commercially pure titanium (grade 2) modified by plasma electrolytic oxidation (PEO) with high current density. The anodization process was carried out galvanostatically (constant current density) using a solution containing calcium glycerophosphate (0.02mol/L) and calcium acetate (0.15mol/L). The current densities applied were 400, 700, 1000 and 1200mA/cm(2) for a period of 15s. Composition, crystalline structure, morphology, roughness, wettability and "in-vitro" bioactivity test in SBF of the anodized layer were evaluated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, profilometry and contact angle measurements. Corrosion properties were evaluated by open circuit potential, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results show that the TiO2 oxide layers present an increase of thickness, porosity, roughness, wettability, Ca/P ratio, and bioactivity, with the applied current density up to 1000mA/cm(2). Corrosion resistance also increases with applied current density. It is observed that for 1200mA/cm(2), there is a degradation of the oxide layer. In general, the results suggest that the anodized TiO2 layer with better properties is formed with an applied current of 1000mA/cm(2). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  14. Current Status of the Nitrogen Oxygen Recharge System

    NASA Technical Reports Server (NTRS)

    Dick, Brandon

    2011-01-01

    This paper presents an overview of the Nitrogen Oxygen Recharge System (NORS) to date and the current development status of the system. NORS is an element of the International Space Station (ISS) Environmental Control and Life Support Systems (ECLSS) used to resupply the ISS with Nitrogen and Oxygen following the impending retirement of the Space Shuttle. The paper will discuss why NASA is developing NORS, including a summary of other concepts considered, and other related concepts currently being developed by NASA. The current system architecture will be described, along with a summary of the current design of the NORS. The overall programmatic schedule of the NORS in the context of the upcoming shuttle retirement and future launch vehicle development will also be presented. Finally, the paper will examine the significant technical challenges encountered during the requirements and preliminary design phase of NORS development. A key challenge to the development of NORS is the international shipment - and associated regulations - of pressurized Oxygen, which is necessary due to the use of launch vehicles based in Japan and French Guiana to send NORS gasses to the ISS. The storage and use of relatively large quantities of high pressure (41,000 kPa) Oxygen and Nitrogen within the ISS, which is unprecedented both on the ISS and other space vehicles, has had a significant impact on the design and architecture of the system. The high pressure of the system also poses unique thermal considerations, which has led to the development of a heater system for thermal conditioning of high pressure gas to avoid thermal impacts on downstream hardware. The on-orbit envelope allocated to the NORS has changed (gotten smaller) and has impacted both the design and architecture of the system. Finally, the balance of safety considerations associated with these high pressure gasses, particularly high pressure Oxygen, with the functionality of the system has profoundly impacted the form

  15. Optimal geometry toward uniform current density electrodes

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Lee, Eunjung; Woo, Eung Je; Seo, Jin Keun

    2011-07-01

    Electrodes are commonly used to inject current into the human body in various biomedical applications such as functional electrical stimulation, defibrillation, electrosurgery, RF ablation, impedance imaging, and so on. When a highly conducting electrode makes direct contact with biological tissues, the induced current density has strong singularity along the periphery of the electrode, which may cause painful sensation or burn. Especially in impedance imaging methods such as the magnetic resonance electrical impedance tomography, we should avoid such singularity since more uniform current density underneath a current-injection electrode is desirable. In this paper, we study an optimal geometry of a recessed electrode to produce a well-distributed current density on the contact area under the electrode. We investigate the geometry of the electrode surface to minimize the edge singularity and produce nearly uniform current density on the contact area. We propose a mathematical framework for the uniform current density electrode and its optimal geometry. The theoretical results are supported by numerical simulations.

  16. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  17. Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Wenjuan; Hao, Qingli; Lei, Wu; Xia, Xifeng; Wang, Xin

    2014-12-01

    The electrochemical property of graphene can be significantly enhanced due to the incorporating of heteroatoms into graphene. In this article, the ternary nitrogen-doped graphene/nickel ferrite/polyaniline (NGNP) nanocomposite is synthesized by a facile two-step approach and its electrochemical properties as electrodes for supercapacitors are studied by various electrochemical measurements. The specific capacitance of NGNP is 645.0 F g-1 at 1 mV s-1 and 667.0 F g-1 at 0.1 A g-1 in a three- and two-electrode system, respectively, much higher than other binary electrodes. In a two-electrode symmetric system, the energy density of the NGNP electrode is 92.7 W h kg-1 at a power density of 110.8 W kg-1, moreover, that of the supercapacitor based on NGNP can also reach 23.2 W h kg-1 at a power density of 27.7 W kg-1. In addition, the capacitance loses only 5% after repeating test for 5000 cycles, and about 10% after 10,000 cycles at a high current density 5 A g-1. The results demonstrate the novel ternary NGNP electrode produced by the current economical method will gain promising applications in supercapacitors and other devices by virtue of its outstanding characteristics (high specific capacitance, high power and energy density, excellent cycle life).

  18. Nitrogen doped activated carbon from pea skin for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.

    2018-04-01

    In this work, nitrogen doped porous carbon (NDC) has been synthesized employing a facile two-step process. Firstly, carbon precursor (pea skin) was heated with melamine (acting as nitrogen source) followed by activation with KOH in different ratios. The dependence of porosity and nitrogen content on impregnation ratio was extensively studied. Other textural properties of prepared NDC sample were studied using standard techniques of material characterization. The electrochemical performance of NDC sample as an electrode was studied in two-electrode symmetric supercapacitor system. 1 M LiTFSI (lithium bis-trifluoromethanesulfonimide) solution in IL EMITFSI (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), was used as electrolyte. It was found that the fabricated supercapacitor cell offers high values of specific capacitance (141.1 F g‑1), specific energy (19.6 Wh kg‑1) and specific power (25.4 kW kg‑1) at current density of 1.3 A g‑1. More importantly, the fabricated supercapacitor cell shows capacitance retention of ∼75%, for more than 5000 cycles. The enhanced performance of NDC sample is primarily due to large surface area with favorable surface structure (contributing to double layer capacitance) and presence of nitrogen functionalities (contributing to pseudo-capacitance). Such important features make the synthesized NDC sample, an attractive choice for electrode material in high performance supercapacitor.

  19. Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang

    2017-03-29

    Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.

  20. Preparation of high nitrogen compound and materials therefrom

    DOEpatents

    Huynh, My Hang V [Los Alamos, NM; Hiskey, Michael A [Los Alamos, NM

    2006-10-10

    The high-nitrogen compound of the formula ##STR00001## was prepared. Pyrolysis of the compound yields carbon nitrides C.sub.2N.sub.3 and C.sub.3N.sub.5. The carbon nitrides vary in their density, texture, and morphology.

  1. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  2. Characteristic parameters of superconductor-coolant interaction including high Tc current density limits

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.

    1989-01-01

    In the area of basic mechanisms of helium heat transfer and related influence on super-conducting magnet stability, thermal boundary conditions are important constraints. Characteristic lengths are considered along with other parameters of the superconducting composite-coolant system. Based on helium temperature range developments, limiting critical current densities are assessed at low fields for high transition temperature superconductors.

  3. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    PubMed

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  4. Using a Mach-Zehnder interferometer to deduce nitrogen density mapping

    NASA Astrophysics Data System (ADS)

    Boudaoud, F.; Lemerini, M.

    2015-07-01

    This work presents an optical method using the Mach-Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals 6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr. The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone-Dale relation. The obtained results are in close agreement with values available in the literature.

  5. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  6. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate.

    PubMed

    Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E

    2014-11-01

    In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14 ± 0.01 h(-1) ). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33 ± 0.02 h(-1) ) obtained at the lowest external resistance (100 Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic efficiencies rapidly increased due to decreased, and not constant, removal rates of substrate by non-exoelectrogens. These results show that higher current densities (lower resistances) redirect a greater percentage of substrate into current generation, enabling large increase in CEs with increased current densities. Biotechnol. Bioeng. 2014;111: 2163-2169. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  7. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pervikov, A. V.

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtainedmore » allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.« less

  8. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    NASA Technical Reports Server (NTRS)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  9. Progress on a high current density low cost Niobium3Tin conductor scaleable to modern niobium titanium production

    NASA Astrophysics Data System (ADS)

    Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.

    2002-05-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.

  10. Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity.

    PubMed

    Lei, Wen; Xiao, Weiping; Li, Jingde; Li, Gaoran; Wu, Zexing; Xuan, Cuijuan; Luo, Dan; Deng, Ya-Ping; Wang, Deli; Chen, Zhongwei

    2017-08-30

    Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption-swelling strategy using BC as the carbonaceous material. When used as anode materials for sodium-ion batteries, the NDCFs deliver a high reversible capacity of 86.2 mAh g -1 even after 2000 cycles at a high current density of 10.0 A g -1 . It is proposed that the excellent Na + storage performance is mainly due to the defective surface of the NDCFs created by the high content of N dopant. Density functional theory (DFT) calculations show that the defect sites created by N doping can strongly "host" Na + and therefore contribute to the enhanced storage capacity.

  11. Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.

    1989-05-01

    Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1

  12. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    PubMed

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  14. Hexacoordinated nitrogen(V) stabilized by high pressure

    PubMed Central

    Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk

    2016-01-01

    In all of its known connections nitrogen retains a valence shell electron count of eight therefore satisfying the golden rule of chemistry - the octet rule. Despite the diversity of nitrogen chemistry (with oxidation states ranging from + 5 to −3), and despite numerous efforts, compounds containing nitrogen with a higher electron count (hypervalent nitrogen) remain elusive and are yet to be synthesized. One possible route leading to nitrogen’s hypervalency is the formation of a chemical moiety containing pentavalent nitrogen atoms coordinated by more than four substituents. Here, we present theoretical evidence that a salt containing hexacoordinated nitrogen(V), in the form of an NF6− anion, could be synthesized at a modest pressure of 40 GPa (=400 kbar) via spontaneous oxidation of NF3 by F2. Our results indicate that the synthesis of a new class of compounds containing hypervalent nitrogen is within reach of current high-pressure experimental techniques. PMID:27808104

  15. High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, J. S.

    2014-04-28

    We report the high power operation of nitrogen doped, vanadium compensated, 6H-SiC, extrinsic photoconductive switches with improved vanadium and nitrogen dopant density. Photoconductive switching tests are performed on 1 mm thick, m-plane, switch substrates at switch voltage and currents up to 17 kV and 1.5 kA, respectively. Sub-ohm minimum switch on resistance is achieved for peak optical intensities ≥35 MW/cm{sup 2} at 532 nm applied to the switch facet. A reduction of greater than nine orders of magnitude is observed in switch material resistivity between dark and illuminated states.

  16. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou

    2018-04-01

    Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.

  17. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    NASA Astrophysics Data System (ADS)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2017-01-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  18. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  19. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  20. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  1. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  2. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE PAGES

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; ...

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  3. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  4. On the Maximum and Characteristic Curvature of Current Density of High tc Superconductor Ybco in Flux Relaxation

    NASA Astrophysics Data System (ADS)

    Ye, Jiping; Sun, Lei; Dai, Xianxi; Dai, Jixin

    The flux relaxation is one of important topics in the studies of high Tc superconductivity, because it is related to the energy loss in practical applications. There are many mechanisms, theories and relaxation laws suggested in the literatures. It is very interesting to test them according to the characters and compare them with the experiments. Some people think that the characters of the famous theories are their negative curvature. According our inversion solution, the relaxation ArcG law and experimental data analysis, the relaxation law has both positive and negative signs. This prediction is hopeful to be checked by experiments in future. The current densities of many high Tc superconductors decrease very rapidly in the early time in the relaxation. People do not know what their maximums are. In this work, a theory to determine these maximums of the current densities is presented. The theory is concretely realized by inversion for some real data of the YBCO and their maximum current densities are obtained.

  5. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Pan, Fuping; Cao, Zhongyue; Zhao, Qiuping; Liang, Hongyu; Zhang, Junyan

    2014-12-01

    The successful commercialization of fuel cells requires the efficient electrocatalyst to make the oxygen reduction reaction (ORR) fast because of the sluggish nature of ORR and the high cost of the platinum catalysts. In this work, we report the excellent performance of metal-free nitrogen-doped porous carbon nanosheets (NPCN) with hierarchical porous structure and a high surface area of 1436.02 m2 g-1 for catalyzing ORR. The active NPCN is synthesized via facile high-temperature carbonization of natural ginkgo leaves followed by purification and ammonia post-treatment without using additional supporting templates and activation processes. In O2-saturated 0.1 M KOH solution, the resultant NPCN exhibits a high kinetic-limiting current density of 13.57 mA cm-2 at -0.25 V (vs. Ag/AgCl) approaching that of the commercial Pt/C catalyst (14 mA cm-2) and long-term electrochemical stability. Notably, the NPCN shows a slightly negative ORR half-wave potential in comparison with Pt/C (ΔE1/2 = 19 mV). The excellent electrocatalytic properties of NPCN originate from the combined effect of optimal nitrogen doping, high surface area, and porous architecture, which induce the high-density distribution of highly active and stable catalytic sites.

  6. High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors

    DOEpatents

    Kreiskott, Sascha [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Arendt, Paul N [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM; Bronisz, Lawrence E [Los Alamos, NM

    2009-03-31

    A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.

  7. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  8. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Garzon, Fernando H.

    We report in this paper a density functional theory study of the nitrogen electroreduction and hydrogen evolution reactions on cubic molybdenum carbide (MoC) in order to investigate the viability of using this material as an electro-catalyst for ammonia synthesis. Free energy diagrams for associative and dissociative Heyrovsky mechanisms showed that nitrogen reduction on cubic MoC(111) can proceed via an associative mechanism and that small negative potentials of -0.3 V vs. standard hydrogen electrode can onset the reduction of nitrogen to ammonia. Kinetic volcano plots for hydrogen evolution showed that the MoC[110] surface is expected to have a high rate formore » the hydrogen evolution reaction, which could compete with the reduction of nitrogen on cubic MoC. The comparison between the adsorption energies of H-adatoms and N-adatoms also shows that at low potentials adsorption of hydrogen atoms competes with nitrogen adsorption on all the MoC surfaces except the MoC(111) surface. Finally, the hydrogen evolution and accumulation of H-adatoms can be mitigated by introducing carbon vacancies i.e. increasing the ratio of metal to carbon atoms, which will significantly increase the affinity of the catalytic surface for both nitrogen molecules and N-adatoms.« less

  9. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study

    DOE PAGES

    Matanovic, Ivana; Garzon, Fernando H.

    2018-04-26

    We report in this paper a density functional theory study of the nitrogen electroreduction and hydrogen evolution reactions on cubic molybdenum carbide (MoC) in order to investigate the viability of using this material as an electro-catalyst for ammonia synthesis. Free energy diagrams for associative and dissociative Heyrovsky mechanisms showed that nitrogen reduction on cubic MoC(111) can proceed via an associative mechanism and that small negative potentials of -0.3 V vs. standard hydrogen electrode can onset the reduction of nitrogen to ammonia. Kinetic volcano plots for hydrogen evolution showed that the MoC[110] surface is expected to have a high rate formore » the hydrogen evolution reaction, which could compete with the reduction of nitrogen on cubic MoC. The comparison between the adsorption energies of H-adatoms and N-adatoms also shows that at low potentials adsorption of hydrogen atoms competes with nitrogen adsorption on all the MoC surfaces except the MoC(111) surface. Finally, the hydrogen evolution and accumulation of H-adatoms can be mitigated by introducing carbon vacancies i.e. increasing the ratio of metal to carbon atoms, which will significantly increase the affinity of the catalytic surface for both nitrogen molecules and N-adatoms.« less

  10. Optimizing nitrogen application rate and plant density for improving cotton yield and nitrogen use efficiency in the North China Plain

    PubMed Central

    Dong, Helin; Zheng, Cangsong; Sun, Miao; Liu, Aizhong; Wang, Guoping; Liu, Shaodong; Zhang, Siping; Chen, Jing; Li, Yabing; Pang, Chaoyou; Zhao, Xinhua

    2017-01-01

    Plant population density (PPD) and nitrogen (N) application rate (NAR) are two controllable factors in cotton production. We conducted field experiments to investigate the effects of PPD, NAR and their interaction (PPD × NAR) on yield, N uptake and N use efficiency (NUE) of cotton using a split-plot design in the North China Plain during 2013 and 2014. The main plots were PPDs (plants m−2) of 3.00 (low), 5.25 (medium) and 7.50 (high) and the subplots were NARs of 0 (N-free), 112.5 (low), 225.0 (moderate) and 337.5 (high). During both 2013 and 2014, biological yield and N uptake of cotton increased significantly, but harvesting index decreased significantly with NAR and PPD increasing. With NAR increasing, internal nitrogen use efficiency(NUE) decreased significantly under three PPDs and agronomical NUE, physiologilal NUE, nitrogen recovery efficiency(NRE) and partial factor productivity from applied nitrogen (PFPN) also decreased significantly under high PPD between two years. Lint yield increment varied during different PPDs and years, but NAR enhancement showed less function under higher PPD than lower PPD in general. Taken together, moderate NAR under medium PPD combined higher lint yield with higher agronomic NUE, physiological NUE, and NRE, while low NAR with high PPD would achieve a comparable yield with superior NRE and PFPN and high NAR under high PPD and medium PPD produced higher biological yield but lower harvest index, lint yield and NUE compared to moderate NAR with medium PPD. Our overall results indicated that, in this region, increasing PPD and decreasing NAR properly would enhance both lint yield and NUE of cotton. PMID:28981538

  11. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.

    PubMed

    Wan, Liu; Wang, Jianlong; Xie, Lijing; Sun, Yahui; Li, Kaixi

    2014-09-10

    Nitrogen-enriched hierarchically porous carbons (HPCs) were synthesized from a novel nitrile-functionalized benzoxazine based on benzoxazine chemistry using a soft-templating method and a potassium hydroxide (KOH) chemical activation method and used as electrode materials for supercapacitors. The textural and chemical properties could be easily tuned by adding a soft template and changing the activation temperature. The introduction of the soft-templating agent (surfactant F127) resulted in the formation of mesopores, which facilitated fast ionic diffusion and reduced the internal resistance. The micropores of HPCs were extensively developed by KOH activation to provide large electrochemical double-layer capacitance. As the activation temperature increased from 600 to 800 °C, the specific surface area of nitrogen-enriched carbons increased dramatically, micropores were enlarged, and more meso/macropores were developed, but the nitrogen and oxygen content decreased, which affected the electrochemical performance. The sample HPC-800 activated at 800 °C possesses a high specific surface area (1555.4 m(2) g(-1)), high oxygen (10.61 wt %) and nitrogen (3.64 wt %) contents, a hierarchical pore structure, a high graphitization degree, and good electrical conductivity. It shows great pseudocapacitance and the largest specific capacitance of 641.6 F g(-1) at a current density of 1 A g(-1) in a 6 mol L(-1) KOH aqueous electrolyte when measured in a three-electrode system. Furthermore, the HPC-800 electrode exhibits excellent rate capability (443.0 F g(-1) remained at 40 A g(-1)) and good cycling stability (94.3% capacitance retention over 5000 cycles).

  12. High Current Density, Long Life Cathodes for High Power RF Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Collins, George; Falce, Lou

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less

  13. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong

    2018-03-01

    Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1073 Wh kg-1 and an excellent power density of 21460 W kg-1 at a high current density of 10 A g-1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  14. A high plant density reduces the ability of maize to use soil nitrogen

    PubMed Central

    Yan, Peng; Pan, Junxiao; Zhang, Wenjie; Shi, Junfang; Chen, Xinping; Cui, Zhenling

    2017-01-01

    Understanding the physiological changes associated with high grain yield and high N use efficiency (NUE) is important when increasing the plant density and N rate to develop optimal agronomic management. We tested the hypothesis that high plant densities resulting in crowding stress reduce the ability of plants to use the N supply post-silking, thus decreasing the grain yield and NUE. In 2013 and 2014, a field experiment, with five N-application rates and three plant densities (6.0, 7.5, and 9.0 plants m–2), was conducted in the North China Plain (NCP). The calculated maximum grain yield and agronomic use efficiency (AEN) at a density of 7.5 plants m–2 were 12.4 Mg ha–1 and 39.3 kg kg–1, respectively, which were significantly higher than the values obtained at densities of 6.0 (11.3 Mg ha–1 and 30.2 kg kg–1) and 9.0 plant m–2 (11.7 Mg ha–1 and 27.8 kg kg–1). A high plant density of 9.0 plants m–2 decreased the post-silking N accumulation, leaf N concentration and net photosynthesis, which reduced the post-silking dry matter production, resulting in a low yield and NUE. Although a relatively low grain yield was observed at a density of 9.0 plants m–2, the optimal N rate increased from 150 to 186 kg N ha-1 at a density of 7.5 plants m–2. These results indicate that high plant densities with crowding stress reduce the ability of plants to use soil N during the post-silking period, and high rate of N fertilizer was needed to increase grain yield. We conclude that selecting the appropriate plant density combined with optimal N management could increase grain yields and the NUE in the NCP. PMID:28234970

  15. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  16. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  17. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis.

    PubMed

    Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song

    2016-01-01

    Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ

    NASA Astrophysics Data System (ADS)

    Krusin-Elbaum, L.; Tsuei, C. C.; Gupta, A.

    1995-02-01

    THE recent discovery1,2 of a family of mercury-based copper oxide superconductors having transition temperatures1-3 above 130 K is of considerable technological interest. But the viability of high-temperature superconductors for many applications will ultimately depend on the size of the current density, Jc, that they are able to support, not only at high temperatures, but also in high magnetic fields. For the cuprate superconductors, and in particular for Hg-based materials, the combination of high transition temperature1-3 and large mass anisotropy implies that the transport properties will be intrinsically limited by large thermal fluctuations and short superconducting coherence lengths4. Here we report that high-quality c-axis-oriented epitaxial films of the compound HgBa2CaCu6O6+δ (Hg-1212; ref. 5) can support large in-plane current densities at temperatures higher than has been achieved for other superconductors. In low magnetic fields oriented normal to the film surface, we find Jc>~107 A cm-2 at 5 K and Jc~ 105 A cm-2 at 110 K, at least an order of magnitude larger than for Bi- or Tl-based films6-11. For in-plane magnetic fields, the critical current (~108 A cm-2) is close to the theoretical limit even at high fields, indicative of strong intrinsic pinning in this compound.

  19. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    PubMed Central

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy. PMID:28536581

  20. THEMIS two‐point measurements of the cross‐tail current density: A thick bifurcated current sheet in the near‐Earth plasma sheet

    PubMed Central

    2015-01-01

    Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039

  1. Rhizobacterial population density and nitrogen fixation in seagrass community of Gulf of Mannar, India.

    PubMed

    Raja, S; Thangaradjou, T; Sivakumar, K; Kannan, L

    2012-11-01

    Seagrass rhizosphere generally supports high bacterial population density which plays a major role in determining the nutrient cycles of the sea. Higher densities of total heterotrphic bacteria (26.3 x 10(6) CFU g(-1)), nitrogen fixing (27.3 x 10(3) CFUg(-1), ammonifying (44.66 x 10(6) MPN g(-1)) and nitrifying bacteria (42.33 X 10(6) MPN g(-1)) have been registered in the seagrass areas than the non seagrass area. In particular, all these rhizosphere microbial population was higher in Thalassia hemprichii. The rates of nitrogen fixation was recorded in the different species of seagrasses such as Enhalus acoroides (1.166 n mol g(-1) d(-1)), Halophila ovalis (0.166 n mol g(-1) d(-1)), Thalassia hemprichii(18.5 n mol g(-1) d(-1)), Cymodocea serrulata (10.5 n mol g(-1) d(-1)), Halodule uninervis (5.375 n mol g(-1) d(-1)) and Syringodium isoetifolium (0.666 n mol g(-1) d(-1)) using gas chromatography. The average nitrogen fixation by the seagrasses of Gulf of Mannar alone was estimated to be 7640.58 n mol m(-2) d(-1) and the contributions from the rhizosphere microbes will increase the quantity to many fold.

  2. Densities and temperatures in the polar thermosphere

    NASA Technical Reports Server (NTRS)

    Gardner, L. J.

    1977-01-01

    The atomic oxygen density at 120 km, the 630 nm airglow temperature, the helium density at 300 km and the molecular nitrogen density near 400 km were examined as functions of geomagnetic latitude, geomagnetic time, season and magnetic activity level. The long-term averages of these quantities were examined so as to provide a baseline of these thermospheric parameters from which future studies may be made for comparison. The hours around magnetic noon are characterized by low temperatures, high 0 and He densities, and median nitrogen densities. The pre-midnight hours exhibit high temperatures, high He density, low nitrogen density and median 0 densities. The post-midnight sector shows low 0 and He densities, median temperatures and high nitrogen densities. These results are compared to recent models and observations and are discussed with respect to their causes due to divergence of the wind field and energy deposition in the thermosphere.

  3. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.

    PubMed

    Mondal, Anjon Kumar; Kretschmer, Katja; Zhao, Yufei; Liu, Hao; Wang, Chengyin; Sun, Bing; Wang, Guoxiu

    2017-03-13

    Nitrogen-doped porous carbon nanosheets were prepared from eucalyptus tree leaves by simply mixing the leaf powders with KHCO 3 and subsequent carbonisation. Porous carbon nanosheets with a high specific surface area of 2133 m 2  g -1 were obtained and applied as electrode materials for supercapacitors and lithium ion batteries. For supercapacitor applications, the porous carbon nanosheet electrode exhibited a supercapacitance of 372 F g -1 at a current density of 500 mA g -1 in 1 m H 2 SO 4 aqueous electrolyte and excellent cycling stability over 15 000 cycles. In organic electrolyte, the nanosheet electrode showed a specific capacitance of 71 F g -1 at a current density of 2 Ag -1 and stable cycling performance. When applied as the anode material for lithium ion batteries, the as-prepared porous carbon nanosheets also demonstrated a high specific capacity of 819 mA h g -1 at a current density of 100 mA g -1 , good rate capability, and stable cycling performance. The outstanding electrochemical performances for both supercapacitors and lithium ion batteries are derived from the large specific surface area, porous nanosheet structure and nitrogen doping effects. The strategy developed in this paper provides a novel route to utilise biomass-derived materials for low-cost energy storage systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  5. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  6. Gamma-resonance Contraband Detection using a high current tandem accelerator

    NASA Astrophysics Data System (ADS)

    Milton, B. F.; Beis, J.; Dale, D.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Rogers, J.; Ruegg, R.; Sredniawski, J.

    1999-04-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by 14N of gammas produced using 13C(p,γ)14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  7. Formation of Ion Beam from High Density Plasma of ECR Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izotov, I.; Razin, S.; Sidorov, A.

    2005-03-15

    One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less

  8. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  9. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  10. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  11. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  12. High current density sheet-like electron beam generator

    NASA Astrophysics Data System (ADS)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  13. High Nitrogen Stainless Steel

    DTIC Science & Technology

    2011-07-19

    STAINLESS STEEL by E. U. Lee R. Taylor 19 July 2011 Approved for...NAWCADPAX/TR-2011/162 19 July 2011 HIGH NITROGEN STAINLESS STEEL by E. U. Lee R. Taylor RELEASED BY...REPORT TYPE Technical Report 3. DATES COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High Nitrogen Stainless Steel 5b. GRANT

  14. Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes

    NASA Astrophysics Data System (ADS)

    Huo, Jinghao; Zheng, Peng; Wang, Xiaofei; Guo, Shouwu

    2018-06-01

    Sulphur/nitrogen co-doped reduced graphene oxide (SNG) aerogels were prepared by a simple solvothermal method with l-cysteine-assisted in ethylene glycol. The morphology and composition tests showed that the S/N heteroatoms were evenly distributed on SNG microsheets, and these microsheets were further composed of SNG aerogels with three-dimensional (3D) porous structure. The cyclic voltammetry and galvanostatic charge/discharge tests illustrated the SNG bind-free electrode possessed electric double-layer capacitance and pseudocapacitance, and had a capacitance of 254 F g-1 at a current density of 1 A g-1. After the 5000 cycles tests, the capacitance retained 83.54% at a current density of 2 A g-1. Meanwhile, the electrochemical impedance spectroscopy data shown the electrode materials had excellent capacity and good conductivity. Hence, the SNG aerogel prepared by l-cysteine-assisted solvothermal method is a great material for high-performance supercapacitors.

  15. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.

    2016-04-13

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair ofmore » interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.« less

  16. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  17. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    PubMed

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intelligence and EEG current density using low-resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2007-02-01

    The purpose of this study was to compare EEG current source densities in high IQ subjects vs. low IQ subjects. Resting eyes closed EEG was recorded from 19 scalp locations with a linked ears reference from 442 subjects ages 5 to 52 years. The Wechsler Intelligence Test was administered and subjects were divided into low IQ (< or =90), middle IQ (>90 to <120) and high IQ (> or =120) groups. Low-resolution electromagnetic tomographic current densities (LORETA) from 2,394 cortical gray matter voxels were computed from 1-30 Hz based on each subject's EEG. Differences in current densities using t tests, multivariate analyses of covariance, and regression analyses were used to evaluate the relationships between IQ and current density in Brodmann area groupings of cortical gray matter voxels. Frontal, temporal, parietal, and occipital regions of interest (ROIs) consistently exhibited a direct relationship between LORETA current density and IQ. Maximal t test differences were present at 4 Hz, 9 Hz, 13 Hz, 18 Hz, and 30 Hz with different anatomical regions showing different maxima. Linear regression fits from low to high IQ groups were statistically significant (P < 0.0001). Intelligence is directly related to a general level of arousal and to the synchrony of neural populations driven by thalamo-cortical resonances. A traveling frame model of sequential microstates is hypothesized to explain the results.

  19. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    PubMed

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897; Kiyama, S.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current densitymore » can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.« less

  1. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    PubMed

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  2. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  3. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors.

    PubMed

    Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua

    2013-09-24

    A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.

  4. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    PubMed

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  5. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.

    PubMed

    Lai, Feili; Miao, Yue-E; Zuo, Lizeng; Lu, Hengyi; Huang, Yunpeng; Liu, Tianxi

    2016-06-01

    The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of field dependent critical current density on flux profiles in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Takacs, S.

    1990-01-01

    The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.

  7. Density profile of nitrogen in cylindrical pores of MCM-41

    NASA Astrophysics Data System (ADS)

    Soper, Alan K.; Bowron, Daniel T.

    2017-09-01

    A straightforward approach using radiation scattering (X-ray or neutron) combined with atomistic modelling is used to accurately assess the pore dimensions in the porous silica, MCM-41. The method is used to calculate the density profile of nitrogen absorbed in this material at a variety of fractional pressures, p/p0, where p0 is the saturated vapour pressure, up to p/p0 = 0.36 at T = 87 K in the present instance. At this pressure two distinct layers of liquid nitrogen occur on the silica surface, with a relatively sharp gas-liquid interface. It is suggested surface tension effects at this interface strongly influence the growth of further layers.

  8. Highly nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 for CO2 capture.

    PubMed

    Ma, Xiancheng; Li, Liqing; Chen, Ruofei; Wang, Chunhao; Li, Haoyang; Li, Hailong

    2018-05-18

    CO2 adsorption capacity of nitrogen-doped porous carbon depends to a large nitrogen doping levels and high surface area in previous studies. However, it seems difficult to incorporate large amounts of nitrogen while maintaining a high surface area and pore structure. Here we have reported porous carbon having a nitrogen content of up to 25.52% and specific surface area of 948 m2 g-1, which is prepared by pyrolyzing the nitrogen-containing zeolite imidazole framework-8 and urea composite at 650 °C under a nitrogen atmosphere. ZNC650 exhibits a superior CO2 uptake of 3.7 mmol g-1 at 25 ℃ and 1 bar. Experimental and theoretical results indicate that the nitrogen-containing functional groups can enhance CO2 uptake electrostatic interactions, Lewis acid-base interactions and hydrogen-bonding interactions, which are elucidated by density functional theory calculations. As CO2 adsorbent materials, these carbons have excellent adsorption capacity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gamma-resonance Contraband Detection using a high current tandem accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, B. F.; Beis, J.; Dale, D.

    1999-04-26

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by {sup 14}N of gammas produced using {sup 13}C(p,{gamma}){sup 14}N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerablemore » confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H{sup -} tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.« less

  10. A High Current Tandem Accelerator for Gamma-Resonance Contraband Detection

    NASA Astrophysics Data System (ADS)

    Milton, Bruce

    1997-05-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by ^14N of gammas produced using ^13C(p,γ)^14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non -resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H^- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  11. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  12. High-Density Lipoprotein Cholesterol, Blood Urea Nitrogen, and Serum Creatinine Can Predict Severe Acute Pancreatitis.

    PubMed

    Hong, Wandong; Lin, Suhan; Zippi, Maddalena; Geng, Wujun; Stock, Simon; Zimmer, Vincent; Xu, Chunfang; Zhou, Mengtao

    2017-01-01

    Early prediction of disease severity of acute pancreatitis (AP) would be helpful for triaging patients to the appropriate level of care and intervention. The aim of the study was to develop a model able to predict Severe Acute Pancreatitis (SAP). A total of 647 patients with AP were enrolled. The demographic data, hematocrit, High-Density Lipoprotein Cholesterol (HDL-C) determinant at time of admission, Blood Urea Nitrogen (BUN), and serum creatinine (Scr) determinant at time of admission and 24 hrs after hospitalization were collected and analyzed statistically. Multivariate logistic regression indicated that HDL-C at admission and BUN and Scr at 24 hours (hrs) were independently associated with SAP. A logistic regression function (LR model) was developed to predict SAP as follows: -2.25-0.06 HDL-C (mg/dl) at admission + 0.06 BUN (mg/dl) at 24 hours + 0.66 Scr (mg/dl) at 24 hours. The optimism-corrected c-index for LR model was 0.832 after bootstrap validation. The area under the receiver operating characteristic curve for LR model for the prediction of SAP was 0.84. The LR model consists of HDL-C at admission and BUN and Scr at 24 hours, representing an additional tool to stratify patients at risk of SAP.

  13. Filler metal selection for welding a high nitrogen stainless steel

    NASA Astrophysics Data System (ADS)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  14. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  15. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  16. Anode current density distribution in a cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  17. Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin

    2017-12-01

    In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.

  18. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  19. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, Henry G.; Judas, A. J.

    1992-01-01

    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.

  20. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  1. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; ...

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  2. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  3. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.

    PubMed

    Chen, Taiqiang; Pan, Likun; Loh, T A J; Chua, D H C; Yao, Yefeng; Chen, Qun; Li, Dongsheng; Qin, Wei; Sun, Zhuo

    2014-10-28

    Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g(-1) at a current density of 50 mA g(-1) and preserve a capacity of 660 mA h g(-1) after 50 cycles, and even at a high current density of 1000 mA g(-1), a capacity of 255 mA h g(-1) is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.

  4. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires.

    PubMed

    Ganjipour, Bahram; Dey, Anil W; Borg, B Mattias; Ek, Martin; Pistol, Mats-Erik; Dick, Kimberly A; Wernersson, Lars-Erik; Thelander, Claes

    2011-10-12

    We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm(2) at 0.50 V, maximum peak current of 67 kA/cm(2) at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties.

  5. AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Quintero, J. H.; Gonzalez-Hernandez, R.; Ospina, R.; Mariño, A.

    2017-06-01

    Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites.

  6. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge

    NASA Astrophysics Data System (ADS)

    Hou, Guangmei; Ren, Xiaohua; Ma, Xiaoxin; Zhang, Le; Zhai, Wei; Ai, Qing; Xu, Xiaoyan; Zhang, Lin; Si, Pengchao; Feng, Jinkui; Ding, Fei; Ci, Lijie

    2018-05-01

    Lithium metal is considered as the ultimate anode material for high-energy Li battery systems. However, the commercial application of lithium anode is impeded by issues with safety and low coulombic efficiency induced by Li dendrite growth. Herein, a free-standing three-dimensional nitrogen-enriched graphitic carbon sponge with a high nitrogen content is proposed as a multifunctional current collect for Lithium accommodation. The abundant lithiophilic N-containing functional groups are served as preferred nucleation sites to guide a uniform Li deposition. In addition, the nitrogen-enriched graphitic carbon sponge with a high specific surface area can effectively reduce the local current density. As a result of the synergistic effect, the nitrogen-enriched graphitic carbon sponge electrode realizes a long-term stable cycling without dendrites formation. Notably, the as-obtained composite electrode can deliver an ultra-high specific capacity of ∼3175 mA h g-1. The nitrogen-enriched graphitic carbon sponge might provide innovative insights to design a superior matrix for dendrite-free Li anode.

  7. Increasing the Extracted Beam Current Density in Ion Thrusters

    NASA Astrophysics Data System (ADS)

    Arthur, Neil Anderson

    Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam

  8. Individual differences in transcranial electrical stimulation current density

    PubMed Central

    Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F

    2013-01-01

    Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948

  9. Particle Image Velocimetry Study of Density Current Fronts

    ERIC Educational Resources Information Center

    Martin, Juan Ezequiel

    2009-01-01

    Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…

  10. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities

    PubMed Central

    Lu, Xunyu; Zhao, Chuan

    2015-01-01

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm−2) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel–iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm−2 at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis. PMID:25776015

  11. High Current, High Density Arc Plasma as a New Source for WiPAL

    NASA Astrophysics Data System (ADS)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  12. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Xuzhen; Wan, Wubo; Li, Lingli; Dong, Yanfeng; Zhao, Zongbin; Qiu, Jieshan

    2016-01-01

    Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resulting from functionalization and the rich edge structures of GNRs. The three dimensional (3D) N-GNRAs feature a hierarchical porous structure. The quasi-one dimensional (1D) GNRs act as the building blocks for the construction of fishnet-like GNR sheets, which further create 3D frameworks with micrometer-scale pores. The edge effect of GNRs combined with nitrogen doping and porosity give rise to good electrical conductivity, superhydrophilic, highly compressible and low density GNRAs. As a result, a high capacity of 910 mA h g-1 is achieved at a current density of 0.5 A g-1 when they are tested as anode materials for lithium ion batteries. Further cell culture experiments with the GNRAs as human medulloblastoma DAOY cell scaffolds demonstrate their good biocompatibility, inferring potential applications in the biomedical field.Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resulting from functionalization and the rich edge structures of GNRs. The three dimensional (3D) N-GNRAs feature a hierarchical porous structure. The quasi-one dimensional (1D) GNRs act as the building blocks for the construction of fishnet-like GNR sheets, which further create 3D frameworks with micrometer-scale pores. The edge effect of GNRs combined with nitrogen

  13. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  14. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    PubMed

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  15. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air

    NASA Astrophysics Data System (ADS)

    Jain, Vishal; Visani, Anand; Srinivasan, R.; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (˜0.28 W/cm2) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (˜50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  16. Power-Efficient, High-Current-Density, Long-Life Thermionic Cathode Developed for Microwave Amplifier Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2002-01-01

    A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.

  17. Burnout current density of bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  18. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  19. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    PubMed

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N 4 B 2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N 4 B 2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N 4 B 2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N 4 B 2 releases more heat than the corresponding isomer of N 4 C 2 does under well-oxygenated conditions. Our study suggests that the three most stable N 4 B 2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N 4 B 2 isomers were investigated by means of density functional theory.

  20. Pressure-induced stable BeN4 as a high-energy density material

    NASA Astrophysics Data System (ADS)

    Zhang, Shoutao; Zhao, Ziyuan; Liu, Lulu; Yang, Guochun

    2017-10-01

    Polynitrogens are the ideal rocket fuels or propellants. Due to strong triple N≡N bond in N2, the direct polymerization of nitrogen is rather difficult (i.e. extreme high temperature and high pressure). However, the use of nitrides as precursors or the reaction of N2 with other elements has been proved to be an effective way to obtain polynitrogens. Here, with assistance of the advanced first-principles swarm-intelligence structure searches, we found that P 1 bar -BeN4, containing infinite zigzag-like polymeric nitrogen chains, can be synthesized by compressing the mixture of Be3N2 and N2 at 25.4 GPa, which is greatly lower than 110 GPa for synthesizing cubic gauche nitrogen and other polynitrogen compounds (e.g. bulk CNO at 52 GPa and SN4 at 49 GPa). Its structural stability can be attributed to the coexistence of ionic Be-N and covalent N-N bonds. Intriguingly, this phase has high kinetic stability and remains metastable at ambient pressure. The exceptional properties, including high energy density (3.60 kJ g-1), high nitrogen content (86.1%), high dynamical stability, and low polymerization pressure, make P 1 bar -structured BeN4 a promising high energy material. Infinite nitrogen chains in P 1 bar -BeN4 transform to N10 rings network in P21/c phase at 115.1 GPa. P 1 bar -BeN4 is metallic, while P21/c-BeN4 is an insulator.

  1. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  2. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    PubMed

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  4. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge

    PubMed Central

    Zhou, Guangmin; Paek, Eunsu; Hwang, Gyeong S.; Manthiram, Arumugam

    2015-01-01

    Lithium–sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energy density and long-cyclic life using three-dimensional nitrogen/sulphur codoped graphene sponge electrodes. The nitrogen/sulphur codoped graphene sponge electrode provides enough space for a high sulphur loading, facilitates fast charge transfer and better immobilization of polysulphide ions. The hetero-doped nitrogen/sulphur sites are demonstrated to show strong binding energy and be capable of anchoring polysulphides based on first-principles calculations. As a result, a high specific capacity of 1,200 mAh g−1 at 0.2C rate, a high-rate capacity of 430 mAh g−1 at 2C rate and excellent cycling stability for 500 cycles with ∼0.078% capacity decay per cycle are achieved. PMID:26182892

  5. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors.

    PubMed

    Wang, Dewei; Min, Yonggang; Yu, Youhai; Peng, Bo

    2014-03-01

    In this paper, a general and efficient strategy has been developed to produce nitrogen-doped graphene sheets (NGs) based on hard and soft acids and bases (HSAB) theory. Under hydrothermal conditions, any salt with amphiprotic character have a strong tendency to hydrolysis, it is possible to provide reducing agent and nitrogen source simultaneously. It is worth noting that, NGs can be prepared under hydrothermal conditions by using some common ammonium salts with hard acid-soft base pairs as nitrogen-doping agents. The morphology, structure and composition of the as-prepared NGs were studied in detail. The results demonstrated that large amount of nitrogen was incorporated into the nanocarbon frameworks at the same time as the graphene oxide (GO) sheets were reduced. The electrochemical behavior of the synthesized NGs as supercapacitor electrodes was evaluated in a symmetric two-electrode cell configuration with 1M H2SO4 as the electrolytes. It was found that the nitrogen groups making the as-prepared NGs exhibited remarkably enhanced electrochemical performance when used as electrode materials in supercapacitors. The supercapacitor based on the NGs exhibited a high specific capacitance of 242 F g(-1) at a current density of 1 A g(-1), and remains a relatively high capacitance even at a high current density. This work will put forward to understand and optimize heteroatom-doped graphene in energy storage systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, PengFei; Qiu, Aici; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode andmore » anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).« less

  7. Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.

    A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less

  8. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  10. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage.

    PubMed

    Zhang, Jiao; Li, Chuanqi; Peng, Zhikun; Liu, Yushan; Zhang, Jianmin; Liu, Zhongyi; Li, Dan

    2017-07-07

    Sodium ion batteries have drawn extensive attentions for large-scale energy storage to replace lithium ion batteries primarily due to the natural abundance of sodium resource and low cost, but their energy density and electrochemical performance are hindered by the sluggish diffusion kinetics of sodium ion. Herein, free-standing nitrogen-doped graphene aerogel has been fabricated via hydrothermal reaction as the potential anode material for sodium ion batteries. The three dimensional porous network structure of the graphene aerogel provides sufficient interstitial space for sodium ion accommodation, allowing fast and reversible ion intercalation/de-intercalation. The nitrogen doping could introduce defects on the graphene sheets, making the feasible transport of large-sized sodium ion. Benefiting from the effective structure and nitrogen doping, the obtained material demonstrates high reversible capacities, good cycling performance (287.9 mA h g -1 after 200 cycles at a current density of 100 mA g -1 ), especially superior rate capability (151.9 mA h g -1 at a high current density of 5 A g -1 ).

  11. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  12. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance.

    PubMed

    Haider, S; Hrbek, A; Xu, Y

    2008-06-01

    Primarily this report outlines our investigation on utilizing magneto-acousto-electrical-tomography (MAET) to image the lead field current density in volume conductors. A lead field current density distribution is obtained when a current/voltage source is applied to a sample via a pair of electrodes. This is the first time a high-spatial-resolution image of current density is presented using MAET. We also compare an experimental image of current density in a sample with its corresponding numerical simulation. To image the lead field current density, rather than applying a current/voltage source directly to the sample, we place the sample in a static magnetic field and focus an ultrasonic pulse on the sample to simulate a point-like current dipole source at the focal point. Then by using electrodes we measure the voltage/current signal which, based on the reciprocity theorem, is proportional to a component of the lead field current density. In the theory section, we derive the equation relating the measured voltage to the lead field current density and the displacement velocity caused by ultrasound. The experimental data include the MAET signal and an image of the lead field current density for a thin sample. In addition, we discuss the potential improvements for MAET especially to overcome the limitation created by the observation that no signal was detected from the interior of a region having a uniform conductivity. As an auxiliary we offer a mathematical formula whereby the lead field current density may be utilized to reconstruct the distribution of the electrical impedance in a piecewise smooth object.

  13. Three-dimensional structure of dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.

    2013-12-01

    Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins

  14. Steadiness in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.

    2015-12-01

    Pyroclastic density currents (PDCs) are often unsteady, as evidenced by direct observations of dilute lobes or jets emerging from the fronts of larger currents and by deposits that indicate transient transport and depositional regimes. We used scaled experiments to investigate unsteadiness in dilute PDCs. The experimental currents were run in an 8.5x6.1x2.6 m tank and comprised heated or ambient temperature 20-μm talc powder turbulently suspended in air. Experiments were scaled such that densimetric and thermal Richardson numbers, Froude number, and particle Stokes and settling numbers were dynamically similar to natural dilute PDCs. Although the experiment Reynolds numbers are substantially lower than those of natural PDCs, the experiments are fully turbulent. Experiments were observed with video and high-speed cameras and high-frequency thermocouples. Currents were generated with total eruption durations of 100 s. Unsteadiness in source conditions was produced by interrupting supply for intervals, t, with durations of 1, 2.5, 5, and 10 s in the experimental runs at 35 and 70 s. When t<2.5 s, the currents are indistinguishable from currents with steady supply. In runs with t=2.5-5 s, the individual pulses comprising each current are readily apparent near the source, but decay with distance downstream until the currents appear as single (e.g. steady) flows. In experiments with t=10 s, the 3 pulses comprising each run never merge and the currents remain unsteady. Comparison with the integral turbulent timescale, τ, and current velocity, U, show that unsteadiness is persistent when t>3<τ but currents are steady when t<τ. In currents with 3τ>t>τ, unsteadiness decays such that at a distance of ~4Ut, the currents are again steady. Applied to natural dilute PDCs, our results suggest that currents and their resulting deposits, will only show evidence of unsteadiness if they are disrupted for many seconds and those breaks may "heal" over distances of 100s of meters.

  15. Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2017-04-01

    Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.

  16. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  17. Submillimeter SIS Mixers Using High Current Density Nb/AIN/Nb Tunnel Junctions and NbTiN Films

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Miller, D.; Chen, J.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; Leduc, H.; Stern, J.

    1999-03-01

    We are currently exploring ways to improve the performance of SIS mixers above 700 GHz. One approach is to use NbTiN in place of Nb for all or some of the mixer circuitry. With its high gap frequency and low losses demonstrated up to 800 GHz, it should be possible to fabricate an all-NbTiN SIS mixer with near quantum-limited noise performance up to 1.2 THz. Using a quasioptical twin-slot two-junction mixer with NbTiN ground plane and wiring and hybrid Nb/A1N/NbTiN junctions, we measured an uncorrected receiver noise temperature of TRx ~ 500 K across 790-850 GHz at 4.2 K bath temperature. Our second approach is to reduce the RC product of the mixer by employing very high current density Nb/A1N/Nb junctions. By using these we will greatly relax the requirement on tuning circuits, which is where substantial losses occur in mixers operating above the Nb gap frequency. These junctions have resistance-area products of R_N*A ~ 5.6 Ohm um2, good subgap to normal resistance ratios, R_sg/R_N ~ 10, and good run-to-run reproducibility. From FTS measurements we infer that omega*R_N*C = 1 at 270 GHz in these junctions. This is a substantial improvement over that available using Nb/Al0x/Nb technology. The sensitivity of a receiver incorporating these high current density mixers is T_Rx = 110 K at 533 GHz using a design for lower J_c mixers, which is close to the best we have measured with lower J_c Nb/Al0x/Nb mixers.

  18. Parasite infection alters nitrogen cycling at the ecosystem scale.

    PubMed

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    nitrogen flux rates from the periphyton to the water column in high-snail density/high-infection ponds were up to 50% higher than low-infection ponds. By altering host nutrient assimilation/excretion flexibility, parasites could play a widespread, but currently unrecognized, role in ecosystem nutrient cycling, especially when parasite and host abundances are high and hosts play a central role in ecosystem nutrient cycling. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  19. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  20. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE PAGES

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...

    2017-06-12

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  1. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  2. Deviation from Normal Boltzmann Distribution of High-lying Energy Levels of Iron Atom Excited by Okamoto-cavity Microwave-induced Plasmas Using Pure Nitrogen and Nitrogen-Oxygen Gases.

    PubMed

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen-oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  3. Laser nitriding of iron: Nitrogen profiles and phases

    NASA Astrophysics Data System (ADS)

    Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.

    1995-07-01

    Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.

  4. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poolcharuansin, Phitsanu; The Technological Plasma Research Unit, Department of Physics, Mahasarakham University, Maha Sarakham 44150; Estrin, Francis Lockwood

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes,more » the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.« less

  5. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  6. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  7. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    NASA Astrophysics Data System (ADS)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  8. Groundwater nitrate pollution: High-resolution approach of calculating the nitrogen balance surplus for Germany

    NASA Astrophysics Data System (ADS)

    Klement, Laura; Bach, Martin; Breuer, Lutz; Häußermann, Uwe

    2017-04-01

    The latest inventory of the EU Water Framework Directive determined that 26.3% of Germany's groundwater bodies are in a poor chemical state regarding nitrate. As of late October 2016, the European Commission has filed a lawsuit against Germany for not taking appropriate measures against high nitrate levels in water bodies and thus failing to comply with the EU Nitrate Directive. Due to over-fertilization and high-density animal production, Agriculture was identified as the main source of nitrate pollution. One way to characterize the potential impact of reactive nitrogen on water bodies is the soil surface nitrogen balance where all agricultural nitrogen inputs within an area are contrasted with the output, i.e. the harvest. The surplus nitrogen (given in kg N per ha arable land and year) can potentially leach into the groundwater and thus can be used as a risk indicator. In order to develop and advocate appropriate measures to mitigate the agricultural nitrogen surplus with spatial precision, high-resolution data for the nitrogen surplus is needed. In Germany, not all nitrogen input data is available with the required spatial resolution, especially the use of mineral fertilizers is only given statewide. Therefore, some elements of the nitrogen balance need to be estimated based on agricultural statistics. Hitherto, statistics from the Federal Statistical Office and the statistical offices of the 16 federal states of Germany were used to calculate the soil surface balance annually for the spatial resolution of the 402 districts of Germany (mean size 890 km2). In contrast, this study presents an approach to estimate the nitrogen surplus at a much higher spatial resolution by using the comprehensive Agricultural census data collected in 2010 providing data for 326000 agricultural holdings. This resulted in a nitrogen surplus map with a 5 km x 5 km grid which was subsequently used to calculate the nitrogen concentration of percolation water. This provides a

  9. High density dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, G.L.

    1996-09-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm{sup 3} of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm{sup {minus}3} with U{sub 3}Si{sub 2} as fuel. High-density uranium compounds offer no real density advantage over U{sub 3}Si{sub 2} and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U{sub 3}Si has approximately a 30% higher uranium density but the density of the U{sub 6}X compounds would yield the factormore » 1.5 needed to achieve 9 g cm{sup {minus}3} uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure {alpha}-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic {gamma} phase at low temperatures where normally {alpha} phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing.« less

  10. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less

  11. Numerical simulation of inductive method for determining spatial distribution of critical current density

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.

    2010-11-01

    The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.

  12. SPEAR-1: An experiment to measure current collection in the ionosphere by high voltage biased conductors

    NASA Astrophysics Data System (ADS)

    Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.

    1990-12-01

    An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.

  13. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    USGS Publications Warehouse

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  14. In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Pan, Denghui; Zhang, Mingmei; Wang, Ying; Yan, Zaoxue; Jing, Junjie; Xie, Jimin

    2017-10-01

    In this article, we synthesize Ni(OH)2 homogeneous grown on nitrogen-doped graphene (Ni(OH)2/NG), subsequently, small and uniform nickel oxide nanoparticle (NiO/NG) is also successfully obtained through tube furnace calcination method. The high specific capacitance of the NiO/NG electrode can reach to 1314.1 F/g at a charge and discharge current density of 2 A/g, meanwhile the specific capacitance of Ni(OH)2/NG electrode is also 1350 F/g. The capacitance of NiO/NG can remain 93.7% of the maximum value after 1000 cycles, while the Ni(OH)2/NG electrode losses 16.9% of the initial capacitance after 1000 cycles. It can be attributed to nickel hydroxide instability during charge-discharge cycles.

  15. A beam current density monitor for intense electron beams

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.

    1983-12-01

    The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.

  16. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  17. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Shyshkin, O.; Yamaguchi, S.

    2017-07-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  18. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  19. Nitrogen-doped Carbon Microfiber with Wrinkled Surface for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Ruili; Pan, Lixia; Jiang, Jianzhong; Xi, Xin; Liu, Xiaoxue; Wu, Dongqing

    2016-02-01

    In this work, nitrogen-doped carbon microfiber (NCMF) is fabricated via a facile co-assembly of natural silk and graphene oxide (GO) and the following thermal treatment. The amphiphilic nature of GO endows NCMF a crumpled surface with a high surface area of 115 m2 g-1. As the binder-free electrode in electrical double-layer capacitors, NCMF shows an excellent capacitance of 196 F g-1 at scan rate of 5 mV s-1, which is almost four times higher than that of the pristine CMF from silk (55 F g-1). Additionally, the capacitance of NCMF can be kept around 92 F g-1 at a high scan rate of 300 mV s-1 even after 10000 cycles. More importantly, a high energy density (≈22.7 μW h cm-2) and power density (≈10.26 mW cm-2) are achieved by the all-solid-state supercapacitor based on NCMF.

  20. Construction of Nitrogen-Doped Carbon-Coated MoSe2 Microspheres with Enhanced Performance for Lithium Storage.

    PubMed

    Tang, Wangjia; Xie, Dong; Shen, Tong; Wang, Xiuli; Wang, Donghuang; Zhang, Xuqing; Xia, Xinhui; Wu, Jianbo; Tu, Jiangping

    2017-09-18

    Exploring advanced anode materials with highly reversible capacity have gained great interests for large-scale lithium storage. A facile two-step method is developed to synthesize nitrogen-doped carbon coated MoSe 2 microspheres via hydrothermal plus thermal polymerization. The MoSe 2 microspheres composed of interconnected nanoflakes are homogeneously coated by a thin nitrogen-doped carbon (N-C) layer. As an anode for lithium ion batteries, the MoSe 2 /N-C composite shows better reversibility, smaller polarization, and higher electrochemical reactivity as compared to the unmodified MoSe 2 microspheres. The MoSe 2 /N-C electrode delivers a high specific capacity of 698 mAh g -1 after 100 cycles at a current density of 100 mA g -1 and good high rate performance (471 mAh g -1 at a high current density of 2000 mA g -1 ). The improved electrochemical performance is attributed to the conductive N-C coating and hierarchical microsphere structure with fast ion/electron transfer characteristics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    PubMed

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-07

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  2. Evidence of current free double layer in high density helicon discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguli, A.; Sahu, B. B.; Tarey, R. D.

    2013-01-15

    This paper investigates the formation of double layer (DL) in helicon plasmas. In the experiment, argon plasma production is using the excitation of m = -1 helicon mode with magnetic mirror field with high mirror ratio of {approx}1:1.7. We have specifically used the radio frequency compensated Langmuir probe (LP) to measure the relevant plasma parameters simultaneously so as to investigate the details about the plasma production. The DL, which consists of both warm and bulk populations towards higher potential region and only dense bulk plasmas towards the lower potential region downstream the antenna, is present in the transition region. LPmore » measurements also show an abrupt fall of density along with a potential drop of about 20 V and (e {Delta}V{sub p}/k T{sub e}) Almost-Equal-To 12 within a few cm. The potential drop is equal to the difference of the electron temperatures between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike in several prior studies on the DL formation in the region of strong gradients in the magnetic field. The DL is strong, current-free, electric double-layer with estimated thickness of about 10 Debye lengths.« less

  3. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Lee, Yong Rok

    2017-01-01

    Nitrogen-doped graphitic carbon sheets (N-GCSs) were prepared from the extract of unripe Prunus persica fruit by a direct hydrothermal method. The synthesized N-GCSs were examined by high resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. HRTEM showed that the synthesized carbon sheets were graphitic with lattice fringes and an inter-layer distance of 0.36 nm. Doping with the nitrogen moiety present over the synthesized GCSs was confirmed by XPS, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy elemental mapping. The fruit extract associated with hydrothermal-carbonization method is economical and eco-friendly with a single step process. The resulting carbon sheets could be modified and are promising candidates for nano-electronic applications, including supercapacitors. The synthesized N-GCSs-2 provided a high specific capacitance of 176 F g-1 at a current density of 0.1 A g-1. This electrode material has excellent cyclic stability, even after 2000 cycles of charge-discharge at a current density of 0.5 A g-1.

  4. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    PubMed

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  5. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over

  6. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors.

    PubMed

    Sun, Li; Fu, Yu; Tian, Chungui; Yang, Ying; Wang, Lei; Yin, Jie; Ma, Jing; Wang, Ruihong; Fu, Honggang

    2014-06-01

    Separated boron and nitrogen porous graphitic carbon (BNGC) is fabricated by a facile hydrothermal coordination/ZnCl2-activation process from renewable and inexpensive nitrogen-containing chitosan. In this synthetic pathway, chitosan, which has a high nitrogen content, first coordinates with Fe(3+) ions to form chitosan-Fe that subsequently reacts with boric acid (boron source) to generate the BNGC precursor. After simultaneous carbonization and ZnCl2 activation followed by removal of the Fe catalyst, BNGC, containing isolated boron and nitrogen centers and having a high surface area of 1567 m(2)  g(-1) and good conductivity, can be obtained. Results indicate that use of chitosan as a nitrogen-containing carbon source effectively prevents nitrogen atoms from direct combination with boron atoms. In addition, the incorporation of Fe(3+) ions not only endows BNGC with high graphitization, but also favors for nitrogen fixation. Remarkably, the unique microstructure of BNGC enables its use as an advanced electrode material for energy storage. As electrode material for supercapacitors, BNGC shows a high capacitance of 313 F g(-1) at 1 A g(-1), and also long-term durability and coulombic efficiency of >99.5 % after 5000 cycles. Notably, in organic electrolytes, the energy density could be up to 50.1 Wh kg(-1) at a power density of 10.5 kW kg(-1). The strategy developed herein opens a new avenue to prepare BNGC without inactive BN bonds from commercially available chitosan for high-performance supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    PubMed

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  9. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  10. Yip - Development and Application of a High-Speed Three-Dimensional Density Measurement Technique for Aero-Optic Applications

    DTIC Science & Technology

    2011-03-25

    mixing between two streams of different temperature/density. In addition, there are also regions of high density and high pressure in the braid region...acetone seeding in this work was as follows. A small pressure vessel was filled with liquid acetone and pressurized using a nitrogen tank. An EPDM hose ...through the EPDM hose , out of the pressure vessel, and ultimately through a wall fitting. This wall fitting was connected through the wall of the

  11. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    PubMed

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  12. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability

    NASA Astrophysics Data System (ADS)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  13. Small Barriers Trigger Liftoff of Unconfined Dilute Heated Laboratory Density Currents

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2015-12-01

    Dilute pyroclastic density currents (PDCs) are hot, turbulent, particle-laden flows that propagate because they are denser than air. PDCs can traverse tens to hundreds of kilometers and surmount ridges 100s of m tall, yet the effects of complex topography on PDC liftoff and runout distance are uncertain. Here we used scaled laboratory experiments to explore how barriers affect dilute density current dynamics and the occurrence of liftoff. We created dilute density currents by heating and suspending 20 μm diameter talc in air in an 8.5 x 6.1 x 2.6 m tank. We scaled the currents with respect to Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers such that they were dynamically similar to natural PDCs. While currents were fully turbulent, their Reynolds numbers were not as high as those for natural PDCs. We performed the first set of experiments in a laterally unconfined volume, used laser sheets to illuminate the currents, measured bulk sedimentation rates down the current centerlines, and positioned four to twenty-four cm tall ridge-like barriers in the path of the currents. We found that relatively small barriers (~ half the current height) caused PDC liftoff. By comparison, conservation of kinetic and potential energy predicts that incompressible density currents are able to surmount barriers twice their height. Furthermore, we observed increased sedimentation immediately upstream of barriers and conclude that small barriers initiated buoyancy reversal through a combination of increased air entrainment and sedimentation. We conducted a second set of experiments with the same thermal scaling and mass flux rates but where the currents were laterally confined within a 0.6 m wide channel. We found that small barriers also triggered liftoff of confined currents, but that the body of these currents reattached after liftoff. Those results suggest that lateral confinement inhibits buoyancy reversal by limiting the surface area of the current

  14. New Imidazole-based High Nitrogen Energetic Materials

    NASA Astrophysics Data System (ADS)

    Windler, G. Kenneth; Leonard, Philip; Schulze, Maxwell; Hartline, Ernest

    2017-06-01

    Energetic materials derive their power from energy release, usually in the form of gaseous products. The type and quantity of these products contribute to performance and detonation parameters. In particular, high-nitrogen materials produce large quantities of elemental nitrogen, and can be tuned via molecular structure for suitability as propellants (gas generators) or explosives. In this work, the five-membered nitrogen heterocycle imidazole is used as a substrate for a variety of high-nitrogen materials. Substitution of the imidazole ring directly with nitro-, azido-, diazo-, and tetrazole moieties allows for tunable properties of the resultant energetic material. Properties can be further tailored by salt formation at the acidic proton(s) on the molecules. The various combinations of these derivatives are presented, along with the substitution effects on physical, chemical, and explosive properties.

  15. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    NASA Astrophysics Data System (ADS)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  16. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  17. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.

    2015-04-01

    Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.

  18. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  19. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  20. The current-density distribution in a pulsed dc magnetron deposition discharge

    NASA Astrophysics Data System (ADS)

    Vetushka, Alena; Bradley, James W.

    2007-04-01

    Using a carefully constructed magnetic probe (a B-dot probe) the spatial and temporal evolution of the perturbation in the magnetic field ΔB in an unbalanced pulsed dc magnetron has been determined. The plasma was run in argon at a pressure of 0.74 Pa and the plasma ions sputtered a pure graphite target. The pulse frequency and duty were set at 100 kHz and 55%, respectively. From the ΔB measurements (measured with magnitudes up to about 0.01 mT) the axial, azimuthal and radial components of the total current density j in the plasma bulk were determined. In the plasma 'on' phase, the axial current density jz has a maximum value of approximately 200 A m-2 above the racetrack region, while high values in the azimuthal current density jΦ are distributed in a region from 1 to 3 cm into the bulk plasma with jΦ exceeding 350 A m-2. In the 'off' phase of the plasma, jz decays almost instantaneously (at least within the 100 ns time-resolution of the ΔB measurements) as the electric field collapses; however, jΦ decays with a characteristic time constant of about 1 µs. This slow decay can be attributed to the presence of decaying Grad-B and curvature drifts, with their rates controlled by the decay in the plasma density. A comparison between axial and azimuthal current densities in the plasma 'on' time, when the plasma is being driven, strongly indicates that classical transport does not operate in the magnetron discharge.

  1. Noise distribution and denoising of current density images

    PubMed Central

    Beheshti, Mohammadali; Foomany, Farbod H.; Magtibay, Karl; Jaffray, David A.; Krishnan, Sridhar; Nanthakumar, Kumaraswamy; Umapathy, Karthikeyan

    2015-01-01

    Abstract. Current density imaging (CDI) is a magnetic resonance (MR) imaging technique that could be used to study current pathways inside the tissue. The current distribution is measured indirectly as phase changes. The inherent noise in the MR imaging technique degrades the accuracy of phase measurements leading to imprecise current variations. The outcome can be affected significantly, especially at a low signal-to-noise ratio (SNR). We have shown the residual noise distribution of the phase to be Gaussian-like and the noise in CDI images approximated as a Gaussian. This finding matches experimental results. We further investigated this finding by performing comparative analysis with denoising techniques, using two CDI datasets with two different currents (20 and 45 mA). We found that the block-matching and three-dimensional (BM3D) technique outperforms other techniques when applied on current density (J). The minimum gain in noise power by BM3D applied to J compared with the next best technique in the analysis was found to be around 2 dB per pixel. We characterize the noise profile in CDI images and provide insights on the performance of different denoising techniques when applied at two different stages of current density reconstruction. PMID:26158100

  2. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    PubMed

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  3. Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.

    2017-06-01

    The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.

  4. Investigation of heavy current discharges with high initial gas density

    NASA Astrophysics Data System (ADS)

    Budin, A.; Bogomaz, A.; Kolikov, V.; Kuprin, A.; Leontiev, V.; Rutberg, Ph.; Shirokov, N.

    1996-05-01

    Piezoelectric pressure transducers, with noise immunity and time resolution of 0,5 μs were used to measure pulse pressures of 430 MPa along the axis of an electrical discharge channel. Initial concentration of He was 2,7ṡ1021cm-3, dI/dt=6ṡ1011 A/s, and Imax=560 kA. Shock waves with amplitudes exceeding the pressure along the axis, were detected by a pressure transducer on the wall of the discharge chamber. Typical shock velocities were 2ṡ4 km/s. Average pressure measurements along the discharge axis at different radii were used to estimate the current density distribution along the canal radius. The presence of the shock waves, promoting the additional hydrogen heating in the discharge chamber, has been registered during the discharge in hydrogen for Imax˜1 MA and an initial concentration of 1021cm-3.

  5. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  6. Large eddy simulation of dust-uplift by haboob density currents

    NASA Astrophysics Data System (ADS)

    Huang, Q.

    2017-12-01

    Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust uplift ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper large eddy model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs which have used convection-permitting models, are used to investigate the winds that cause dust uplift in cold pools, and the resultant dust uplift and transport. Dust uplift largely occurs in the head of the density current, consistent with the few existing observations. In the modeled density current dust is largely restricted to the lowest coldest and well mixed layer of the cold pool outflow (below around 400 m), except above the head of the cold pool where some dust reaches 2.5 km. This rapid transport to high altitude will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density current. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region in daytime show that increasing surface fluxes slow the density current due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.

  7. Time and space resolved current density mapping in three dimensions using magnetic field probe array in a high voltage coaxial gap

    NASA Astrophysics Data System (ADS)

    Cordaro, S. W.; Bott-Suzuki, S. C.

    2017-12-01

    We present an experimental analysis of the symmetry of current density in a coaxial geometry, diagnosed using a magnetic field probe array and calculations of the Fowler-Nordheim enhancement factor. Data were collected on the coaxial gap breakdown device (240 A, 25 kV, 150 ns, ˜0.1 Hz), and data from experiments using 2 different gap sizes and different penetration depths are compared over runs comprising 50 shots for each case. The magnetic field probe array quantifies the distribution of current density at three axial locations, on either sides of a vacuum breakdown, and tracks the evolution with time and space. The results show asymmetries in current density, which can be influenced by changes in the gap size and the penetration depth (of the center electrode into the outer electrode). For smaller gap sizes (400 μm), symmetric current profiles were not observed, and the change in the penetration depth changes both the symmetric behavior of the current density and the enhancement factor. For larger gaps (900 μm), current densities were typically more uniform and less influenced by the penetration depth, which is reflected in the enhancement factor values. It is possible that the change in inductance caused by the localization of current densities plays a role in the observed behavior.

  8. Self-focusing of a high current density ion beam extracted with concave electrodes in a low energy region around 150 eV.

    PubMed

    Hirano, Y; Kiyama, S; Koguchi, H; Sakakita, H

    2014-02-01

    Spontaneous self-focusing of ion beam with high current density (Jc ∼ 2 mA/cm(2), Ib ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135-150 eV, and the Jc jumps up from 0.7 to 2 mA/cm(2). Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.

  9. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  10. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  11. Characteristic of riverine dissolved inorganic nitrogen export in subtropic high-standing island, Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Li-Chin; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Shih, Yu-Ting

    2015-04-01

    Extreme increase of anthropogenic nitrogen (e.g. fertilizer and excretion) has altered the nitrogen cycling and terrestrial ecosystems. Taiwan located between eastern Asia and Oceania is the hotspot of global riverine DIN (dissolved inorganic nitrogen, including NH4, NO3, and NO2) export, but rarely documented comprehensively. Totally 50 catchments, covering 2/3 of this island, with different anthropogenic activities are involved in this study. The monthly sampling for NH4 and seasonal sampling for NO3 and NO2 supplemented with daily discharge are used to estimate the riverine DIN export. Meanwhile, the landscape characteristics, land-use, and population density are also used to discriminate the characteristics of riverine DIN export. Results showed that the observed riverine DIN concentration and yield vary from 17.7-603.5 μM and 575.0-15588.9 kg-N km-2 yr-1 corresponding to the increase of anthropogenic activities. The arithmetic mean of DIN concentration and yield are 126.7μM and 3594.7 kg-N km-2 yr-1, respectively. The unexpected high yields can attribute to abundant precipitation, heavy fertilizer application, and high population. For concentration variation, no significant variation can be found in the pristine and agriculture-dominated catchments, whereas the strong dilution effect in the wet season is characterized in the intensively-disturbed catchments. Although there are some seasonal variations in concentration, the yields in wet season are almost doubled than that in dry season indicating the strong control of streamflow. For speciation, NH4 is the dominant species in intensively-disturbed catchment, but NO3 dominates the DIN composition for the pristine and agriculture-dominated catchments. Our result can provide a strong basis for supplementary estimation for regional to global study and DIN export control which is the aim of the Kampala Declaration on global nitrogen management. Keywords: dissolved inorganic nitrogen, anthropogenic nitrogen

  12. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    PubMed

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High-Density Quantum Sensing with Dissipative First Order Transitions.

    PubMed

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-13

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  14. High-Density Quantum Sensing with Dissipative First Order Transitions

    NASA Astrophysics Data System (ADS)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  15. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  16. Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Hosokawa, M.; Sasaki, T.; Mukaigawa, S.; Fujiwara, T.

    2005-04-01

    An atmospheric pressure glow discharge was generated using a needle-array electrode in nitrogen, and the voltage-current characteristics of the glow discharge were obtained in a range from 1 mA to 60 A. A pulsed high voltage with short rise time under 10 ns was employed to generate streamer discharges simultaneously at all needle tips. The large number of streamer discharges prevented the glow-to-arc transition caused by inhomogeneous thermalization. Semiconductor opening switch diodes were employed as an opening switch to shorten the rise time. The glow voltage was almost constant until the discharge current became 0.3 A, whereas the voltage increased with the current higher than 0.3 A. Electron density and temperature in a positive column of the glow discharge at 60 A were obtained to 1.4×1012cm-3 and 1.3 eV from calculation based on nitrogen swarm data.

  17. High-temperature superconducting current leads

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  18. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Tan, Yongtao; Yang, Yunlong; Zhao, Xiaoning; Liu, Ying; Niu, Lengyuan; Tichnell, Brandon; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-01

    In this work, biomass pomelo peel is used to fabricate the porous activated carbon microsheets, and diammonium hydrogen phosphate (DHP) is employed to dual-dope carbon with nitrogen and phosphorus elements. With the benefit of DHP inducement and dual-doping of nitrogen and phosphorus, the prepared carbon material has a higher carbon yield, and exhibits higher specific surface area (about 807.7 m2/g), and larger pore volume (about 0.4378 cm3/g) with hierarchically structure of interconnected thin microsheets compared to the pristine carbon. The material exhibits not only high specific capacitance (240 F/g at 0.5 A/g), but also superior cycling performance (approximately 100% of capacitance retention after 10,000 cycles at 2 A/g) in 2 M KOH aqueous electrolyte. Furthermore, the assembled symmetric electrochemical capacitor in 1 M Na2SO4 aqueous electrolyte exhibits a high energy density of 11.7 Wh/kg at a power density of 160 W/kg.

  19. High energy density capacitors for low cost applications

    NASA Astrophysics Data System (ADS)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  20. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    PubMed

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Heating and cooling of the multiply charged ion nonequilibrium plasma in a high-current extended low-inductance discharge

    NASA Astrophysics Data System (ADS)

    Burtsev, V. A.; Kalinin, N. V.

    2014-09-01

    Using a radiation magnetohydrodynamics two-temperature model (RMHD model) of a high-current volumetric radiating Z-discharge, the heating and cooling of the nitrogen plasma in a pulsed pinched extended discharge is investigated as applied to the problem of creating a recombination laser based on 3 → 2 transitions of hydrogen-like nitrogen ions (λ = 13.4 nm). It is shown that the power supply of the discharge, which is represented by a dual storage-forming line and a transmission line, makes it possible to raise the power density of the nitrogen plasma to 0.01-1.00 TW/cm3. Accordingly, there arises the possibility of generating a fully ionized (i.e., consisting of bare nuclei and electrons) plasma through the heating (compression) of electrons owing to the self-magnetic field of the plasma current and Joule heat even if the plasma is cooled by its own radiation at this stage. Such a plasma is needed to produce the lasing (active) medium of a recombination laser based on electron transitions in hydrogen-like ions. At the second stage, it is necessary to rapidly and deeply cool the plasma to 20-40 eV for 1-2 ns. Cooling of the fully ionized expanding plasma was numerically simulated with the discharge current switched on and off by means of a switch with a rapidly rising resistance. In both cases, the plasma expansion in the discharge is not adiabatic. Even after the discharge current is fairly rapidly switched off, heating of electrons continues inside the plasma column for a time longer than the switching time. Discharge current switchoff improves the electron cooling efficiency only slightly. Under such conditions, the plasma cools down to 50-60 eV in the former case and to 46-54 eV in the latter case for 2-3 ns.

  2. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun viamore » the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.« less

  3. MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density

    NASA Astrophysics Data System (ADS)

    Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.

    2018-07-01

    The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.

  4. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tran, Vy Anh; Truong, Trieu Thinh; Phan, Thu Anh Pham; Nguyen, Trang Ngoc; Huynh, Tuan Van; Agresti, Antonio; Pescetelli, Sara; Le, Tien Khoa; Di Carlo, Aldo; Lund, Torben; Le, So-Nhu; Nguyen, Phuong Tuyet

    2017-03-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10 M NaOH. The nano-tubes were N-doped by reflux in various concentrations of NH4NO3. The effects of nitrogen doping on the structure, morphology, and crystallography of N-TNT were analyzed by transmission electron microscopy (TEM), infrared spectroscopy (IR), Raman spectroscopy, and X-ray photoelectron spectra (XPS). DSCs fabricated with doped N-TNT and TNT was characterized by J-V measurements. Results showed that nitrogen doping significantly enhanced the efficiency of N-TNT cells, reaching the optimum value (η = 7.36%) with 2 M nitrogen dopant, compared to η = 4.75% of TNT cells. The high efficiency of the N-TNT cells was attributed to increased current density due to the reduction of dark current in the DSCs.

  5. Behaviors of Absolute Densities of N, H, and NH3 at Remote Region of High-Density Radical Source Employing N2-H2 Mixture Plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru

    2011-01-01

    For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.

  6. Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping

    2017-09-01

    We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8  ±  0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.

  7. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  8. Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature.

    PubMed

    Hambali, Nur Ashikyn; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Hashim, Abdul Manaf

    2014-01-01

    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.

  9. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  10. Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2009-01-01

    Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…

  11. Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Nosir, M. A.; Martin-Gondre, L.; Bocan, G. A.; Díez Muiño, R.

    2016-09-01

    We present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12 = - 7.8 % and Δ23 = - 21.7 % with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34 = 9.7 % . Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.

  12. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  13. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  14. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    NASA Astrophysics Data System (ADS)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  15. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  16. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  17. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    PubMed

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  18. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-01

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  19. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene.

    PubMed

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-27

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  20. Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO2 Electron Extraction Layer.

    PubMed

    Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-01-25

    The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO 2 electron transport layer (ETL). Under optimized condition, TiO 2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm -2 was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.

  1. A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui

    2018-04-01

    The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.

  2. Current leakage for low altitude satellites - Modeling applications. [simulation of high voltage solar cell array in ionospheric plasma environment

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Mccoy, J. E.; Garriott, O. K.

    1979-01-01

    To simulate the behavior of a high voltage solar cell array in the ionospheric plasma environment, the large (90 ft x 55 ft diameter) vacuum chamber was used to measure the high-voltage plasma interactions of a 3 ft x 30 ft conductive panel. The chamber was filled with Nitrogen and Argon plasma at electron densities of up to 1,000,000 per cu cm. Measurements of current flow to the plasma were made in three configurations: (a) with one end of the panel grounded, (b) with the whole panel floating while a high bias was applied between the ends of the panel, and (c) with the whole panel at high negative voltage with respect to the chamber walls. The results indicate that a simple model with a constant panel conductivity and plasma resistance can adequately describe the voltage distribution along the panel and the plasma current flow. As expected, when a high potential difference is applied to the panel ends more than 95% of the panel floats negative with respect to the plasma.

  3. Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction.

    PubMed

    Xu, Jingjing; Zhang, Ruifang; Lu, Shiyao; Liu, Huan; Li, Zhaoyang; Zhang, Xinyu; Ding, Shujiang

    2018-07-27

    A facile and ultrafast microwave-assisted thermolysis approach has been adopted to synthesize hierarchical nitrogen-doped carbon within a very short time. The precursor PANI@carbon felt composite was pyrolyzed in microwave oven for different time (10, 20, 30, 40, 50 s) and denoted as NC-X (X = 10, 20, 30, 40, 50). As for NC-30, nitrogen-doping content is obtained up to 3.62 at% with striking enrichment of pyridinic N as high as 45% of the total nitrogen content. Raman analysis indicates the extent graphitization level for the resultant NC-30 and the relative intensity I D /I G was 1.26. High nitrogen-doping content and graphitization level provide effective active sites and efficient electron transfer channel. The resultant NC-30 exhibits pronounced ORR activity with an onset potential of 0.94 V (versus RHE), half-wave potential of 0.80 V and diffusion limiting current density of -5.23 mA cm -2 , comparable to those of the commercial Pt/C. It also shows enhanced stability with current retention of 98.3% over 7.5 h as well as superior tolerance against methanol. The simple preparation and excellent ORR performance of NC-30 suggest its promising practical application.

  4. Hydrogen and nitrogen turboexpanders with high gas expansion ratios

    NASA Astrophysics Data System (ADS)

    Davydenkov, I. A.; Davydov, A. B.; Perestoronin, G. A.

    The paper examines the design features of a four-stage hydrogen turboexpander with an expansion ratio of 80 and two-stage nitrogen turboexpander with an expansion ratio of 120. The test results obtained under imitations in air are presented. The adiabatic efficiency of the hydrogen and nitrogen turboexpanders under operating conditions has reached 0,65 and 0, 78, respectively. The use of high-performance high-pressure hydrogen and nitrogen turboexpanders has considerably increased the capacity of a large hydrogen liquefier.

  5. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    PubMed

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  6. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  7. Sensitivity of condition indices to changing density in a white-tailed deer population

    USGS Publications Warehouse

    Sams, M.G.; Lochmiller, R.L.; Qualls, C.W.; Leslie, David M.

    1998-01-01

    The ways in which comprehensive condition profiles, incorporating morphometric, histologic, physiologic, and diet quality indices, responded to changes in density of a white-tailed deer (Odocoileus virginianus) population were examined. Changes in these condition indices were monitored in a northeastern Oklahoma deer herd as density declined from peaks of 80 and 72 deer/km2 in 1989 and 1990 (high-density) to lows of 39 and 41 deer/km2 in 1991 and 1992 (reduced-density), respectively. Compared to a reference population (6 deer/km2), deer sampled during high-density exhibited classic signs of nutritional stress such as low body and visceral organ masses (except elevated adrenal gland mass), low fecal nitrogen levels, reduced concentrations of serum albumin, elevated serum creatinine concentrations, and a high prevalence of parasitic infections. Although density declined by one half over the 4-yr study, gross indices of condition (in particular body mass and size) remained largely unchanged. However, selected organ masses, serum albumin and non-protein nitrogen constituents, and fecal nitrogen indices reflected improvements in nutritional status with reductions in density. Many commonly used indices of deer condition (fat reserves, hematocrit, total serum protein, and blood urea nitrogen) were not responsive to fluctuations in density. ?? Wildlife Disease Association 1998.

  8. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  9. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  10. Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode.

    PubMed

    Chen, Hui; Wang, Gang; Chen, Long; Dai, Bin; Yu, Feng

    2018-06-08

    Hierarchical porous structures with surface nitrogen-doped porous carbon are current research topics of interest for high performance supercapacitor electrode materials. Herein, a three-dimensional (3D) honeycomb-like porous carbon with interconnected hierarchical porosity and nitrogen self-doping was synthesized by simple and cost-efficient one-step KOH activation from waste cottonseed husk (a-CSHs). The obtained a-CSHs possessed hierarchical micro-, meso-, and macro-pores, a high specific surface area of 1694.1 m²/g, 3D architecture, and abundant self N-doping. Owing to these distinct features, a-CSHs delivered high specific capacitances of 238 F/g and 200 F/g at current densities of 0.5 A/g and 20 A/g, respectively, in a 6 mol/L KOH electrolyte, demonstrating good capacitance retention of 84%. The assembled a-CSHs-based symmetric supercapacitor also displayed high specific capacitance of 52 F/g at 0.5 A/g, with an energy density of 10.4 Wh/Kg at 300 W/Kg, and 91% capacitance retention after 5000 cycles at 10 A/g.

  11. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  12. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

    PubMed

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie

    2013-02-07

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.

  13. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.

    PubMed

    Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2016-03-02

    Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.

  14. High Energy Density Physics and Exotic Acceleration Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, T.; /General Atomics, San Diego; Colby, E.

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And wemore » saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is

  15. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    PubMed

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  16. Foldable, High Energy Density Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  17. Carbonization-dependent nitrogen-doped hollow porous carbon nanospheres synthesis and electrochemical study for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Lingyun; Xie, Guohong; Chen, Xiling

    2018-05-01

    In this paper, a nitrogen-doped hollow microporous carbon nanospheres was synthesized via the combination of hyper-crosslinking mediated self-assembly and further pyrolysis using polylactide-b-polystyrene (PLA-b-PS) copolymers and aniline monomers as precursor. The pore structure and the correlative electrochemical performance of nitrogen-doped hollow microporous carbon nanospheres were affected by the molar mass ratio of aniline and PS in block copolymers and the carbonization conditions. The electrochemical measurements results showed that the obtained PLA150-PS250-N4-900-10H sample with nitrogen content of 3.57% and the BET surface area of 945 m2 g-1 displays the best capacitance performance. At a current density of 1.0 Ag-1, the resultant specific capacitance is 250 Fg-1. In addition, it also exhibits high capacitance retention of 98% after charging-discharging 1500 times at 25 Ag-1. The results demonstrate the nitrogen-doped hollow microporous carbon nanospheres can be used as promising supercapacitor electrode materials for high performance energy storage devices.

  18. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil fieldmore » decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.« less

  19. Nanoscale cross-point diode array accessing embedded high density PCM

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin

    2017-08-01

    The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.

  20. Detection of an electron beam in a high density plasma via an electrostatic probe

    NASA Astrophysics Data System (ADS)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki

    2018-07-01

    An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.

  1. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging. PMID:29117250

  2. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Mingwei; Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging.

  3. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    PubMed

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .

  4. Nitrogen-atom endohedral fullerene synthesis with high efficiency by controlling plasma-ion irradiation energy and C60 internal energy

    NASA Astrophysics Data System (ADS)

    Cho, Soon Cheon; Kaneko, Toshiro; Ishida, Hiroyasu; Hatakeyama, Rikizo

    2015-03-01

    The nitrogen-atom endohedral fullerene (N@C60) has been synthesized by controlling the plasma ion irradiation energy (Ei) and fullerene (C60) behavior in the sublimation phase. We examined the relationship between the synthesis purity of N@C60 [molar concentration ratio of N@C60 to pristine fullerene (C60)] and Ei, which was controlled by changing the substrate bias voltages (Vsub) and gas pressure (PN2) during the plasma irradiation process. High-density nitrogen-molecular ions (N2+) with a suitable Ei near 80 eV are confirmed to be the optimum condition of the nitrogen plasma for the synthesis of high-purity N@C60. In addition, high sublimation of C60 contributes to a higher yield due to the high internal energy of C60 and the related cage defects that are present under these conditions. As a result, a purity of 0.83% is realized for the first time, which is almost two orders of magnitude higher than that using other methods.

  5. Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-04-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc≈30 kA cm-2). The junctions have low-resistance-area products (RNA≈5.6 Ω μm2), good subgap-to-normal resistance ratios Rsg/RN≈10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that ωRNC=1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX=110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits.

  6. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  7. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  8. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    PubMed

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  9. Experimental study of the density of the helium-nitrogen gas system at low temperatures.

    NASA Astrophysics Data System (ADS)

    Milyutin, V. A.

    2017-11-01

    At the Department of TOT, an experimental setup was created to measure the density of a binary gas system from 100 to 300 K and pressures up to 16 MPa and with any mixture compositions. Experimental density for the helium-nitrogen system were determined by the piezometer of constant volume method. The amount of substance in the piezometer was measured by volumetric method. In this setup, the mixture of He - N2 was prepared in a special mixer for a series of p-v-T experiments, the concentration was determined by calculation using the equations of state of pure components. In the experiment, mixtures were prepared with molar concentrations, lying close to the range: 0.2, 0.4, 0.6 and 0.8.

  10. Definition of current density in the presence of a non-local potential.

    PubMed

    Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian

    2008-04-16

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.

  11. High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction.

    PubMed

    Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H

    2016-11-09

    Conversion of CO 2 to CO powered by renewable electricity not only reduces CO 2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO 2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO 2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO 2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO 2 to CO reduction, with a geometric current density of 38 mA/cm 2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.

  12. Fluorescent Fe K Emission from High Density Accretion Disks

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  13. The relation between high-density and very-high-density amorphous ice.

    PubMed

    Loerting, Thomas; Salzmann, Christoph G; Winkel, Katrin; Mayer, Erwin

    2006-06-28

    The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.

  14. What is the prognosis of nitrogen losses from UK soils?

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Whelan, M.; Howden, N. J.

    2009-12-01

    The UK’s high population density, intensive agriculture and relative short, unimpeded rivers mean that the UK is a known “hotspot” of fluvial nitrogen flux. Furthermore, it is known that the fluvial flux of nitrogen from the UK is increasing. This study estimates the release of nitrate from the UK terrestrial biosphere to understand this rising fluvial flux and i to assess the in-stream losses of nitrate, thusgiving an assessment of the fluvial component of the total nitrogen budget of UK. The approach taken by the study is to use an export coefficient model coupled with a description of mineralisation and immobilisation of nitrogen within soil reserves. The study applies the modelling approach to the whole of the UK from 1925 to 2007 using long term records of: land use (including - agricultural, forestry and urban uses); livestock; human population and atmospheric deposition. The study shows that: i) The flux of nitrate from the UK soils varied from 420 to 1463 Ktonnes N/yr with two peaks in the period since 1925, one in 1944 and one in 1967, the first is caused by mineralisation of soil organic matter following large-scale land use change in the Second World War, and the second is a multifactorial response to land use change and intensification. ii) The current trend in the release from soils is downward whilst the current fluvial flux at the tidal limit is upwards. With the current trends fluvial flux at the tidal limit will be greater than release from the soils of the UK, i.e. there will be net gain across the fluvial network. This apparent gain can be explained by the breakthrough of high nitrate groundwater into surface waters.

  15. The Influence of Marcellus Shale Extraction Emissions on Regionally Monitored Dry Reactive Nitrogen Deposition.

    PubMed

    Coughlin, Justin G; Rose, Lucy A; Bain, Daniel J; Elliott, Emily M

    2017-03-21

    Emissions of nitrogen oxides (NO x ) in the United States (U.S.) from large stationary sources, such as electric generating units, have decreased since 1995, driving decreases in nitrogen deposition. However, increasing NO x emissions from emerging industries, such as unconventional natural gas (UNG) extraction, could offset stationary source emission reductions in shale gas producing regions of the U.S. The Marcellus Shale in the northeastern U.S. has seen dramatic increases in the number of wells and associated natural gas production during the past 10 years. In this study, we examine the potential impacts of shale gas development on regional NO x emission inventories and dry deposition fluxes to Clean Air Status and Trends (CASTNET) sites in Pennsylvania and New York. Our results demonstrate that the current distribution of CASTNET sites is ineffective for monitoring the influence of Marcellus well NO x emissions on regional nitrogen deposition. Despite the fact that existing CASTNET sites are not influenced by UNG extraction activity, NO x emissions densities from shale gas extraction are substantial and are estimated to reach up to 21 kg NO x ha -1 year -1 in some regions. If these emissions deposit locally, UNG extraction activity could contribute to critical nitrogen load exceedances in areas of high well density.

  16. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  17. [Current results of nitrogen cryotherapy in eyelid basaliomas].

    PubMed

    Buschmann, W; Linnert, D; Wünsch, P H; Schmutzler, M

    1986-10-01

    By means of long-term follow-ups of large numbers of patients it has been established that nitrogen cryotherapy for lid basaliomas produces very good results with regard to the cure rate, as well as having considerable advantages over other treatment methods. In contrast to other authors we did not employ the spray method, but a very high-performance nitrogen cryo unit with a closed probe. Experimental measurements showed that this unit is capable of generating at least the same temperatures as with the spray method. The cryoapplication technique is described. The cure rate and causes of recurrence in the first series in the total of 84 patients treated from 1979 to 1983 were evaluated by long-term follow-up. If cryobiological principles are observed and the recommended application technique is adhered to, the same cure rate can be achieved as with the spray method and other forms of treatment. There are considerable functional and cosmetic advantages, also as regards the patency of the lacrimal ducts.

  18. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Cheng, Shaoan; Zhang, Fang; Logan, Bruce E.

    2017-07-01

    Understanding how current densities affect electrogenic biofilm activity is important for wastewater treatment as current densities can substantially decrease at COD concentrations greater than those suitable for discharge to the environment. We examined the biofilm's response, in terms of viability and enzymatic activity, to different current densities using microbial electrolysis cells with a lower (0.7 V) or higher (0.9 V) added voltage to alter current production. Viability was assessed using florescent dyes, with dead cells identified on the basis of dye penetration due to a compromised cell outer-membrane (red), and live cells (intact membrane) fluorescing green. Biofilms operated with 0.7 V produced 2.4 ± 0.2 A m-2, and had an inactive layer near the electrode and a viable layer at the biofilm-solution interface. The lack of cell activity near the electrode surface was confirmed by using an additional dye that fluoresces only with enzymatic activity. Adding 0.9 V increased the current by 61%, and resulted in a single, more homogeneous and active biofilm layer. Switching biofilms between these two voltages produced outcomes associated with the new current rather than the previous biofilm conditions. These findings suggest that maintaining higher current densities will be needed to ensure long-term viability electrogenic biofilms.

  20. Modeling dilute pyroclastic density currents on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Brand, B. D.; De'Michieli Vitturi, M.

    2013-12-01

    The surface of Mars has been shaped extensively by volcanic activity, including explosive eruptions that may have been heavily influenced by water- or ice-magma interaction. However, the dynamics of associated pyroclastic density currents (PDCs) under Martian atmospheric conditions and controls on deposition and runout from such currents are poorly understood. This work combines numerical modeling with terrestrial field measurements to explore the dynamics of dilute PDC dynamics on Earth and Mars, especially as they relate to deposit characteristics. We employ two numerical approaches. Model (1) consists of simulation of axi-symmetric flow and sedimentation from a steady-state, depth-averaged density current. Equations for conservation of mass, momentum, and energy are solved simultaneously, and the effects of atmospheric entrainment, particle sedimentation, basal friction, temperature changes, and variations in current thickness and density are explored. The Rouse number and Brunt-Väisälä frequency are used to estimate the wavelength of internal gravity waves in a density-stratified current, which allows us to predict deposit dune wavelengths. The model predicts realistic runout distances and bedform wavelengths for several well-documented field cases on Earth. The model results also suggest that dilute PDCs on Mars would have runout distances up to three times that of equivalent currents on Earth and would produce longer-wavelength bedforms. In both cases results are heavily dependent on source conditions, grain-size characteristics, and entrainment and friction parameters. Model (2) relaxes several key simplifications, resulting in a fully 3D, multiphase, unsteady model that captures more details of propagation, including density stratification, and depositional processes. Using this more complex approach, we focus on the role of unsteady or pulsatory vent conditions typically associated with phreatomagmatic eruptions. Runout distances from Model (2) agree

  1. [Nitrogen balance in dairy farm: research progress].

    PubMed

    Lü, Chao; Qin, Wen-Xiao; Gao, Teng-Yun; Wang, Xiao-Xiao; Han, Zhi-Guo; Li, Jia

    2013-01-01

    Large dairy farm with intensive management has high stocking density, but generally does not have enough space and normative feces disposal system, resulting in the discharged nitrogen surpassed the environmental carrying capacity of unit area land. Dairy farm is one of the major emission sources of nitrogen discharges in agriculture, where the nitrogen balance has being aroused attention by the experts abroad. The research on the nitrogen flow and nitrogen balance in dairy farm is the basis of the dairy farm nitrogen cycling and management study, as well as the basis for the construction of environmental laws, regulations and policies. The most reliable indicators to evaluate the nitrogen flow and nitrogen balance in dairy farm are nitrogen surplus and nitrogen use efficiency. This paper introduced the concept of nitrogen balance on farm-scale and the nitrogen flow within farm, compared the application scope of nitrogen surplus and nitrogen use efficiency, analyzed the factors affecting the nitrogen balance in dairy farm, and summarized the effective strategies to reduce the nitrogen discharges from dairy farm, aimed to provide references for the nitrogen management of dairy farm in China.

  2. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    PubMed Central

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  3. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    PubMed

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.

  4. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  5. Transport and sedimentation in unconfined experimental dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Ramirez, G.; Andrews, B. J.; Dennen, R. L.

    2013-12-01

    We present results from experiments conducted in a new facility that permits the study of large, unconfined particle laden density currents that are dynamically similar to natural dilute pyroclastic density currents (PDCs). Experiments were run in a sealed, air-filled tank measuring 8.5 m long by 6.1 m wide by 2.6 m tall. Currents were generated by feeding mixture of heated particles (5 μm aluminum oxide, 25 μm talc, 27 μm walnut shell, 76 μm glass beads) down a chute at controlled rates to produce dilute, turbulent gravity currents. Comparison of experimental currents with natural PDCs shows good agreement between Froude, densimetric and thermal Richardson, and particle Stokes and settling numbers; experimental currents have lower Reynolds numbers than natural PDCs, but are fully turbulent. Currents were illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps). Deposits were mapped using a grid of sedimentation traps. We observe distinct differences between ambient temperature and warm currents: * warm currents have shorter run out distances, narrow map view distributions of currents and deposits, thicken with distance from the source, and lift off to form coignimbrite plumes; * ambient temperature currents typically travel farther, spread out radially, do not thicken greatly with transport distance, and do not form coignimbrite plumes. Long duration currents (600 s compared to 30-100 s) oscillate laterally with time (e.g. transport to the right, then the left, and back); this oscillation happens prior to any interaction with the tank walls. Isopach maps of the deposits show predictable trends in sedimentation versus distance in response to eruption parameters (eruption rate, duration, temperature, and initial current mass), but all sedimentation curves can be fit with 2nd order polynomials (R2>.9). Proximal sedimentation is similar in comparable warm

  6. Current nitrogen dioxide exposures among railroad workers.

    PubMed

    Woskie, S R; Hammond, S K; Smith, T J; Schenker, M B

    1989-07-01

    As part of a series of epidemiologic studies of the mortality patterns of railroad workers, various air contaminants were measured to characterize the workers' current exposures to diesel exhaust. Nitrogen dioxide (NO2), which is a constituent of diesel exhaust, was examined as one possible marker of diesel exposure. An adaptation of the Palmes personal passive sampler was used to measure the NO2 exposures of 477 U.S. railroad workers at four railroads. The range of NO2 exposures expressed as the arithmetic average +/- two standard errors for the five career job groups were as follows: signal maintainers, 16-24 parts per billion (ppb); clerks/dispatchers/station agents, 23-43 ppb; engineers/firers, 26-38 ppb; brakers/conductors, 50-74 ppb; and locomotive shop workers, 95-127 ppb. Variations among railroads and across seasons were not significant for most job groups.

  7. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE PAGES

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...

    2018-05-08

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  8. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  9. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    PubMed

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  10. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.

    PubMed

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-11-14

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g(-1) at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g(-1), which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  11. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  12. Modeling nitrogen fluxes in Germany - where does the nitrogen go?

    NASA Astrophysics Data System (ADS)

    Klement, Laura; Bach, Martin; Breuer, Lutz

    2016-04-01

    According to the latest inventory of the EU Water Framework Directive, 26.3% of German groundwater bodies are in a poor chemical state regarding nitrate. Additionally, the EU initiated infringement proceedings against Germany for not meeting the quality standards of the EU Nitrate Directive. Agriculture has been determined as the main source of nitrate pollution due to over-fertilization and regionally high density of livestock farming. The nitrogen balance surplus is commonly used as an indicator characterizing the potential of nitrate leaching into groundwater bodies and thus also serves as a foundation to introduce legislative restrictions or to monitor the success of mitigation measures. Currently, there is an ongoing discussion which measures are suitable for reducing the risk of nitrate leaching and also to what extent. However, there is still uncertainty about just how much the nitrogen surplus has to be reduced to meet the groundwater quality standards nationwide. Therefore, the aims of our study were firstly to determine the level of the nitrogen surplus that would be acceptable at the utmost and secondly whether the currently discussed target value of 30 kg N per hectare agricultural land for the soil surface nitrogen balance would be sufficient. The models MONERIS (Modeling Nutrient Emissions in River System) and MoRE (Modelling of Regionalized Emissions), the latter based on the first, are commonly used for estimating nitrogen loads into the river system in Germany at the mesoscale, as well as the effect of mitigation measures in the context of the EU directive 2008/105/EC (Environmental quality standards applicable to surface water). We used MoRE to calculate nitrate concentration for 2759 analytical units in Germany. Main factors are the surplus of the soil surface nitrogen balance, the percolation rate and an exponent representing the denitrification in the vadose zone. The modeled groundwater nitrate concentrations did not correspond to the regional

  13. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Hua, Kang; Li, Xiujuan; Fang, Dong; Yi, Jianhong; Bao, Rui; Luo, Zhiping

    2018-07-01

    Lithium vanadate nanowires have been electrodeposited onto a titanium (Ti) foil by a direct current electrodeposition without template. The morphology, crystal structure, and the effects of deposition voltage, temperature and time on the prepared samples were tested and presented. The as-prepared lithium vanadate nanowires/Ti composite can be used as electrode for lithium-ion battery. Electrochemical measurements showed that the electrode displayed a specific discharge capacitance as high as 235.1 mAh g-1 after 100 cycles at a current density of 30 mA g-1. This research provides a new pathway to explore high tap density vanadates nanowires on metals with enhanced electrochemical performance.

  14. In-vivo measurement of relationship between applied current amplitude and current density magnitude from 10 mA to 110 mA.

    PubMed

    DeMonte, Tim P; Wang, Dinghui; Ma, Weijing; Gao, Jia-Hong; Joy, Michael L G

    2009-01-01

    Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure average current density magnitude in the torso region of an in-vivo piglet for applied current pulse amplitudes ranging from 10 mA to 110 mA. The relationship between applied current amplitude and current density magnitude is linear in simple electronic elements such as wires and resistors; however, this relationship may not be linear in living tissue. An understanding of this relationship is useful for research in defibrillation, human electro-muscular incapacitation (e.g. TASER(R)) and other bioelectric stimulation devices. This work will show that the current amplitude to current density magnitude relationship is slightly nonlinear in living tissue in the range of 10 mA to 110 mA.

  15. Responsive Proteins in Wheat Cultivars with Contrasting Nitrogen Efficiencies under the Combined Stress of High Temperature and Low Nitrogen

    PubMed Central

    Abd_Allah, Elsayed Fathi; Nauman, Mohd; Asif, Ambreen; Hashem, Abeer; Alqarawi, Abdulaziz A.

    2017-01-01

    Productivity of wheat (Triticum aestivum) is markedly affected by high temperature and nitrogen deficiency. Identifying the functional proteins produced in response to these multiple stresses acting in a coordinated manner can help in developing tolerance in the crop. In this study, two wheat cultivars with contrasting nitrogen efficiencies (N-efficient VL616 and N-inefficient UP2382) were grown in control conditions, and under a combined stress of high temperature (32 °C) and low nitrogen (4 mM), and their leaf proteins were analysed in order to identify the responsive proteins. Two-dimensional electrophoresis unravelled sixty-one proteins, which varied in their expression in wheat, and were homologous to known functional proteins involved in biosynthesis, carbohydrate metabolism, energy metabolism, photosynthesis, protein folding, transcription, signalling, oxidative stress, water stress, lipid metabolism, heat stress tolerance, nitrogen metabolism, and protein synthesis. When exposed to high temperature in combination with low nitrogen, wheat plants altered their protein expression as an adaptive means to maintain growth. This response varied with cultivars. Nitrogen-efficient cultivars showed a higher potential of redox homeostasis, protein stability, osmoprotection, and regulation of nitrogen levels. The identified stress-responsive proteins can pave the way for enhancing the multiple-stress tolerance in wheat and developing a better understanding of its mechanism. PMID:29186028

  16. Departure Mechanisms for Host Search on High-Density Patches by the Meteorus pulchricornis

    PubMed Central

    Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping

    2014-01-01

    Abstract Less attention has been paid to the parasitoid–host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids–host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. PMID:25502040

  17. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  18. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  19. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  20. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue

    2017-12-01

    In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.

  1. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  2. Realizing life-scalable experimental pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting

  3. Manipulating Crop Density to Optimize Nitrogen and Water Use: An Application of Precision Agroecology

    NASA Astrophysics Data System (ADS)

    Brown, T. T.; Huggins, D. R.; Smith, J. L.; Keller, C. K.; Kruger, C.

    2011-12-01

    Rising levels of reactive nitrogen (Nr) in the environment coupled with increasing population positions agriculture as a major contributor for supplying food and ecosystem services to the world. The concept of Precision Agroecology (PA) explicitly recognizes the importance of time and place by combining the principles of precision farming with ecology creating a framework that can lead to improvements in Nr use efficiency. In the Palouse region of the Pacific Northwest, USA, relationships between productivity, N dynamics and cycling, water availability, and environmental impacts result from intricate spatial and temporal variations in soil, ecosystem processes, and socioeconomic factors. Our research goal is to investigate N use efficiency (NUE) in the context of factors that regulate site-specific environmental and economic conditions and to develop the concept of PA for use in sustainable agroecosystems and science-based Nr policy. Nitrogen and plant density field trials with winter wheat (Triticum aestivum L.) were conducted at the Washington State University Cook Agronomy Farm near Pullman, WA under long-term no-tillage management in 2010 and 2011. Treatments were imposed across environmentally heterogeneous field conditions to assess soil, crop and environmental interactions. Microplots with a split N application using 15N-labeled fertilizer were established in 2011 to examine the impact of N timing on uptake of fertilizer and soil N throughout the growing season for two plant density treatments. Preliminary data show that plant density manipulation combined with precision N applications regulated water and N use and resulted in greater wheat yield with less seed and N inputs. These findings indicate that improvements to NUE and agroecosystem sustainability should consider landscape-scale patterns driving productivity (e.g., spatial and temporal dynamics of water availability and N transformations) and would benefit from policy incentives that promote a PA

  4. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems.

    PubMed

    Feng, Huajun; Tang, Chenyi; Wang, Qing; Liang, Yuxiang; Shen, Dongsheng; Guo, Kun; He, Qiaoqiao; Jayaprada, Thilini; Zhou, Yuyang; Chen, Ting; Ying, Xianbin; Wang, Meizhen

    2018-04-01

    This study reports a high-performance 3D stainless-steel photoanode (3D SS photoanode) for bioelectrochemical systems (BESs). The 3D SS photoanode consists of 3D carbon-coated SS felt bioactive side and a flat α-Fe 2 O 3 -coated SS plate photoactive side. Without light illumination, the electrode reached a current density of 26.2 ± 1.9 A m -2 , which was already one of the highest current densities reported thus far. Under illumination, the current density of the electrode was further increased to 46.5 ± 2.9 A m -2 . The mechanism of the photo-enhanced current production can be attributed to the reduced charge-transfer resistance between electrode surface and the biofilm with illumination. It was also found that long-term light illumination can enhance the biofilm formation on the 3D SS photoanode. These findings demonstrate that using the synergistic effect of photocatalysis and microbial electrocatalysis is an efficient way to boost the current production of the existing high-performance 3D anodes for BESs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-01-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.

  6. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  7. Nitrogen Sources Screening for Ethanol Production Using Carob Industrial Wastes.

    PubMed

    Raposo, S; Constantino, A; Rodrigues, F; Rodrigues, B; Lima-Costa, M E

    2017-02-01

    Nowadays, bioethanol production is one of the most important technologies by the necessity to identify alternative energy resources, principally when based on inexpensive renewable resources. However, the costs of 2nd-generation bioethanol production using current biotechnologies are still high compared to fossil fuels. The feasibility of bioethanol production, by obtaining high yields and concentrations of ethanol, using low-cost medium, is the primary goal, leading the research done today. Batch Saccharomyces cerevisiae fermentation of high-density sugar from carob residues with different organic (yeast extract, peptone, urea) and inorganic nitrogen sources (ammonium sulfate, ammonium nitrate) was performed for evaluating a cost-effective ethanol production, with high ethanol yield and productivity. In STR batch fermentation, urea has proved to be a very promising nitrogen source in large-scale production of bioethanol, reaching an ethanol yield of 44 % (w/w), close to theoretical maximum yield value and an ethanol production of 115 g/l. Urea at 3 g/l as nitrogen source could be an economical alternative with a great advantage in the sustainability of ethanol production from carbohydrates extracted from carob. Simulation studies, with experimental data using SuperPro Design software, have shown that the bioethanol production biorefinery from carob wastes could be a very promising way to the valorization of an endogenous resource, with a competitive cost.

  8. Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1989-01-01

    Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.

  9. Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei

    2000-03-01

    The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.

  10. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    PubMed Central

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Zhang, Chengwei; Yin, Fuxing

    2017-01-01

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g−1 is manifested at the second cycle and a capacity of 664 mAh·g−1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g−1 even at a high current density of 1600 mA·g−1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode. PMID:28934141

  11. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Bakenov, Zhumabay; Zhang, Chengwei; Yin, Fuxing

    2017-09-21

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g -1 is manifested at the second cycle and a capacity of 664 mAh·g -1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g -1 even at a high current density of 1600 mA·g -1 . These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  12. The effects of normal current density and the plasma spatial structuring in argon DBDs

    NASA Astrophysics Data System (ADS)

    Shkurenkov, I. A.; Mankelevich, Y. A.; Rakhimova, T. V.

    2011-01-01

    This paper presents the results of theoretical studies of high-pressure dielectric barrier discharges (DBD) in argon. Two different DBDs at the megahertz and the kilohertz power frequency range were simulated. The effect of normal current density was obtained in the numerical model for both types of the discharge. The discharge of megahertz range was uniform over the radius. The increase in the discharge current is accompanied by increase in the discharge area. The discharge of kilohertz range is not uniform over the radius. The concentric ring formation was observed during calculations. The increase in the discharge current occurs due to increase in the number of rings and as a result in the discharge area. The developed 2D model is able to describe only the first stage of the filament formation - the formation of concentric plasma rings. The filament formation starts at the edge of the current channel and spreads to its centre. Both the effect of normal current density and the filaments formation are caused by the nonstationarity at the current channel boundary.

  13. Role of head of turbulent 3-D density currents in mixing during slumping regime

    NASA Astrophysics Data System (ADS)

    Bhaganagar, Kiran

    2017-02-01

    A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that

  14. Nickel cobaltite nanosheets strongly anchored on boron and nitrogen co-doped graphene for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinyan; Xia, Xifeng; Liu, Peng; Lei, Wu; Ouyang, Yu; Hao, Qingli

    2017-08-01

    Strongly coupled boron and nitrogen co-doped graphene (BN-G) hybrids with nickel cobaltite (NiCo2O4) nanosheets (NCO/BN-G) were fabricated by a facile soft-chemical method for asymmetric supercapacitors with high-performance. The strong interaction between BN-G and NiCo2O4 nanosheets are explored by various techniques. The effect of heteroatom doping on electrochemical properties of the hybrids is systematically investigated. The strong synergistic effect between NiCo2O4 and BN-G leads to a specific capacitance of 106.5 mA h g-1 at the current density of 0.5 A g-1 and capacitance retention of 96.8% after 10 000 cycles at 5 A g-1, much better than those of the pure NiCo2O4 and its hybrid with N-doped graphene. Moreover, an asymmetric supercapacitor device, assembled with NCO/BN-G and activated carbon (NCO/BN-G//AC), exhibits a maximum energy density of 45.6 Wh kg-1 and an excellent cycling stability. The improved electrochemical performance of the NCO/BN-G hybrid is attributed to the good conductivity of BN-G and the synergistic effect between NiCo2O4 nanosheets and BN-G combined together through a plane-to-plane contact mode.

  15. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  16. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  17. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation.

    PubMed

    Meng, Yuying; Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup; Liu, Zhongwu; Asefa, Tewodros

    2014-10-08

    We demonstrate that polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons can serve as efficient, metal-free electrocatalysts for hydrazine oxidation reaction, with low overpotential and high current density. The materials' structures and the nature and type of their included dopants, which can be controlled by varying the synthetic conditions, can affect the electrocatalytic properties of the materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005

    USGS Publications Warehouse

    Benotti, Mark J.; Abbene, Irene; Terracciano, Stephen A.

    2007-01-01

    Nitrogen loading to Jamaica Bay, a highly urbanized estuary on the southern shore of western Long Island, New York, has increased from an estimated rate of 35.6 kilograms per day (kg/d) under predevelopment conditions (pre-1900), chiefly as nitrate plus nitrite from ground-water inflow, to an estimated 15,800 kilograms per day as total nitrogen in 2005. The principal point sources are wastewater-treatment plants, combined sewer overflow/stormwater discharge during heavy precipitation, and subway dewatering, which account for 92 percent of the current (2005) nitrogen load. The principal nonpoint sources are landfill leachate, ground-water flow, and atmospheric deposition, which account for 8 percent of the current nitrogen load. The largest single source of nitrogen to Jamaica Bay is wastewater-treatment plants, which account for 89 percent of the nitrogen load. The current and historic contributions of nitrogen from seawater are unknown, although at present, the ocean likely serves as a sink for nitrogen from Jamaica Bay. Currently, concentrations of nitrogen in surface water are high throughout Jamaica Bay, but some areas with relatively little mixing have concentrations that are five times higher than areas that are well mixed.

  19. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  20. Plasma devices to guide and collimate a high density of MeV electrons.

    PubMed

    Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T

    2004-12-23

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  1. Departure mechanisms for host search on high-density patches by the Meteorus pulchricornis.

    PubMed

    Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping

    2014-01-01

    Less attention has been paid to the parasitoid-host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids-host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Electric current density imaging of tablet dissolution.

    PubMed

    Mikac, Ursa; Demsar, Alojz; Sersa, Igor; Demsar, Franci

    2002-01-01

    The Electric current density imaging technique (CDI) was used to monitor the dissolution of and ion migration from tablets of different acids in agar-agar gel. Conventional MRI cannot monitor these processes, since it can only show changes in the size of the tablet during the dissolving process. CDI traces the dissolved ions thanks to changes in conductivity.

  3. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  4. Characterizing a December 2005 density current event in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Jackson, P.R.; Oberg, K.A.; Johnson, K.K.; Garcia, M.H.

    2007-01-01

    During the winter months, the Chicago River in Chicago, Illinois is subject to bi-directional flows, and density currents are thought to be responsible for these flow variations. This paper presents detailed field measurements using three acoustic Doppler current profiler instruments and simultaneous water-quality measurements made during December 2005. Observations indicate that the formation of density currents within the Chicago River and density differences are mostly due to salinity differences between the North Branch and the main stem of the Chicago River, whereas temperature difference does not appreciably affect the creation of density currents. Sources of higher water temperature, conductivity, and salinity values should be addressed in future studies. ?? 2007 ASCE.

  5. The nitrogen fate beyond the current nutrient mitigation measures: sustainability of an integrated agriculture

    NASA Astrophysics Data System (ADS)

    Thieu, V.; Billen, G. F.; Garnier, J.; Lancelot, C.; Gypens, N.

    2010-12-01

    Located in the North-Western Europe the terrestrial continuum that includes the Seine, Somme, and Scheldt River basins offers an interesting example of a transborder territory (France, Belgium, and Netherlands) with high-intensity anthropogenic pressures. It well-illustrates the rapid development of modern agriculture in industrialised countries and the resulting severe alteration of water resources and jeopardising the capacity of rural territories to produce drinking water. The corresponding nutrient loads delivered then into the Southern Bight of the North Sea, strongly affect the ecological functioning of the coastal zone. An integrated ‘river-ocean’ assessment, coupling two deterministic models - the SENEQUE RIVESTRAHLER model simulating nutrient dynamic in the drainage network and the MIRO model describing the ecological functioning coastal ecosystem - points out the relevance of current policy based measures (improvement of waste water treatment) to mitigate phosphorous emissions, while the nitrogen pollution related to agriculture will remain critical despite the implementation of classical management measure (good agricultural practices). Therefore and irrespectively of the current political agenda, a more radical alternative is established, consisting of a generalised shift to an integrated agriculture of all agricultural areas in the three basins, excluding the use of synthetically compounded fertilisers and the importation of livestock feed. Such scenario aims at evaluating whether agriculture, by essence, can conciliate (i) the demand for food and feed by local populations, (ii) a good ecological functioning of aquatic ecosystems and (iii) a balanced nutrient status for the adjacent coastal area. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy

  6. Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.

    PubMed

    Park, Chunjae; Lee, Byung Il; Kwon, Oh In

    2007-06-07

    Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.

  7. Porous graphene current collectors filled with silicon as high-performance lithium battery anode

    NASA Astrophysics Data System (ADS)

    Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela

    2018-01-01

    Despite the massive success for high energy density, the charge-discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm-2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm-2 for 500 nm planar thickness.

  8. Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.

    PubMed

    Chen, Aibing; Xia, Kechan; Zhang, Linsong; Yu, Yifeng; Li, Yuetong; Sun, Hexu; Wang, Yuying; Li, Yunqian; Li, Shuhui

    2016-09-06

    A novel "dissolution-capture" method for the fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules (N-HMSCCs) with high capability for supercapacitor is developed. The fabrication process is performed by depositing mesoporous silica on the surface of the polyacrylonitrile nanospheres, followed by a dissolution-capture process occurring in the polyacrylonitrile core and silica shell. The polyacrylonitrile core is dissolved by dimethylformamide treatment to form a hollow cavity. Then, the polyacrylonitrile is captured into the mesochannel of silica. After carbonization and etching of silica, N-HMSCCs with uniform mesopore size are produced. The N-HMSCCs show a high specific capacitance of 206.0 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH due to its unique hollow nanostructure, high surface area, and nitrogen content. In addition, 92.3% of the capacitance of N-HMSCCs still remains after 3000 cycles at 5 A g(-1). The "dissolution-capture" method should give a useful enlightenment for the design of electrode materials for supercapacitor.

  9. Manipulating vineyard nitrogen on a saline site: 1. Effect of nitrogen on growth, grape yield and nutrients of Vitis vinifera L. cv Shiraz.

    PubMed

    Bell, Sally-Jean; Francis, I Leigh

    2013-08-15

    With increased prevalence of saline irrigation water applied to vines worldwide, the issue of appropriate nitrogen management is of concern. Different rates of nitrogen per vine as urea were applied to Shiraz vines on own roots over four seasons in a low-rainfall, saline growing environment. Application of nitrogen in the vineyard early in the season not only altered the vine nitrogen status but also increased some other elements in the petioles, notably chloride and sodium but also manganese and magnesium. In contrast, nitrogen application decreased petiole phosphorus. In comparison with the majority of nitrogen studies on non-saline sites, nitrogen-induced growth responses were restricted under the saline conditions in this study. While some changes in canopy density in response to nitrogen were observed, this did not affect light interception in the fruit zone. Yield responses were varied and could be related to the nutritional conditions under which bud development and flowering took place. This study demonstrated that current best practice guidelines, in terms of rate of nitrogen applied, for correcting a nitrogen deficiency on a non-saline site may not be appropriate for saline sites and that application of nitrogen can increase the potential for salt toxicity in vines. © 2013 Society of Chemical Industry.

  10. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  11. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected

  12. Nitrogen-atom endohedral fullerene synthesis with high efficiency by controlling plasma-ion irradiation energy and C{sub 60} internal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Soon Cheon; Kaneko, Toshiro, E-mail: kaneko@ecei.tohoku.ac.jp; Ishida, Hiroyasu

    2015-03-28

    The nitrogen-atom endohedral fullerene (N@C{sub 60}) has been synthesized by controlling the plasma ion irradiation energy (E{sub i}) and fullerene (C{sub 60}) behavior in the sublimation phase. We examined the relationship between the synthesis purity of N@C{sub 60} [molar concentration ratio of N@C{sub 60} to pristine fullerene (C{sub 60})] and E{sub i}, which was controlled by changing the substrate bias voltages (V{sub sub}) and gas pressure (P{sub N2}) during the plasma irradiation process. High-density nitrogen-molecular ions (N{sub 2}{sup +}) with a suitable E{sub i} near 80 eV are confirmed to be the optimum condition of the nitrogen plasma for themore » synthesis of high-purity N@C{sub 60}. In addition, high sublimation of C{sub 60} contributes to a higher yield due to the high internal energy of C{sub 60} and the related cage defects that are present under these conditions. As a result, a purity of 0.83% is realized for the first time, which is almost two orders of magnitude higher than that using other methods.« less

  13. High-Stacking-Density, Superior-Roughness LDH Bridged with Vertically Aligned Graphene for High-Performance Asymmetric Supercapacitors.

    PubMed

    Guo, Wei; Yu, Chang; Li, Shaofeng; Yang, Juan; Liu, Zhibin; Zhao, Changtai; Huang, Huawei; Zhang, Mengdi; Han, Xiaotong; Niu, Yingying; Qiu, Jieshan

    2017-10-01

    The high-performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high-stacking-density, superior-roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH-NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well-developed open structure for fast mass transport. Moreover, the high-stacking-density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH-NF@VG can deliver a high capacitance of 2920 F g -1 at a current density of 2 A g -1 , and the asymmetric supercapacitor with the LDH-NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg -1 at a power density of 260 W kg -1 , with a high specific capacitance retention rate of 87% even after 10 000 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High energy density Z-pinch plasmas using flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results

  15. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation

    NASA Astrophysics Data System (ADS)

    Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman

    2015-03-01

    Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.

  17. Effects of high pressure nitrogen on the thermal stability of SiC fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    1991-01-01

    Polymer-derived SiC fibers were exposed to nitrogen gas pressures of 7 and 50 atm at temperatures up to 1800 C. The fiber weight loss, chemical composition, and tensile strength were then measured at room temperature in order to understand the effects of nitrogen exposure on fiber stability. High pressure nitrogen treatments limited weight loss to 3 percent or less for temperatures up to 1800 C. The bulk Si-C-O chemical composition of the fiber remained relatively constant up to 1800 C with only a slight increase in nitrogen content after treatment at 50 atm; however, fiber strength retention was significantly improved. To further understand the effects of the nitrogen atmosphere on the fiber stability, the results of previous high pressure argon treatments were compared to those of the high pressure nitrogen treatments. High pressure inert gas can temporarily maintain fiber strength by physically inhibiting the evolution of gaseous species which result from internal reactions. In addition to this physical effect, it would appear that high pressure nitrogen further improved fiber temperature capability by chemically reacting with the fiber surface, thereby reducing the rate of gas evolution. Subsequent low pressure argon treatments following the initial nitrogen treatments resulted in stronger fibers than after argon treatment alone, further supporting the chemical reaction mechanism and its beneficial effects on fiber strength.

  18. Development and application of network virtual instrument for emission spectrum of pulsed high-voltage direct current discharge

    NASA Astrophysics Data System (ADS)

    Gong, X.; Wu, Q.

    2017-12-01

    Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.

  19. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  20. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.

    PubMed

    Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M

    2006-04-15

    A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.

  1. Improved memory word line configuration allows high storage density

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Plated wire memory word drive line allows high storage density, good plated wire transmission and a simplified memory plane configuration. A half-turn word drive line with a magnetic keeper is used. The ground plane provides the return path for both the word current and the plated wire transmission line.

  2. Electron-impact vibrational relaxation in high-temperature nitrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1992-01-01

    Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.

  3. High-density convergent plasma sputtering device for a liquid metal target using an unheated glass plate

    NASA Astrophysics Data System (ADS)

    Motomura, T.; Tabaru, T.

    2018-06-01

    A high-density convergent plasma sputtering device has been developed for a liquid metal target, using an unheated glass plate. The convergent magnetic field lines, which are produced by an external solenoid coil and a permanent magnet positioned behind the liquid metal target, effectively transport high-density plasmas near the target. In this study, a liquid gallium target was sputtered with nitrogen plasmas, without additive gas required for depositing gallium nitride films on the unheated substrates. The deposition rate of the GaN film was estimated at ˜13 nm/min at a gas pressure of 0.2 Pa. A strong diffraction peak was observed along the GaN (002) axis, with the use of an unheated glass plate and a target-substrate distance of ˜45 mm.

  4. Generation of various radicals in nitrogen plasma and their behavior in media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Han S., E-mail: hsuhm@kw.ac.kr

    2015-12-15

    Research on the generation of radicals in nitrogen plasma shows that the most dominant radicals are excited nitrogen molecules in the metastable state of N{sub 2}(A{sub 3}∑{sub u}{sup +}). Hydroxyl molecules are generated from the dissociation of water molecules upon contact with excited nitrogen molecules. The estimated densities of various radicals in nitrogen plasma with an electron temperature of 1 eV are presented in this study. The behavior of these radicals in media is also investigated. Excited nitrogen molecules in the N{sub 2}(A{sub 3}∑{sub u}{sup +}) state from a plasma jet are injected into water, after which the molecules disappear instantaneouslymore » within a few tens of nm, producing hydroxyl molecules. Hydrogen peroxide, hydrogen dioxide, and nitrogen monoxide molecules can diffuse much deeper into water, implying the possibility that a chemical reaction between hydrogen dioxide and nitrogen monoxide molecules produces hydroxyl molecules in deep water, even though density in this case may not be very high.« less

  5. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  6. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  7. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido

    2015-05-01

    Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.

  8. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    NASA Astrophysics Data System (ADS)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these

  9. High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors.

    PubMed

    Zheng, Shuanghao; Li, Zhilin; Wu, Zhong-Shuai; Dong, Yanfeng; Zhou, Feng; Wang, Sen; Fu, Qiang; Sun, Chenglin; Guo, Liwei; Bao, Xinhe

    2017-04-25

    Interfacial integration of a shape-engineered electrode with a strongly bonded current collector is the key for minimizing both ionic and electronic resistance and then developing high-power supercapacitors. Herein, we demonstrated the construction of high-power micro-supercapacitors (VG-MSCs) based on high-density unidirectional arrays of vertically aligned graphene (VG) nanosheets, derived from a thermally decomposed SiC substrate. The as-grown VG arrays showed a standing basal plane orientation grown on a (0001̅) SiC substrate, tailored thickness (3.5-28 μm), high-density structurally ordering alignment of graphene consisting of 1-5 layers, vertically oriented edges, open intersheet channels, high electrical conductivity (192 S cm -1 ), and strong bonding of the VG edges to the SiC substrate. As a result, the demonstrated VG-MSCs displayed a high areal capacitance of ∼7.3 mF cm -2 and a fast frequency response with a short time constant of 9 ms. Furthermore, VG-MSCs in both an aqueous polymer gel electrolyte and nonaqueous ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate operated well at high scan rates of up to 200 V s -1 . More importantly, VG-MSCs offered a high power density of ∼15 W cm -3 in gel electrolyte and ∼61 W cm -3 in ionic liquid. Therefore, this strategy of producing high-density unidirectional VG nanosheets directly bonded on a SiC current collector demonstrated the feasibility of manufacturing high-power compact supercapacitors.

  10. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia

    2017-08-01

    Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.

  11. Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.

    2015-04-13

    By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7–8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T{sub 0}, as high as 283 K and slope-efficiency characteristic temperature coefficients, T{sub 1}, as high as 561 K, over the 20–60 °C heatsink-temperature range. These high T{sub 0} and T{sub 1} values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8–9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm{sup 2}; values comparable to those formore » 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%–40% higher than for same-geometry conventional 8–9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.« less

  12. Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.

    NASA Astrophysics Data System (ADS)

    Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset

  13. Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates

    PubMed Central

    Zhao, Lina; Lu, Zengxing; Zhang, Fengyuan; Tian, Guo; Song, Xiao; Li, Zhongwen; Huang, Kangrong; Zhang, Zhang; Qin, Minghui; SujuanWu; Lu, Xubing; Zeng, Min; Gao, Xingsen; Dai, Jiyan; Liu, Jun-Ming

    2015-01-01

    Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots on conductive Nb-doped SrTiO3 (Nb-STO) substrates with a lateral size of ~60 nm. These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops. Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions. These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch2) nonvolatile memories and other oxide nanoelectronic devices. PMID:25853937

  14. What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Marshall, B. J.; Andrews, B. J.; Fauria, K.

    2015-12-01

    A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.

  15. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less

  16. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  17. 431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Growden, Tyler A.; Zhang, Weidong; Brown, Elliott R.; Storm, David F.; Hansen, Katurah; Fakhimi, Parastou; Meyer, David J.; Berger, Paul R.

    2018-01-01

    We report on the design and fabrication of high current density GaN/AlN double barrier resonant tunneling diodes grown via plasma assisted molecular-beam epitaxy on bulk GaN substrates. A quantum-transport solver was used to model and optimize designs with high levels of doping and ultra-thin AlN barriers. The devices displayed repeatable room temperature negative differential resistance with peak-to-valley current ratios ranging from 1.20 to 1.60. A maximum peak tunneling current density (Jp) of 431 kA/cm2 was observed. Cross-gap near-UV (370-385 nm) electroluminescence (EL) was observed above +6 V when holes, generated from a polarization induced Zener tunneling effect, recombine with electrons in the emitter region. Analysis of temperature dependent measurements, thermal resistance, and the measured EL spectra revealed the presence of severe self-heating effects.

  18. Reconstructing cortical current density by exploring sparseness in the transform domain

    NASA Astrophysics Data System (ADS)

    Ding, Lei

    2009-05-01

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  19. TiO2-Based Indium Phosphide Metal-Oxide-Semiconductor Capacitor with High Capacitance Density.

    PubMed

    Cheng, Chun-Hu; Hsu, Hsiao-Hsuan; Chou, Kun-i

    2015-04-01

    We report a low-temperature InP p-MOS with a high capacitance density of 2.7 µF/cm2, low leakage current of 0.77 A/cm2 at 1 V and tight current distribution. The high-density and low-leakage InP MOS was achieved by using high-κ TiLaO dielectric and ultra-thin SiO2 buffer layer with a thickness of less than 0.5 nm. The obtained EOT can be aggressively scaled down to < 1 nm through the use of stacked TiLaO/SiO2 dielectric, which has the potential for the future application of high mobility III-V CMOS devices.

  20. Huge critical current density and tailored superconducting anisotropy in SmFeAsO₀.₈F₀.₁₅ by low-density columnar-defect incorporation.

    PubMed

    Fang, L; Jia, Y; Mishra, V; Chaparro, C; Vlasko-Vlasov, V K; Koshelev, A E; Welp, U; Crabtree, G W; Zhu, S; Zhigadlo, N D; Katrych, S; Karpinski, J; Kwok, W K

    2013-01-01

    Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO₀.₈F₀.₁₅ is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 × 10⁷ A cm⁻² at 5 K--the highest ever reported for an iron-based superconductor--without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors.

  1. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  2. High-current electron gun with a planar magnetron integrated with an explosive-emission cathode

    NASA Astrophysics Data System (ADS)

    Kiziridi, P. P.; Ozur, G. E.

    2017-05-01

    A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.

  3. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii

    NASA Astrophysics Data System (ADS)

    Gurioli, Lucia; Pareschi, M. Teresa; Zanella, Elena; Lanza, Roberto; Deluca, Enrico; Bisson, Marina

    2005-06-01

    Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.

  4. Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC p–i–n diodes

    NASA Astrophysics Data System (ADS)

    Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime

    2018-06-01

    To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.

  5. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zou, Kaixiang; Deng, Yuanfu; Chen, Juping; Qian, Yunqian; Yang, Yuewang; Li, Yingwei; Chen, Guohua

    2018-02-01

    Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m2 g-1), a high porous volume (2.05 mL g-1 with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g-1 at 1.0 A g-1 in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg-1 at power densities of 1.0 and 20 kW kg-1, respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).

  6. High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions

    PubMed Central

    Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

    2013-01-01

    The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2·6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions. PMID:23821107

  7. Reduction of gate leakage current on AlGaN/GaN high electron mobility transistors by electron-beam irradiation.

    PubMed

    Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S

    2013-03-01

    This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.

  8. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE PAGES

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan; ...

    2017-11-06

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less

  9. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less

  10. Particle-bearing currents in uniform density and two-layer fluids

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  11. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  12. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities

    NASA Astrophysics Data System (ADS)

    Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan

    2018-05-01

    In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.

  13. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  14. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  15. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less

  16. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  17. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    PubMed

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. A Novel High-Density Phase and Amorphization of Nitrogen-Rich 1H-Tetrazole (CH2N4) under High Pressure

    PubMed Central

    Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2017-01-01

    The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH2N4) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation. PMID:28218236

  19. A Novel High-Density Phase and Amorphization of Nitrogen-Rich 1H-Tetrazole (CH2N4) under High Pressure.

    PubMed

    Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2017-02-20

    The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH 2 N 4 ) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation.

  20. The Effect of Twins on Critical Currents of High Tc Superconductors

    DTIC Science & Technology

    1989-01-01

    particles to stick together due to electrostatic forces. To overcome this we have formed a slurry of the material in liquid nitrogen and flash...can use and the liquid convection tends to counteract the separation process. We have-now designed a magnetic track which particles will slide down with...Currents of High Tc Superconductors" - A.M. Campbell and M.F. Ashby The initial work on levitation forces and separation of superconducting powders has

  1. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  2. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  3. A promising high-energy-density material.

    PubMed

    Zhang, Wenquan; Zhang, Jiaheng; Deng, Mucong; Qi, Xiujuan; Nie, Fude; Zhang, Qinghua

    2017-08-03

    High-energy density materials represent a significant class of advanced materials and have been the focus of energetic materials community. The main challenge in this field is to design and synthesize energetic compounds with a highest possible density and a maximum possible chemical stability. Here we show an energetic compound, [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide, is synthesized through a two-step reaction from commercially available reagents. It exhibits a surprisingly high density (1.99 g cm -3 at 298 K), poor solubility in water and most organic solvents, decent thermal stability, a positive heat of formation and excellent detonation properties. The solid-state structural features of the synthesized compound are also investigated via X-ray diffraction and several theoretical techniques. The energetic and sensitivity properties of the explosive compound are similar to those of 2, 4, 6, 8, 10, 12-(hexanitrohexaaza)cyclododecane (CL-20), and the developed compound shows a great promise for potential applications as a high-energy density material.High energy density materials are of interest, but density is the limiting factor for many organic compounds. Here the authors show the formation of a high density energetic compound from a two-step reaction between commercially available compounds that exhibit good heat thermal stability and detonation properties.

  4. Current-phase relations in low carrier density graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kratz, Philip; Amet, Francois; Watson, Christopher; Moler, Kathryn; Ke, Chung; Borzenets, Ivan; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb

    Ideal Dirac semimetals have the unique property of being gate tunable to arbitrarily low electron and hole carrier concentrations near the Dirac point, without suffering from conduction channel pinch-off or Fermi level pinning to band edges and deep-level charge traps, which are common in typical semiconductors. SNS junctions, where N is a Dirac semimetal, can provide a versatile platform for studying few-mode superconducting weak links, with potential device applications for superconducting logic and qubits. We will use an inductive readout technique, scanning superconducting quantum interference device (SQUID) magnetometry, to measure the current-phase relations of high-mobility graphene SNS junctions as a function of temperature and carrier density, complementing magnetic Fraunhofer diffraction analysis from transport measurements which previously have assumed sinusoidal current-phase relations for junction Andreev modes. Deviations from sinusoidal behavior convey information about resonant scattering processes, dissipation, and ballistic modes in few-mode superconducting weak links.

  5. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  6. Optimising yield and resource utilisation of summer maize under the conditions of increasing density and reducing nitrogen fertilization.

    PubMed

    Wei, Shanshan; Wang, Xiangyu; Zhu, Qicen; Jiang, Dong; Dong, Shuting

    2017-10-05

    The inefficient use of resources always poses risks of maize (Zea mays L.) yield reduction in China. We performed this research to monitor the effects of increasing plant density and reducing nitrogen (N) rate on radiation-use efficiency (RUE), N efficiency traits, grain yield (GY) and their inter-relationships. Besides, whether GY and resource-use efficiency can both be maximized was examined. Hence, a 2-year field experiment was conducted using a widely grown variety "Denghai 618" in Shandong, China. Treatments contained two different plant densities [67,500 (D 1 ) and 97,500 (D 2 ) plant ha -1 ] and three N levels [0 (N -2 ), 180 (N -1 ), 360 (N ck ) kg ha -1 ], set D 1 N ck as control. Significant increases in grain yield, biomass, RUE, above-ground N uptake (AGN) and N efficiency were observed when density increased from D 1 to D 2 . Declining N application was accompanied by reductions in yield, RUE and AGN especially under high density, yet an obvious improvement in N recovery efficiency (NRE), agronomic N efficiency and N partial factor productivity. The increased GY was positive related with population biomass (r = 0.895**), RUE (r = 0.769**) and AGN (r = 0.923**), whereas it has no significant correlation with N efficiency. In this study, D 2 N ck obtained 18.8, 17.9, 24.8 and 29.7% higher grain yield, RUE, AGN and NRE respectively, compared to control, optimizing both yield and the efficiencies of radiation and N use. Furthermore, higher yield and RUE with more desirable N efficiency may be possible via optimizing density and N rate combination.

  7. Optimising yield and resource utilisation of summer maize under the conditions of increasing density and reducing nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Wei, Shanshan; Wang, Xiangyu; Zhu, Qicen; Jiang, Dong; Dong, Shuting

    2017-12-01

    The inefficient use of resources always poses risks of maize ( Zea mays L.) yield reduction in China. We performed this research to monitor the effects of increasing plant density and reducing nitrogen (N) rate on radiation-use efficiency (RUE), N efficiency traits, grain yield (GY) and their inter-relationships. Besides, whether GY and resource-use efficiency can both be maximized was examined. Hence, a 2-year field experiment was conducted using a widely grown variety "Denghai 618" in Shandong, China. Treatments contained two different plant densities [67,500 (D1) and 97,500 (D2) plant ha-1] and three N levels [0 (N-2), 180 (N-1), 360 (Nck) kg ha-1], set D1Nck as control. Significant increases in grain yield, biomass, RUE, above-ground N uptake (AGN) and N efficiency were observed when density increased from D1 to D2. Declining N application was accompanied by reductions in yield, RUE and AGN especially under high density, yet an obvious improvement in N recovery efficiency (NRE), agronomic N efficiency and N partial factor productivity. The increased GY was positive related with population biomass ( r = 0.895**), RUE ( r = 0.769**) and AGN ( r = 0.923**), whereas it has no significant correlation with N efficiency. In this study, D2Nck obtained 18.8, 17.9, 24.8 and 29.7% higher grain yield, RUE, AGN and NRE respectively, compared to control, optimizing both yield and the efficiencies of radiation and N use. Furthermore, higher yield and RUE with more desirable N efficiency may be possible via optimizing density and N rate combination.

  8. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes

    NASA Astrophysics Data System (ADS)

    Knies, Jochen; Brookes, Steven; Schubert, Carsten J.

    2007-01-01

    Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen ( δ15N inorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15N inorg in the Atlantic-Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15N org signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.

  9. High density harp for SSCL linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  10. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    PubMed

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  11. A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Corey

    This funding represents a small sub-award related the larger project titled: A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. The goal of the sub-award was to facilitate the characterization of carbon and radiocarbon data collected from the East River watershed outside Gothic, Colorado USA. During the period of funding from 8/1/15 until 7/31/17, we sampled 40 soil profiles and collected ~325 soil samples. This funding supported the collection, processing, and elemental analysis of each of these samples. In addition, the funding allowed for the further density separation of a subset of soil resulting inmore » 60 measurements of 13C and 14C of bulk soil and density separates. Funding also supported installation of temperature and moisture data sensors arrays, soil gas wells, and soil water lysimeters. From this infrastructure, a steady stream data including soil gas, water, and physical information have been generated to support the larger research project.« less

  12. Topological analysis of the current density field in molecules

    NASA Astrophysics Data System (ADS)

    Gomes, J. A. N. F.

    A global qualitative theory of the current density has been very recently introduced by the author. These topological studies are reviewed and special attention is given to the shape of the separatrices which encase both toroidal and axial vortices.

  13. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOEpatents

    Huynh, My Hang V [Los Alamos, NM; Hiskey, Michael A [Los Alamos, NM

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  14. Hydrodynamic Instabilities in High-Energy-Density Settings

    NASA Astrophysics Data System (ADS)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  15. A confined "microreactor" synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Li, Jiajie; Zhang, Yumin; Gao, Tangling; Han, Jiecai; Wang, Xianjie; Hultman, Benjamin; Xu, Ping; Zhang, Zhihua; Wu, Gang; Song, Bo

    2018-02-01

    In virtue of abundant sodium resources, sodium ion batteries (SIBs) have been regarded as one of the most promising alternatives for large-scale energy storage applications. However, the absence of a suitable anode material makes it difficult to realize these applications. Here, we demonstrate an effective synthesis strategy of using a "microreactor" consisting of melamine fiber (inside) and graphene oxide (GO, outside) to fabricate three dimensional (3D) nitrogen doped (N-doped) graphene as high-performance anode materials for sodium ion batteries. Through a controlled pyrolysis, the inside melamine fiber and the outside GO layer has been converted into N-doped graphene and reduced graphene oxide (r-GO) respectively, and thus the "microreactor" is transformed into interconnected 3D N-doped graphene structures. Such highly desired 3D graphene structures show reversible sodium storage capacities up to ∼305 mA h g-1 after 500 cycles at a current density of 0.2 A g-1 and promising long cycling stability with a stable capacity of ∼198 mA h g-1 at 5 A g-1 after 5000 cycles. The high capacity and superior durability in combination with the facile synthesis procedure of the 3D graphene structure make it a promising anode material for SIBs and other energy storage applications.

  16. Scale Sizes of High-Latitude Neutral Mass Density Perturbations

    NASA Astrophysics Data System (ADS)

    Huang, C. Y.; Huang, Y.; Su, Y. J.; Huang, T.; Sutton, E. K.

    2017-12-01

    In a statistical study of neutral mass density maxima, we found for a select interval, that 57% of the maxima have correlated field-aligned current (FAC) signatures, indicative of localized Ohmic heating. However the remaining 43% do not, and we suggested that these maxima may be due to gravity waves generated by neutral heating. We follow up on this study by an investigation into the spatial scale sizes of the mass density maxima using high-resolution neutral density and FAC data from CHAMP, when the satellite is in conjunction with DMSP, which provides the corresponding ion drift velocity, particle precipitation and Poynting flux. The study shows the average scale sizes of the perturbations due to J x B heating, as well as the sizes of the waves generated by Joule heating.

  17. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    NASA Astrophysics Data System (ADS)

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-01

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowground respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model-observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.

  18. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    DOE PAGES

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-11

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowgroundmore » respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model–observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha -1 yr -1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.« less

  19. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    PubMed

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  1. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb 3Sn Superconductor Wires

    DOE PAGES

    Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...

    2018-03-19

    To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less

  2. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb 3Sn Superconductor Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.

    To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less

  3. Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia.

    PubMed

    Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob

    2002-11-01

    We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. Copyright 2002 Wiley-Liss, Inc.

  4. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    PubMed

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  5. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO2 capture

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Zhang, Shouren; Yin, Hang; Yang, Baocheng

    2017-08-01

    Herein, considering the great potential of nitrogen-doped hierarchical porous carbons in energy storage and CO2 capture, we designed a convenient and easily large-scale production strategy for preparing nitrogen-doped hierarchical porous carbon sphere (NHPCS) materials. In this synthesis route, spherical resorcinol-formaldehyde (RF) resins were selected as carbon precursor, and then the ZnCl2-impregnated RF resin spheres were carbonized in a NH3 atmosphere at a temperature range of 600-800 °C. During the one-step heat-treatment process, nitrogen atom could be efficiently incorporated into the carbon skeleton, and the interconnected and hierarchical pore structure with different micro/mesopore proportion could be generated and tuned by adjusting the activating agent ZnCl2 dosage and carbonization temperature. The resultant nitrogen-doped hierarchical porous carbon sphere materials exhibited a satisfactory charge storage capacity, and the optimal sample of NHPCS-2-8 with a high mesopore proportion obtained at 800 °C with a ZnCl2/RF mass ratio of 2:1 presented a specific capacitance of 273.8 F g-1 at a current density of 0.5 A g-1. More importantly, the assembled NHPCS-2-8-based symmetric capacitor displayed a high energy density of 17.2 Wh kg-1 at a power density of 178.9 W kg-1 within a voltage window of 0 ∼ 1.8 V in 0.5 M Na2SO4 aqueous electrolyte. In addition, the CO2 capture application of these NHPCS materials was also explored, and the optimal sample of NHPCS-0-8 with a large micropore proportion prepared at 800 °C exhibited an exceptional CO2 uptake capacity at ambient pressures of up to 4.23 mmol g-1 at 0 °C.

  6. NH3 assisted photoreduction and N-doping of graphene oxide for high performance electrode materials in supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Haifu; Luo, Guangsheng; Xu, Lianqiang; Lei, Chenglong; Tang, Yanmei; Tang, Shaolong; Du, Youwei

    2015-01-01

    Nitrogen-doped graphene was synthesized by simple photoreduction of graphene oxide (GO) deposited on nickel foam under NH3 atmosphere. The combination of photoreduction and NH3 not only reduces the GO in a shorter time but also induces nitrogen doping easily. The nitrogen doped content of N-rGO@NF reaches a high of 5.99 at% with 15 min of irradiation. The nitrogen-doped graphene deposited on Ni foam (N-rGO@NF) can be directly used as an electrode for supercapacitors, without any conductive agents and polymer binders. In the electrochemical measurement, N-rGO@NF displays remarkable electrochemical performance. In particular, the N-rGO@NF irradiated for 45 min at a high current density of 92.3 A g-1 retained about 77% (190.4 F g-1) of its initial specific capacitance (247.1 F g-1 at 0.31 A g-1). Furthermore, the stable voltage window could be extended to 2.0 and 1.5 V by using Li2SO4 and a mixed Li2SO4/KOH electrolyte, and the maximum energy density was high up to 32.6 and 21.2 Wh kg-1, respectively. The results show that compared to Li2SO4, a mixed electrolyte (Li2SO4/KOH) more efficiently balances the relationship between the high energy densities and high power densities.Nitrogen-doped graphene was synthesized by simple photoreduction of graphene oxide (GO) deposited on nickel foam under NH3 atmosphere. The combination of photoreduction and NH3 not only reduces the GO in a shorter time but also induces nitrogen doping easily. The nitrogen doped content of N-rGO@NF reaches a high of 5.99 at% with 15 min of irradiation. The nitrogen-doped graphene deposited on Ni foam (N-rGO@NF) can be directly used as an electrode for supercapacitors, without any conductive agents and polymer binders. In the electrochemical measurement, N-rGO@NF displays remarkable electrochemical performance. In particular, the N-rGO@NF irradiated for 45 min at a high current density of 92.3 A g-1 retained about 77% (190.4 F g-1) of its initial specific capacitance (247.1 F g-1 at 0.31 A g-1

  7. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.

    PubMed

    Sunwong, P; Higgins, J S; Hampshire, D P

    2014-06-01

    We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10⁶ A m⁻¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max)  ≈ (1.35 × 10(-3))D(0.41) l h(‑1) A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high

  8. The most intense electric currents in turbulent high speed solar wind

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  9. The most intense current sheets in the high-speed solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1current-carrying structures in high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  10. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  11. Slip-additive migration, surface morphology, and performance on injection moulded high-density polyethylene closures.

    PubMed

    Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac

    2017-11-01

    The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Maximum current density and beam brightness achievable by laser-driven electron sources

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  13. Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D

    DOE PAGES

    Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...

    2015-01-12

    Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less

  14. LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia.

    PubMed

    Miyanishi, Tomohiro; Sumiyoshi, Tomiki; Higuchi, Yuko; Seo, Tomonori; Suzuki, Michio

    2013-01-01

    Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN) has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN), by using low-resolution brain electromagnetic tomography (LORETA), and neuropsychological performance in subjects with early schizophrenia. Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC) subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J). Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.

  15. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  16. A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Huang, Wenlong; Wang, Dongdong; Tian, Jianhua; Shan, Zhongqiang

    2017-07-01

    Hybrid nanostructures containing one-dimensional (1D) carbon nanotubes (CNTs) and three-dimensional (3D) mesoporous carbon sphere have many promising applications due to their unique physical chemical properties. In this study, a novel 3D hierarchical carbon material (MCCNT) composed of mesoporous carbon sphere core and nitrogen rich CNTs shell is successfully prepared via an aerosol spray and subsequent chemical vapor deposition (CVD) processes. Owning to its well defined porous structure and favorable conductive framework, MCCNT is used as a potential sulfur host in lithium sulfur batteries through a classic melt-diffusion method. When cycled at a current density of 0.2 C (1 C = 1675 mA h g-1), it delivers an initial capacity as high as 1438.7 mAh g-1. Even if the current density increase to 1 C, the specific capacity still remain up to 534.6 mAh g-1 after 300 cycles. The enhanced electrochemical performance can be attributed to the hybrid structure of MCCNT, in which, the porous core works as a host to confine sulfur and accommodate volume expansion and the external CNTs provide excellent electron and ion conductive frame work. Furthermore, the in-situ doped nitrogen on the surface of CNTs enables effective trapping of lithium polysulfides, leading to a much-improved cycling performance.

  17. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis.

    PubMed

    Wu, Yishang; Liu, Xiaojing; Han, Dongdong; Song, Xianyin; Shi, Lei; Song, Yao; Niu, Shuwen; Xie, Yufang; Cai, Jinyan; Wu, Shaoyang; Kang, Jian; Zhou, Jianbin; Chen, Zhiyan; Zheng, Xusheng; Xiao, Xiangheng; Wang, Gongming

    2018-04-12

    Metal sulfides for hydrogen evolution catalysis typically suffer from unfavorable hydrogen desorption properties due to the strong interaction between the adsorbed H and the intensely electronegative sulfur. Here, we demonstrate a general strategy to improve the hydrogen evolution catalysis of metal sulfides by modulating the surface electron densities. The N modulated NiCo 2 S 4 nanowire arrays exhibit an overpotential of 41 mV at 10 mA cm -2 and a Tafel slope of 37 mV dec -1 , which are very close to the performance of the benchmark Pt/C in alkaline condition. X-ray photoelectron spectroscopy, synchrotron-based X-ray absorption spectroscopy, and density functional theory studies consistently confirm the surface electron densities of NiCo 2 S 4 have been effectively manipulated by N doping. The capability to modulate the electron densities of the catalytic sites could provide valuable insights for the rational design of highly efficient catalysts for hydrogen evolution and beyond.

  18. Optical characterization of clouds of fine liquid-nitrogen particles

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1990-01-01

    Characteristic drop size, D sub 32, of clouds of fine liquid nitrogen particles was measured with a scattered light scanning instrument developed at NASA-Lewis. Calibration of the instrument was accomplished with suspensions of monosized polystyrene spheres and the scattered light scanner was then used to investigate the mechanism of liquid nitrogen jet disintegration in high velocity gas flow. The Sauter mean diameter, D sub 32, was found to vary inversely with nitrogen gas mass-flux raised to the 1.33 power. Values of D sub 32 varied from 5 to 25 microns and the mass-flux exponent 1.33 agrees well with theory for liquid jet breakup in high velocity gas flow. Loss of fine particles due to the high vaporization rate of liquid nitrogen was avoided by sampling the spray 1.3 cm downstream of the nozzle orifice. The presence of high velocity and thermal gradients in the gas phase also made sampling of the particles quite difficult. As a result, it was necessary to correct the measurements for background noise produced by both highly turbulent gas flow and thermally induced density gradients in the gas phase.

  19. Progress on the Use of Internal Fins as Barriers to Reduce Magnetization on High Current Density Mono Element Internal Tin Conductors (MEIT)

    NASA Astrophysics Data System (ADS)

    Zeitlin, Bruce A.; Gregory, Eric; Pyon, Taeyoung; Scanlan, R. M.; Polyanskii, Anatolii A.; Lee, Peter J.

    2004-06-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated to explore the effect of internal fins on the effective filament size (Deff) and its effect on wire processing. A current density of 2.85 × 109 A/m2 (12 T) was achieved in a high tin, high Nb conductor. Wire lengths as long as 15.8 km at 0.254 mm diameter with breaks averaging 3 per unit length were achieved. Magnetization measurements and Magneto-Optical (MO) images were taken of the finned and non-fin conductor which indicated the fins appeared to be effective. The Deff achieved in the fin conductor was 80 μm compared with an equivalent conductor without a fin of 165 μm.

  20. Boiling-over dense pyroclastic density currents during the formation of the 100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis

    NASA Astrophysics Data System (ADS)

    Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo

    2018-01-01

    A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the

  1. Enhanced diamagnetic perturbations and electric currents observed downstream of the high power helicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, B. Race; Winglee, Robert; Prager, James

    2011-05-15

    The high power helicon (HPH) is capable of producing a high density plasma (10{sup 17}-10{sup 18} m{sup -3}) and directed ion energies greater than 20 eV that continue to increase tens of centimeters downstream of the thruster. In order to understand the coupling mechanism between the helicon antenna and the plasma outside the immediate source region, measurements were made in the plasma plume downstream from the thruster of the propagating wave magnetic field and the perturbation of the axial bulk field using a type 'R' helicon antenna. This magnetic field perturbation ({Delta}B) peaks at more than 15 G in strengthmore » downstream of the plasma source, and is 3-5 times larger than those previously reported from HPH. Taking the curl of this measured magnetic perturbation and assuming azimuthal symmetry suggests that this magnetic field is generated by a (predominantly) azimuthal current ring with a current density on the order of tens of kA m{sup -2}. At this current density the diamagnetic field is intense enough to cancel out the B{sub 0} axial magnetic field near the source region. The presence of the diamagnetic current is important as it demonstrates modification of the vacuum fields well beyond the source region and signifies the presence of a high density, collimated plasma stream. This diamagnetic current also modifies the propagation of the helicon wave, which facilitates a better understanding of coupling between the helicon wave and the resultant plasma acceleration.« less

  2. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  3. [Effect of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber leaves under CO2 enrichment].

    PubMed

    Cui, Qing Qing; Dong, Yan Hong; Li, Man; Zhang, Wen Dong; Liu, Bin Bin; Ai, Xi Zhen; Bi, Huan Gai; Li, Qing Ming

    2017-04-18

    Using split plot and then-split plot design, effects of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber (Cucumis sativus) (Jinyou No.35) under CO 2 enrichment were investigated. The main plot had two CO 2 concentrations: ambient CO 2 concentration (400 μmol·mol -1 , A) and doubled CO 2 concentration (800±20 μmol·mol -1 , E). The split plot had two treatments: no drought stress (95% of field capacity, W) and drought stress (75% of field capacity, D). The then-split plot contained low nitrogen treatment (450 kg·hm -2 , N 1 ) and high nitrogen treatment (900 kg·hm -2 , N 2 ). The results showed that under the condition of drought and high nitrogen, increasing CO 2 enhanced the cucumber plant height, and no matter what kinds of water treatment, CO 2 enrichment increased the leaf area significantly under high nitrogen. Under the condition of normal irrigation, the photosynthetic rate, stomatal conductance and transpiration rate of high nitrogen treatment were higher than low nitrogen treatment, while it was under the drought condition. Elevated CO 2 enhanced the water use efficiency of cucumber leaf which increased with increasing nitrogen application rate. Under drought stress, cucumber adaxial surface porosity density was increased, and the CO 2 enrichment and high nitrogen significantly reduced the stomatal density. Increasing nitrogen application improved the number of chloroplast, and reduced that of starch grains. Drought stress decreased the number of chloroplast, but tended to promote the number of starch grains. Drought stress increased the chloroplast length and width, and the size of the starch grains, while high nitrogen reduced the length and width of the chloroplast and starch grains. CO 2 enrichment and high nitrogen increased grana thickness and layers (except ADN 2 ), and the slice layer of EDN 2 was significantly higher than that of ADN 2 . In conclusion, CO 2 enrichment and suitable water and nitrogen could promote the

  4. Inside pyroclastic density currents - uncovering the enigmatic flow structure and transport behaviour in large-scale experiments

    NASA Astrophysics Data System (ADS)

    Breard, Eric C. P.; Lube, Gert

    2017-01-01

    Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non

  5. Effects of Current Density on Microstructure and Corrosion Property of Coating on AZ31 Mg Alloy Processed via Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Lee, Kang Min; Einkhah, Feryar; Sani, Mohammad Ali Faghihi; Ko, Young Gun; Shin, Dong Hyuk

    The effects of the current density on the micro structure and the corrosion property of the coating on AZ31 Mg alloy processed by the plasma electrolytic oxidation (PEO) were investigated. The present coatings were produced in an acid electrolyte containing K2ZrF6 with three different current densities, i.e., 100, 150, and 200 mA/cm2. From the microstructural observations, as the applied current density was increased, the diameter of micro-pores formed by the plasma discharges with high temperature increased. The coatings on AZ31 Mg alloy were mainly composed of MgO, ZrO2, MgF2, and Mg2Zr5O12 phases. The results of potentiodynamic polarization clearly showed that the PEO-treated AZ31 Mg alloy applied at 100 mA/cm2 of current density exhibited better corrosion properties than the others.

  6. LORETA Current Source Density for Duration Mismatch Negativity and Neuropsychological Assessment in Early Schizophrenia

    PubMed Central

    Miyanishi, Tomohiro; Sumiyoshi, Tomiki; Higuchi, Yuko; Seo, Tomonori; Suzuki, Michio

    2013-01-01

    Introduction Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN) has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN), by using low-resolution brain electromagnetic tomography (LORETA), and neuropsychological performance in subjects with early schizophrenia. Methods Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC) subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J). Results Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. Conclusions This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia. PMID:23577204

  7. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  8. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  9. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.

    PubMed

    Medina-Ramos, Jonnathan; DiMeglio, John L; Rosenthal, Joel

    2014-06-11

    The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel.

  10. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator

    PubMed Central

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390

  11. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator.

    PubMed

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Khalili Amiri, Pedram; Katine, Jordan A; Krivorotov, Ilya N; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.

  12. New progress of high current gasdynamic ion source (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A.

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma withmore » significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.« less

  13. Nitrogen-doped mesoporous carbon-armored cobalt nanoparticles as efficient hydrogen evolving electrocatalysts.

    PubMed

    Tang, Duihai; Li, Kuo; Zhang, Wenting; Qiao, Zhen-An; Zhu, Junjiang; Zhao, Zhen

    2018-03-15

    A series of Co nanoparticles embedded, N-doped mesoporous carbons have been synthesized through chelate-assisted co-assembly strategy followed by thermal treatment. The preparation is based on an assembly process, with evaporation of an ethanol-water solution containing melamine formaldehyde resin (MF resin) as carbon source, nitrogen source, and chelating agent. Moreover, F127 and Co(NO 3 ) 2 are used as template and metallic precursor, respectively. The Co nanoparticles embedded, N-doped mesoporous carbon annealed at 800 °C (denoted as MFCo800) shows high electrocatalytic activity for hydrogen evolution reaction (HER) with high current density and low overpotential, which has the ability to operate in both acidic and alkaline electrolytes. Copyright © 2017. Published by Elsevier Inc.

  14. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Qiu, Yejun; Yu, Jie; Deng, Xianyu; Dai, Chenglong; Bai, Xuedong

    2013-05-01

    Improvement of energy density is an urgent task for developing advanced supercapacitors. In this paper, aqueous supercapacitors with high voltage of 1.8 V and energy density of 29.1 W h kg-1 were fabricated based on carbon nanofibers (CNFs) and Na2SO4 electrolyte. The CNFs with radially grown graphene sheets (GSs) and small average diameter down to 11 nm were prepared by electrospinning and carbonization in NH3. The radially grown GSs contain between 1 and a few atomic layers with their edges exposed on the surface. The CNFs are doped with nitrogen and oxygen with different concentrations depending on the carbonizing temperature. The supercapacitors exhibit excellent cycling performance with the capacity retention over 93.7% after 5000 charging-discharging cycles. The unique structure, possessing radially grown GSs, small diameter, and heteroatom doping of the CNFs, and application of neutral electrolyte account for the high voltage and energy density of the present supercapacitors. The present supercapacitors are of high promise for practical application due to the high energy density and the advantages of neutral electrolyte including low cost, safety, low corrosivity, and convenient assembly in air.

  15. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz.

  16. High Current Plasma Electrolytic Oxidation Coating Processes for Wear and Corrosion Prevention of Al 2024

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    Plasma electrolytic oxidation (PEO) treatments have been used in the aerospace and automotive industries because the coating formed on light metals or alloys has great hardness, high wear, corrosion, and oxidation resistance, and a low friction coefficient that improves lifetime length and provide a higher surface quality. However, the PEO treatments that are presently used for industrial applications require a long period of time to confirm the quality of the coating. For this reason, the present study seeks to increase the current density of PEO treatments to improve their efficiency and explore the performance of the obtained coatings. It was found that for high current density (0.18A/cm2) PEO treatments, smaller ratio, such as 50% and 70%, is beneficial to obtaining a better performance coating. When compared with the coating of a "normal" (current density: 0.09A/cm2) PEO treatment, it had better wear resistance; however, for corrosion resistance, it had a lower performance than the coatings obtained by the "normal" current density PEO treatment which was attributed to the negative influence of porosity increase.

  17. Ecosystem respiration, vegetation development and soil nitrogen in relation to breeding density of seagulls on a pristine volcanic island, Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Sigurdsson, B. D.; Magnusson, B.

    2009-08-01

    Since its birth in 1963 by volcanic eruption in the North Atlantic Ocean off Iceland, Surtsey has been a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structure and function. In July, 2004, ecosystem respiration rate, soil properties and surface cover of vascular plants were measured on 21 plots distributed among the main plant communities found 40 years after the primary succession started. The plots could be divided into two groups, inside and outside seagull (Larus sp.) colonies found on the island. Vegetation cover of the plots was strongly related to the density of seagull nests within and around them. The occurrence of seagull nests and increased vegetation also coincided with significant increase in ecosystem respiration, soil carbon and nitrogen, and with significantly lower soil pH and soil temperatures. The ecosystem respiration was high inside the gull colonies, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The most important factor for vegetation succession and ecosystem function on Surtsey seems to be the amount of nitrogen, which was mainly brought in by the seagulls.

  18. Preparation of High-Quality FeV55N Using Ammonia as a Reductant and Nitrogen Source

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Dong; Zhang, Guo-Hua; Chou, Kuo-Chih

    2018-05-01

    High-quality FeV55N has been prepared by using ammonia as a reductant and nitrogen source. The raw materials comprised ammonium vanadate and Fe2O3, which were first reduced and nitrided by ammonia to prepare FeV55N composite powders of VN and Fe2N. Subsequently, the composite powders were sintered at high temperature to obtain a bulk FeV55N alloy. The final products obtained by this method do not contain elemental Al, Si, or C impurities. Furthermore, the residual oxygen content of the final products can be reduced to 0.56 wt.%. After sintering, it is possible to obtain a FeV55N alloy with a density of up to 5.4 g/cm3.

  19. High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets

    NASA Astrophysics Data System (ADS)

    Zhu, Jianbo; Feng, Tianyu; Du, Xianfeng; Wang, Jingping; Hu, Jun; Wei, LiPing

    2017-04-01

    Neutral aqueous medium is a promising electrolyte for supercapacitors because it is low-cost, environmental-friendly and can achieve rapid charging/discharging with high power density. However, the energy density of such supercapacitor is significantly limited by its narrow operational voltage window. Herein, we demonstrated an effective approach to broaden the operational voltage window by fabricating an asymmetric supercapacitor (ASC) with polypyrrole/reduced graphene oxide (PPy/rGO) composite and its derived Nitrogen-doped carbon nano-sheets (NCs) as positive and negative electrode material, respectively. The homogeneous nano-sheet and mesoporous structure of PPy/rGO and NCs can facilitate rapid charge/ion migration and provide more active sites for ions adsorption/exchange to improve their electrochemical performance. Benefiting from high capacitance and good rate performance of PPy/rGO and NCs electrodes, the as-fabricated ASCs devices in a polyvinyl alcohol/LiCl gel electrolyte can realize a wide operational voltage of 1.6 V and deliver high energy density of 15.8 wh kg-1 (1.01 mWh cm-3) at 0.14 kW kg-1 (19.3 mW cm-3), which still remains 9.5 wh kg-1as power density increases to 6.56 kW kg-1, as well as excellent long-term cycling stability with about 88.7% capacitance retention after 10000 cycles. The remarkable performances suggest that the ASCs devices are promising for future energy storage applications.

  20. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGES

    Li, Bin; Nie, Zimin; Vijayakumar, M.; ...

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L -1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI 2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L -1 at the solubility limit of ZnI 2 in water (~7 M).more » We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI 2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI 2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  1. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  2. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors.

    PubMed

    Yao, Yuechao; Liu, Peng; Li, Xiaoyan; Zeng, Shaozhong; Lan, Tongbin; Huang, Haitao; Zeng, Xierong; Zou, Jizhao

    2018-05-17

    Herein, N-doped graphitic hierarchically porous carbon nanofibers (NGHPCF) were prepared by electrospinning the composite of bimetallic-coordination metal-organic frameworks and polyacrylonitrile, followed by a pyrolysis and acid wash process. Control over the N content, specific surface area, and degree of graphitization of NGHPCF materials has been realized by adjusting the Co/Zn metal coordination content as well as the pyrolysis temperature. The obtained NGHPCF with a high specific surface area (623 m2 g-1) and nitrogen content (13.83 wt%) exhibit a high capacitance of 326 F g-1 at 0.5 A g-1. In addition, the capacitance of 170 F g-1 is still maintained at a high current density (40 A g-1); this indicates a high capacitance retention capability. Furthermore, a superb energy density (9.61 W h kg-1) is obtained with a high power density (62.4 W kg-1) using an organic electrolyte. These results fully illustrate that the prepared NGHPCF binder-free electrodes are promising candidates for high-performance supercapacitors.

  3. T- P Phase Diagram of Nitrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  4. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.

    PubMed

    Lee, Jae Ah; Shin, Min Kyoon; Kim, Shi Hyeong; Kim, Seon Jeong; Spinks, Geoffrey M; Wallace, Gordon G; Ovalle-Robles, Raquel; Lima, Márcio D; Kozlov, Mikhail E; Baughman, Ray H

    2012-01-24

    We report mechanically robust, electrically conductive, free-standing, and transparent hybrid nanomembranes made of densified carbon nanotube sheets that were coated with poly(3,4-ethylenedioxythiophene) using vapor phase polymerization and their performance as supercapacitors. The hybrid nanomembranes with thickness of ~66 nm and low areal density of ~15 μg/cm(2)exhibited high mechanical strength and modulus of 135 MPa and 12.6 GPa, respectively. They also had remarkable shape recovery ability in liquid and at the liquid/air interface unlike previous carbon nanotube sheets. The hybrid nanomembrane attached on a current collector had volumetric capacitance of ~40 F/cm(3) at 100 V s(-1) (~40 and ~80 times larger than that of onion-like carbon measured at 100 V s(-1) and activated carbon measured at 20 V s(-1), respectively), and it showed rectangular shapes of cyclic voltammograms up to ~5 V s(-1). High mechanical strength and flexibility of the hybrid nanomembrane enabled twisting it into microsupercapacitor yarns with diameters of ~30 μm. The yarn supercapacitor showed stable cycling performance without a metal current collector, and its capacitance decrease was only ~6% after 5000 cycles. Volumetric energy and power density of the hybrid nanomembrane was ~70 mWh cm(-3) and ~7910 W cm(-3), and the yarn possessed the energy and power density of ~47 mWh cm(-3) and ~538 W cm(-3). © 2011 American Chemical Society

  5. High density diffusion-free nanowell arrays.

    PubMed

    Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter

    2012-08-03

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.

  6. Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis.

    PubMed

    Halnes, Geir; Mäki-Marttunen, Tuomo; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T

    2017-07-01

    Current-source density (CSD) analysis is a well-established method for analyzing recorded local field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we here show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects. NEW & NOTEWORTHY Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular. Copyright © 2017 the American Physiological Society.

  7. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  8. The role of nitrogen ions in the ring current dynamics

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Liemohn, M. W.; Dandouras, I. S.

    2017-12-01

    Changes in the ion composition throughout the Earth's magnetosphere can have profound implications on plasma structures and dynamics, since it can modify the temperature and the magnetic field configuration, altering the convection patterns inside the magnetosphere. The ratio of hydrogen to oxygen ions has been shown to be highly dependent of geomagnetic activity, with the O+ content increasing with increasing activity. This suggests that ions of ionospheric origin can become the dominant species in the inner magnetosphere during disturbed times. Therefore, numerous studies have focused on the transport and energization of O+ through the ionosphere-magnetosphere system; however, relatively few have considered the contribution of N+, in addition to that of O+ to the near-Earth plasma dynamics, even though past observations have established that N+ is a significant ion species in the ionosphere and its presence in the magnetosphere is significant. Ring current observations from the Active Magnetospheric Particle Tracer Explorer (AMPTE) spacecraft show that high energy N+ fluxes are comparable to those of O+ during disturbed times, confirming the substantial presence of N+ions in the inner magnetosphere. In spite of only 12% mass difference, N+ and O+ have different ionization potentials, scale heights and charge exchange cross sections. The latter, together with the geocoronal density distribution, plays a key role in the formation of Energetic Neutral Atoms (ENAs), which in turn control the energy budget of the inner magnetosphere and the decay of the ring current. Numerical simulations using the Hot Electron and Ion Drift Integrator (HEIDI) model suggest that the contribution of N+ to the ring current dynamics is significant, as the presence of N+, in addition to that of O+, alters the development and the decay rate of the ring current. These findings suggest that differentiating the N+ transport from that of O+ in the near-Earth environment has a profound impact

  9. High-temperature, high-power-density thermionic energy conversion for space

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.

  10. Electrical current at micro-/macro-scale of undoped and nitrogen-doped MWPECVD diamond films

    NASA Astrophysics Data System (ADS)

    Cicala, G.; Velardi, L.; Senesi, G. S.; Picca, R. A.; Cioffi, N.

    2017-12-01

    Chemical, structural, morphological and micro-/macro-electrical properties of undoped and nitrogen-(N-)doped diamond films are determined by X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, field emission scanning electron microscopy, atomic force microscopy, scanning capacitance microscopy (SCM) and two points technique for I-V characteristics, respectively. The characterization results are very useful to examine and understand the relationship among these properties. The effect of the nitrogen incorporation in diamond films is investigated through the evolution of the chemical, structural, morphological and topographical features and of the electrical behavior. The distribution of the electrical current is first assessed at millimeter scale on the surface of diamond films and then at micrometer scale on small regions in order to establish the sites where the carriers preferentially move. Specifically, the SCM images indicate a non-uniform distribution of carriers on the morphological structures mainly located along the grain boundaries. A good agreement is found by comparing the electrical currents at the micro- and macro-scale. This work aims to highlight phenomena such as photo- and thermionic emission from N-doped diamond useful for microelectronic engineering.

  11. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    PubMed Central

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-01-01

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275

  12. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    PubMed

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  13. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  14. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. Q.; Jie, Y. X., E-mail: yx-jie@ipp.ac.cn; Zou, Z. Y.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  15. Estimated historical and current nitrogen balances for Illinois.

    PubMed

    David, M B; McIsaac, G F; Royer, T V; Darmody, R G; Gentry, L E

    2001-10-23

    The Midwest has large riverine exports of nitrogen (N), with the largest flux per unit area to the Mississippi River system coming from Iowa and Illinois. We used historic and current data to estimate N inputs, outputs, and transformations for Illinois where human activity (principally agriculture and associated landscape drainage) have had a dominant impact. Presently, approximately 800,000 Mg of N is added each year as fertilizer and another 420,000 Mg is biologically fixed, primarily by soybean (Glycine max L. Merr.). These annual inputs are greater than exports in grain, which results in surplus N throughout the landscape. Rivers within the state export approximately 50% of this surplus N, mostly as nitrate, and the remainder appears to be denitrified or temporarily incorporated into the soil organic matter pool. The magnitude of N losses for 1880, 1910, 1950, and 1990 are compared. Initial cultivation of the prairies released large quantities of N (approximately 500,000 Mg N year(-1)), and resulted in riverine N transport during the late 19th century that appears to have been on the same order of magnitude as contemporary N losses. Riverine flux was estimated to have been at a minimum in about 1950, due to diminished net mineralization and low fertilizer inputs. Residual fertilizer N from corn (Zea mays L.), biological N fixed by soybean, short-circuiting of soil water through artificial drainage, and decreased cropping-system diversity appear to be the primary sources for current N export.

  16. High-performance aqueous asymmetric supercapacitor based on K0.3WO3 nanorods and nitrogen-doped porous carbon

    NASA Astrophysics Data System (ADS)

    Ma, Guofu; Zhang, Zhiguo; Sun, Kanjun; Feng, Enke; Peng, Hui; Zhou, Xiaozhong; Lei, Ziqiang

    2016-10-01

    A novel asymmetric supercapacitor device for energy storage is fabricated using K0.3WO3 nanorods as negative electrode and nitrogen-doped porous carbon (CBC-1) based on agricultural wastes corn bract as positive electrode. The K0.3WO3 nanorods are composed of some thinner needle-shaped nanorods which are parallel to each other, and the CBC-1 reveals rough surface of coral-like frameworks with abundant nanopores. The structures can provide high surface area, low diffusion paths and intercalation/de-intercalation of electrolyte ions between the electrode/electrolyte interfaces. Thus, the asymmetric supercapacitor exhibits high energy density about 26.3 Wh kg-1 at power density of 404.2 W kg-1 in the wide voltage region of 0-1.6 V, as well as a good electrochemical stability (80% capacitance retention after 1000 cycles). Such outstanding electrochemical behaviors imply the CBC-1//K0.3WO3 asymmetric supercapacitor is a promising practical energy-storage system.

  17. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less

  18. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  19. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE PAGES

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan; ...

    2017-09-08

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  20. Large-eddy simulation of dust-uplift by a haboob density current

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Marsham, John H.; Tian, Wenshou; Parker, Douglas J.; Garcia-Carreras, Luis

    2018-04-01

    Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust emissions ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper Met Office Large Eddy Model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs with convection-permitting models, are used to investigate the winds that uplift dust in cold pools, and the resultant dust transport. In order to simulate the cold pool outflow, an idealized cooling is added in the model during the first 2 h of 5.7 h run time. Given the short duration of the runs, dust is treated as a passive tracer. Dust uplift largely occurs in the "head" of the density current, consistent with the few existing observations. In the modeled density current dust is largely restricted to the lowest, coldest and well mixed layers of the cold pool outflow (below around 400 m), except above the "head" of the cold pool where some dust reaches 2.5 km. This rapid transport to above 2 km will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density current. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region during daytime show that increasing surface fluxes slows the density current due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.

  1. Defect pair formation in fluorine and nitrogen codoped TiO2

    NASA Astrophysics Data System (ADS)

    Kordatos, A.; Kelaidis, N.; Chroneos, A.

    2018-04-01

    Titanium oxide is extensively investigated because of its high chemical stability and its photocatalytic properties; nevertheless, the large band gap limits its activity to a small portion of the solar spectrum. Nitrogen and fluorine codoping is an efficient defect engineering strategy to increase the photocatalytic activity of titanium oxide. In the present study, we apply density functional theory to investigate the interaction of nitrogen with fluorine and the formation of defect pairs. We show that in fluorine and nitrogen codoped titanium oxide, the FiNi, FONi, and FiNTi defects can form. Their impact on the electronic structure of titanium oxide is discussed.

  2. A plasmapause-like density boundary at high latitudes in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Persoon, A. M.; Kopf, A. J.; Kurth, W. S.; Morooka, M. W.; Wahlund, J.-E.; Khurana, K. K.; Dougherty, M. K.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.

    2010-08-01

    Here we report the discovery of a well-defined plasma density boundary at high latitudes in Saturn's magnetosphere. The boundary separates a region of relatively high density at L less than about 8 to 15 from a region with densities nearly three orders of magnitude lower at higher L values. Magnetic field measurements show that strong field-aligned currents, probably associated with the aurora, are located just inside the boundary. Analyses of the anisotropy of energetic electrons show that the magnetic field lines are usually closed inside the boundary and open outside the boundary, although exceptions sometimes occur. The location of the boundary is also modulated at the ˜10.6 to 10.8 hr rotational period of the planet. Many of these characteristics are similar to those predicted by Brice and Ioannidis for the plasmapause at a strongly magnetized, rapidly rotating planet such as Saturn.

  3. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  4. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  5. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Ju Won; Sharma, Ronish; Meduri, Praveen

    2014-04-30

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirementmore » of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.« less

  6. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    NASA Astrophysics Data System (ADS)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  7. Making AlN(x) Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Kleinsasser, Alan; Bumble, Bruce; LeDuc, Henry; Lee, Karen

    2005-01-01

    A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlN(x)) for use as tunnel barriers in Nb/Al-AlN(x)/Nb superconductor/insulator/ superconductor (SIS) Josephson junctions. AlN(x) is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability. While ultra-thin AlN films with good thickness and stoichiometry control are easily formed using techniques such as reactive molecular beam epitaxy and chemical vapor deposition, growth temperatures of 900 C are necessary for the dissociative adsorption of nitrogen from either nitrogen (N2) or ammonia (NH3). These growth temperatures are prohibitively high for the formation of tunnel barriers on Nb films because interfacial reactions at temperatures as low as 200 to 300 C degrade device properties. Heretofore, deposition by reactive sputtering and nitridation of thin Al layers with DC and RF nitrogen plasmas have been successfully used to form AlN barriers in SIS junctions. However, precise control over critical current density Jc has proven to be a challenge, as is attaining adequate process reproducibility from system to system. The present ion-beam technique is an alternative to the plasma or reactive sputtering techniques as it provides a highly controlled arrival of reactive species, independent of the electrical conditions of the substrate or vacuum chamber. Independent and accurate control of parameters such as ion energy, flux, species, and direction promises more precise control of film characteristics such as stoichiometry and thickness than is the case with typical plasma processes. In particular, the background pressure during ion-beam nitride growth is 2 or 3 orders of magnitude lower, minimizing the formation of

  8. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors.

    PubMed

    Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K

    2014-05-28

    A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.

  9. Effect of current density on electron beam induced charging in MgO

    NASA Astrophysics Data System (ADS)

    Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy

    2005-11-01

    It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.

  10. Quasiparticle and hybrid density functional methods in defect studies: An application to the nitrogen vacancy in GaN

    NASA Astrophysics Data System (ADS)

    Lewis, D. K.; Matsubara, M.; Bellotti, E.; Sharifzadeh, S.

    2017-12-01

    Defects in semiconductors can play a vital role in the performance of electronic devices, with native defects often dominating the electronic properties of the semiconductor. Understanding the relationship between structural defects and electronic function will be central to the design of new high-performance materials. In particular, it is necessary to quantitatively understand the energy and lifetime of electronic states associated with the defect. Here, we apply first-principles density functional theory (DFT) and many-body perturbation theory within the GW approximation to understand the nature and energy of the defect states associated with a charged nitrogen vacancy on the electronic properties of gallium nitride (GaN), as a model of a well-studied and important wide gap semiconductor grown with defects. We systematically investigate the sources of error associated with the GW approximation and the role of the underlying atomic structure on the predicted defect state energies. Additionally, analysis of the computed electronic density of states (DOS) reveals that there is one occupied defect state 0.2 eV below the valence band maximum and three unoccupied defect states at energy of 0.2-0.4 eV above the conduction band minimum, suggesting that this defect in the +1 charge state will not behave as a carrier trap. Furthermore, we compare the character and energy of the defect state obtained from GW and DFT using the HSE approximate density functional and find excellent agreement. This systematic study provides a more complete understanding of how to obtain quantitative defect energy states in bulk semiconductors.

  11. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  12. Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites.

    PubMed

    Murphy, Anna E; Nizzoli, Daniele; Bartoli, Marco; Smyth, Ashley R; Castaldelli, Giuseppe; Anderson, Iris C

    2018-02-01

    As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is important to minimize impacts. This study investigated nitrogen cycling associated with clam aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated with clam biomass; R. philippinarum consumed ~6 times more oxygen and excreted ~5 times more NH 4 + than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  14. Properties of micro-arc oxidation coatings on aluminum alloy at different negative peak current densities

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian

    2018-05-01

    Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.

  15. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less

  16. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole

  17. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  18. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  19. Nitrogen dynamics in a highly urbanized coastal area of western Japan: impact of sewage-derived loads

    NASA Astrophysics Data System (ADS)

    Saito, Mitsuyo; Onodera, Shin-ichi; Jin, Guangzhe; Shimizu, Yuta; Taniguchi, Masanobu

    2018-12-01

    In this study, we examined the nitrogen dynamics of a highly urbanized coastal area, focusing on the impacts of sewage-derived nitrogen. High levels of dissolved inorganic nitrogen were detected in seawater near treated sewage effluent (TSE) discharge points before decreasing in the offshore direction, suggesting that the impact zone of sewage effluent is about 1-2 km from the discharge point. The stable isotope ratios of nitrate and particulate organic nitrogen suggest nitrogen uptake by phytoplankton as well as dilution by offshore seawater, which contributed to a decrease in sewage-derived nitrogen levels. However, the extent of the impact zone was controlled by tidal variations and differences in temperature between the TSE and seawater. Our results also identify nitrogen transport processes, through exchange between seawater and sediment pore water, as an additional important source of nitrogen in the study area.

  20. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.