Sample records for high-end scientific computing

  1. High-End Scientific Computing

    EPA Pesticide Factsheets

    EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, althoughmore » the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage over vector supercomputers, and, if so, which of the parallel offerings would be most useful in real-world scientific computation. In part to draw attention to some of the performance reporting abuses prevalent at the time, the present author wrote a humorous essay 'Twelve Ways to Fool the Masses,' which described in a light-hearted way a number of the questionable ways in which both vendor marketing people and scientists were inflating and distorting their performance results. All of this underscored the need for an objective and scientifically defensible measure to compare performance on these systems.« less

  3. Letter regarding 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics' by Patrizi et al. and research reproducibility.

    PubMed

    2017-04-01

    The reporting of research in a manner that allows reproduction in subsequent investigations is important for scientific progress. Several details of the recent study by Patrizi et al., 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics', are absent from the published manuscript and make reproduction of findings impossible. As new and complex technologies with great promise for ergonomics develop, new but surmountable challenges for reporting investigations using these technologies in a reproducible manner arise. Practitioner Summary: As with traditional methods, scientific reporting of new and complex ergonomics technologies should be performed in a manner that allows reproduction in subsequent investigations and supports scientific advancement.

  4. Cooperative fault-tolerant distributed computing U.S. Department of Energy Grant DE-FG02-02ER25537 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2007-01-09

    The Harness project has developed novel software frameworks for the execution of high-end simulations in a fault-tolerant manner on distributed resources. The H2O subsystem comprises the kernel of the Harness framework, and controls the key functions of resource management across multiple administrative domains, especially issues of access and allocation. It is based on a “pluggable” architecture that enables the aggregated use of distributed heterogeneous resources for high performance computing. The major contributions of the Harness II project result in significantly enhancing the overall computational productivity of high-end scientific applications by enabling robust, failure-resilient computations on cooperatively pooled resource collections.

  5. Onward to Petaflops Computing

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    With programs such as the US High Performance Computing and Communications Program (HPCCP), the attention of scientists and engineers worldwide has been focused on the potential of very high performance scientific computing, namely systems that are hundreds or thousands of times more powerful than those typically available in desktop systems at any given point in time. Extending the frontiers of computing in this manner has resulted in remarkable advances, both in computing technology itself and also in the various scientific and engineering disciplines that utilize these systems. Within the month or two, a sustained rate of 1 Tflop/s (also written 1 teraflops, or 10(exp 12) floating-point operations per second) is likely to be achieved by the 'ASCI Red' system at Sandia National Laboratory in New Mexico. With this objective in sight, it is reasonable to ask what lies ahead for high-end computing.

  6. Generic Divide and Conquer Internet-Based Computing

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J. (Technical Monitor); Radenski, Atanas

    2003-01-01

    The growth of Internet-based applications and the proliferation of networking technologies have been transforming traditional commercial application areas as well as computer and computational sciences and engineering. This growth stimulates the exploration of Peer to Peer (P2P) software technologies that can open new research and application opportunities not only for the commercial world, but also for the scientific and high-performance computing applications community. The general goal of this project is to achieve better understanding of the transition to Internet-based high-performance computing and to develop solutions for some of the technical challenges of this transition. In particular, we are interested in creating long-term motivation for end users to provide their idle processor time to support computationally intensive tasks. We believe that a practical P2P architecture should provide useful service to both clients with high-performance computing needs and contributors of lower-end computing resources. To achieve this, we are designing dual -service architecture for P2P high-performance divide-and conquer computing; we are also experimenting with a prototype implementation. Our proposed architecture incorporates a master server, utilizes dual satellite servers, and operates on the Internet in a dynamically changing large configuration of lower-end nodes provided by volunteer contributors. A dual satellite server comprises a high-performance computing engine and a lower-end contributor service engine. The computing engine provides generic support for divide and conquer computations. The service engine is intended to provide free useful HTTP-based services to contributors of lower-end computing resources. Our proposed architecture is complementary to and accessible from computational grids, such as Globus, Legion, and Condor. Grids provide remote access to existing higher-end computing resources; in contrast, our goal is to utilize idle processor time of lower-end Internet nodes. Our project is focused on a generic divide and conquer paradigm and on mobile applications of this paradigm that can operate on a loose and ever changing pool of lower-end Internet nodes.

  7. Idea Paper: The Lifecycle of Software for Scientific Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; McInnes, Lois C.

    The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less

  8. Accelerating scientific discovery : 2007 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less

  9. The Workstation Approach to Laboratory Computing

    PubMed Central

    Crosby, P.A.; Malachowski, G.C.; Hall, B.R.; Stevens, V.; Gunn, B.J.; Hudson, S.; Schlosser, D.

    1985-01-01

    There is a need for a Laboratory Workstation which specifically addresses the problems associated with computing in the scientific laboratory. A workstation based on the IBM PC architecture and including a front end data acquisition system which communicates with a host computer via a high speed communications link; a new graphics display controller with hardware window management and window scrolling; and an integrated software package is described.

  10. Amplify scientific discovery with artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less

  11. Generic Divide and Conquer Internet-Based Computing

    NASA Technical Reports Server (NTRS)

    Radenski, Atanas; Follen, Gregory J. (Technical Monitor)

    2001-01-01

    The rapid growth of internet-based applications and the proliferation of networking technologies have been transforming traditional commercial application areas as well as computer and computational sciences and engineering. This growth stimulates the exploration of new, internet-oriented software technologies that can open new research and application opportunities not only for the commercial world, but also for the scientific and high -performance computing applications community. The general goal of this research project is to contribute to better understanding of the transition to internet-based high -performance computing and to develop solutions for some of the difficulties of this transition. More specifically, our goal is to design an architecture for generic divide and conquer internet-based computing, to develop a portable implementation of this architecture, to create an example library of high-performance divide-and-conquer computing agents that run on top of this architecture, and to evaluate the performance of these agents. We have been designing an architecture that incorporates a master task-pool server and utilizes satellite computational servers that operate on the Internet in a dynamically changing large configuration of lower-end nodes provided by volunteer contributors. Our designed architecture is intended to be complementary to and accessible from computational grids such as Globus, Legion, and Condor. Grids provide remote access to existing high-end computing resources; in contrast, our goal is to utilize idle processor time of lower-end internet nodes. Our project is focused on a generic divide-and-conquer paradigm and its applications that operate on a loose and ever changing pool of lower-end internet nodes.

  12. High-End Climate Science: Development of Modeling and Related Computing Capabilities

    DTIC Science & Technology

    2000-12-01

    toward strengthening research on key scientific issues. The Program has supported research that has led to substantial increases in knowledge , improved...provides overall direction and executive oversight of the USGCRP. Within this framework, agencies manage and coordinate Federally supported scientific...critical for the U.S. Global Change Research Program. Such models can be used to look backward to test the consistency of our knowledge of Earth system

  13. RELIABILITY, AVAILABILITY, AND SERVICEABILITY FOR PETASCALE HIGH-END COMPUTING AND BEYOND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chokchai "Box" Leangsuksun

    2011-05-31

    Our project is a multi-institutional research effort that adopts interplay of RELIABILITY, AVAILABILITY, and SERVICEABILITY (RAS) aspects for solving resilience issues in highend scientific computing in the next generation of supercomputers. results lie in the following tracks: Failure prediction in a large scale HPC; Investigate reliability issues and mitigation techniques including in GPGPU-based HPC system; HPC resilience runtime & tools.

  14. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2006-01-01

    High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.

  15. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase Qishi; Zhu, Michelle Mengxia

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less

  16. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  17. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  18. Big Data: Next-Generation Machines for Big Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, James J.; Papka, Michael E.

    Addressing the scientific grand challenges identified by the US Department of Energy’s (DOE’s) Office of Science’s programs alone demands a total leadership-class computing capability of 150 to 400 Pflops by the end of this decade. The successors to three of the DOE’s most powerful leadership-class machines are set to arrive in 2017 and 2018—the products of the Collaboration Oak Ridge Argonne Livermore (CORAL) initiative, a national laboratory–industry design/build approach to engineering nextgeneration petascale computers for grand challenge science. These mission-critical machines will enable discoveries in key scientific fields such as energy, biotechnology, nanotechnology, materials science, and high-performance computing, and servemore » as a milestone on the path to deploying exascale computing capabilities.« less

  19. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  20. Exploiting graphics processing units for computational biology and bioinformatics.

    PubMed

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  1. MOLAR: Modular Linux and Adaptive Runtime Support for HEC OS/R Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Mueller

    2009-02-05

    MOLAR is a multi-institution research effort that concentrates on adaptive, reliable,and efficient operating and runtime system solutions for ultra-scale high-end scientific computing on the next generation of supercomputers. This research addresses the challenges outlined by the FAST-OS - forum to address scalable technology for runtime and operating systems --- and HECRTF --- high-end computing revitalization task force --- activities by providing a modular Linux and adaptable runtime support for high-end computing operating and runtime systems. The MOLAR research has the following goals to address these issues. (1) Create a modular and configurable Linux system that allows customized changes based onmore » the requirements of the applications, runtime systems, and cluster management software. (2) Build runtime systems that leverage the OS modularity and configurability to improve efficiency, reliability, scalability, ease-of-use, and provide support to legacy and promising programming models. (3) Advance computer reliability, availability and serviceability (RAS) management systems to work cooperatively with the OS/R to identify and preemptively resolve system issues. (4) Explore the use of advanced monitoring and adaptation to improve application performance and predictability of system interruptions. The overall goal of the research conducted at NCSU is to develop scalable algorithms for high-availability without single points of failure and without single points of control.« less

  2. On-demand Simulation of Atmospheric Transport Processes on the AlpEnDAC Cloud

    NASA Astrophysics Data System (ADS)

    Hachinger, S.; Harsch, C.; Meyer-Arnek, J.; Frank, A.; Heller, H.; Giemsa, E.

    2016-12-01

    The "Alpine Environmental Data Analysis Centre" (AlpEnDAC) develops a data-analysis platform for high-altitude research facilities within the "Virtual Alpine Observatory" project (VAO). This platform, with its web portal, will support use cases going much beyond data management: On user request, the data are augmented with "on-demand" simulation results, such as air-parcel trajectories for tracing down the source of pollutants when they appear in high concentration. The respective back-end mechanism uses the Compute Cloud of the Leibniz Supercomputing Centre (LRZ) to transparently calculate results requested by the user, as far as they have not yet been stored in AlpEnDAC. The queuing-system operation model common in supercomputing is replaced by a model in which Virtual Machines (VMs) on the cloud are automatically created/destroyed, providing the necessary computing power immediately on demand. From a security point of view, this allows to perform simulations in a sandbox defined by the VM configuration, without direct access to a computing cluster. Within few minutes, the user receives conveniently visualized results. The AlpEnDAC infrastructure is distributed among two participating institutes [front-end at German Aerospace Centre (DLR), simulation back-end at LRZ], requiring an efficient mechanism for synchronization of measured and augmented data. We discuss our iRODS-based solution for these data-management tasks as well as the general AlpEnDAC framework. Our cloud-based offerings aim at making scientific computing for our users much more convenient and flexible than it has been, and to allow scientists without a broad background in scientific computing to benefit from complex numerical simulations.

  3. From the desktop to the grid: scalable bioinformatics via workflow conversion.

    PubMed

    de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver

    2016-03-12

    Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a positive impact on reproducibility, thus elevating the quality of obtained scientific results.

  4. Intricacies of modern supercomputing illustrated with recent advances in simulations of strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2013-03-01

    The continued thousand-fold improvement in sustained application performance per decade on modern supercomputers keeps opening new opportunities for scientific simulations. But supercomputers have become very complex machines, built with thousands or tens of thousands of complex nodes consisting of multiple CPU cores or, most recently, a combination of CPU and GPU processors. Efficient simulations on such high-end computing systems require tailored algorithms that optimally map numerical methods to particular architectures. These intricacies will be illustrated with simulations of strongly correlated electron systems, where the development of quantum cluster methods, Monte Carlo techniques, as well as their optimal implementation by means of algorithms with improved data locality and high arithmetic density have gone hand in hand with evolving computer architectures. The present work would not have been possible without continued access to computing resources at the National Center for Computational Science of Oak Ridge National Laboratory, which is funded by the Facilities Division of the Office of Advanced Scientific Computing Research, and the Swiss National Supercomputing Center (CSCS) that is funded by ETH Zurich.

  5. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.« less

  6. !CHAOS: A cloud of controls

    NASA Astrophysics Data System (ADS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  7. Building a Terabyte Memory Bandwidth Compute Node with Four Consumer Electronics GPUs

    NASA Astrophysics Data System (ADS)

    Omlin, Samuel; Räss, Ludovic; Podladchikov, Yuri

    2014-05-01

    GPUs released for consumer electronics are generally built with the same chip architectures as the GPUs released for professional usage. With regards to scientific computing, there are no obvious important differences in functionality or performance between the two types of releases, yet the price can differ up to one order of magnitude. For example, the consumer electronics release of the most recent NVIDIA Kepler architecture (GK110), named GeForce GTX TITAN, performed equally well in conducted memory bandwidth tests as the professional release, named Tesla K20; the consumer electronics release costs about one third of the professional release. We explain how to design and assemble a well adjusted computer with four high-end consumer electronics GPUs (GeForce GTX TITAN) combining more than 1 terabyte/s memory bandwidth. We compare the system's performance and precision with the one of hardware released for professional usage. The system can be used as a powerful workstation for scientific computing or as a compute node in a home-built GPU cluster.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.; Herner, K.; Jayatilaka, B.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  9. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  10. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  11. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  12. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  13. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

  14. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  15. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    NASA Technical Reports Server (NTRS)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  16. Opal web services for biomedical applications.

    PubMed

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerio, S.; Behari, S.; Boyd, J.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  18. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.

    2017-04-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.

  19. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    NASA Technical Reports Server (NTRS)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  20. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  1. The end-to-end simulator for the E-ELT HIRES high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca

    2017-06-01

    We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.

  2. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  3. Are Cloud Environments Ready for Scientific Applications?

    NASA Astrophysics Data System (ADS)

    Mehrotra, P.; Shackleford, K.

    2011-12-01

    Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.

  4. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-10-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.

  5. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  6. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration

    2017-10-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.

  7. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  8. The grand challenge of managing the petascale facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, wemore » should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected DOE computation facilities, science trends, and technology trends, whose combined impact can affect the manageability and stewardship of DOE's petascale facilities. This report is not meant to be all-inclusive. Rather, the facilities, science projects, and research topics presented are to be considered examples to clarify a point.« less

  9. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Amerio, S.; Behari, S.; Boyd, J.; ...

    2017-01-22

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  10. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  11. Use of cloud computing in biomedicine.

    PubMed

    Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil

    2016-12-01

    Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.

  12. Computational Aspects of Data Assimilation and the ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, A.

    2003-01-01

    The scientific challenge of developing advanced data assimilation applications is a daunting task. Independently developed components may have incompatible interfaces or may be written in different computer languages. The high-performance computer (HPC) platforms required by numerically intensive Earth system applications are complex, varied, rapidly evolving and multi-part systems themselves. Since the market for high-end platforms is relatively small, there is little robust middleware available to buffer the modeler from the difficulties of HPC programming. To complicate matters further, the collaborations required to develop large Earth system applications often span initiatives, institutions and agencies, involve geoscience, software engineering, and computer science communities, and cross national borders.The Earth System Modeling Framework (ESMF) project is a concerted response to these challenges. Its goal is to increase software reuse, interoperability, ease of use and performance in Earth system models through the use of a common software framework, developed in an open manner by leaders in the modeling community. The ESMF addresses the technical and to some extent the cultural - aspects of Earth system modeling, laying the groundwork for addressing the more difficult scientific aspects, such as the physical compatibility of components, in the future. In this talk we will discuss the general philosophy and architecture of the ESMF, focussing on those capabilities useful for developing advanced data assimilation applications.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allada, Veerendra, Benjegerdes, Troy; Bode, Brett

    Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less

  14. Supercomputing resources empowering superstack with interactive and integrated systems

    NASA Astrophysics Data System (ADS)

    Rückemann, Claus-Peter

    2012-09-01

    This paper presents the results from the development and implementation of Superstack algorithms to be dynamically used with integrated systems and supercomputing resources. Processing of geophysical data, thus named geoprocessing, is an essential part of the analysis of geoscientific data. The theory of Superstack algorithms and the practical application on modern computing architectures was inspired by developments introduced with processing of seismic data on mainframes and within the last years leading to high end scientific computing applications. There are several stacking algorithms known but with low signal to noise ratio in seismic data the use of iterative algorithms like the Superstack can support analysis and interpretation. The new Superstack algorithms are in use with wave theory and optical phenomena on highly performant computing resources for huge data sets as well as for sophisticated application scenarios in geosciences and archaeology.

  15. Final Report for DOE Award ER25756

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesselman, Carl

    2014-11-17

    The SciDAC-funded Center for Enabling Distributed Petascale Science (CEDPS) was established to address technical challenges that arise due to the frequent geographic distribution of data producers (in particular, supercomputers and scientific instruments) and data consumers (people and computers) within the DOE laboratory system. Its goal is to produce technical innovations that meet DOE end-user needs for (a) rapid and dependable placement of large quantities of data within a distributed high-performance environment, and (b) the convenient construction of scalable science services that provide for the reliable and high-performance processing of computation and data analysis requests from many remote clients. The Centermore » is also addressing (c) the important problem of troubleshooting these and other related ultra-high-performance distributed activities from the perspective of both performance and functionality« less

  16. A Look at the Impact of High-End Computing Technologies on NASA Missions

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart

    2012-01-01

    From its bold start nearly 30 years ago and continuing today, the NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency s science and engineering missions. Throughout this time, NAS experts have influenced the state-of-the-art in high-performance computing (HPC) and related technologies such as scientific visualization, system benchmarking, batch scheduling, and grid environments. We highlight the pioneering achievements and innovations originating from and made possible by NAS resources and know-how, from early supercomputing environment design and software development, to long-term simulation and analyses critical to design safe Space Shuttle operations and associated spinoff technologies, to the highly successful Kepler Mission s discovery of new planets now capturing the world s imagination.

  17. Extensible Computational Chemistry Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-08-09

    ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of themore » inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less

  18. The DYNES Instrument: A Description and Overview

    NASA Astrophysics Data System (ADS)

    Zurawski, Jason; Ball, Robert; Barczyk, Artur; Binkley, Mathew; Boote, Jeff; Boyd, Eric; Brown, Aaron; Brown, Robert; Lehman, Tom; McKee, Shawn; Meekhof, Benjeman; Mughal, Azher; Newman, Harvey; Rozsa, Sandor; Sheldon, Paul; Tackett, Alan; Voicu, Ramiro; Wolff, Stephen; Yang, Xi

    2012-12-01

    Scientific innovation continues to increase requirements for the computing and networking infrastructures of the world. Collaborative partners, instrumentation, storage, and processing facilities are often geographically and topologically separated, as is the case with LHC virtual organizations. These separations challenge the technology used to interconnect available resources, often delivered by Research and Education (R&E) networking providers, and leads to complications in the overall process of end-to-end data management. Capacity and traffic management are key concerns of R&E network operators; a delicate balance is required to serve both long-lived, high capacity network flows, as well as more traditional end-user activities. The advent of dynamic circuit services, a technology that enables the creation of variable duration, guaranteed bandwidth networking channels, allows for the efficient use of common network infrastructures. These gains are seen particularly in locations where overall capacity is scarce compared to the (sustained peak) needs of user communities. Related efforts, including those of the LHCOPN [3] operations group and the emerging LHCONE [4] project, may take advantage of available resources by designating specific network activities as a “high priority”, allowing reservation of dedicated bandwidth or optimizing for deadline scheduling and predicable delivery patterns. This paper presents the DYNES instrument, an NSF funded cyberinfrastructure project designed to facilitate end-to-end dynamic circuit services [2]. This combination of hardware and software innovation is being deployed across R&E networks in the United States at selected end-sites located on University Campuses. DYNES is peering with international efforts in other countries using similar solutions, and is increasing the reach of this emerging technology. This global data movement solution could be integrated into computing paradigms such as cloud and grid computing platforms, and through the use of APIs can be integrated into existing data movement software.

  19. End-to-end Cyberinfrastructure and Data Services for Earth System Science Education and Research: A vision for the future

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.

    2006-05-01

    We live in an era of an unprecedented data volumes, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. For instance, a new generation of satellite instruments is being designed for GOES-R and NPOESS programs to deliver terabytes of data each day. Similarly, high-resolution, coupled models run over a wide range of temporal scales are generating data at unprecedented rates. Complex environmental problems such as El Nino/Southern Oscillation, climate change, and water cycle transcend not only disciplinary but also geographic boundaries, with their impacts and implications touching every region and community of the world. The understanding and solution to these inherently global scientific and social problems requires integrated observations that cover all areas of the globe, international sharing and flow of data, and earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing new pedagogical techniques such as enquiry-based learning and hands-on activities. Needless to add, today's education and research enterprise depends heavily on easy to use, robust, flexible and scalable cyberinfrastructure, especially on the ready availability of quality data and appropriate tools to manipulate and integrate those data. Fortunately, rapid advances in computing, communication and information technologies have provided solutions that can are being applied to advance teaching, research, and service. The exponential growth in the use of the Internet in education and research, largely due to the advent of the World Wide Web, is well documented. On the other hand, how other technological and community trends have shaped the development and application of cyberinfrastructure, especially in the data services area, is less well understood. For example, the computing industry is converging on an approach called Web services that enables a standard and yet revolutionary way of building applications and methods to connect and exchange information over the Web. This new approach, based on XML - a widely accepted format for exchanging data and corresponding semantics over the Internet - enables applications, computer systems, and information processes to work together in fundamentally different ways. Likewise, the advent of digital libraries, grid computing platforms, interoperable frameworks, standards and protocols, open-source software, and community atmospheric models have been important drivers in shaping the use of a new generation of end-to-end cyberinfrastructure for solving some of the most challenging scientific and educational problems. In this talk, I will present an overview of the scientific, technological, and educational landscape, discuss recent developments in cyberinfrastructure, and Unidata's role in and vision for providing easy-to use, robust, end-to-end data services for solving geoscientific problems and advancing student learning.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Arthur S Buddy; Hack, James J; Baker, Ann E

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energymore » assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.« less

  1. Image Processor Electronics (IPE): The High-Performance Computing System for NASA SWIFT Mission

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang H.; Settles, Beverly A.

    2003-01-01

    Gamma Ray Bursts (GRBs) are believed to be the most powerful explosions that have occurred in the Universe since the Big Bang and are a mystery to the scientific community. Swift, a NASA mission that includes international participation, was designed and built in preparation for a 2003 launch to help to determine the origin of Gamma Ray Bursts. Locating the position in the sky where a burst originates requires intensive computing, because the duration of a GRB can range between a few milliseconds up to approximately a minute. The instrument data system must constantly accept multiple images representing large regions of the sky that are generated by sixteen gamma ray detectors operating in parallel. It then must process the received images very quickly in order to determine the existence of possible gamma ray bursts and their locations. The high-performance instrument data computing system that accomplishes this is called the Image Processor Electronics (IPE). The IPE was designed, built and tested by NASA Goddard Space Flight Center (GSFC) in order to meet these challenging requirements. The IPE is a small size, low power and high performing computing system for space applications. This paper addresses the system implementation and the system hardware architecture of the IPE. The paper concludes with the IPE system performance that was measured during end-to-end system testing.

  2. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  3. Software Engineering Tools for Scientific Models

    NASA Technical Reports Server (NTRS)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  4. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  5. XPRESS: eXascale PRogramming Environment and System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brightwell, Ron; Sterling, Thomas; Koniges, Alice

    The XPRESS Project is one of four major projects of the DOE Office of Science Advanced Scientific Computing Research X-stack Program initiated in September, 2012. The purpose of XPRESS is to devise an innovative system software stack to enable practical and useful exascale computing around the end of the decade with near-term contributions to efficient and scalable operation of trans-Petaflops performance systems in the next two to three years; both for DOE mission-critical applications. To this end, XPRESS directly addresses critical challenges in computing of efficiency, scalability, and programmability through introspective methods of dynamic adaptive resource management and task scheduling.

  6. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  7. Developing science gateways for drug discovery in a grid environment.

    PubMed

    Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra

    2016-01-01

    Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.

  8. The State of Software for Evolutionary Biology.

    PubMed

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-05-01

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

  9. Mindmodeling@Home. . . and Anywhere Else You Have Idle Processors

    DTIC Science & Technology

    2009-07-01

    the continuous growth rate of end-user processing capability around the world. The first volunteer computing project was SETI @Home. It was... SETI @Home remains the longest running and one of the most popular volunteer computing projects in the world. This actually is an impressive feat...volunteer computing projects available to those interested in donating their idle processor time to scientific pursuits. Most of them, including SETI

  10. End-to-end Cyberinfrastructure and Data Services for Earth System Science Education and Research: Unidata's Plans and Directions

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M.

    2005-12-01

    A revolution is underway in the role played by cyberinfrastructure and data services in the conduct of research and education. We live in an era of an unprecedented data volume from diverse sources, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. For example, modern remote-sensing systems like hyperspectral satellite instruments generate terabytes of data each day. Environmental problems such as global change and water cycle transcend disciplinary as well as geographic boundaries, and their solution requires integrated earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing new pedagogical techniques such as enquiry-based learning and hands-on activities. Needless to add, today's education and research enterprise depends heavily on robust, flexible and scalable cyberinfrastructure, especially on the ready availability of quality data and appropriate tools to manipulate and integrate those data. Fortuitously, rapid advances in computing and communication technologies have also revolutionized how data, tools and services are being incorporated into the teaching and scientific enterprise. The exponential growth in the use of the Internet in education and research, largely due to the advent of the World Wide Web, is by now well documented. On the other hand, how some of the other technological and community trends that have shaped the use of cyberinfrastructure, especially data services, is less well understood. For example, the computing industry is converging on an approach called Web services that enables a standard and yet revolutionary way of building applications and methods to connect and exchange information over the Web. This new approach, based on XML - a widely accepted format for exchanging data and corresponding semantics over the Internet - enables applications, computer systems, and information processes to work together in a fundamentally different way. Likewise, the advent of digital libraries, grid computing platforms, interoperable frameworks, standards and protocols, open-source software, and community atmospheric models have been important drivers in shaping the use of a new generation of end-to-end cyberinfrastructure for solving some of the most challenging scientific and educational problems. In this talk, I will present an overview of the scientific, technological, and educational drivers and discuss recent developments in cyberinfrastructure and Unidata's role and directions in providing robust, end-to-end data services for solving geoscientific problems and advancing student learning.

  11. Gpu Implementation of a Viscous Flow Solver on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Xu, Tianhao; Chen, Long

    2016-06-01

    Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.

  12. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  13. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  14. Addressing capability computing challenges of high-resolution global climate modelling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin

    2014-05-01

    During 2013, high-resolution climate model simulations accounted for over 100 million "core hours" using Titan at the Oak Ridge Leadership Computing Facility (OLCF). The suite of climate modeling experiments, primarily using the Community Earth System Model (CESM) at nearly 0.25 degree horizontal resolution, generated over a petabyte of data and nearly 100,000 files, ranging in sizes from 20 MB to over 100 GB. Effective utilization of leadership class resources requires careful planning and preparation. The application software, such as CESM, need to be ported, optimized and benchmarked for the target platform in order to meet the computational readiness requirements. The model configuration needs to be "tuned and balanced" for the experiments. This can be a complicated and resource intensive process, especially for high-resolution configurations using complex physics. The volume of I/O also increases with resolution; and new strategies may be required to manage I/O especially for large checkpoint and restart files that may require more frequent output for resiliency. It is also essential to monitor the application performance during the course of the simulation exercises. Finally, the large volume of data needs to be analyzed to derive the scientific results; and appropriate data and information delivered to the stakeholders. Titan is currently the largest supercomputer available for open science. The computational resources, in terms of "titan core hours" are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and ASCR Leadership Computing Challenge (ALCC) programs, both sponsored by the U.S. Department of Energy (DOE) Office of Science. Titan is a Cray XK7 system, capable of a theoretical peak performance of over 27 PFlop/s, consists of 18,688 compute nodes, with a NVIDIA Kepler K20 GPU and a 16-core AMD Opteron CPU in every node, for a total of 299,008 Opteron cores and 18,688 GPUs offering a cumulative 560,640 equivalent cores. Scientific applications, such as CESM, are also required to demonstrate a "computational readiness capability" to efficiently scale across and utilize 20% of the entire system. The 0,25 deg configuration of the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), the atmospheric component of CESM, has been demonstrated to scale efficiently across more than 5,000 nodes (80,000 CPU cores) on Titan. The tracer transport routines of CAM-SE have also been ported to take advantage of the hybrid many-core architecture of Titan using GPUs [see EGU2014-4233], yielding over 2X speedup when transporting over 100 tracers. The high throughput I/O in CESM, based on the Parallel IO Library (PIO), is being further augmented to support even higher resolutions and enhance resiliency. The application performance of the individual runs are archived in a database and routinely analyzed to identify and rectify performance degradation during the course of the experiments. The various resources available at the OLCF now support a scientific workflow to facilitate high-resolution climate modelling. A high-speed center-wide parallel file system, called ATLAS, capable of 1 TB/s, is available on Titan as well as on the clusters used for analysis (Rhea) and visualization (Lens/EVEREST). Long-term archive is facilitated by the HPSS storage system. The Earth System Grid (ESG), featuring search & discovery, is also used to deliver data. The end-to-end workflow allows OLCF users to efficiently share data and publish results in a timely manner.

  15. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    ERIC Educational Resources Information Center

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  16. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.

  17. System Collects And Displays Demultiplexed Data

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Fariss, Julie L.; Kulecz, Walter B.; Paloski, William H.

    1992-01-01

    Electronic system collects, manipulates, and displays in real time results of manipulation of streams of data transmitted from remote scientific instrumentation. Interface circuit shifts data-and-clock signal from differential logic levels of multiplexer to single-ended logic levels of computer. System accommodates nonstandard data-transmission protocol. Software useful in applications where Macintosh computers used in real-time display and recording of data.

  18. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  19. Message Passing vs. Shared Address Space on a Cluster of SMPs

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak

    2000-01-01

    The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs) with commodity networking has become an attractive platform for high end scientific computing. Currently, message-passing and shared address space (SAS) are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI, and is the most common and mature programming approach. However message-passing code development can be extremely difficult, especially for irregular structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality, and high protocol overhead. In this paper, we compare the performance of and programming effort, required for six applications under both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit high efficiency under shared memory programming. due to their high communication to computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications: however, on certain classes of problems SAS performance is competitive with MPI. We also present new algorithms for improving the PC cluster performance of MPI collective operations.

  20. A Performance Evaluation of the Cray X1 for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David

    2003-01-01

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.

  1. An MPI-based MoSST core dynamics model

    NASA Astrophysics Data System (ADS)

    Jiang, Weiyuan; Kuang, Weijia

    2008-09-01

    Distributed systems are among the main cost-effective and expandable platforms for high-end scientific computing. Therefore scalable numerical models are important for effective use of such systems. In this paper, we present an MPI-based numerical core dynamics model for simulation of geodynamo and planetary dynamos, and for simulation of core-mantle interactions. The model is developed based on MPI libraries. Two algorithms are used for node-node communication: a "master-slave" architecture and a "divide-and-conquer" architecture. The former is easy to implement but not scalable in communication. The latter is scalable in both computation and communication. The model scalability is tested on Linux PC clusters with up to 128 nodes. This model is also benchmarked with a published numerical dynamo model solution.

  2. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2015-01-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students (N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation…

  3. Extreme Scale Computing to Secure the Nation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; McGraw, J R; Johnson, J R

    2009-11-10

    Since the dawn of modern electronic computing in the mid 1940's, U.S. national security programs have been dominant users of every new generation of high-performance computer. Indeed, the first general-purpose electronic computer, ENIAC (the Electronic Numerical Integrator and Computer), was used to calculate the expected explosive yield of early thermonuclear weapons designs. Even the U. S. numerical weather prediction program, another early application for high-performance computing, was initially funded jointly by sponsors that included the U.S. Air Force and Navy, agencies interested in accurate weather predictions to support U.S. military operations. For the decades of the cold war, national securitymore » requirements continued to drive the development of high performance computing (HPC), including advancement of the computing hardware and development of sophisticated simulation codes to support weapons and military aircraft design, numerical weather prediction as well as data-intensive applications such as cryptography and cybersecurity U.S. national security concerns continue to drive the development of high-performance computers and software in the U.S. and in fact, events following the end of the cold war have driven an increase in the growth rate of computer performance at the high-end of the market. This mainly derives from our nation's observance of a moratorium on underground nuclear testing beginning in 1992, followed by our voluntary adherence to the Comprehensive Test Ban Treaty (CTBT) beginning in 1995. The CTBT prohibits further underground nuclear tests, which in the past had been a key component of the nation's science-based program for assuring the reliability, performance and safety of U.S. nuclear weapons. In response to this change, the U.S. Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship (SBSS) program in response to the Fiscal Year 1994 National Defense Authorization Act, which requires, 'in the absence of nuclear testing, a progam to: (1) Support a focused, multifaceted program to increase the understanding of the enduring stockpile; (2) Predict, detect, and evaluate potential problems of the aging of the stockpile; (3) Refurbish and re-manufacture weapons and components, as required; and (4) Maintain the science and engineering institutions needed to support the nation's nuclear deterrent, now and in the future'. This program continues to fulfill its national security mission by adding significant new capabilities for producing scientific results through large-scale computational simulation coupled with careful experimentation, including sub-critical nuclear experiments permitted under the CTBT. To develop the computational science and the computational horsepower needed to support its mission, SBSS initiated the Accelerated Strategic Computing Initiative, later renamed the Advanced Simulation & Computing (ASC) program (sidebar: 'History of ASC Computing Program Computing Capability'). The modern 3D computational simulation capability of the ASC program supports the assessment and certification of the current nuclear stockpile through calibration with past underground test (UGT) data. While an impressive accomplishment, continued evolution of national security mission requirements will demand computing resources at a significantly greater scale than we have today. In particular, continued observance and potential Senate confirmation of the Comprehensive Test Ban Treaty (CTBT) together with the U.S administration's promise for a significant reduction in the size of the stockpile and the inexorable aging and consequent refurbishment of the stockpile all demand increasing refinement of our computational simulation capabilities. Assessment of the present and future stockpile with increased confidence of the safety and reliability without reliance upon calibration with past or future test data is a long-term goal of the ASC program. This will be accomplished through significant increases in the scientific bases that underlie the computational tools. Computer codes must be developed that replace phenomenology with increased levels of scientific understanding together with an accompanying quantification of uncertainty. These advanced codes will place significantly higher demands on the computing infrastructure than do the current 3D ASC codes. This article discusses not only the need for a future computing capability at the exascale for the SBSS program, but also considers high performance computing requirements for broader national security questions. For example, the increasing concern over potential nuclear terrorist threats demands a capability to assess threats and potential disablement technologies as well as a rapid forensic capability for determining a nuclear weapons design from post-detonation evidence (nuclear counterterrorism).« less

  4. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  5. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  6. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  7. The State of Software for Evolutionary Biology

    PubMed Central

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-01

    Abstract With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. PMID:29385525

  8. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.

  9. The GÉANT network: addressing current and future needs of the HEP community

    NASA Astrophysics Data System (ADS)

    Capone, Vincenzo; Usman, Mian

    2015-12-01

    The GÉANT infrastructure is the backbone that serves the scientific communities in Europe for their data movement needs and their access to international research and education networks. Using the extensive fibre footprint and infrastructure in Europe the GÉANT network delivers a portfolio of services aimed to best fit the specific needs of the users, including Authentication and Authorization Infrastructure, end-to-end performance monitoring, advanced network services (dynamic circuits, L2-L3VPN, MD-VPN). This talk will outline the factors that help the GÉANT network to respond to the needs of the High Energy Physics community, both in Europe and worldwide. The Pan-European network provides the connectivity between 40 European national research and education networks. In addition, GÉANT also connects the European NRENs to the R&E networks in other world region and has reach to over 110 NREN worldwide, making GÉANT the best connected Research and Education network, with its multiple intercontinental links to different continents e.g. North and South America, Africa and Asia-Pacific. The High Energy Physics computational needs have always had (and will keep having) a leading role among the scientific user groups of the GÉANT network: the LHCONE overlay network has been built, in collaboration with the other big world REN, specifically to address the peculiar needs of the LHC data movement. Recently, as a result of a series of coordinated efforts, the LHCONE network has been expanded to the Asia-Pacific area, and is going to include some of the main regional R&E network in the area. The LHC community is not the only one that is actively using a distributed computing model (hence the need for a high-performance network); new communities are arising, as BELLE II. GÉANT is deeply involved also with the BELLE II Experiment, to provide full support to their distributed computing model, along with a perfSONAR-based network monitoring system. GÉANT has also coordinated the setup of the network infrastructure to perform the BELLE II Trans-Atlantic Data Challenge, and has been active on helping the BELLE II community to sort out their end-to-end performance issues. In this talk we will provide information about the current GÉANT network architecture and of the international connectivity, along with the upcoming upgrades and the planned and foreseeable improvements. We will also describe the implementation of the solutions provided to support the LHC and BELLE II experiments.

  10. Mass storage: The key to success in high performance computing

    NASA Technical Reports Server (NTRS)

    Lee, Richard R.

    1993-01-01

    There are numerous High Performance Computing & Communications Initiatives in the world today. All are determined to help solve some 'Grand Challenges' type of problem, but each appears to be dominated by the pursuit of higher and higher levels of CPU performance and interconnection bandwidth as the approach to success, without any regard to the impact of Mass Storage. My colleagues and I at Data Storage Technologies believe that all will have their performance against their goals ultimately measured by their ability to efficiently store and retrieve the 'deluge of data' created by end-users who will be using these systems to solve Scientific Grand Challenges problems, and that the issue of Mass Storage will become then the determinant of success or failure in achieving each projects goals. In today's world of High Performance Computing and Communications (HPCC), the critical path to success in solving problems can only be traveled by designing and implementing Mass Storage Systems capable of storing and manipulating the truly 'massive' amounts of data associated with solving these challenges. Within my presentation I will explore this critical issue and hypothesize solutions to this problem.

  11. Large-Scale NASA Science Applications on the Columbia Supercluster

    NASA Technical Reports Server (NTRS)

    Brooks, Walter

    2005-01-01

    Columbia, NASA's newest 61 teraflops supercomputer that became operational late last year, is a highly integrated Altix cluster of 10,240 processors, and was named to honor the crew of the Space Shuttle lost in early 2003. Constructed in just four months, Columbia increased NASA's computing capability ten-fold, and revitalized the Agency's high-end computing efforts. Significant cutting-edge science and engineering simulations in the areas of space and Earth sciences, as well as aeronautics and space operations, are already occurring on this largest operational Linux supercomputer, demonstrating its capacity and capability to accelerate NASA's space exploration vision. The presentation will describe how an integrated environment consisting not only of next-generation systems, but also modeling and simulation, high-speed networking, parallel performance optimization, and advanced data analysis and visualization, is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions. The talk will conclude by discussing how NAS partnered with various NASA centers, other government agencies, computer industry, and academia, to create a national resource in large-scale modeling and simulation.

  12. Message Passing and Shared Address Space Parallelism on an SMP Cluster

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Singh, Jaswinder P.; Oliker, Leonid; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Currently, message passing (MP) and shared address space (SAS) are the two leading parallel programming paradigms. MP has been standardized with MPI, and is the more common and mature approach; however, code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, we compare the performance of and the programming effort required for six applications under both programming models on a 32-processor PC-SMP cluster, a platform that is becoming increasingly attractive for high-end scientific computing. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and/or complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications, while being competitive for the others. A hybrid MPI+SAS strategy shows only a small performance advantage over pure MPI in some cases. Finally, improved implementations of two MPI collective operations on PC-SMP clusters are presented.

  13. GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.

    2008-12-01

    GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.

  14. The End of the Rainbow? Color Schemes for Improved Data Graphics

    NASA Astrophysics Data System (ADS)

    Light, Adam; Bartlein, Patrick J.

    2004-10-01

    Modern computer displays and printers enable the widespread use of color in scientific communication, but the expertise for designing effective graphics has not kept pace with the technology for producing them. Historically, even the most prestigious publications have tolerated high defect rates in figures and illustrations, and technological advances that make creating and reproducing graphics easier do not appear to have decreased the frequency of errors. Flawed graphics consequently beget more flawed graphics as authors emulate published examples. Color has the potential to enhance communication, but design mistakes can result in color figures that are less effective than gray scale displays of the same data. Empirical research on human subjects can build a fundamental understanding of visual perception and scientific methods can be used to evaluate existing designs, but creating effective data graphics is a design task and not fundamentally a scientific pursuit. Like writing well, creating good data graphics requires a combination of formal knowledge and artistic sensibility tempered by experience: a combination of ``substance, statistics, and design''.

  15. [Earth and Space Sciences Project Services for NASA HPCC

    NASA Technical Reports Server (NTRS)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  16. Scholarly literature and the press: scientific impact and social perception of physics computing

    NASA Astrophysics Data System (ADS)

    Pia, M. G.; Basaglia, T.; Bell, Z. W.; Dressendorfer, P. V.

    2014-06-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.

  17. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  18. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  19. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  20. The Fabric for Frontier Experiments Project at Fermilab

    NASA Astrophysics Data System (ADS)

    Kirby, Michael

    2014-06-01

    The FabrIc for Frontier Experiments (FIFE) project is a new, far-reaching initiative within the Fermilab Scientific Computing Division to drive the future of computing services for experiments at FNAL and elsewhere. It is a collaborative effort between computing professionals and experiment scientists to produce an end-to-end, fully integrated set of services for computing on the grid and clouds, managing data, accessing databases, and collaborating within experiments. FIFE includes 1) easy to use job submission services for processing physics tasks on the Open Science Grid and elsewhere; 2) an extensive data management system for managing local and remote caches, cataloging, querying, moving, and tracking the use of data; 3) custom and generic database applications for calibrations, beam information, and other purposes; 4) collaboration tools including an electronic log book, speakers bureau database, and experiment membership database. All of these aspects will be discussed in detail. FIFE sets the direction of computing at Fermilab experiments now and in the future, and therefore is a major driver in the design of computing services worldwide.

  1. Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

    ERIC Educational Resources Information Center

    Wolf, Michael Maclean

    2009-01-01

    Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…

  2. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  3. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  4. Automated Design of Propellant-Optimal, End-to-End, Low-Thrust Trajectories for Trojan Asteroid Tours

    NASA Technical Reports Server (NTRS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2013-01-01

    The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential resources offering water and other mineral resources for longterm human exploration of the solar system. Previous investigations under this project have addressed the automated design of tours within the asteroid swarm. This investigation expands the current automation scheme by incorporating options for a complete trajectory design approach to the Trojan asteroids. Computational aspects of the design procedure are automated such that end-to-end trajectories are generated with a minimum of human interaction after key elements and constraints associated with a proposed mission concept are specified.

  5. Development of a Web Based Simulating System for Earthquake Modeling on the Grid

    NASA Astrophysics Data System (ADS)

    Seber, D.; Youn, C.; Kaiser, T.

    2007-12-01

    Existing cyberinfrastructure-based information, data and computational networks now allow development of state- of-the-art, user-friendly simulation environments that democratize access to high-end computational environments and provide new research opportunities for many research and educational communities. Within the Geosciences cyberinfrastructure network, GEON, we have developed the SYNSEIS (SYNthetic SEISmogram) toolkit to enable efficient computations of 2D and 3D seismic waveforms for a variety of research purposes especially for helping to analyze the EarthScope's USArray seismic data in a speedy and efficient environment. The underlying simulation software in SYNSEIS is a finite difference code, E3D, developed by LLNL (S. Larsen). The code is embedded within the SYNSEIS portlet environment and it is used by our toolkit to simulate seismic waveforms of earthquakes at regional distances (<1000km). Architecturally, SYNSEIS uses both Web Service and Grid computing resources in a portal-based work environment and has a built in access mechanism to connect to national supercomputer centers as well as to a dedicated, small-scale compute cluster for its runs. Even though Grid computing is well-established in many computing communities, its use among domain scientists still is not trivial because of multiple levels of complexities encountered. We grid-enabled E3D using our own dialect XML inputs that include geological models that are accessible through standard Web services within the GEON network. The XML inputs for this application contain structural geometries, source parameters, seismic velocity, density, attenuation values, number of time steps to compute, and number of stations. By enabling a portal based access to a such computational environment coupled with its dynamic user interface we enable a large user community to take advantage of such high end calculations in their research and educational activities. Our system can be used to promote an efficient and effective modeling environment to help scientists as well as educators in their daily activities and speed up the scientific discovery process.

  6. The Science and Technology of Future Space Missions

    NASA Astrophysics Data System (ADS)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data processing. Powerful computers with customized architectures are designed and developed. High-speed intercommunication networks are studied and tested. In parallel to the hardware research activities, software development is undertaken for several purposes: digital and video compression algorithms, payload and spacecraft control and diagnostics, scientific processing algorithms, etc. Besides, embedded Java virtual machines are studied for tele-science applications (direct link between scientist console and scientific payload). At system engineering level, the demand for spacecraft autonomy is increased for planetology missions: reliable intelligent systems that can operate for long periods of time without human intervention from ground are requested and investigated. A technologically challenging but less glamorous area of development is represented by the laboratory equipment for end-to-end testing (on ground) of payload instruments. The main fields are cryogenics, laser and X-ray optics, microwave radiometry, UV and infrared testing systems.

  7. The Arabization of a Full-Text Database Interface.

    ERIC Educational Resources Information Center

    Fayen, Emily Gallup; And Others

    The 1981 design specifications for the Egyptian National Scientific and Technical Information Network (ENSTINET) stipulated that major end-user facilities of the system should be bilingual in English and Arabic. Many characteristics of the Arabic alphabet and language impact computer applications, and there exists no universally accepted character…

  8. RAPPORT: running scientific high-performance computing applications on the cloud.

    PubMed

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  9. High-performance scientific computing in the cloud

    NASA Astrophysics Data System (ADS)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  11. DRIHM: Distributed Research Infrastructure for Hydro-Meteorology

    NASA Astrophysics Data System (ADS)

    Parodi, A.; Rebora, N.; Kranzlmueller, D.; Schiffers, M.; Clematis, A.; Tafferner, A.; Garrote, L. M.; Llasat Botija, M.; Caumont, O.; Richard, E.; Cros, P.; Dimitrijevic, V.; Jagers, B.; Harpham, Q.; Hooper, R. P.

    2012-12-01

    Hydro-Meteorology Research (HMR) is an area of critical scientific importance and of high societal relevance. It plays a key role in guiding predictions relevant to the safety and prosperity of humans and ecosystems from highly urbanized areas, to coastal zones, and to agricultural landscapes. Of special interest and urgency within HMR is the problem of understanding and predicting the impacts of severe hydro-meteorological events, such as flash-floods and landslides in complex orography areas, on humans and the environment, under the incoming climate change effects. At the heart of this challenge lies the ability to have easy access to hydrometeorological data and models, and facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in this field. To face these problems the DRIHM (Distributed Research Infrastructure for Hydro-Meteorology) project is developing a prototype e-Science environment to facilitate this collaboration and provide end-to-end HMR services (models, datasets and post-processing tools) at the European level, with the ability to expand to global scale (e.g. cooperation with Earth Cube related initiatives). The objectives of DRIHM are to lead the definition of a common long-term strategy, to foster the development of new HMR models and observational archives for the study of severe hydrometeorological events, to promote the execution and analysis of high-end simulations, and to support the dissemination of predictive models as decision analysis tools. DRIHM combines the European expertise in HMR, in Grid and High Performance Computing (HPC). Joint research activities will improve the efficient use of the European e-Infrastructures, notably Grid and HPC, for HMR modelling and observational databases, model evaluation tool sets and access to HMR model results. Networking activities will disseminate DRIHM results at the European and global levels in order to increase the cohesion of European and possibly worldwide HMR communities and increase the awareness of ICT potential for HMR. Service activities will deploy the end-to-end DRIHM services and tools in support of HMR networks and virtual organizations on top of the existing European e-Infrastructures.

  12. Boosting Scientific Exploitation of Sentinel Data: The Earth Observation Data Centre for Water Resources Monitoring

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Fröhlich, Johannes; Stowasser, Rainer; Wotawa, Gerhard; Hoffmann, Christian; Federspiel, Christian; Nortarnicola, Claudia; Zebisch, Marc; Boresch, Alexander

    2014-05-01

    The scientific exploitation of earth observation (EO) data is becoming increasingly challenging for many reasons. The first reason is the sheer magnitude of the data generated by the latest generation of EO sensors. While in the past scientific users were confronted with data volumes in the order of tens to hundreds of Gigabytes, nowadays data volumes of several Terabyte have to be handled. Very soon, tens to hundreds of Terabyte up to Petabytes will become the norm for continental- to global scale applications. The second reason is data complexity. Modern EO sensor technology is pushed towards the physical limits, making it necessary to understand each part of the measurement process and any unwanted interferences with significant detail. Last but not least, today's higher scientific standards will exert pressure on the EO community to engage in more extensive computations: While in the past it has often been sufficient to perform a scientific experiment with one single algorithm on a limited test data set, nowadays this is not an attractive scenario anymore. Today it is expected that algorithms are not only being tested with data sets of significant size but also that algorithms are compared with competing algorithms. In some applications, like e.g. in climate change assessments, it is even required that any subtle trends depicted by the data are carefully checked by using an ensemble of EO data retrieval algorithms. The scientific community has already started to respond to these increasingly demanding requirements. Firstly, one can find a growing number of EO research teams that are capable of processing Terabyte large data sets with multiple algorithms in-house. To arrive at this point these research teams have invested significantly in their computing capabilities and focused their work on selected sensor technologies and/or application domains. Secondly, spurred by international funding programmes such as the one of the European Commission, one can observe an increasing trend towards more specialisation and cooperation. Also this strategy has already led to remarkable advances in the provision of high-quality scientific EO data sets. Nonetheless, many of these collaborative developments stand on shaky grounds given that the scientific and technical know-how and the data processing capabilities remain largely fragmented. This is because the cooperation between different EO teams is typically project-based and can end abruptly after the end of a project. In other words, few EO teams cooperate on a more strategic level that involves e.g. the sharing of software code or the joint use of common IT resources. In recognition of the problems discussed above, and with a view on the high potential of the upcoming Sentinel satellites for monitoring of global water resources (Wagner et al. 2011, Hornáček et al. 2012), we are proposing the foundation of an Earth Observation Data Centre for Water Resources Monitoring (EODC-Water). The EODC-Water will be a collaborative undertaking of research organisations, public agencies and private industry with the goal to foster the use of EO data for monitoring of global water resources. It will do so by proving a collaborative computer cloud that connects several data centres throughout Europe, thereby enabling the archiving, distributing, and processing of large EO data sets. The basic idea is to move the processing to the data instead of moving the data to where the software is. This sounds simple, but its realisation will overhaul the way of how EO data processing and distribution are organised. Another important element of EODC-Water will be its partner organisations which have agreed to participate in a collaborative software development process for establishing end-to-end EO data processing chains. EODC-Water will boost the scientific exploitation of EO data by allowing its scientific users to focus their efforts on scientific problems rather than having to deal with standard processing tasks such as data management, geometric- and radiometric correction, etc. Additionally, it will enable the testing of scientific algorithms on large EO data sets, performing inter-comparisons with state-of-the-art algorithms, and the validation with more extensive reference data sets. EODC-Water will thus enable scientists to generate innovative research more quickly as compared to a situation where scientists have to rely just on their in-house capabilities. REFERENCES Wagner, W., M. Vetter, A. Bartsch (2011) Novel microwave- and lidar remote sensing techniques for monitoring of in-land water resources, acatech MATERIALIEN, Nr. 7, Deutsche Akademie der Technikwissenschaften (acatech), München, 41 p. (http://www.acatech.de/) Hornáček, M., W. Wagner, D. Sabel, H.-L. Truong, P. Snoeij, T. Hahmann, E. Diedrich, M. Doubkova (2012) Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection using Sentinel-1, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1303-1311.

  13. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    NASA Astrophysics Data System (ADS)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-01

    The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  14. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  15. High-End Computing for Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    The objective of the First MIT Conference on Computational Fluid and Solid Mechanics (June 12-14, 2001) is to bring together industry and academia (and government) to nurture the next generation in computational mechanics. The objective of the current talk, 'High-End Computing for Incompressible Flows', is to discuss some of the current issues in large scale computing for mission-oriented tasks.

  16. Analysis, Mining and Visualization Service at NCSA

    NASA Astrophysics Data System (ADS)

    Wilhelmson, R.; Cox, D.; Welge, M.

    2004-12-01

    NCSA's goal is to create a balanced system that fully supports high-end computing as well as: 1) high-end data management and analysis; 2) visualization of massive, highly complex data collections; 3) large databases; 4) geographically distributed Grid computing; and 5) collaboratories, all based on a secure computational environment and driven with workflow-based services. To this end NCSA has defined a new technology path that includes the integration and provision of cyberservices in support of data analysis, mining, and visualization. NCSA has begun to develop and apply a data mining system-NCSA Data-to-Knowledge (D2K)-in conjunction with both the application and research communities. NCSA D2K will enable the formation of model-based application workflows and visual programming interfaces for rapid data analysis. The Java-based D2K framework, which integrates analytical data mining methods with data management, data transformation, and information visualization tools, will be configurable from the cyberservices (web and grid services, tools, ..) viewpoint to solve a wide range of important data mining problems. This effort will use modules, such as a new classification methods for the detection of high-risk geoscience events, and existing D2K data management, machine learning, and information visualization modules. A D2K cyberservices interface will be developed to seamlessly connect client applications with remote back-end D2K servers, providing computational resources for data mining and integration with local or remote data stores. This work is being coordinated with SDSC's data and services efforts. The new NCSA Visualization embedded workflow environment (NVIEW) will be integrated with D2K functionality to tightly couple informatics and scientific visualization with the data analysis and management services. Visualization services will access and filter disparate data sources, simplifying tasks such as fusing related data from distinct sources into a coherent visual representation. This approach enables collaboration among geographically dispersed researchers via portals and front-end clients, and the coupling with data management services enables recording associations among datasets and building annotation systems into visualization tools and portals, giving scientists a persistent, shareable, virtual lab notebook. To facilitate provision of these cyberservices to the national community, NCSA will be providing a computational environment for large-scale data assimilation, analysis, mining, and visualization. This will be initially implemented on the new 512 processor shared memory SGI's recently purchased by NCSA. In addition to standard batch capabilities, NCSA will provide on-demand capabilities for those projects requiring rapid response (e.g., development of severe weather, earthquake events) for decision makers. It will also be used for non-sequential interactive analysis of data sets where it is important have access to large data volumes over space and time.

  17. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  18. An Interdisciplinary Guided Inquiry on Estuarine Transport Using a Computer Model in High School Classrooms

    ERIC Educational Resources Information Center

    Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel

    2012-01-01

    The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…

  19. Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters

    ERIC Educational Resources Information Center

    Younge, Andrew J.

    2016-01-01

    With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…

  20. Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob

    2003-01-01

    The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.

  1. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGES

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...

    2015-05-22

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  2. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGES

    Wang, Dali; Wu, Wei; Winkler, Frank; ...

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  3. Position Paper: Applying Machine Learning to Software Analysis to Achieve Trusted, Repeatable Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prowell, Stacy J; Symons, Christopher T

    2015-01-01

    Producing trusted results from high-performance codes is essential for policy and has significant economic impact. We propose combining rigorous analytical methods with machine learning techniques to achieve the goal of repeatable, trustworthy scientific computing.

  4. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  5. Creating a histology-embryology free digital image database using high-end microscopy and computer techniques for on-line biomedical education.

    PubMed

    Silva-Lopes, Victor W; Monteiro-Leal, Luiz H

    2003-07-01

    The development of new technology and the possibility of fast information delivery by either Internet or Intranet connections are changing education. Microanatomy education depends basically on the correct interpretation of microscopy images by students. Modern microscopes coupled to computers enable the presentation of these images in a digital form by creating image databases. However, the access to this new technology is restricted entirely to those living in cities and towns with an Information Technology (IT) infrastructure. This study describes the creation of a free Internet histology database composed by high-quality images and also presents an inexpensive way to supply it to a greater number of students through Internet/Intranet connections. By using state-of-the-art scientific instruments, we developed a Web page (http://www2.uerj.br/~micron/atlas/atlasenglish/index.htm) that, in association with a multimedia microscopy laboratory, intends to help in the reduction of the IT educational gap between developed and underdeveloped regions. Copyright 2003 Wiley-Liss, Inc.

  6. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  7. The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2012-03-20

    The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less

  8. STS-55 Pilot Henricks uses CTE equipment mounted on SL-D2 aft end cone

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Pilot Terence T. Henricks, positioned in front of an adjustable workstation mounted on the Spacelab Deutsche 2 (SL-D2) science module aft end cone, conducts Crew Telesupport Experiment (CTE). The STS-55 crew portrait (STS055(S)002) appears on the screen of the Macintosh portable computer. CTE will demonstrate real-time communication between the shuttle crew and the ground via a computer-based multimedia documentation file that includes text, graphics, and photos. CTE is expected to improve the effectiveness of on-orbit payload operations, returns from scientific investigations, crew interaction with the ground, and contingency maintenance tasks for systems and payloads. Also in the view and attached to the end cone are a fire extinguisher, a checklist, and an STS-37 extravehicular activity (EVA) photo of Mission Specialist (MS1) and Payload Commander (PLC) Jerry L. Ross (STS037-18-032).

  9. The Fabric for Frontier Experiments Project at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Michael

    2014-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a new, far-reaching initiative within the Fermilab Scientific Computing Division to drive the future of computing services for experiments at FNAL and elsewhere. It is a collaborative effort between computing professionals and experiment scientists to produce an end-to-end, fully integrated set of services for computing on the grid and clouds, managing data, accessing databases, and collaborating within experiments. FIFE includes 1) easy to use job submission services for processing physics tasks on the Open Science Grid and elsewhere, 2) an extensive data management system for managing local and remote caches, cataloging, querying,more » moving, and tracking the use of data, 3) custom and generic database applications for calibrations, beam information, and other purposes, 4) collaboration tools including an electronic log book, speakers bureau database, and experiment membership database. All of these aspects will be discussed in detail. FIFE sets the direction of computing at Fermilab experiments now and in the future, and therefore is a major driver in the design of computing services worldwide.« less

  10. Exascale computing and big data

    DOE PAGES

    Reed, Daniel A.; Dongarra, Jack

    2015-06-25

    Scientific discovery and engineering innovation requires unifying traditionally separated high-performance computing and big data analytics. The tools and cultures of high-performance computing and big data analytics have diverged, to the detriment of both; unification is essential to address a spectrum of major research domains. The challenges of scale tax our ability to transmit data, compute complicated functions on that data, or store a substantial part of it; new approaches are required to meet these challenges. Finally, the international nature of science demands further development of advanced computer architectures and global standards for processing data, even as international competition complicates themore » openness of the scientific process.« less

  11. Exascale computing and big data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Daniel A.; Dongarra, Jack

    Scientific discovery and engineering innovation requires unifying traditionally separated high-performance computing and big data analytics. The tools and cultures of high-performance computing and big data analytics have diverged, to the detriment of both; unification is essential to address a spectrum of major research domains. The challenges of scale tax our ability to transmit data, compute complicated functions on that data, or store a substantial part of it; new approaches are required to meet these challenges. Finally, the international nature of science demands further development of advanced computer architectures and global standards for processing data, even as international competition complicates themore » openness of the scientific process.« less

  12. Virtual reality on the web: the potentials of different methodologies and visualization techniques for scientific research and medical education.

    PubMed

    Kling-Petersen, T; Pascher, R; Rydmark, M

    1999-01-01

    Academic and medical imaging are increasingly using computer based 3D reconstruction and/or visualization. Three-dimensional interactive models play a major role in areas such as preclinical medical education, clinical visualization and medical research. While 3D is comparably easy to do on a high end workstations, distribution and use of interactive 3D graphics necessitate the use of personal computers and the web. Several new techniques have been demonstrated providing interactive 3D via a web browser thereby allowing a limited version of VR to be experienced by a larger majority of students, medical practitioners and researchers. These techniques include QuickTimeVR2 (QTVR), VRML2, QuickDraw3D, OpenGL and Java3D. In order to test the usability of the different techniques, Mednet have initiated a number of projects designed to evaluate the potentials of 3D techniques for scientific reporting, clinical visualization and medical education. These include datasets created by manual tracing followed by triangulation, smoothing and 3D visualization, MRI or high-resolution laserscanning. Preliminary results indicate that both VRML and QTVR fulfills most of the requirements of web based, interactive 3D visualization, whereas QuickDraw3D is too limited. Presently, the JAVA 3D has not yet reached a level where in depth testing is possible. The use of high-resolution laserscanning is an important addition to 3D digitization.

  13. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    DOE PAGES

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; ...

    2015-12-23

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less

  14. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  15. Parallel computing works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less

  16. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  17. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  18. The Scientification of Skin Whitening and the Entrepreneurial University-Linked Corporate Scientific Officer

    ERIC Educational Resources Information Center

    Mire, Amina

    2012-01-01

    This work examines the interlocking strategies of scientific entrepreneurialism and academic capitalism in cutting-edge innovations in molecular biology, biomedicine, and other life sciences deployed in research and the development of high-end skin whitening and anti-aging cosmeceuticals. Skin whitening products and anti-aging cosmeceuticals are…

  19. Computational chemistry in pharmaceutical research: at the crossroads.

    PubMed

    Bajorath, Jürgen

    2012-01-01

    Computational approaches are an integral part of pharmaceutical research. However, there are many of unsolved key questions that limit the scientific progress in the still evolving computational field and its impact on drug discovery. Importantly, a number of these questions are not new but date back many years. Hence, it might be difficult to conclusively answer them in the foreseeable future. Moreover, the computational field as a whole is characterized by a high degree of heterogeneity and so is, unfortunately, the quality of its scientific output. In light of this situation, it is proposed that changes in scientific standards and culture should be seriously considered now in order to lay a foundation for future progress in computational research.

  20. Astro-WISE: Chaining to the Universe

    NASA Astrophysics Data System (ADS)

    Valentijn, E. A.; McFarland, J. P.; Snigula, J.; Begeman, K. G.; Boxhoorn, D. R.; Rengelink, R.; Helmich, E.; Heraudeau, P.; Verdoes Kleijn, G.; Vermeij, R.; Vriend, W.-J.; Tempelaar, M. J.; Deul, E.; Kuijken, K.; Capaccioli, M.; Silvotti, R.; Bender, R.; Neeser, M.; Saglia, R.; Bertin, E.; Mellier, Y.

    2007-10-01

    The recent explosion of recorded digital data and its processed derivatives threatens to overwhelm researchers when analysing their experimental data or looking up data items in archives and file systems. While current hardware developments allow the acquisition, processing and storage of hundreds of terabytes of data at the cost of a modern sports car, the software systems to handle these data are lagging behind. This problem is very general and is well recognized by various scientific communities; several large projects have been initiated, e.g., DATAGRID/EGEE {http://www.eu-egee.org/} federates compute and storage power over the high-energy physical community, while the international astronomical community is building an Internet geared Virtual Observatory {http://www.euro-vo.org/pub/} (Padovani 2006) connecting archival data. These large projects either focus on a specific distribution aspect or aim to connect many sub-communities and have a relatively long trajectory for setting standards and a common layer. Here, we report first light of a very different solution (Valentijn & Kuijken 2004) to the problem initiated by a smaller astronomical IT community. It provides an abstract scientific information layer which integrates distributed scientific analysis with distributed processing and federated archiving and publishing. By designing new abstractions and mixing in old ones, a Science Information System with fully scalable cornerstones has been achieved, transforming data systems into knowledge systems. This break-through is facilitated by the full end-to-end linking of all dependent data items, which allows full backward chaining from the observer/researcher to the experiment. Key is the notion that information is intrinsic in nature and thus is the data acquired by a scientific experiment. The new abstraction is that software systems guide the user to that intrinsic information by forcing full backward and forward chaining in the data modelling.

  1. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    PubMed

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  2. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    PubMed Central

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  3. Young Engineers and Scientists: a Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  4. Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.

    PubMed

    Urban, Pawel L

    2018-05-15

    Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Integrating Grid Services into the Cray XT4 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NERSC; Cholia, Shreyas; Lin, Hwa-Chun Wendy

    2009-05-01

    The 38640 core Cray XT4"Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a shared-root environment and idiosyncratic application launching. Inour work, we describe how we resolved these challenges on a running, general-purpose production system to provide on-demand compute, storage, accounting and monitoring services through generic gridmore » interfaces that mask the underlying system-specific details for the end user.« less

  6. Evaluating the Efficacy of the Cloud for Cluster Computation

    NASA Technical Reports Server (NTRS)

    Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom

    2012-01-01

    Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.

  7. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  8. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    NASA Astrophysics Data System (ADS)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  9. A multitasking, multisinked, multiprocessor data acquisition front end

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, R.; Au, R.; Molen, A.V.

    1989-10-01

    The authors have developed a generalized data acquisition front end system which is based on MC68020 processors running a commercial real time kernel (rhoSOS), and implemented primarily in a high level language (C). This system has been attached to the back end on-line computing system at NSCL via our high performance ETHERNET protocol. Data may be simultaneously sent to any number of back end systems. Fixed fraction sampling along links to back end computing is also supported. A nonprocedural program generator simplifies the development of experiment specific code.

  10. Experience in using commercial clouds in CMS

    NASA Astrophysics Data System (ADS)

    Bauerdick, L.; Bockelman, B.; Dykstra, D.; Fuess, S.; Garzoglio, G.; Girone, M.; Gutsche, O.; Holzman, B.; Hufnagel, D.; Kim, H.; Kennedy, R.; Mason, D.; Spentzouris, P.; Timm, S.; Tiradani, A.; Vaandering, E.; CMS Collaboration

    2017-10-01

    Historically high energy physics computing has been performed on large purpose-built computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.

  11. Experience in using commercial clouds in CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauerdick, L.; Bockelman, B.; Dykstra, D.

    Historically high energy physics computing has been performed on large purposebuilt computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is amore » growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.« less

  12. A computer model of context-dependent perception in a very simple world

    NASA Astrophysics Data System (ADS)

    Lara-Dammer, Francisco; Hofstadter, Douglas R.; Goldstone, Robert L.

    2017-11-01

    We propose the foundations of a computer model of scientific discovery that takes into account certain psychological aspects of human observation of the world. To this end, we simulate two main components of such a system. The first is a dynamic microworld in which physical events take place, and the second is an observer that visually perceives entities and events in the microworld. For reason of space, this paper focuses only on the starting phase of discovery, which is the relatively simple visual inputs of objects and collisions.

  13. Adding Data Management Services to Parallel File Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Scott

    2015-03-04

    The objective of this project, called DAMASC for “Data Management in Scientific Computing”, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decadesmore » the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file-based ecosystem; (3) common optimizations, e.g., indexing and caching, are readily supported across several file formats, avoiding effort duplication; and (4) performance improves significantly, as data processing is integrated more tightly with data storage. Our key contributions are: SciHadoop which explores changes to MapReduce assumption by taking advantage of semantics of structured data while preserving MapReduce’s failure and resource management; DataMods which extends common abstractions of parallel file systems so they become programmable such that they can be extended to natively support a variety of data models and can be hooked into emerging distributed runtimes such as Stanford’s Legion; and Miso which combines Hadoop and relational data warehousing to minimize time to insight, taking into account the overhead of ingesting data into data warehousing.« less

  14. Scaling to diversity: The DERECHOS distributed infrastructure for analyzing and sharing data

    NASA Astrophysics Data System (ADS)

    Rilee, M. L.; Kuo, K. S.; Clune, T.; Oloso, A.; Brown, P. G.

    2016-12-01

    Integrating Earth Science data from diverse sources such as satellite imagery and simulation output can be expensive and time-consuming, limiting scientific inquiry and the quality of our analyses. Reducing these costs will improve innovation and quality in science. The current Earth Science data infrastructure focuses on downloading data based on requests formed from the search and analysis of associated metadata. And while the data products provided by archives may use the best available data sharing technologies, scientist end-users generally do not have such resources (including staff) available to them. Furthermore, only once an end-user has received the data from multiple diverse sources and has integrated them can the actual analysis and synthesis begin. The cost of getting from idea to where synthesis can start dramatically slows progress. In this presentation we discuss a distributed computational and data storage framework that eliminates much of the aforementioned cost. The SciDB distributed array database is central as it is optimized for scientific computing involving very large arrays, performing better than less specialized frameworks like Spark. Adding spatiotemporal functions to the SciDB creates a powerful platform for analyzing and integrating massive, distributed datasets. SciDB allows Big Earth Data analysis to be performed "in place" without the need for expensive downloads and end-user resources. Spatiotemporal indexing technologies such as the hierarchical triangular mesh enable the compute and storage affinity needed to efficiently perform co-located and conditional analyses minimizing data transfers. These technologies automate the integration of diverse data sources using the framework, a critical step beyond current metadata search and analysis. Instead of downloading data into their idiosyncratic local environments, end-users can generate and share data products integrated from diverse multiple sources using a common shared environment, turning distributed active archive centers (DAACs) from warehouses into distributed active analysis centers.

  15. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  16. Public Outreach at RAL: Engaging the Next Generation of Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Corbett, G.; Ryall, G.; Palmer, S.; Collier, I. P.; Adams, J.; Appleyard, R.

    2015-12-01

    The Rutherford Appleton Laboratory (RAL) is part of the UK's Science and Technology Facilities Council (STFC). As part of the Royal Charter that established the STFC, the organisation is required to generate public awareness and encourage public engagement and dialogue in relation to the science undertaken. The staff at RAL firmly support this activity as it is important to encourage the next generation of students to consider studying Science, Technology, Engineering, and Mathematics (STEM) subjects, providing the UK with a highly skilled work-force in the future. To this end, the STFC undertakes a variety of outreach activities. This paper will describe the outreach activities undertaken by RAL, particularly focussing on those of the Scientific Computing Department (SCD). These activities include: an Arduino based activity day for 12-14 year-olds to celebrate Ada Lovelace day; running a centre as part of the Young Rewired State - encouraging 11-18 year-olds to create web applications with open data; sponsoring a team in the Engineering Education Scheme - supporting a small team of 16-17 year-olds to solve a real world engineering problem; as well as the more traditional tours of facilities. These activities could serve as an example for other sites involved in scientific computing around the globe.

  17. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.

  18. GPUs benchmarking in subpixel image registration algorithm

    NASA Astrophysics Data System (ADS)

    Sanz-Sabater, Martin; Picazo-Bueno, Jose Angel; Micó, Vicente; Ferrerira, Carlos; Granero, Luis; Garcia, Javier

    2015-05-01

    Image registration techniques are used among different scientific fields, like medical imaging or optical metrology. The straightest way to calculate shifting between two images is using the cross correlation, taking the highest value of this correlation image. Shifting resolution is given in whole pixels which cannot be enough for certain applications. Better results can be achieved interpolating both images, as much as the desired resolution we want to get, and applying the same technique described before, but the memory needed by the system is significantly higher. To avoid memory consuming we are implementing a subpixel shifting method based on FFT. With the original images, subpixel shifting can be achieved multiplying its discrete Fourier transform by a linear phase with different slopes. This method is high time consuming method because checking a concrete shifting means new calculations. The algorithm, highly parallelizable, is very suitable for high performance computing systems. GPU (Graphics Processing Unit) accelerated computing became very popular more than ten years ago because they have hundreds of computational cores in a reasonable cheap card. In our case, we are going to register the shifting between two images, doing the first approach by FFT based correlation, and later doing the subpixel approach using the technique described before. We consider it as `brute force' method. So we will present a benchmark of the algorithm consisting on a first approach (pixel resolution) and then do subpixel resolution approaching, decreasing the shifting step in every loop achieving a high resolution in few steps. This program will be executed in three different computers. At the end, we will present the results of the computation, with different kind of CPUs and GPUs, checking the accuracy of the method, and the time consumed in each computer, discussing the advantages, disadvantages of the use of GPUs.

  19. Computational Unification: a Vision for Connecting Researchers

    NASA Astrophysics Data System (ADS)

    Troy, R. M.; Kingrey, O. J.

    2002-12-01

    Computational Unification of science, once only a vision, is becoming a reality. This technology is based upon a scientifically defensible, general solution for Earth Science data management and processing. The computational unification of science offers a real opportunity to foster inter and intra-discipline cooperation, and the end of 're-inventing the wheel'. As we move forward using computers as tools, it is past time to move from computationally isolating, "one-off" or discipline-specific solutions into a unified framework where research can be more easily shared, especially with researchers in other disciplines. The author will discuss how distributed meta-data, distributed processing and distributed data objects are structured to constitute a working interdisciplinary system, including how these resources lead to scientific defensibility through known lineage of all data products. Illustration of how scientific processes are encapsulated and executed illuminates how previously written processes and functions are integrated into the system efficiently and with minimal effort. Meta-data basics will illustrate how intricate relationships may easily be represented and used to good advantage. Retrieval techniques will be discussed including trade-offs of using meta-data versus embedded data, how the two may be integrated, and how simplifying assumptions may or may not help. This system is based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, whose goals were to find an alternative to the Hughes EOS-DIS system and is presently offered by Science Tools corporation, of which the author is a principal.

  20. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  1. "Probably True" Says the Expert: How Two Types of Lexical Hedges Influence Students' Evaluation of Scientificness

    ERIC Educational Resources Information Center

    Thiebach, Monja; Mayweg-Paus, Elisabeth; Jucks, Regina

    2015-01-01

    Contemporary school learning typically includes the processing of popular scientific information as found in journals, magazines, and/or the WWW. The German high school curriculum emphasizes that students should have achieved science literacy and have learned to evaluate the substance of text-based learning content by the end of high school.…

  2. An infrastructure for the integration of geoscience instruments and sensors on the Grid

    NASA Astrophysics Data System (ADS)

    Pugliese, R.; Prica, M.; Kourousias, G.; Del Linz, A.; Curri, A.

    2009-04-01

    The Grid, as a computing paradigm, has long been in the attention of both academia and industry[1]. The distributed and expandable nature of its general architecture result to scalability and more efficient utilisation of the computing infrastructures. The scientific community, including that of geosciences, often handles problems with very high requirements in data processing, transferring, and storing[2,3]. This has raised the interest on Grid technologies but these are often viewed solely as an access gateway to HPC. Suitable Grid infrastructures could provide the geoscience community with additional benefits like those of sharing, remote access and control of scientific systems. These systems can be scientific instruments, sensors, robots, cameras and any other device used in geosciences. The solution for practical, general, and feasible Grid-enabling of such devices requires non-intrusive extensions on core parts of the current Grid architecture. We propose an extended version of an architecture[4] that can serve as the solution to the problem. The solution we propose is called Grid Instrument Element (IE) [5]. It is an addition to the existing core Grid parts; the Computing Element (CE) and the Storage Element (SE) that serve the purposes that their name suggests. The IE that we will be referring to, and the related technologies have been developed in the EU project on the Deployment of Remote Instrumentation Infrastructure (DORII1). In DORII, partners of various scientific communities including those of Earthquake, Environmental science, and Experimental science, have adopted the technology of the Instrument Element in order to integrate to the Grid their devices. The Oceanographic and coastal observation and modelling Mediterranean Ocean Observing Network (OGS2), a DORII partner, is in the process of deploying the above mentioned Grid technologies on two types of observational modules: Argo profiling floats and a novel Autonomous Underwater Vehicle (AUV). In this paper i) we define the need for integration of instrumentation in the Grid, ii) we introduce the solution of the Instrument Element, iii) we demonstrate a suitable end-user web portal for accessing Grid resources, iv) we describe from the Grid-technological point of view the process of the integration to the Grid of two advanced environmental monitoring devices. References [1] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, "Experiences with GRIA—Industrial Applications on a Web Services Grid," e-Science and Grid Computing, First International Conference on e-Science and Grid Computing, 2005, pp. 98-105. [2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets," Journal of Network and Computer Applications, vol. 23, 2000, pp. 187-200. [3] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data management and transfer in high-performance computational grid environments," Parallel Computing, vol. 28, 2002, pp. 749-771. [4] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato, and S. Traldi, "Instrument Element: A New Grid component that Enables the Control of Remote Instrumentation," Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00, IEEE Computer Society Washington, DC, USA, 2006. [5] R. Ranon, L. De Marco, A. Senerchia, S. Gabrielli, L. Chittaro, R. Pugliese, L. Del Cano, F. Asnicar, and M. Prica, "A Web-based Tool for Collaborative Access to Scientific Instruments in Cyberinfrastructures." 1 The DORII project is supported by the European Commission within the 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-213110. URL: http://www.dorii.eu 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. URL: http://www.ogs.trieste.it

  3. magHD: a new approach to multi-dimensional data storage, analysis, display and exploitation

    NASA Astrophysics Data System (ADS)

    Angleraud, Christophe

    2014-06-01

    The ever increasing amount of data and processing capabilities - following the well- known Moore's law - is challenging the way scientists and engineers are currently exploiting large datasets. The scientific visualization tools, although quite powerful, are often too generic and provide abstract views of phenomena, thus preventing cross disciplines fertilization. On the other end, Geographic information Systems allow nice and visually appealing maps to be built but they often get very confused as more layers are added. Moreover, the introduction of time as a fourth analysis dimension to allow analysis of time dependent phenomena such as meteorological or climate models, is encouraging real-time data exploration techniques that allow spatial-temporal points of interests to be detected by integration of moving images by the human brain. Magellium is involved in high performance image processing chains for satellite image processing as well as scientific signal analysis and geographic information management since its creation (2003). We believe that recent work on big data, GPU and peer-to-peer collaborative processing can open a new breakthrough in data analysis and display that will serve many new applications in collaborative scientific computing, environment mapping and understanding. The magHD (for Magellium Hyper-Dimension) project aims at developing software solutions that will bring highly interactive tools for complex datasets analysis and exploration commodity hardware, targeting small to medium scale clusters with expansion capabilities to large cloud based clusters.

  4. Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.

    PubMed

    Shatokhina, Iuliia; Ramlau, Ronny

    2017-08-01

    In this paper, we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor data. An overview of the current state-of-the-art in the application of pyramid-type wavefront sensors shows that the novel algorithms can be applied in various scientific fields such as astronomy, ophthalmology, and microscopy. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics (XAO) on the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and compare the achieved AO correction quality (in terms of the long-exposure Strehl ratio) to other methods, such as matrix-vector multiplication and preprocessed cumulative reconstructor with domain decomposition. Also, we provide a comparison in terms of applicability and computational complexity and closed-loop performance of our novel algorithms to other methods existing for this type of sensor.

  5. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes

    NASA Astrophysics Data System (ADS)

    Pagnutti, Mary; Ryan, Robert E.; Cazenavette, George; Gold, Maxwell; Harlan, Ryan; Leggett, Edward; Pagnutti, James

    2017-01-01

    A comprehensive radiometric characterization of raw-data format imagery acquired with the Raspberry Pi 3 and V2.1 camera module is presented. The Raspberry Pi is a high-performance single-board computer designed to educate and solve real-world problems. This small computer supports a camera module that uses a Sony IMX219 8 megapixel CMOS sensor. This paper shows that scientific and engineering-grade imagery can be produced with the Raspberry Pi 3 and its V2.1 camera module. Raw imagery is shown to be linear with exposure and gain (ISO), which is essential for scientific and engineering applications. Dark frame, noise, and exposure stability assessments along with flat fielding results, spectral response measurements, and absolute radiometric calibration results are described. This low-cost imaging sensor, when calibrated to produce scientific quality data, can be used in computer vision, biophotonics, remote sensing, astronomy, high dynamic range imaging, and security applications, to name a few.

  6. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  7. The role of dedicated data computing centers in the age of cloud computing

    NASA Astrophysics Data System (ADS)

    Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr

    2017-10-01

    Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.

  8. Computational Science in Armenia (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  9. Computer Output Microfilm and Library Catalogs.

    ERIC Educational Resources Information Center

    Meyer, Richard W.

    Early computers dealt with mathematical and scientific problems requiring very little input and not much output, therefore high speed printing devices were not required. Today with increased variety of use, high speed printing is necessary and Computer Output Microfilm (COM) devices have been created to meet this need. This indirect process can…

  10. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less

  11. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  12. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less

  13. Reflections on Peter Slezak and the 'Sociology of Scientific Knowledge`

    NASA Astrophysics Data System (ADS)

    Suchting, W. A.

    The paper examines central parts of the first of two papers in this journal by Peter Slezak criticising sociology of scientific knowledge and also considers, independently, some of the main philosophical issues raised by the sociologists of science, in particular David Bloor. The general conclusion is that each account alludes to different and crucial aspects of the nature of knowledge without, severally or jointly, being able to theorise them adequately. The appendix contains epistemological theses central to a more adequate theory of scientific knowledge.... our Histories of six Thousand Moons make no Mention of any other, than the two great Empires of Lilliput and Blefuscu. Which mighty Powers have ... been engaged in a most obstinate War for six and thirty Moons past. It began upon the following Occasion. It is allowed on all Hands, that the primitive Way of breaking Eggs before we eat them, was upon the larger End: But ... the Emperor [of Lilliput] ... published an Edict, commanding all his Subjects, upon great Penalties, to break the smaller End of their Eggs. The People so resented this Law, that ... there have been six Rebellions raised on that Account ... These civil Commotions were constantly fomented by the Monarchs of Blefuscu ... It is computed, that eleven Thousand have, at several Times, suffered Death, rather than break Eggs at the smaller End. Many hundred large Volumes have published upon this Controversy ...

  14. Integrating High-Throughput Parallel Processing Framework and Storage Area Network Concepts Into a Prototype Interactive Scientific Visualization Environment for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Smuga-Otto, M. J.; Garcia, R. K.; Knuteson, R. O.; Martin, G. D.; Flynn, B. M.; Hackel, D.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) is developing tools to help scientists realize the potential of high spectral resolution instruments for atmospheric science. Upcoming satellite spectrometers like the Cross-track Infrared Sounder (CrIS), experimental instruments like the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and proposed instruments like the Hyperspectral Environmental Suite (HES) within the GOES-R project will present a challenge in the form of the overwhelmingly large amounts of continuously generated data. Current and near-future workstations will have neither the storage space nor computational capacity to cope with raw spectral data spanning more than a few minutes of observations from these instruments. Schemes exist for processing raw data from hyperspectral instruments currently in testing, that involve distributed computation across clusters. Data, which for an instrument like GIFTS can amount to over 1.5 Terabytes per day, is carefully managed on Storage Area Networks (SANs), with attention paid to proper maintenance of associated metadata. The UW-SSEC is preparing a demonstration integrating these back-end capabilities as part of a larger visualization framework, to assist scientists in developing new products from high spectral data, sourcing data volumes they could not otherwise manage. This demonstration focuses on managing storage so that only the data specifically needed for the desired product are pulled from the SAN, and on running computationally expensive intermediate processing on a back-end cluster, with the final product being sent to a visualization system on the scientist's workstation. Where possible, existing software and solutions are used to reduce cost of development. The heart of the computing component is the GIFTS Information Processing System (GIPS), developed at the UW- SSEC to allow distribution of processing tasks such as conversion of raw GIFTS interferograms into calibrated radiance spectra, and retrieving temperature and water vapor content atmospheric profiles from these spectra. The hope is that by demonstrating the capabilities afforded by a composite system like the one described here, scientists can be convinced to contribute further algorithms in support of this model of computing and visualization.

  15. Idle waves in high-performance computing

    NASA Astrophysics Data System (ADS)

    Markidis, Stefano; Vencels, Juris; Peng, Ivy Bo; Akhmetova, Dana; Laure, Erwin; Henri, Pierre

    2015-01-01

    The vast majority of parallel scientific applications distributes computation among processes that are in a busy state when computing and in an idle state when waiting for information from other processes. We identify the propagation of idle waves through processes in scientific applications with a local information exchange between the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between two processes due to remote data dependency. This study provides a description of the large number of processes in parallel scientific applications as a continuous medium. This work also is a step towards an understanding of how localized idle periods can affect remote processes, leading to the degradation of global performance in parallel scientific applications.

  16. The Young Engineers and Scientists (YES) mentorship program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  17. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Lin, C.; Clarac, T.

    2004-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  18. The Operation of a Specialized Scientific Information and Data Analysis Center With Computer Base and Associated Communications Network.

    ERIC Educational Resources Information Center

    Cottrell, William B.; And Others

    The Nuclear Safety Information Center (NSIC) is a highly sophisticated scientific information center operated at Oak Ridge National Laboratory (ORNL) for the U.S. Atomic Energy Commission. Its information file, which consists of both data and bibliographic information, is computer stored and numerous programs have been developed to facilitate the…

  19. Grand Challenges 1993: High Performance Computing and Communications. A Report by the Committee on Physical, Mathematical, and Engineering Sciences. The FY 1993 U.S. Research and Development Program.

    ERIC Educational Resources Information Center

    Office of Science and Technology Policy, Washington, DC.

    This report presents the United States research and development program for 1993 for high performance computing and computer communications (HPCC) networks. The first of four chapters presents the program goals and an overview of the federal government's emphasis on high performance computing as an important factor in the nation's scientific and…

  20. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  1. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  2. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  3. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  4. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing; Advanced Methods for Scientific Computing; Learning Systems; High Performance Networks and Technology; Graphics, Visualization, and Virtual Environments.

  5. Templet Web: the use of volunteer computing approach in PaaS-style cloud

    NASA Astrophysics Data System (ADS)

    Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil

    2018-03-01

    This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.

  6. Opening Remarks: SciDAC 2007

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2007-09-01

    Good morning. Welcome to Boston, the home of the Red Sox, Celtics and Bruins, baked beans, tea parties, Robert Parker, and SciDAC 2007. A year ago I stood before you to share the legacy of the first SciDAC program and identify the challenges that we must address on the road to petascale computing—a road E E Cummins described as `. . . never traveled, gladly beyond any experience.' Today, I want to explore the preparations for the rapidly approaching extreme scale (X-scale) generation. These preparations are the first step propelling us along the road of burgeoning scientific discovery enabled by the application of X- scale computing. We look to petascale computing and beyond to open up a world of discovery that cuts across scientific fields and leads us to a greater understanding of not only our world, but our universe. As part of the President's America Competitiveness Initiative, the ASCR Office has been preparing a ten year vision for computing. As part of this planning the LBNL together with ORNL and ANL hosted three town hall meetings on Simulation and Modeling at the Exascale for Energy, Ecological Sustainability and Global Security (E3). The proposed E3 initiative is organized around four programmatic themes: Engaging our top scientists, engineers, computer scientists and applied mathematicians; investing in pioneering large-scale science; developing scalable analysis algorithms, and storage architectures to accelerate discovery; and accelerating the build-out and future development of the DOE open computing facilities. It is clear that we have only just started down the path to extreme scale computing. Plan to attend Thursday's session on the out-briefing and discussion of these meetings. The road to the petascale has been at best rocky. In FY07, the continuing resolution provided 12% less money for Advanced Scientific Computing than either the President, the Senate, or the House. As a consequence, many of you had to absorb a no cost extension for your SciDAC work. I am pleased that the President's FY08 budget restores the funding for SciDAC. Quoting from Advanced Scientific Computing Research description in the House Energy and Water Development Appropriations Bill for FY08, "Perhaps no other area of research at the Department is so critical to sustaining U.S. leadership in science and technology, revolutionizing the way science is done and improving research productivity." As a society we need to revolutionize our approaches to energy, environmental and global security challenges. As we go forward along the road to the X-scale generation, the use of computation will continue to be a critical tool along with theory and experiment in understanding the behavior of the fundamental components of nature as well as for fundamental discovery and exploration of the behavior of complex systems. The foundation to overcome these societal challenges will build from the experiences and knowledge gained as you, members of our SciDAC research teams, work together to attack problems at the tera- and peta- scale. If SciDAC is viewed as an experiment for revolutionizing scientific methodology, then a strategic goal of ASCR program must be to broaden the intellectual base prepared to address the challenges of the new X-scale generation of computing. We must focus our computational science experiences gained over the past five years on the opportunities introduced with extreme scale computing. Our facilities are on a path to provide the resources needed to undertake the first part of our journey. Using the newly upgraded 119 teraflop Cray XT system at the Leadership Computing Facility, SciDAC research teams have in three days performed a 100-year study of the time evolution of the atmospheric CO2 concentration originating from the land surface. The simulation of the El Nino/Southern Oscillation which was part of this study has been characterized as `the most impressive new result in ten years' gained new insight into the behavior of superheated ionic gas in the ITER reactor as a result of an AORSA run on 22,500 processors that achieved over 87 trillion calculations per second (87 teraflops) which is 74% of the system's theoretical peak. Tomorrow, Argonne and IBM will announce that the first IBM Blue Gene/P, a 100 teraflop system, will be shipped to the Argonne Leadership Computing Facility later this fiscal year. By the end of FY2007 ASCR high performance and leadership computing resources will include the 114 teraflop IBM Blue Gene/P; a 102 teraflop Cray XT4 at NERSC and a 119 teraflop Cray XT system at Oak Ridge. Before ringing in the New Year, Oak Ridge will upgrade to 250 teraflops with the replacement of the dual core processors with quad core processors and Argonne will upgrade to between 250-500 teraflops, and next year, a petascale Cray Baker system is scheduled for delivery at Oak Ridge. The multidisciplinary teams in our SciDAC Centers for Enabling Technologies and our SciDAC Institutes must continue to work with our Scientific Application teams to overcome the barriers that prevent effective use of these new systems. These challenges include: the need for new algorithms as well as operating system and runtime software and tools which scale to parallel systems composed of hundreds of thousands processors; program development environments and tools which scale effectively and provide ease of use for developers and scientific end users; and visualization and data management systems that support moving, storing, analyzing, manipulating and visualizing multi-petabytes of scientific data and objects. The SciDAC Centers, located primarily at our DOE national laboratories will take the lead in ensuring that critical computer science and applied mathematics issues are addressed in a timely and comprehensive fashion and to address issues associated with research software lifecycle. In contrast, the SciDAC Institutes, which are university-led centers of excellence, will have more flexibility to pursue new research topics through a range of research collaborations. The Institutes will also work to broaden the intellectual and researcher base—conducting short courses and summer schools to take advantage of new high performance computing capabilities. The SciDAC Outreach Center at Lawrence Berkeley National Laboratory complements the outreach efforts of the SciDAC Institutes. The Outreach Center is our clearinghouse for SciDAC activities and resources and will communicate with the high performance computing community in part to understand their needs for workshops, summer schools and institutes. SciDAC is not ASCR's only effort to broaden the computational science community needed to meet the challenges of the new X-scale generation. I hope that you were able to attend the Computational Science Graduate Fellowship poster session last night. ASCR developed the fellowship in 1991 to meet the nation's growing need for scientists and technology professionals with advanced computer skills. CSGF, now jointly funded between ASCR and NNSA, is more than a traditional academic fellowship. It has provided more than 200 of the best and brightest graduate students with guidance, support and community in preparing them as computational scientists. Today CSGF alumni are bringing their diverse top-level skills and knowledge to research teams at DOE laboratories and in industries such as Proctor and Gamble, Lockheed Martin and Intel. At universities they are working to train the next generation of computational scientists. To build on this success, we intend to develop a wholly new Early Career Principal Investigator's (ECPI) program. Our objective is to stimulate academic research in scientific areas within ASCR's purview especially among faculty in early stages of their academic careers. Last February, we lost Ken Kennedy, one of the leading lights of our community. As we move forward into the extreme computing generation, his vision and insight will be greatly missed. In memorial to Ken Kennedy, we shall designate the ECPI grants to beginning faculty in Computer Science as the Ken Kennedy Fellowship. Watch the ASCR website for more information about ECPI and other early career programs in the computational sciences. We look to you, our scientists, researchers, and visionaries to take X-scale computing and use it to explode scientific discovery in your fields. We at SciDAC will work to ensure that this tool is the sharpest and most precise and efficient instrument to carve away the unknown and reveal the most exciting secrets and stimulating scientific discoveries of our time. The partnership between research and computing is the marriage that will spur greater discovery, and as Spencer said to Susan in Robert Parker's novel, `Sudden Mischief', `We stick together long enough, and we may get as smart as hell'. Michael Strayer

  7. Fortran for the nineties

    NASA Technical Reports Server (NTRS)

    Himer, J. T.

    1992-01-01

    Fortran has largely enjoyed prominence for the past few decades as the computer programming language of choice for numerically intensive scientific, engineering, and process control applications. Fortran's well understood static language syntax has allowed resulting parsers and compiler optimizing technologies to often generate among the most efficient and fastest run-time executables, particularly on high-end scalar and vector supercomputers. Computing architectures and paradigms have changed considerably since the last ANSI/ISO Fortran release in 1978, and while FORTRAN 77 has more than survived, it's aged features provide only partial functionality for today's demanding computing environments. The simple block procedural languages have been necessarily evolving, or giving way, to specialized supercomputing, network resource, and object-oriented paradigms. To address these new computing demands, ANSI has worked for the last 12-years with three international public reviews to deliver Fortran 90. Fortran 90 has superseded and replaced ISO FORTRAN 77 internationally as the sole Fortran standard; while in the US, Fortran 90 is expected to be adopted as the ANSI standard this summer, coexisting with ANSI FORTRAN 77 until at least 1996. The development path and current state of Fortran will be briefly described highlighting the many new Fortran 90 syntactic and semantic additions which support (among others): free form source; array syntax; new control structures; modules and interfaces; pointers; derived data types; dynamic memory; enhanced I/O; operator overloading; data abstraction; user optional arguments; new intrinsics for array, bit manipulation, and system inquiry; and enhanced portability through better generic control of underlying system arithmetic models. Examples from dynamical astronomy, signal and image processing will attempt to illustrate Fortran 90's applicability to today's general scalar, vector, and parallel scientific and engineering requirements and object oriented programming paradigms. Time permitting, current work proceeding on the future development of Fortran 2000 and collateral standards will be introduced.

  8. A toolbox and a record for scientific model development

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.

  9. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  10. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  11. High-performance conjugate-gradient benchmark: A new metric for ranking high-performance computing systems

    DOE PAGES

    Dongarra, Jack; Heroux, Michael A.; Luszczek, Piotr

    2015-08-17

    Here, we describe a new high-performance conjugate-gradient (HPCG) benchmark. HPCG is composed of computations and data-access patterns commonly found in scientific applications. HPCG strives for a better correlation to existing codes from the computational science domain and to be representative of their performance. Furthermore, HPCG is meant to help drive the computer system design and implementation in directions that will better impact future performance improvement.

  12. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  13. Federal Plan for High-End Computing. Report of the High-End Computing Revitalization Task Force (HECRTF)

    DTIC Science & Technology

    2004-07-01

    steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate

  14. Dynamic Non-Hierarchical File Systems for Exascale Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Darrell E.; Miller, Ethan L

    This constitutes the final report for “Dynamic Non-Hierarchical File Systems for Exascale Storage”. The ultimate goal of this project was to improve data management in scientific computing and high-end computing (HEC) applications, and to achieve this goal we proposed: to develop the first, HEC-targeted, file system featuring rich metadata and provenance collection, extreme scalability, and future storage hardware integration as core design goals, and to evaluate and develop a flexible non-hierarchical file system interface suitable for providing more powerful and intuitive data management interfaces to HEC and scientific computing users. Data management is swiftly becoming a serious problem in themore » scientific community – while copious amounts of data are good for obtaining results, finding the right data is often daunting and sometimes impossible. Scientists participating in a Department of Energy workshop noted that most of their time was spent “...finding, processing, organizing, and moving data and it’s going to get much worse”. Scientists should not be forced to become data mining experts in order to retrieve the data they want, nor should they be expected to remember the naming convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating the data you need would be as easy as browsing the web. Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40 year-old technology designed to manage thousands of files, not exabytes of data. Today’s systems do not take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather, including content-based metadata and provenance1 information. As a result, current metadata search approaches are typically ad hoc and often work by providing a parallel management system to the “main” file system, as is done in Linux (the locate utility), personal computers, and enterprise search appliances. These search applications are often optimized for a single file system, making it difficult to move files and their metadata between file systems. Users have tried to solve this problem in several ways, including the use of separate databases to index file properties, the encoding of file properties into file names, and separately gathering and managing provenance data, but none of these approaches has worked well, either due to limited usefulness or scalability, or both. Our research addressed several key issues: High-performance, real-time metadata harvesting: extracting important attributes from files dynamically and immediately updating indexes used to improve search; Transparent, automatic, and secure provenance capture: recording the data inputs and processing steps used in the production of each file in the system; Scalable indexing: indexes that are optimized for integration with the file system; Dynamic file system structure: our approach provides dynamic directories similar to those in semantic file systems, but these are the native organization rather than a feature grafted onto a conventional system. In addition to these goals, our research effort will include evaluating the impact of new storage technologies on the file system design and performance. In particular, the indexing and metadata harvesting functions can potentially benefit from the performance improvements promised by new storage class memories.« less

  15. Algorithm for fast event parameters estimation on GEM acquired data

    NASA Astrophysics Data System (ADS)

    Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz

    2016-09-01

    We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.

  16. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less

  17. Prototyping a 10 Gigabit-Ethernet Event-Builder for the CTA Camera Server

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dirk; Houles, Julien

    2012-12-01

    While the Cherenkov Telescope Array will end its Preperatory Phase in 2012 or 2013 with the publication of a Technical Design Report, our lab has undertaken within the french CTA community the design and prototyping of a Camera-Server, which is a PC architecture based computer, used as a switchboard assigned to each of a hundred telescopes to handle a maximum amount of scientific data recorded by each telescope. Our work aims for a data acquisition hardware and software system for the scientific raw data at optimal speed. We have evaluated the maximum performance that can be obtained by choosing standard (COTS) hardware and software (Linux) in conjunction with a 10 Gb/s switch.

  18. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  19. The Perfect Neuroimaging-Genetics-Computation Storm: Collision of Petabytes of Data, Millions of Hardware Devices and Thousands of Software Tools

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.

    2013-01-01

    The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276

  20. HPC on Competitive Cloud Resources

    NASA Astrophysics Data System (ADS)

    Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff

    Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.

  1. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    NASA Astrophysics Data System (ADS)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high-level scientific workflow middleware enables reproducibility of results more convenient and also provides a reusable and portable workflow template that can be deployed across different computing infrastructures. Acknowledgements This work was kindly supported by NordForsk as part of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for Investigating Climate Change at High Northern Latitudes) and the Top-level Research Initiative NCoE SVALI (Stability and Variation of Arctic Land Ice).

  2. NASA Langley scientific and technical information output: 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

    1995-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

  3. NASA Langley Scientific and Technical Information Output: 1994. Volume 1

    NASA Technical Reports Server (NTRS)

    Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

    1995-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

  4. NASA Langley Scientific and Technical Information Output: 1996

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

    1997-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1996. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  5. RIACS/USRA

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1993-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing, Advanced Methods for Scientific Computing, High Performance Networks and Technology, and Learning Systems. Parallel compiler techniques, adaptive numerical methods for flows in complicated geometries, and optimization were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade.

  6. High current/high power beam experiments from the space station

    NASA Technical Reports Server (NTRS)

    Cohen, Herbert A.

    1986-01-01

    In this overview, on the possible uses of high power beams aboard the space station, the advantages of the space station as compared to previous space vehicles are considered along with the kind of intense beams that could be generated, the possible scientific uses of these beams and associated problems. This order was delibrately chosen to emphasize that the means, that is, the high power particle ejection devices, will lead towards the possible ends, scientific measurements in the Earth's upper atmosphere using large fluxes of energetic particles.

  7. The CAVE (TM) automatic virtual environment: Characteristics and applications

    NASA Technical Reports Server (NTRS)

    Kenyon, Robert V.

    1995-01-01

    Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and projection that met the criteria of Showcase.

  8. High End Computer Network Testbedding at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gary, James Patrick

    1998-01-01

    The Earth & Space Data Computing (ESDC) Division, at the Goddard Space Flight Center, is involved in development and demonstrating various high end computer networking capabilities. The ESDC has several high end super computers. These are used to run: (1) computer simulation of the climate systems; (2) to support the Earth and Space Sciences (ESS) project; (3) to support the Grand Challenge (GC) Science, which is aimed at understanding the turbulent convection and dynamos in stars. GC research occurs in many sites throughout the country, and this research is enabled by, in part, the multiple high performance network interconnections. The application drivers for High End Computer Networking use distributed supercomputing to support virtual reality applications, such as TerraVision, (i.e., three dimensional browser of remotely accessed data), and Cave Automatic Virtual Environments (CAVE). Workstations can access and display data from multiple CAVE's with video servers, which allows for group/project collaborations using a combination of video, data, voice and shared white boarding. The ESDC is also developing and demonstrating the high degree of interoperability between satellite and terrestrial-based networks. To this end, the ESDC is conducting research and evaluations of new computer networking protocols and related technologies which improve the interoperability of satellite and terrestrial networks. The ESDC is also involved in the Security Proof of Concept Keystone (SPOCK) program sponsored by National Security Agency (NSA). The SPOCK activity provides a forum for government users and security technology providers to share information on security requirements, emerging technologies and new product developments. Also, the ESDC is involved in the Trans-Pacific Digital Library Experiment, which aims to demonstrate and evaluate the use of high performance satellite communications and advanced data communications protocols to enable interactive digital library data access between the U. S. Library of Congress, the National Library of Japan and other digital library sites at 155 MegaBytes Per Second. The ESDC participation in this program is the Trans-Pacific access to GLOBE visualizations in real time. ESDC is participating in the Department of Defense's ATDNet with Multiwavelength Optical Network (MONET) a fully switched Wavelength Division Networking testbed. This presentation is in viewgraph format.

  9. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Secretariat, General Services Administration, notice is hereby given that the Advanced Scientific Computing... advice and recommendations concerning the Advanced Scientific Computing program in response only to... Advanced Scientific Computing Research program and recommendations based thereon; --Advice on the computing...

  10. Scientific Discovery through Advanced Computing in Plasma Science

    NASA Astrophysics Data System (ADS)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.

  11. Parallel Geospatial Data Management for Multi-Scale Environmental Data Analysis on GPUs

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, J.; Wei, Y.

    2013-12-01

    As the spatial and temporal resolutions of Earth observatory data and Earth system simulation outputs are getting higher, in-situ and/or post- processing such large amount of geospatial data increasingly becomes a bottleneck in scientific inquires of Earth systems and their human impacts. Existing geospatial techniques that are based on outdated computing models (e.g., serial algorithms and disk-resident systems), as have been implemented in many commercial and open source packages, are incapable of processing large-scale geospatial data and achieve desired level of performance. In this study, we have developed a set of parallel data structures and algorithms that are capable of utilizing massively data parallel computing power available on commodity Graphics Processing Units (GPUs) for a popular geospatial technique called Zonal Statistics. Given two input datasets with one representing measurements (e.g., temperature or precipitation) and the other one represent polygonal zones (e.g., ecological or administrative zones), Zonal Statistics computes major statistics (or complete distribution histograms) of the measurements in all regions. Our technique has four steps and each step can be mapped to GPU hardware by identifying its inherent data parallelisms. First, a raster is divided into blocks and per-block histograms are derived. Second, the Minimum Bounding Boxes (MBRs) of polygons are computed and are spatially matched with raster blocks; matched polygon-block pairs are tested and blocks that are either inside or intersect with polygons are identified. Third, per-block histograms are aggregated to polygons for blocks that are completely within polygons. Finally, for blocks that intersect with polygon boundaries, all the raster cells within the blocks are examined using point-in-polygon-test and cells that are within polygons are used to update corresponding histograms. As the task becomes I/O bound after applying spatial indexing and GPU hardware acceleration, we have developed a GPU-based data compression technique by reusing our previous work on Bitplane Quadtree (or BPQ-Tree) based indexing of binary bitmaps. Results have shown that our GPU-based parallel Zonal Statistic technique on 3000+ US counties over 20+ billion NASA SRTM 30 meter resolution Digital Elevation (DEM) raster cells has achieved impressive end-to-end runtimes: 101 seconds and 46 seconds a low-end workstation equipped with a Nvidia GTX Titan GPU using cold and hot cache, respectively; and, 60-70 seconds using a single OLCF TITAN computing node and 10-15 seconds using 8 nodes. Our experiment results clearly show the potentials of using high-end computing facilities for large-scale geospatial processing.

  12. TopoLens: Building a cyberGIS community data service for enhancing the usability of high-resolution National Topographic datasets

    USGS Publications Warehouse

    Hu, Hao; Hong, Xingchen; Terstriep, Jeff; Liu, Yan; Finn, Michael P.; Rush, Johnathan; Wendel, Jeffrey; Wang, Shaowen

    2016-01-01

    Geospatial data, often embedded with geographic references, are important to many application and science domains, and represent a major type of big data. The increased volume and diversity of geospatial data have caused serious usability issues for researchers in various scientific domains, which call for innovative cyberGIS solutions. To address these issues, this paper describes a cyberGIS community data service framework to facilitate geospatial big data access, processing, and sharing based on a hybrid supercomputer architecture. Through the collaboration between the CyberGIS Center at the University of Illinois at Urbana-Champaign (UIUC) and the U.S. Geological Survey (USGS), a community data service for accessing, customizing, and sharing digital elevation model (DEM) and its derived datasets from the 10-meter national elevation dataset, namely TopoLens, is created to demonstrate the workflow integration of geospatial big data sources, computation, analysis needed for customizing the original dataset for end user needs, and a friendly online user environment. TopoLens provides online access to precomputed and on-demand computed high-resolution elevation data by exploiting the ROGER supercomputer. The usability of this prototype service has been acknowledged in community evaluation.

  13. IBM techexplorer and MathML: Interactive Multimodal Scientific Documents

    NASA Astrophysics Data System (ADS)

    Diaz, Angel

    2001-06-01

    The World Wide Web provides a standard publishing platform for disseminating scientific and technical articles, books, journals, courseware, or even homework on the internet; however, the transition from paper to web-based interactive content has brought new opportunities for creating interactive content. Students, scientists, and engineers are now faced with the task of rendering the 2D presentational structure of mathematics, harnessing the wealth of scientific and technical software, and creating truly accessible scientific portals across international boundaries and markets. The recent emergence of World Wide Web Consortium (W3C) standards such as the Mathematical Markup Language (MathML), Language (XSL), and Aural CSS (ACSS) provide a foundation whereby mathematics can be displayed, enlivened, computed, and audio formatted. With interoperability ensured by standards, software applications can be easily brought together to create extensible and interactive scientific content. In this presentation we will provide an overview of the IBM techexplorer Hypermedia Browser, a web browser plug-in and ActiveX control aimed at bringing interactive mathematics to the masses across platforms and applications. We will demonstrate "live" mathematics where documents that contain MathML expressions can be edited and computed right inside your favorite web browser. This demonstration will be generalized as we show how MathML can be used to enliven even PowerPoint presentations. Finally, we will close the loop by demonstrating a novel approach to spoken mathematics based on MathML, DOM, XSL, ACSS, techexplorer, and IBM ViaVoice. By making use of techexplorer as the glue that binds the rendered content to the web browser, the back-end computation software, the Java applets that augment the exposition, and voice-rendering systems such as ViaVoice, authors can indeed create truly extensible and interactive scientific content. For more information see: [http://www.software.ibm.com/techexplorer] [http://www.alphaworks.ibm.com] [http://www.w3.org

  14. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 km or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed-shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.

  15. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed- shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.

  16. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.

  17. Exploiting on-node heterogeneity for in-situ analytics of climate simulations via a functional partitioning framework

    NASA Astrophysics Data System (ADS)

    Sapra, Karan; Gupta, Saurabh; Atchley, Scott; Anantharaj, Valentine; Miller, Ross; Vazhkudai, Sudharshan

    2016-04-01

    Efficient resource utilization is critical for improved end-to-end computing and workflow of scientific applications. Heterogeneous node architectures, such as the GPU-enabled Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), present us with further challenges. In many HPC applications on Titan, the accelerators are the primary compute engines while the CPUs orchestrate the offloading of work onto the accelerators, and moving the output back to the main memory. On the other hand, applications that do not exploit GPUs, the CPU usage is dominant while the GPUs idle. We utilized Heterogenous Functional Partitioning (HFP) runtime framework that can optimize usage of resources on a compute node to expedite an application's end-to-end workflow. This approach is different from existing techniques for in-situ analyses in that it provides a framework for on-the-fly analysis on-node by dynamically exploiting under-utilized resources therein. We have implemented in the Community Earth System Model (CESM) a new concurrent diagnostic processing capability enabled by the HFP framework. Various single variate statistics, such as means and distributions, are computed in-situ by launching HFP tasks on the GPU via the node local HFP daemon. Since our current configuration of CESM does not use GPU resources heavily, we can move these tasks to GPU using the HFP framework. Each rank running the atmospheric model in CESM pushes the variables of of interest via HFP function calls to the HFP daemon. This node local daemon is responsible for receiving the data from main program and launching the designated analytics tasks on the GPU. We have implemented these analytics tasks in C and use OpenACC directives to enable GPU acceleration. This methodology is also advantageous while executing GPU-enabled configurations of CESM when the CPUs will be idle during portions of the runtime. In our implementation results, we demonstrate that it is more efficient to use HFP framework to offload the tasks to GPUs instead of doing it in the main application. We observe increased resource utilization and overall productivity in this approach by using HFP framework for end-to-end workflow.

  18. Squid - a simple bioinformatics grid.

    PubMed

    Carvalho, Paulo C; Glória, Rafael V; de Miranda, Antonio B; Degrave, Wim M

    2005-08-03

    BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers. Most distributed computing / grid solutions have complex installation procedures requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-platform, open-source program designed to "keep things simple" while offering high-end computing power for large scale applications. Squid also has an efficient fault tolerance and crash recovery system against data loss, being able to re-route jobs upon node failure and recover even if the master machine fails. Our results show that a Squid application, working with N nodes and proper network resources, can process BLAST queries almost N times faster than if working with only one computer. Squid offers high-end computing, even for the non-specialist, and is freely available at the project web site. Its open-source and binary Windows distributions contain detailed instructions and a "plug-n-play" instalation containing a pre-configured example.

  19. Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.

    PubMed

    Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara

    2018-04-01

    Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.

  20. Science Gateways, Scientific Workflows and Open Community Software

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Marru, S.

    2014-12-01

    Science gateways and scientific workflows occupy different ends of the spectrum of user-focused cyberinfrastructure. Gateways, sometimes called science portals, provide a way for enabling large numbers of users to take advantage of advanced computing resources (supercomputers, advanced storage systems, science clouds) by providing Web and desktop interfaces and supporting services. Scientific workflows, at the other end of the spectrum, support advanced usage of cyberinfrastructure that enable "power users" to undertake computational experiments that are not easily done through the usual mechanisms (managing simulations across multiple sites, for example). Despite these different target communities, gateways and workflows share many similarities and can potentially be accommodated by the same software system. For example, pipelines to process InSAR imagery sets or to datamine GPS time series data are workflows. The results and the ability to make downstream products may be made available through a gateway, and power users may want to provide their own custom pipelines. In this abstract, we discuss our efforts to build an open source software system, Apache Airavata, that can accommodate both gateway and workflow use cases. Our approach is general, and we have applied the software to problems in a number of scientific domains. In this talk, we discuss our applications to usage scenarios specific to earth science, focusing on earthquake physics examples drawn from the QuakSim.org and GeoGateway.org efforts. We also examine the role of the Apache Software Foundation's open community model as a way to build up common commmunity codes that do not depend upon a single "owner" to sustain. Pushing beyond open source software, we also see the need to provide gateways and workflow systems as cloud services. These services centralize operations, provide well-defined programming interfaces, scale elastically, and have global-scale fault tolerance. We discuss our work providing Apache Airavata as a hosted service to provide these features.

  1. Quantifying the Digital Divide: A Scientific Overview of Network Connectivity and Grid Infrastructure in South Asian Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shahryar Muhammad; /SLAC /NUST, Rawalpindi; Cottrell, R.Les

    2007-10-30

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP trafficmore » to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.« less

  2. Development of a fast framing detector for electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Ian J.; Bustillo, Karen C.; Ciston, Jim

    2016-10-01

    A high frame rate detector system is described that enables fast real-time data analysis of scanning diffraction experiments in scanning transmission electron microscopy (STEM). This is an end-to-end development that encompasses the data producing detector, data transportation, and real-time processing of data. The detector will consist of a central pixel sensor that is surrounded by annular silicon diodes. Both components of the detector system will synchronously capture data at almost 100 kHz frame rate, which produces an approximately 400 Gb/s data stream. Low-level preprocessing will be implemented in firmware before the data is streamed from the National Center for Electronmore » Microscopy (NCEM) to the National Energy Research Scientific Computing Center (NERSC). Live data processing, before it lands on disk, will happen on the Cori supercomputer and aims to present scientists with prompt experimental feedback. This online analysis will provide rough information of the sample that can be utilized for sample alignment, sample monitoring and verification that the experiment is set up correctly. Only a compressed version of the relevant data is then selected for more in-depth processing.« less

  3. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas; Schuman, Catherine; Patton, Robert

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less

  4. Big data computing: Building a vision for ARS information management

    USDA-ARS?s Scientific Manuscript database

    Improvements are needed within the ARS to increase scientific capacity and keep pace with new developments in computer technologies that support data acquisition and analysis. Enhancements in computing power and IT infrastructure are needed to provide scientists better access to high performance com...

  5. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  6. NASA Langley Scientific and Technical Information Output, 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

    1996-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1995. Included are citations for formal reports, high-numbered conference publications, high-numbered technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

  7. An Introductory Course on Service-Oriented Computing for High Schools

    ERIC Educational Resources Information Center

    Tsai, W. T.; Chen, Yinong; Cheng, Calvin; Sun, Xin; Bitter, Gary; White, Mary

    2008-01-01

    Service-Oriented Computing (SOC) is a new computing paradigm that has been adopted by major computer companies as well as government agencies such as the Department of Defense for mission-critical applications. SOC is being used for developing Web and electronic business applications, as well as robotics, gaming, and scientific applications. Yet,…

  8. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 31

    DTIC Science & Technology

    1977-04-18

    average coefficient of air absorption is computed by the method of approximate replacement of the real spectrum by the graduated one. The entire range...end of transition area with an accuracy of 15%. Figures 5; References 7. USSR UDC 541.24:532.5 PARAMETRIC METHOD OF CALCULATION OF THERMODYNAMIC...12, 1976 Abstract No 12B723 by V. A. Polyanskiy] GLEBOV, G. A., and KOSHKIN, V. K. [Text] A method is presented for calculation of thermodynamic

  9. Web Services Provide Access to SCEC Scientific Research Application Software

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Gupta, V.; Okaya, D.; Kamb, L.; Maechling, P.

    2003-12-01

    Web services offer scientific communities a new paradigm for sharing research codes and communicating results. While there are formal technical definitions of what constitutes a web service, for a user community such as the Southern California Earthquake Center (SCEC), we may conceptually consider a web service to be functionality provided on-demand by an application which is run on a remote computer located elsewhere on the Internet. The value of a web service is that it can (1) run a scientific code without the user needing to install and learn the intricacies of running the code; (2) provide the technical framework which allows a user's computer to talk to the remote computer which performs the service; (3) provide the computational resources to run the code; and (4) bundle several analysis steps and provide the end results in digital or (post-processed) graphical form. Within an NSF-sponsored ITR project coordinated by SCEC, we are constructing web services using architectural protocols and programming languages (e.g., Java). However, because the SCEC community has a rich pool of scientific research software (written in traditional languages such as C and FORTRAN), we also emphasize making existing scientific codes available by constructing web service frameworks which wrap around and directly run these codes. In doing so we attempt to broaden community usage of these codes. Web service wrapping of a scientific code can be done using a "web servlet" construction or by using a SOAP/WSDL-based framework. This latter approach is widely adopted in IT circles although it is subject to rapid evolution. Our wrapping framework attempts to "honor" the original codes with as little modification as is possible. For versatility we identify three methods of user access: (A) a web-based GUI (written in HTML and/or Java applets); (B) a Linux/OSX/UNIX command line "initiator" utility (shell-scriptable); and (C) direct access from within any Java application (and with the correct API interface from within C++ and/or C/Fortran). This poster presentation will provide descriptions of the following selected web services and their origin as scientific application codes: 3D community velocity models for Southern California, geocoordinate conversions (latitude/longitude to UTM), execution of GMT graphical scripts, data format conversions (Gocad to Matlab format), and implementation of Seismic Hazard Analysis application programs that calculate hazard curve and hazard map data sets.

  10. Big Data Smart Socket (BDSS): a system that abstracts data transfer habits from end users.

    PubMed

    Watts, Nicholas A; Feltus, Frank A

    2017-02-15

    The ability to centralize and store data for long periods on an end user's computational resources is increasingly difficult for many scientific disciplines. For example, genomics data is increasingly large and distributed, and the data needs to be moved into workflow execution sites ranging from lab workstations to the cloud. However, the typical user is not always informed on emerging network technology or the most efficient methods to move and share data. Thus, the user defaults to using inefficient methods for transfer across the commercial internet. To accelerate large data transfer, we created a tool called the Big Data Smart Socket (BDSS) that abstracts data transfer methodology from the user. The user provides BDSS with a manifest of datasets stored in a remote storage repository. BDSS then queries a metadata repository for curated data transfer mechanisms and optimal path to move each of the files in the manifest to the site of workflow execution. BDSS functions as a standalone tool or can be directly integrated into a computational workflow such as provided by the Galaxy Project. To demonstrate applicability, we use BDSS within a biological context, although it is applicable to any scientific domain. BDSS is available under version 2 of the GNU General Public License at https://github.com/feltus/BDSS . ffeltus@clemson.edu. © The Author 2016. Published by Oxford University Press.

  11. Big Data Smart Socket (BDSS): a system that abstracts data transfer habits from end users

    PubMed Central

    Watts, Nicholas A.

    2017-01-01

    Motivation: The ability to centralize and store data for long periods on an end user’s computational resources is increasingly difficult for many scientific disciplines. For example, genomics data is increasingly large and distributed, and the data needs to be moved into workflow execution sites ranging from lab workstations to the cloud. However, the typical user is not always informed on emerging network technology or the most efficient methods to move and share data. Thus, the user defaults to using inefficient methods for transfer across the commercial internet. Results: To accelerate large data transfer, we created a tool called the Big Data Smart Socket (BDSS) that abstracts data transfer methodology from the user. The user provides BDSS with a manifest of datasets stored in a remote storage repository. BDSS then queries a metadata repository for curated data transfer mechanisms and optimal path to move each of the files in the manifest to the site of workflow execution. BDSS functions as a standalone tool or can be directly integrated into a computational workflow such as provided by the Galaxy Project. To demonstrate applicability, we use BDSS within a biological context, although it is applicable to any scientific domain. Availability and Implementation: BDSS is available under version 2 of the GNU General Public License at https://github.com/feltus/BDSS. Contact: ffeltus@clemson.edu PMID:27797780

  12. The Young Engineers and Scientists (YES) Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.; Lin, C.

    2004-11-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  13. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Jahn, J.; Hummel, P.

    2003-12-01

    The Young Engineers and Scientists (YES) Program is a ommunity partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We gratefully acknowledge partial funding for the YES Program from a NASA EPO grant.

  14. 76 FR 31945 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... teleconference meeting of the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal [email protected] . FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing...

  15. Measuring scientific reasoning through behavioral analysis in a computer-based problem solving exercise

    NASA Astrophysics Data System (ADS)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    Developing scientific reasoning skills is a common learning objective for general-education science courses. However, effective assessments for such skills typically involve open-ended questions or tasks, which must be hand-scored and may not be usable online. Using computer-based learning environments, reasoning can be assessed automatically by analyzing student actions within the learning environment. We describe such an assessment under development and present pilot results. In our content-neutral instrument, students solve a problem by collecting and interpreting data in a logical, systematic manner. We then infer reasoning skill automatically based on student actions. Specifically, students investigate why Earth has seasons, a scientifically simple but commonly misunderstood topic. Students are given three possible explanations and asked to select a set of locations on a world map from which to collect temperature data. They then explain how the data support or refute each explanation. The best approaches will use locations in both the Northern and Southern hemispheres to argue that the contrasting seasonality of the hemispheres supports only the correct explanation. We administered a pilot version to students at the beginning of an online, introductory science course (n = 223) as an optional extra credit exercise. We were able to categorize students' data collection decisions as more and less logically sound. Students who choose the most logical measurement locations earned higher course grades, but not significantly higher. This result is encouraging, but not definitive. In the future, we will clarify our results in two ways. First, we plan to incorporate more open-ended interactions into the assessment to improve the resolving power of this tool. Second, to avoid relying on course grades, we will independently measure reasoning skill with one of the existing hand-scored assessments (e.g., Critical Thinking Assessment Test) to cross-validate our new assessment.

  16. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less

  17. Method and apparatus for scientific analysis under low temperature vacuum conditions

    DOEpatents

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  18. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building...

  19. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Office of Science... Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research, SC-21/Germantown Building...

  20. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Recompetition results for Scientific Discovery through Advanced Computing (SciDAC) applications Co-design Public... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Office of... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub...

  1. 75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Department of... the Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L.... FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21...

  2. Computing through Scientific Abstractions in SysBioPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Stephan, Eric G.; Gracio, Deborah K.

    2004-10-13

    Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less

  3. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  4. A characterization of workflow management systems for extreme-scale applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  5. A characterization of workflow management systems for extreme-scale applications

    DOE PAGES

    Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...

    2017-02-16

    We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less

  6. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S...

  7. Unified Performance and Power Modeling of Scientific Workloads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.

    2013-11-17

    It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less

  8. Constructing Scientific Applications from Heterogeneous Resources

    NASA Technical Reports Server (NTRS)

    Schichting, Richard D.

    1995-01-01

    A new model for high-performance scientific applications in which such applications are implemented as heterogeneous distributed programs or, equivalently, meta-computations, is investigated. The specific focus of this grant was a collaborative effort with researchers at NASA and the University of Toledo to test and improve Schooner, a software interconnection system, and to explore the benefits of increased user interaction with existing scientific applications.

  9. Simple re-instantiation of small databases using cloud computing.

    PubMed

    Tan, Tin Wee; Xie, Chao; De Silva, Mark; Lim, Kuan Siong; Patro, C Pawan K; Lim, Shen Jean; Govindarajan, Kunde Ramamoorthy; Tong, Joo Chuan; Choo, Khar Heng; Ranganathan, Shoba; Khan, Asif M

    2013-01-01

    Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear.

  10. Simple re-instantiation of small databases using cloud computing

    PubMed Central

    2013-01-01

    Background Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. Results We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Conclusions Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear. PMID:24564380

  11. Simulating Hydrologic Flow and Reactive Transport with PFLOTRAN and PETSc on Emerging Fine-Grained Parallel Computer Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.

    2017-12-01

    As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.

  12. NASA Advanced Supercomputing Facility Expansion

    NASA Technical Reports Server (NTRS)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  13. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klitsner, Tom

    The recent Executive Order creating the National Strategic Computing Initiative (NSCI) recognizes the value of high performance computing for economic competitiveness and scientific discovery and commits to accelerate delivery of exascale computing. The HPC programs at Sandia –the NNSA ASC program and Sandia’s Institutional HPC Program– are focused on ensuring that Sandia has the resources necessary to deliver computation in the national interest.

  15. Extreme-Scale Computing Project Aims to Advance Precision Oncology | FNLCR Staging

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  16. YES 2K6: A mentorship program for young engineers and scientists

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  17. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascalemore » computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.« less

  18. Mind the Gap! A Journey towards Computational Toxicology.

    PubMed

    Mangiatordi, Giuseppe Felice; Alberga, Domenico; Altomare, Cosimo Damiano; Carotti, Angelo; Catto, Marco; Cellamare, Saverio; Gadaleta, Domenico; Lattanzi, Gianluca; Leonetti, Francesco; Pisani, Leonardo; Stefanachi, Angela; Trisciuzzi, Daniela; Nicolotti, Orazio

    2016-09-01

    Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Final Project Report. Scalable fault tolerance runtime technology for petascale computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Sriram; Sadayappan, P

    With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been amore » considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.« less

  20. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.

  1. Data Security Policy | High-Performance Computing | NREL

    Science.gov Websites

    to use its high-performance computing (HPC) systems. NREL HPC systems are operated as research systems and may only contain data related to scientific research. These systems are categorized as low per sensitive or non-sensitive. One example of sensitive data would be personally identifiable information (PII

  2. POLYSHIFT Communications Software for the Connection Machine System CM-200

    DOE PAGES

    George, William; Brickner, Ralph G.; Johnsson, S. Lennart

    1994-01-01

    We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less

  3. Reconfigurable Computing for Computational Science: A New Focus in High Performance Computing

    DTIC Science & Technology

    2006-11-01

    in the past decade. Researchers are regularly employing the power of large computing systems and parallel processing to tackle larger and more...complex problems in all of the physical sciences. For the past decade or so, most of this growth in computing power has been “free” with increased...the scientific computing community as a means to continued growth in computing capability. This paper offers a glimpse of the hardware and

  4. Large Scale Computing and Storage Requirements for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less

  5. Shipping Science Worldwide with Open Source Containers

    NASA Astrophysics Data System (ADS)

    Molineaux, J. P.; McLaughlin, B. D.; Pilone, D.; Plofchan, P. G.; Murphy, K. J.

    2014-12-01

    Scientific applications often present difficult web-hosting needs. Their compute- and data-intensive nature, as well as an increasing need for high-availability and distribution, combine to create a challenging set of hosting requirements. In the past year, advancements in container-based virtualization and related tooling have offered new lightweight and flexible ways to accommodate diverse applications with all the isolation and portability benefits of traditional virtualization. This session will introduce and demonstrate an open-source, single-interface, Platform-as-a-Serivce (PaaS) that empowers application developers to seamlessly leverage geographically distributed, public and private compute resources to achieve highly-available, performant hosting for scientific applications.

  6. Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing

    NASA Astrophysics Data System (ADS)

    Chine, Karim

    The UK, through the e-Science program, the US through the NSF-funded cyber infrastructure and the European Union through the ICT Calls aimed to provide "the technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge".1 The Grid (Foster, 2002; Foster; Kesselman, Nick, & Tuecke, 2002), foreseen as a major accelerator of discovery, didn't meet the expectations it had excited at its beginnings and was not adopted by the broad population of research professionals. The Grid is a good tool for particle physicists and it has allowed them to tackle the tremendous computational challenges inherent to their field. However, as a technology and paradigm for delivering computing on demand, it doesn't work and it can't be fixed. On one hand, "the abstractions that Grids expose - to the end-user, to the deployers and to application developers - are inappropriate and they need to be higher level" (Jha, Merzky, & Fox), and on the other hand, academic Grids are inherently economically unsustainable. They can't compete with a service outsourced to the Industry whose quality and price would be driven by market forces. The virtualization technologies and their corollary, the Infrastructure-as-a-Service (IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a sustainable environment for computational sciences that would lower the barriers for accessing federated computational resources, software tools and data; enable collaboration and resources sharing and provide the building blocks of a ubiquitous platform for traceable and reproducible computational research.

  7. Cyberinfrastructure and Scientific Collaboration: Application of a Virtual Team Performance Framework with Potential Relevance to Education. WCER Working Paper No. 2010-12

    ERIC Educational Resources Information Center

    Kraemer, Sara; Thorn, Christopher A.

    2010-01-01

    The purpose of this exploratory study was to identify and describe some of the dimensions of scientific collaborations using high throughput computing (HTC) through the lens of a virtual team performance framework. A secondary purpose was to assess the viability of using a virtual team performance framework to study scientific collaborations using…

  8. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  9. What We've Learned about Assessing Hands-On Science.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; Baxter, Gail P.

    1992-01-01

    A recent study compared hands-on scientific inquiry assessment to assessments involving lab notebooks, computer simulations, short-answer paper-and-pencil problems, and multiple-choice questions. Creating high quality performance assessments is a costly, time-consuming process requiring considerable scientific and technological know-how. Improved…

  10. Automatic aortic anastomosis with an innovative computer-controlled circular stapler for surgical treatment of aortic aneurysm.

    PubMed

    Takata, Munehisa; Watanabe, Go; Ohtake, Hiroshi; Ushijima, Teruaki; Yamaguchi, Shojiro; Kikuchi, Yujiro; Yamamoto, Yoshitaka

    2011-05-01

    This study applied a computer-controlled mechanical stapler to vascular end-to-end anastomosis to achieve an automatic aortic anastomosis between the aorta and an artificial graft. In this experimental study, we created a mechanical end-to-end anastomotic model and assessed the strength of the anastomotic site under high pressure. We used a computer-controlled circular stapler named iDrive (Power Medical Interventions, Covidien plc, Dublin, Ireland) for the anastomosis between the porcine aorta and an artificial graft. Then the mechanically stapled group (group A) and the manually sutured group (group B) were compared 10 times, and we assessed the differences at several levels of pressure. To use a mechanical stapler in vascular anastomosis, some special preparations of both the aorta and the artificial graft are necessary to narrow the open end before the procedures. To solve this problem, we established a specially designed purse-string suture for both and finally established end-to-end vascular anastomosis. The anastomosis speed of group A was statistically significantly faster than that of group B (P < .01). The group A anastomotic sites also showed significantly more tolerance to high pressure than those of group B. The computer-controlled stapling device enabled reliable anastomosis of the aorta and the artificial graft. This study showed that mechanical vascular anastomosis with the iDrive was sufficiently strong and safe relative to manual suturing. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  11. The application of cloud computing to scientific workflows: a study of cost and performance.

    PubMed

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  12. Simplified Distributed Computing

    NASA Astrophysics Data System (ADS)

    Li, G. G.

    2006-05-01

    The distributed computing runs from high performance parallel computing, GRID computing, to an environment where idle CPU cycles and storage space of numerous networked systems are harnessed to work together through the Internet. In this work we focus on building an easy and affordable solution for computationally intensive problems in scientific applications based on existing technology and hardware resources. This system consists of a series of controllers. When a job request is detected by a monitor or initialized by an end user, the job manager launches the specific job handler for this job. The job handler pre-processes the job, partitions the job into relative independent tasks, and distributes the tasks into the processing queue. The task handler picks up the related tasks, processes the tasks, and puts the results back into the processing queue. The job handler also monitors and examines the tasks and the results, and assembles the task results into the overall solution for the job request when all tasks are finished for each job. A resource manager configures and monitors all participating notes. A distributed agent is deployed on all participating notes to manage the software download and report the status. The processing queue is the key to the success of this distributed system. We use BEA's Weblogic JMS queue in our implementation. It guarantees the message delivery and has the message priority and re-try features so that the tasks never get lost. The entire system is built on the J2EE technology and it can be deployed on heterogeneous platforms. It can handle algorithms and applications developed in any languages on any platforms. J2EE adaptors are provided to manage and communicate the existing applications to the system so that the applications and algorithms running on Unix, Linux and Windows can all work together. This system is easy and fast to develop based on the industry's well-adopted technology. It is highly scalable and heterogeneous. It is an open system and any number and type of machines can join the system to provide the computational power. This asynchronous message-based system can achieve second of response time. For efficiency, communications between distributed tasks are often done at the start and end of the tasks but intermediate status of the tasks can also be provided.

  13. Consistency of nature of science views across scientific and socio-scientific contexts

    NASA Astrophysics Data System (ADS)

    Khishfe, Rola

    2017-03-01

    The purpose of the investigation was to investigate the consistency of NOS views among high school students across different scientific and socio-scientific contexts. A total of 261 high school students from eight different schools in Lebanon participated in the investigation. The schools were selected based on different geographical areas in Lebanon and the principals' consent to participate in the study. The investigation used a qualitative design to compare the responses of students across different contexts/topics. All the participants completed a five-item open-ended questionnaire, which includes five topics addressing scientific and socio-scientific contexts. The items of the questionnaire addressed the empirical, tentative, and subjective aspects of NOS. Quantitative and qualitative analyses were conducted to answer the research questions. Results showed that participants' views of the emphasised NOS aspects were mostly inconsistent. Plus, there was variance in participants' views of NOS between scientific and socio-scientific issues. Discussion of the results related to differential developmental progression, contextual factors, social constructivist perspective, different domains of knowledge, and students' individual differences.

  14. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Allcock, William; Beggio, Chris

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less

  15. Study and Implementation of the End-to-End Data Pipeline for the Virtis Imaging Spectrometer Onbaord Venus Express: "From Science Operations Planning to Data Archiving and Higher Lever Processing"

    NASA Astrophysics Data System (ADS)

    Cardesín Moinelo, Alejandro

    2010-04-01

    This PhD Thesis describes the activities performed during the Research Program undertaken for two years at the Istituto Nazionale di AstroFisica in Rome, Italy, as active member of the VIRTIS Technical and Scientific Team, and one additional year at the European Space Astronomy Center in Madrid, Spain, as member of the Mars Express Science Ground Segment. This document will show a study of all sections of the Science Ground Segment of the Venus Express mission, from the planning of the scientific operations, to the generation, calibration and archiving of the science data, including the production of valuable high level products. We will present and discuss here the end-to-end diagram of the ground segment from the technical and scientific point of view, in order to describe the overall flow of information: from the original scientific requests of the principal investigator and interdisciplinary teams, up to the spacecraft, and down again for the analysis of the measurements and interpretation of the scientific results. These scientific results drive to new and more elaborated scientific requests, which are used as feedback to the planning cycle, closing the circle. Special attention is given here to describe the implementation and development of the data pipeline for the VIRTIS instrument onboard Venus Express. During the research program, both the raw data generation pipeline and the data calibration pipeline were developed and automated in order to produce the final raw and calibrated data products from the input telemetry of the instrument. The final raw and calibrated products presented in this work are currently being used by the VIRTIS Science team for data analysis and are distributed to the whole scientific community via the Planetary Science Archive. More than 20,000 raw data files and 10,000 calibrated products have already been generated after almost 4 years of mission. In the final part of the Thesis, we will also present some high level data processing methods developed for the Mapping channel of the VIRTIS instrument. These methods have been implemented for the generation of high level global maps of measured radiance over the whole planet, which can then be used for the understanding of the global dynamics and morphology of the Venusian atmosphere. This method is currently being used to compare different emissions probing at different altitudes from the low cloud layers up to the upper mesosphere, by using the averaged projected values of radiance observed by the instrument, such as the near infrared windows at 1.7 μm and 2.3μm, the thermal region at 3.8μm and 5μm plus the analysis of particular emissions in the night and day side of the planet. This research has been undertaken under guidance and supervision of Giuseppe Piccioni, VIRTIS co-Principal Investigator, with support of the entire VIRTIS technical and scientific team, in particular of the Archiving team in Paris (LESIA-Meudon). The work has also been done in close collaboration with the Science and Mission Operations Centres in Madrid and Darmstadt (European Space Agency), the EGSE software developer (Techno Systems), the manufacturer of the VIRTIS instrument (Galileo Avionica) and the developer of the VIRTIS onboard software (DLR Berlin). The outcome of the technical and scientific work presented in this thesis is currently being used by the VIRTIS team to continue the investigations on the Venusian atmosphere and plan new scientific observations to improve the overall knowledge of the solar system. At the end of this document we show some of the many technical and scientific contributions, which have already been published in several international journals and conferences, and some articles of the European Space Agency used for public outreach.

  16. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  17. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.

    2017-12-01

    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the time this contribution is being written, the proposed testbed represents the first implementation of a distributed large-scale, multi-model experiment in the ESGF/CMIP context, joining together server-side approaches for scientific data analysis, HPDA frameworks, end-to-end workflow management, and cloud computing.

  18. Footwear Physics.

    ERIC Educational Resources Information Center

    Blaser, Mark; Larsen, Jamie

    1996-01-01

    Presents five interactive, computer-based activities that mimic scientific tests used by sport researchers to help companies design high-performance athletic shoes, including impact tests, flexion tests, friction tests, video analysis, and computer modeling. Provides a platform for teachers to build connections between chemistry (polymer science),…

  19. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  20. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Poster

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict drug response, and improve treatments for patients.

  1. THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS

    PubMed Central

    Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel

    2010-01-01

    Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618

  2. Evaluating non-relational storage technology for HEP metadata and meta-data catalog

    NASA Astrophysics Data System (ADS)

    Grigorieva, M. A.; Golosova, M. V.; Gubin, M. Y.; Klimentov, A. A.; Osipova, V. V.; Ryabinkin, E. A.

    2016-10-01

    Large-scale scientific experiments produce vast volumes of data. These data are stored, processed and analyzed in a distributed computing environment. The life cycle of experiment is managed by specialized software like Distributed Data Management and Workload Management Systems. In order to be interpreted and mined, experimental data must be accompanied by auxiliary metadata, which are recorded at each data processing step. Metadata describes scientific data and represent scientific objects or results of scientific experiments, allowing them to be shared by various applications, to be recorded in databases or published via Web. Processing and analysis of constantly growing volume of auxiliary metadata is a challenging task, not simpler than the management and processing of experimental data itself. Furthermore, metadata sources are often loosely coupled and potentially may lead to an end-user inconsistency in combined information queries. To aggregate and synthesize a range of primary metadata sources, and enhance them with flexible schema-less addition of aggregated data, we are developing the Data Knowledge Base architecture serving as the intelligence behind GUIs and APIs.

  3. ROSE Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, D.; Yi, Q.; Buduc, R.

    2005-02-17

    ROSE is an object-oriented software infrastructure for source-to-source translation that provides an interface for programmers to write their own specialized translators for optimizing scientific applications. ROSE is a part of current research on telescoping languages, which provides optimizations of the use of libraries in scientific applications. ROSE defines approaches to extend the optimization techniques, common in well defined languages, to the optimization of scientific applications using well defined libraries. ROSE includes a rich set of tools for generating customized transformations to support optimization of applications codes. We currently support full C and C++ (including template instantiation etc.), with Fortran 90more » support under development as part of a collaboration and contract with Rice to use their version of the open source Open64 F90 front-end. ROSE represents an attempt to define an open compiler infrastructure to handle the full complexity of full scale DOE applications codes using the languages common to scientific computing within DOE. We expect that such an infrastructure will also be useful for the development of numerous tools that may then realistically expect to work on DOE full scale applications.« less

  4. A Rich Metadata Filesystem for Scientific Data

    ERIC Educational Resources Information Center

    Bui, Hoang

    2012-01-01

    As scientific research becomes more data intensive, there is an increasing need for scalable, reliable, and high performance storage systems. Such data repositories must provide both data archival services and rich metadata, and cleanly integrate with large scale computing resources. ROARS is a hybrid approach to distributed storage that provides…

  5. Partners | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Renewable Electricity to Grid Integration Evaluation of New Technology IGBT Industry Asetek High Performance Energy Commission High Performance Computing & Visualization Real-Time Data Collection for Institute/Schneider Electric Renewable Electricity to Grid Integration End-to-End Communication and Control

  6. Parallel Computing:. Some Activities in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Willers, Ian

    This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.

  7. Electric Field Distortion in Electro-Optical Devices Subjected to Ionizing Radiation.

    DTIC Science & Technology

    1983-12-26

    applies- ties of scientif ic advances to nam military spae system . Versatilty and flaxibility hews beon developed to a high degree by the lehoratory...personel In deeling with the many problems encountered ina the nation’s rapidly dsvelopnas space system . 1expertise In the latest scientific developments is...desiga, distributed architectures for spacoerne m o putars, fault-tolerant c.speter system , artificia intelligence. end microelectronics applications

  8. EUROPLANET-RI modelling service for the planetary science community: European Modelling and Data Analysis Facility (EMDAF)

    NASA Astrophysics Data System (ADS)

    Khodachenko, Maxim; Miller, Steven; Stoeckler, Robert; Topf, Florian

    2010-05-01

    Computational modeling and observational data analysis are two major aspects of the modern scientific research. Both appear nowadays under extensive development and application. Many of the scientific goals of planetary space missions require robust models of planetary objects and environments as well as efficient data analysis algorithms, to predict conditions for mission planning and to interpret the experimental data. Europe has great strength in these areas, but it is insufficiently coordinated; individual groups, models, techniques and algorithms need to be coupled and integrated. Existing level of scientific cooperation and the technical capabilities for operative communication, allow considerable progress in the development of a distributed international Research Infrastructure (RI) which is based on the existing in Europe computational modelling and data analysis centers, providing the scientific community with dedicated services in the fields of their computational and data analysis expertise. These services will appear as a product of the collaborative communication and joint research efforts of the numerical and data analysis experts together with planetary scientists. The major goal of the EUROPLANET-RI / EMDAF is to make computational models and data analysis algorithms associated with particular national RIs and teams, as well as their outputs, more readily available to their potential user community and more tailored to scientific user requirements, without compromising front-line specialized research on model and data analysis algorithms development and software implementation. This objective will be met through four keys subdivisions/tasks of EMAF: 1) an Interactive Catalogue of Planetary Models; 2) a Distributed Planetary Modelling Laboratory; 3) a Distributed Data Analysis Laboratory, and 4) enabling Models and Routines for High Performance Computing Grids. Using the advantages of the coordinated operation and efficient communication between the involved computational modelling, research and data analysis expert teams and their related research infrastructures, EMDAF will provide a 1) flexible, 2) scientific user oriented, 3) continuously developing and fast upgrading computational and data analysis service to support and intensify the European planetary scientific research. At the beginning EMDAF will create a set of demonstrators and operational tests of this service in key areas of European planetary science. This work will aim at the following objectives: (a) Development and implementation of tools for distant interactive communication between the planetary scientists and computing experts (including related RIs); (b) Development of standard routine packages, and user-friendly interfaces for operation of the existing numerical codes and data analysis algorithms by the specialized planetary scientists; (c) Development of a prototype of numerical modelling services "on demand" for space missions and planetary researchers; (d) Development of a prototype of data analysis services "on demand" for space missions and planetary researchers; (e) Development of a prototype of coordinated interconnected simulations of planetary phenomena and objects (global multi-model simulators); (f) Providing the demonstrators of a coordinated use of high performance computing facilities (super-computer networks), done in cooperation with European HPC Grid DEISA.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetlana Shasharina

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  10. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; Gerber, Richard

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, (5) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less

  11. Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning.

    PubMed

    Mirzaei, Shokoufeh; Sidi, Tomer; Keasar, Chen; Crivelli, Silvia

    2016-08-24

    The function of a protein is determined by its structure, which creates a need for efficient methods of protein structure determination to advance scientific and medical research. Because current experimental structure determination methods carry a high price tag, computational predictions are highly desirable. Given a protein sequence, computational methods produce numerous 3D structures known as decoys. However, selection of the best quality decoys is challenging as the end users can handle only a few ones. Therefore, scoring functions are central to decoy selection. They combine measurable features into a single number indicator of decoy quality. Unfortunately, current scoring functions do not consistently select the best decoys. Machine learning techniques offer great potential to improve decoy scoring. This paper presents two machine-learning based scoring functions to predict the quality of proteins structures, i.e., the similarity between the predicted structure and the experimental one without knowing the latter. We use different metrics to compare these scoring functions against three state-of-the-art scores. This is a first attempt at comparing different scoring functions using the same non-redundant dataset for training and testing and the same features. The results show that adding informative features may be more significant than the method used.

  12. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  13. The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem

    NASA Technical Reports Server (NTRS)

    Gadwal, Govind R.; Barasch, Ronald S.

    1990-01-01

    The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.

  14. Japanese supercomputer technology.

    PubMed

    Buzbee, B L; Ewald, R H; Worlton, W J

    1982-12-17

    Under the auspices of the Ministry for International Trade and Industry the Japanese have launched a National Superspeed Computer Project intended to produce high-performance computers for scientific computation and a Fifth-Generation Computer Project intended to incorporate and exploit concepts of artificial intelligence. If these projects are successful, which appears likely, advanced economic and military research in the United States may become dependent on access to supercomputers of foreign manufacture.

  15. Program Aids Specification Of Multiple-Block Grids

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Mccann, K. M.

    1993-01-01

    3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.

  16. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  17. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  19. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing

    DTIC Science & Technology

    2016-02-03

    goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole

  1. Technologies for Large Data Management in Scientific Computing

    NASA Astrophysics Data System (ADS)

    Pace, Alberto

    2014-01-01

    In recent years, intense usage of computing has been the main strategy of investigations in several scientific research projects. The progress in computing technology has opened unprecedented opportunities for systematic collection of experimental data and the associated analysis that were considered impossible only few years ago. This paper focuses on the strategies in use: it reviews the various components that are necessary for an effective solution that ensures the storage, the long term preservation, and the worldwide distribution of large quantities of data that are necessary in a large scientific research project. The paper also mentions several examples of data management solutions used in High Energy Physics for the CERN Large Hadron Collider (LHC) experiments in Geneva, Switzerland which generate more than 30,000 terabytes of data every year that need to be preserved, analyzed, and made available to a community of several tenth of thousands scientists worldwide.

  2. Networking for High Energy and Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data transfers serving the community complete with high probability, often while coexisting with many other streams of network traffic. Responding to these needs, and to the scientific mission, physicists working with network engineers and computer scientists have made substantial progress in the development of protocols and systems that promise to meet these needs, placing our community among the world leaders in the development as well as use of large-scale networks. A great deal of work remains, and is continuing. As we advance in these areas, often (as in the past year) with great rapidity, there is a growing danger that we will leave behind our collaborators in regions with less-developed networks, or with regulatory frameworks or business models that put the required networks financially out of reach. This threatens to further open the Digital Divide that already exists among the regions of the world. In 2002, the SCIC recognized the threat that this Divide represents to our global scientific collaborations, and since that time has worked assiduously to reduce or eliminate it; both within our community, and more broadly in the world research community of which HEP is a part.

  3. Reconciling Scratch Space Consumption, Exposure, and Volatility to Achieve Timely Staging of Job Input Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monti, Henri; Butt, Ali R; Vazhkudai, Sudharshan S

    2010-04-01

    Innovative scientific applications and emerging dense data sources are creating a data deluge for high-end computing systems. Processing such large input data typically involves copying (or staging) onto the supercomputer's specialized high-speed storage, scratch space, for sustained high I/O throughput. The current practice of conservatively staging data as early as possible makes the data vulnerable to storage failures, which may entail re-staging and consequently reduced job throughput. To address this, we present a timely staging framework that uses a combination of job startup time predictions, user-specified intermediate nodes, and decentralized data delivery to coincide input data staging with job start-up.more » By delaying staging to when it is necessary, the exposure to failures and its effects can be reduced. Evaluation using both PlanetLab and simulations based on three years of Jaguar (No. 1 in Top500) job logs show as much as 85.9% reduction in staging times compared to direct transfers, 75.2% reduction in wait time on scratch, and 2.4% reduction in usage/hour.« less

  4. Significantly reducing the processing times of high-speed photometry data sets using a distributed computing model

    NASA Astrophysics Data System (ADS)

    Doyle, Paul; Mtenzi, Fred; Smith, Niall; Collins, Adrian; O'Shea, Brendan

    2012-09-01

    The scientific community is in the midst of a data analysis crisis. The increasing capacity of scientific CCD instrumentation and their falling costs is contributing to an explosive generation of raw photometric data. This data must go through a process of cleaning and reduction before it can be used for high precision photometric analysis. Many existing data processing pipelines either assume a relatively small dataset or are batch processed by a High Performance Computing centre. A radical overhaul of these processing pipelines is required to allow reduction and cleaning rates to process terabyte sized datasets at near capture rates using an elastic processing architecture. The ability to access computing resources and to allow them to grow and shrink as demand fluctuates is essential, as is exploiting the parallel nature of the datasets. A distributed data processing pipeline is required. It should incorporate lossless data compression, allow for data segmentation and support processing of data segments in parallel. Academic institutes can collaborate and provide an elastic computing model without the requirement for large centralized high performance computing data centers. This paper demonstrates how a base 10 order of magnitude improvement in overall processing time has been achieved using the "ACN pipeline", a distributed pipeline spanning multiple academic institutes.

  5. Modeling non-point source pollutants in the vadose zone: Back to the basics

    NASA Astrophysics Data System (ADS)

    Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.

    More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models serving to economize experimental designs and directing objectives. The responsibility lies in the hands of modelers to adhere to the modeling process and to seek out experimentalists that can evaluate their model. Even though this warning is nothing new, the effort by modelers to heed it is still as much the exception as the rule.

  6. High Productivity Computing Systems and Competitiveness Initiative

    DTIC Science & Technology

    2007-07-01

    planning committee for the annual, international Supercomputing Conference in 2004 and 2005. This is the leading HPC industry conference in the world. It...sector partnerships. Partnerships will form a key part of discussions at the 2nd High Performance Computing Users Conference, planned for July 13, 2005...other things an interagency roadmap for high-end computing core technologies and an accessibility improvement plan . Improving HPC Education and

  7. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues inmore » the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic theoretical models. Visualization and Analysis: Supporting near-real-time feedback for experiment optimization and new ways to extract and communicate critical information from large data sets. Data Processing and Management: Outlining needs in computational and communication approaches and infrastructure needed to handle unprecedented data volume and information content. It should be noted that almost all participants recognized that there were unlikely to be any turn-key solutions available due to the unique, diverse nature of the BES community, where research at adjacent beamlines at a given light source facility often span everything from biology to materials science to chemistry using scattering, imaging and/or spectroscopy. However, it was also noted that advances supported by other programs in data research, methodologies, and tool development could be implemented on reasonable time scales with modest effort. Adapting available standard file formats, robust workflows, and in-situ analysis tools for user facility needs could pay long-term dividends. Workshop participants assessed current requirements as well as future challenges and made the following recommendations in order to achieve the ultimate goal of enabling transformative science in current and future BES facilities: Theory and analysis components should be integrated seamlessly within experimental workflow. Develop new algorithms for data analysis based on common data formats and toolsets. Move analysis closer to experiment. Move the analysis closer to the experiment to enable real-time (in-situ) streaming capabilities, live visualization of the experiment and an increase of the overall experimental efficiency. Match data management access and capabilities with advancements in detectors and sources. Remove bottlenecks, provide interoperability across different facilities/beamlines and apply forefront mathematical techniques to more efficiently extract science from the experiments. This workshop report examines and reviews the status of several BES facilities and highlights the successes and shortcomings of the current data and communication pathways for scientific discovery. It then ascertains what methods and tools are needed to mitigate present and projected data bottlenecks to science over the next 10 years. The goal of this report is to create the foundation for information exchanges and collaborations among ASCR and BES supported researchers, the BES scientific user facilities, and ASCR computing and networking facilities. To jumpstart these activities, there was a strong desire to see a joint effort between ASCR and BES along the lines of the highly successful Scientific Discovery through Advanced Computing (SciDAC) program in which integrated teams of engineers, scientists and computer scientists were engaged to tackle a complete end-to-end workflow solution at one or more beamlines, to ascertain what challenges will need to be addressed in order to handle future increases in data« less

  8. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    NASA Technical Reports Server (NTRS)

    Doyle, Richard; Bergman, Larry; Some, Raphael; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and the mission; it can be aptly viewed as a "technology multiplier" in that advances in onboard computing provide dramatic improvements in flight functions and capabilities across the NASA mission classes, and will enable new flight capabilities and mission scenarios, increasing science and exploration return per mission-dollar.

  9. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  10. GPU Multi-Scale Particle Tracking and Multi-Fluid Simulations of the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; Carscadden, J.; O'Donnell, D.; Winglee, R.; Harnett, E.; Cash, M.

    2007-12-01

    The properties of the radiation belts can vary dramatically under the influence of magnetic storms and storm-time substorms. The task of understanding and predicting radiation belt properties is made difficult because their properties determined by global processes as well as small-scale wave-particle interactions. A full solution to the problem will require major innovations in technique and computer hardware. The proposed work will demonstrates liked particle tracking codes with new multi-scale/multi-fluid global simulations that provide the first means to include small-scale processes within the global magnetospheric context. A large hurdle to the problem is having sufficient computer hardware that is able to handle the dissipate temporal and spatial scale sizes. A major innovation of the work is that the codes are designed to run of graphics processing units (GPUs). GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for little more cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. A demonstration of the code pushing more than 500,000 particles faster than real time is presented, and used to provide new insight into radiation belt dynamics.

  11. High-precision arithmetic in mathematical physics

    DOE PAGES

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  12. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    PubMed

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  15. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    NASA Astrophysics Data System (ADS)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  16. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  17. Computer Series, 52: Scientific Exploration with a Microcomputer: Simulations for Nonscientists.

    ERIC Educational Resources Information Center

    Whisnant, David M.

    1984-01-01

    Describes two simulations, written for Apple II microcomputers, focusing on scientific methodology. The first is based on the tendency of colloidal iron in high concentrations to stick to fish gills and cause breathing difficulties. The second, modeled after the dioxin controversy, examines a hypothetical chemical thought to cause cancer. (JN)

  18. Information Science Research: The Search for the Nature of Information.

    ERIC Educational Resources Information Center

    Kochen, Manfred

    1984-01-01

    High-level scientific research in the information sciences is illustrated by sampling of recent discoveries involving adaptive information processing strategies, computer and information systems, centroid scaling, economic growth of computer and communication industries, and information flow in biological systems. Relationship of information…

  19. I/O load balancing for big data HPC applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less

  20. An Innovative Infrastructure with a Universal Geo-spatiotemporal Data Representation Supporting Cost-effective Integration of Diverse Earth Science Data

    NASA Astrophysics Data System (ADS)

    Kuo, K. S.; Rilee, M. L.

    2017-12-01

    Existing pathways for bringing together massive, diverse Earth Science datasets for integrated analyses burden end users with data packaging and management details irrelevant to their domain goals. The major data repositories focus on archival, discovery, and dissemination of products (files) in a standardized manner. End-users must download and then adapt these files using local resources and custom methods before analysis can proceed. This reduces scientific or other domain productivity, as scarce resources and expertise must be diverted to data processing. The Spatio-Temporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions, e.g. conditional subsetting, into integer operations, that takes into account representative spatiotemporal resolutions of the data in the datasets, which is needed for data placement alignment of geo-spatiotemporally diverse data on massive parallel resources. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain specific questions instead of expending their expertise on data processing. While STARE is not tied to any particular computing technology, we have used STARE for visualization and the SciDB array database to analyze Earth Science data on a 28-node compute cluster. STARE's automatic data placement and coupling of geometric and array indexing allows complicated data comparisons to be realized as straightforward database operations like "join." With STARE-enabled automation, SciDB+STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of integrable data, and easing result sharing. Using SciDB+STARE as part of an integrated analysis infrastructure, we demonstrate the dramatic ease of combining diametrically different datasets, i.e. gridded (NMQ radar) vs. spacecraft swath (TRMM). SciDB+STARE is an important step towards a computational infrastructure for integrating and sharing diverse, complex Earth Science data and science products derived from them.

  1. A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case

    PubMed Central

    Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038

  2. A high-performance genetic algorithm: using traveling salesman problem as a case.

    PubMed

    Tsai, Chun-Wei; Tseng, Shih-Pang; Chiang, Ming-Chao; Yang, Chu-Sing; Hong, Tzung-Pei

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.

  3. Implementing Scientific Simulation Codes Highly Tailored for Vector Architectures Using Custom Configurable Computing Machines

    NASA Technical Reports Server (NTRS)

    Rutishauser, David

    2006-01-01

    The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters that attempts to minimize execution time, while staying within resource constraints. The flexibility of using a custom reconfigurable implementation is exploited in a unique manner to leverage the lessons learned in vector supercomputer development. The vector processing framework is tailored to the application, with variable parameters that are fixed in traditional vector processing. Benchmark data that demonstrates the functionality and utility of the approach is presented. The benchmark data includes an identified bottleneck in a real case study example vector code, the NASA Langley Terminal Area Simulation System (TASS) application.

  4. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  5. Terascale Computing in Accelerator Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Kwok

    2002-08-21

    We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aidedmore » engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.« less

  6. Agent-based computational models to explore diffusion of medical innovations among cardiologists.

    PubMed

    Borracci, Raul A; Giorgi, Mariano A

    2018-04-01

    Diffusion of medical innovations among physicians rests on a set of theoretical assumptions, including learning and decision-making under uncertainty, social-normative pressures, medical expert knowledge, competitive concerns, network performance effects, professional autonomy or individualism and scientific evidence. The aim of this study was to develop and test four real data-based, agent-based computational models (ABM) to qualitatively and quantitatively explore the factors associated with diffusion and application of innovations among cardiologists. Four ABM were developed to study diffusion and application of medical innovations among cardiologists, considering physicians' network connections, leaders' opinions, "adopters' categories", physicians' autonomy, scientific evidence, patients' pressure, affordability for the end-user population, and promotion from companies. Simulations demonstrated that social imitation among local cardiologists was sufficient for innovation diffusion, as long as opinion leaders did not act as detractors of the innovation. Even in the absence of full scientific evidence to support innovation, up to one-fifth of cardiologists could accept it when local leaders acted as promoters. Patients' pressure showed a large effect size (Cohen's d > 1.2) on the proportion of cardiologists applying an innovation. Two qualitative patterns (speckled and granular) appeared associated to traditional Gompertz and sigmoid cumulative distributions. These computational models provided a semiquantitative insight on the emergent collective behavior of a physician population facing the acceptance or refusal of medical innovations. Inclusion in the models of factors related to patients' pressure and accesibility to medical coverage revealed the contrast between accepting and effectively adopting a new product or technology for population health care. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. High throughput computing: a solution for scientific analysis

    USGS Publications Warehouse

    O'Donnell, M.

    2011-01-01

    handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).

  8. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  9. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  10. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  11. Changing from computing grid to knowledge grid in life-science grid.

    PubMed

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  12. Proceedings of the Scientific Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K. (Editor)

    1989-01-01

    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms.

  13. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  14. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  15. The Early Years of Molecular Dynamics and Computers at UCRL, LRL, LLL, and LLNL

    NASA Astrophysics Data System (ADS)

    Mansigh Karlsen, Mary Ann

    I'm the young woman in the picture shown in Fig. 12.1 that appeared with the invitation to the Symposium to celebrate Berni Alder's ninetieth birthday. I worked with Berni for over 25 years on the computer programs that provided the data he needed to write the fifteen papers published in scientific journals on Studies in Molecular Dynamics. My name appears at the end of each one thanking me for computer support. It has been interesting to look on the Internet to find my name in the middle of many foreign languages, including Japanese characters and Russian Cyrillic script. It shows how Berni's work has been of interest to many scientists all over the world from the earliest years. Figure 12.1 was also included with articles written when he received the National Medal of Science from President Obama in 2009…

  16. Need for evaluative methodologies in land use, regional resource and waste management planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croke, E. J.

    The transfer of planning methodology from the research community to the practitioner very frequently takes the form of analytical and evaluative techniques and procedures. In the end, these become operational in the form of data acquisition, management and display systems, computational schemes that are codified in the form of manuals and handbooks, and computer simulation models. The complexity of the socioeconomic and physical processes that govern environmental resource and waste management have reinforced the need for computer assisted, scientifically sophisticated planning models that are fully operational, dependent on an attainable data base and accessible in terms of the resources normallymore » available to practitioners of regional resource management, waste management, and land use planning. A variety of models and procedures that attempt to meet one or more of the needs of these practitioners are discussed.« less

  17. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  18. Department of Defense In-House RDT and E Activities: Management Analysis Report for Fiscal Year 1993

    DTIC Science & Technology

    1994-11-01

    A worldwide unique lab because it houses a high - speed modeling and simulation system, a prototype...E Division, San Diego, CA: High Performance Computing Laboratory providing a wide range of advanced computer systems for the scientific investigation...Machines CM-200 and a 256-node Thinking Machines CM-S. The CM-5 is in a very large memory, ( high performance 32 Gbytes, >4 0 OFlop) coafiguration,

  19. Subduction indices in Calabro-Sicilian arc : Training for Experimental Skills Testing and collaborative work for students in scientific terminal class in high school.

    NASA Astrophysics Data System (ADS)

    Gendron, Faustine; Bollori, Lucas; Villeneuve, Felix

    2017-04-01

    In France, at the end of the last year in high school, students of the scientific terminal class have written exams in all subjects they are studying, and in "Life and Earth's Sciences", they also have an Experimental Skills Testing in order to rate them in scientific approach. This one-hour evaluation is made of four steps: - During the first evaluation, students have to show that they are able to propose a scientific strategy connected to a scientific problem. - During the second evaluation, they have to experiment. - During the third evaluation, they have to introduce their results. - During the last evaluation, they have to deduce and conclude. The final testing take place at the end of May, but during all the school year, teachers have to train their students, and it's impossible to make them work on real subjects. Therefore, it's necessary to produce new subjects every year. Linked to a fall school in Sicily last October, my colleagues and I have decided to create a new Experimental Skills Test to use new examples and illustrate subduction in the Mediterranean Sea with Aeolian Islands. We would like to make our pupils understand what the Aeolian volcanism is due to, by using information, equipment and software, etc. we have in our classrooms in our high school. Since we have found several ways for our students to prove that the Aeolian Islands are linked to a subduction zone, we have decided, following our research, to divide the new experimental skills testing in three different tests, in order to make students train on most of the equipment and then to share their results to produce a collaborative final work.

  20. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    NASA Technical Reports Server (NTRS)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  1. Computer Synthesis Approaches of Hyperboloid Gear Drives with Linear Contact

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Kawasaki, Haruhisa

    2014-09-01

    The computer design has improved forming different type software for scientific researches in the field of gearing theory as well as performing an adequate scientific support of the gear drives manufacture. Here are attached computer programs that are based on mathematical models as a result of scientific researches. The modern gear transmissions require the construction of new mathematical approaches to their geometric, technological and strength analysis. The process of optimization, synthesis and design is based on adequate iteration procedures to find out an optimal solution by varying definite parameters. The study is dedicated to accepted methodology in the creation of soft- ware for the synthesis of a class high reduction hyperboloid gears - Spiroid and Helicon ones (Spiroid and Helicon are trademarks registered by the Illinois Tool Works, Chicago, Ill). The developed basic computer products belong to software, based on original mathematical models. They are based on the two mathematical models for the synthesis: "upon a pitch contact point" and "upon a mesh region". Computer programs are worked out on the basis of the described mathematical models, and the relations between them are shown. The application of the shown approaches to the synthesis of commented gear drives is illustrated.

  2. High School Students' Written Argumentation Qualities with Problem-Based Computer-Aided Material (PBCAM) Designed about Human Endocrine System

    ERIC Educational Resources Information Center

    Vekli, Gülsah Sezen; Çimer, Atilla

    2017-01-01

    This study investigated development of students' scientific argumentation levels in the applications made with Problem-Based Computer-Aided Material (PBCAM) designed about Human Endocrine System. The case study method was used: The study group was formed of 43 students in the 11th grade of the science high school in Rize. Human Endocrine System…

  3. I Am Sure There May Be a Planet There: Student Articulation of Uncertainty in Argumentation Tasks

    ERIC Educational Resources Information Center

    Buck, Zoë E.; Lee, Hee-Sun; Flores, Joanna

    2014-01-01

    We investigated how students articulate uncertainty when they are engaged in structured scientific argumentation tasks where they generate, examine, and interpret data to determine the existence of exoplanets. In this study, 302 high school students completed 4 structured scientific arguments that followed a series of computer-model-based…

  4. DataHub: Science data management in support of interactive exploratory analysis

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Rubin, Mark R.

    1993-01-01

    The DataHub addresses four areas of significant needs: scientific visualization and analysis; science data management; interactions in a distributed, heterogeneous environment; and knowledge-based assistance for these functions. The fundamental innovation embedded within the DataHub is the integration of three technologies, viz. knowledge-based expert systems, science visualization, and science data management. This integration is based on a concept called the DataHub. With the DataHub concept, science investigators are able to apply a more complete solution to all nodes of a distributed system. Both computational nodes and interactives nodes are able to effectively and efficiently use the data services (access, retrieval, update, etc), in a distributed, interdisciplinary information system in a uniform and standard way. This allows the science investigators to concentrate on their scientific endeavors, rather than to involve themselves in the intricate technical details of the systems and tools required to accomplish their work. Thus, science investigators need not be programmers. The emphasis on the definition and prototyping of system elements with sufficient detail to enable data analysis and interpretation leading to information. The DataHub includes all the required end-to-end components and interfaces to demonstrate the complete concept.

  5. DataHub - Science data management in support of interactive exploratory analysis

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Rubin, Mark R.

    1993-01-01

    DataHub addresses four areas of significant need: scientific visualization and analysis; science data management; interactions in a distributed, heterogeneous environment; and knowledge-based assistance for these functions. The fundamental innovation embedded within the DataHub is the integration of three technologies, viz. knowledge-based expert systems, science visualization, and science data management. This integration is based on a concept called the DataHub. With the DataHub concept, science investigators are able to apply a more complete solution to all nodes of a distributed system. Both computational nodes and interactive nodes are able to effectively and efficiently use the data services (access, retrieval, update, etc.) in a distributed, interdisciplinary information system in a uniform and standard way. This allows the science investigators to concentrate on their scientific endeavors, rather than to involve themselves in the intricate technical details of the systems and tools required to accomplish their work. Thus, science investigators need not be programmers. The emphasis is on the definition and prototyping of system elements with sufficient detail to enable data analysis and interpretation leading to information. The DataHub includes all the required end-to-end components and interfaces to demonstrate the complete concept.

  6. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association.

    PubMed

    van Diepen, Sean; Katz, Jason N; Albert, Nancy M; Henry, Timothy D; Jacobs, Alice K; Kapur, Navin K; Kilic, Ahmet; Menon, Venu; Ohman, E Magnus; Sweitzer, Nancy K; Thiele, Holger; Washam, Jeffrey B; Cohen, Mauricio G

    2017-10-17

    Cardiogenic shock is a high-acuity, potentially complex, and hemodynamically diverse state of end-organ hypoperfusion that is frequently associated with multisystem organ failure. Despite improving survival in recent years, patient morbidity and mortality remain high, and there are few evidence-based therapeutic interventions known to clearly improve patient outcomes. This scientific statement on cardiogenic shock summarizes the epidemiology, pathophysiology, causes, and outcomes of cardiogenic shock; reviews contemporary best medical, surgical, mechanical circulatory support, and palliative care practices; advocates for the development of regionalized systems of care; and outlines future research priorities. © 2017 American Heart Association, Inc.

  7. Bioinformatics and Astrophysics Cluster (BinAc)

    NASA Astrophysics Data System (ADS)

    Krüger, Jens; Lutz, Volker; Bartusch, Felix; Dilling, Werner; Gorska, Anna; Schäfer, Christoph; Walter, Thomas

    2017-09-01

    BinAC provides central high performance computing capacities for bioinformaticians and astrophysicists from the state of Baden-Württemberg. The bwForCluster BinAC is part of the implementation concept for scientific computing for the universities in Baden-Württemberg. Community specific support is offered through the bwHPC-C5 project.

  8. Semantic Web Infrastructure Supporting NextFrAMES Modeling Platform

    NASA Astrophysics Data System (ADS)

    Lakhankar, T.; Fekete, B. M.; Vörösmarty, C. J.

    2008-12-01

    Emerging modeling frameworks offer new ways to modelers to develop model applications by offering a wide range of software components to handle common modeling tasks such as managing space and time, distributing computational tasks in parallel processing environment, performing input/output and providing diagnostic facilities. NextFrAMES, the next generation updates to the Framework for Aquatic Modeling of the Earth System originally developed at University of New Hampshire and currently hosted at The City College of New York takes a step further by hiding most of these services from modeler behind a platform agnostic modeling platform that allows scientists to focus on the implementation of scientific concepts in the form of a new modeling markup language and through a minimalist application programming interface that provide means to implement model processes. At the core of the NextFrAMES modeling platform there is a run-time engine that interprets the modeling markup language loads the module plugins establishes the model I/O and executes the model defined by the modeling XML and the accompanying plugins. The current implementation of the run-time engine is designed for single processor or symmetric multi processing (SMP) systems but future implementation of the run-time engine optimized for different hardware architectures are anticipated. The modeling XML and the accompanying plugins define the model structure and the computational processes in a highly abstract manner, which is not only suitable for the run-time engine, but has the potential to integrate into semantic web infrastructure, where intelligent parsers can extract information about the model configurations such as input/output requirements applicable space and time scales and underlying modeling processes. The NextFrAMES run-time engine itself is also designed to tap into web enabled data services directly, therefore it can be incorporated into complex workflow to implement End-to-End application from observation to the delivery of highly aggregated information. Our presentation will discuss the web services ranging from OpenDAP and WaterOneFlow data services to metadata provided through catalog services that could serve NextFrAMES modeling applications. We will also discuss the support infrastructure needed to streamline the integration of NextFrAMES into an End-to-End application to deliver highly processed information to end users. The End-to-End application will be demonstrated through examples from the State-of-the Global Water System effort that builds on data services provided through WMO's Global Terrestrial Network for Hydrology to deliver water resources related information to policy makers for better water management. Key components of this E2E system are promoted as Community of Practice examples for the Global Observing System of Systems therefore the State-of-the Global Water System can be viewed as test case for the interoperability of the incorporated web service components.

  9. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  10. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Chan; Mori, W.

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasksmore » listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.« less

  11. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers, and Automation Technology, Number 26

    DTIC Science & Technology

    1977-01-26

    Sisteme Matematicheskogo Obespecheniya YeS EVM [ Applied Programs in the Software System for the Unified System of Computers], by A. Ye. Fateyev, A. I...computerized systems are most effective in large production complexes , in which the level of utilization of computers can be as high as 500,000...performance of these tasks could be furthered by the complex introduction of electronic computers in automated control systems. The creation of ASU

  12. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  13. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the processes involved in observational research. Through EOL's Education and Outreach Program, we strive to inspire and develop the next generation of observational scientists and engineers by offering a range of educational, experiential, and outreach opportunities, including engineering internships.

  14. Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  15. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  16. Coastal erosion management in Accra: Combining local knowledge and empirical research

    PubMed Central

    2016-01-01

    Coastal erosion along the Accra coast has become a chronic phenomenon that threatens both life and property. The issue has assumed a centre stage of national debate in recent times because of its impact on the coastal communities. Lack of reliable geospatial data hinders effective scientific investigations into the changing trends in the shoreline position. However, knowledge about coastal erosion, by the local people, and how far the shoreline has migrated inland over time is high in the coastal communities in Accra. This opens a new chapter in coastal erosion research to include local knowledge of the local settlers in developing sustainable coastal management. This article adopted a scientific approach to estimate rate of erosion and tested the results against perceived erosion trend by the local settlers. The study used a 1974 digital topographic map and 1996 aerial photographs. The end point rate statistical method in DSAS was used to compute the rates of change. The short-term rate of change for the 22-year period under study was estimated as -0.91 m/annum ± 0.49 m/annum. It was revealed that about 79% of the shoreline is eroding, while the remaining 21% is either stabilised or accreting. It emerged, from semi-structured interviews with inhabitants in the Accra coastal communities, that an average of about 30 m of coastal lands are perceived to have been lost to erosion for a period of about 20 years. This translates to a historic rate of change of about 1.5 m/year, which corroborates the results of the scientific study. Again this study has established that the local knowledge of the inhabitants, about coastal erosion, can serve as reliable information under scarcity of scientific data for coastal erosion analyses in developing countries.

  17. First Steps Toward Exploring NITARP's Impacts on Teachers' Knowledge, Attitudes, and Teaching

    NASA Astrophysics Data System (ADS)

    French, Debbie; Slater, T. F.; Burrows, A. C.

    2013-06-01

    Few high school science teachers have had opportunities to engage in authentic scientific research. As a result, many may find it difficult to communicate to their students how science is done. Moreover, without relevant experience, teachers have few pathways to be able to successfully implement scientific research and inquiry into the classroom. In response, astronomers created the NASA-IPAC Teacher Archive Research Program - NITARP, originally funded by NASA as part of the Spitzer Space Telescope Public Engagement Program, and more recently as an NSF-sponsored Research Experience for Teachers program (NSF 0742222). This project partners teachers and their students with a mentor scientist to work on a unique research project using Spitzer Space Telescope data. The year-long project culminates by having teachers and students present their scientific methods and findings at a professional conference, such as the American Astronomical Society. To determine how teachers’ attitudes toward science and scientific inquiry changed after participating in NITARP, five NITARP alumni teachers completed open-ended survey and interview questions describing how their experience changed how they thought about astronomy and what happened in their classroom as a direct result of their NITARP experiences. Teachers reported increasing their astronomy content knowledge, implementing new skills and computer programs into their curriculum, incorporating the use of real data, and are implementing, or are planning to implement research in their classrooms. Teachers also stated they feel more comfortable speaking the language of science and communicating with scientists. They also felt more confident in teaching how science is done. The results of this exploratory study showing positive impacts motivate us to more deeply study the underlying mechanisms in this and similar programs best poised to improve science education.

  18. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  19. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.

  20. Ten factors to consider when developing usability scenarios and tasks for health information technology.

    PubMed

    Russ, Alissa L; Saleem, Jason J

    2018-02-01

    The quality of usability testing is highly dependent upon the associated usability scenarios. To promote usability testing as part of electronic health record (EHR) certification, the Office of the National Coordinator (ONC) for Health Information Technology requires that vendors test specific capabilities of EHRs with clinical end-users and report their usability testing process - including the test scenarios used - along with the results. The ONC outlines basic expectations for usability testing, but there is little guidance in usability texts or scientific literature on how to develop usability scenarios for healthcare applications. The objective of this article is to outline key factors to consider when developing usability scenarios and tasks to evaluate computer-interface based health information technologies. To achieve this goal, we draw upon a decade of our experience conducting usability tests with a variety of healthcare applications and a wide range of end-users, to include healthcare professionals as well as patients. We discuss 10 key factors that influence scenario development: objectives of usability testing; roles of end-user(s); target performance goals; evaluation time constraints; clinical focus; fidelity; scenario-related bias and confounders; embedded probes; minimize risks to end-users; and healthcare related outcome measures. For each factor, we present an illustrative example. This article is intended to aid usability researchers and practitioners in their efforts to advance health information technologies. The article provides broad guidance on usability scenario development and can be applied to a wide range of clinical information systems and applications. Published by Elsevier Inc.

  1. Computational Science: A Research Methodology for the 21st Century

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2004-03-01

    Computational simulation - a means of scientific discovery that employs computer systems to simulate a physical system according to laws derived from theory and experiment - has attained peer status with theory and experiment. Important advances in basic science are accomplished by a new "sociology" for ultrascale scientific computing capability (USSCC), a fusion of sustained advances in scientific models, mathematical algorithms, computer architecture, and scientific software engineering. Expansion of current capabilities by factors of 100 - 1000 open up new vistas for scientific discovery: long term climatic variability and change, macroscopic material design from correlated behavior at the nanoscale, design and optimization of magnetic confinement fusion reactors, strong interactions on a computational lattice through quantum chromodynamics, and stellar explosions and element production. The "virtual prototype," made possible by this expansion, can markedly reduce time-to-market for industrial applications such as jet engines and safer, more fuel efficient cleaner cars. In order to develop USSCC, the National Energy Research Scientific Computing Center (NERSC) announced the competition "Innovative and Novel Computational Impact on Theory and Experiment" (INCITE), with no requirement for current DOE sponsorship. Fifty nine proposals for grand challenge scientific problems were submitted for a small number of awards. The successful grants, and their preliminary progress, will be described.

  2. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  3. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  4. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  5. LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO scientific collaboration

    NASA Astrophysics Data System (ADS)

    Areeda, J. S.; Smith, J. R.; Lundgren, A. P.; Maros, E.; Macleod, D. M.; Zweizig, J.

    2017-01-01

    Gravitational-wave observatories around the world, including the Laser Interferometer Gravitational-Wave Observatory (LIGO), record a large volume of gravitational-wave output data and auxiliary data about the instruments and their environments. These data are stored at the observatory sites and distributed to computing clusters for data analysis. LigoDV-web is a web-based data viewer that provides access to data recorded at the LIGO Hanford, LIGO Livingston and GEO600 observatories, and the 40 m prototype interferometer at Caltech. The challenge addressed by this project is to provide meaningful visualizations of small data sets to anyone in the collaboration in a fast, secure and reliable manner with minimal software, hardware and training required of the end users. LigoDV-web is implemented as a Java Enterprise Application, with Shibboleth Single Sign On for authentication and authorization, and a proprietary network protocol used for data access on the back end. Collaboration members with proper credentials can request data be displayed in any of several general formats from any Internet appliance that supports a modern browser with Javascript and minimal HTML5 support, including personal computers, smartphones, and tablets. Since its inception in 2012, 634 unique users have visited the LigoDV-web website in a total of 33 , 861 sessions and generated a total of 139 , 875 plots. This infrastructure has been helpful in many analyses within the collaboration including follow-up of the data surrounding the first gravitational-wave events observed by LIGO in 2015.

  6. End-to-End simulations for the MICADO-MAORY SCAO mode

    NASA Astrophysics Data System (ADS)

    Vidal, Fabrice; Ferreira, Florian; Déo, Vincent; Sevin, Arnaud; Gendron, Eric; Clénet, Yann; Durand, Sébastien; Gratadour, Damien; Doucet, Nicolas; Rousset, Gérard; Davies, Richard

    2018-04-01

    MICADO is a E-ELT first light near-infrared imager. It will work at the diffraction limit of the telescope thanks to multi-conjugate adaptive optics (MCAO) and single-conjugate adaptive optics (SCAO) modes provided inside the MAORY AO module. The SCAO capability is a joint development by the MICADO and MAORY consortia, lead by MICADO, and is motivated by scientific programs for which SCAO will deliver the best AO performance (e.g. exoplanets, solar system science, bright AGNs, etc). Shack-Hartmann (SH) or Pyramid WFS were both envisioned for the wavefront measurement of the SCAO mode. In addition to WFS design considerations, numerical simulations are therefore needed to trade-off between these two WFS. COMPASS (COMputing Platform for Adaptive optics SyStems) is a GPU-based adaptive optics end-to-end simulation platform allowing us to perform numerical simulations in various modes (SCAO, LTAO, MOAO, MCAO...). COMPASS was originally bound to Yorick for its user interface and a major upgrade has been recently done to now bind to Python allowing a better long term support to the community. Thanks to the speed of computation of COMPASS we were able to span quickly a very large parameters of space at the E-ELT scale. We present the results of the study between WFS choice (SH or Pyramid), WFS parameters (detector noise, guide star magnitude, number of subapertures, number of controlled modes...), turbulence conditions and AO controls for the MICADO-MAORY SCAO mode.

  7. Young Engineers and Sciences (YES) - Mentoring High School Students

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  8. PETSc Users Manual Revision 3.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, Satish; Abhyankar, S.; Adams, M.

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.

  9. PETSc Users Manual Revision 3.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.; Abhyankar, S.; Adams, M.

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.

  10. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  11. Unification and Enhancement of Planetary Robotic Vision Ground Processing: The EC FP7 Project PRoVisG

    NASA Astrophysics Data System (ADS)

    Paar, G.

    2009-04-01

    At present, mainly the US have realized planetary space missions with essential robotics background. Joining institutions, companies and universities from different established groups in Europe and two relevant players from the US, the EC FP7 Project PRoVisG started in autumn 2008 to demonstrate the European ability of realizing high-level processing of robotic vision image products from the surface of planetary bodies. PRoVisG will build a unified European framework for Robotic Vision Ground Processing. State-of-art computer vision technology will be collected inside and outside Europe to better exploit the image data gathered during past, present and future robotic space missions to the Moon and the Planets. This will lead to a significant enhancement of the scientific, technologic and educational outcome of such missions. We report on the main PRoVisG objectives and the development status: - Past, present and future planetary robotic mission profiles are analysed in terms of existing solutions and requirements for vision processing - The generic processing chain is based on unified vision sensor descriptions and processing interfaces. Processing components available at the PRoVisG Consortium Partners will be completed by and combined with modules collected within the international computer vision community in the form of Announcements of Opportunity (AOs). - A Web GIS is developed to integrate the processing results obtained with data from planetary surfaces into the global planetary context. - Towards the end of the 39 month project period, PRoVisG will address the public by means of a final robotic field test in representative terrain. The European tax payers will be able to monitor the imaging and vision processing in a Mars - similar environment, thus getting an insight into the complexity and methods of processing, the potential and decision making of scientific exploitation of such data and not least the elegancy and beauty of the resulting image products and their visualization. - The educational aspect is addressed by two summer schools towards the end of the project, presenting robotic vision to the students who are future providers of European science and technology, inside and outside the space domain.

  12. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.

  13. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics.

    PubMed

    Patrizi, Alfredo; Pennestrì, Ettore; Valentini, Pier Paolo

    2016-01-01

    The paper deals with the comparison between a high-end marker-based acquisition system and a low-cost marker-less methodology for the assessment of the human posture during working tasks. The low-cost methodology is based on the use of a single Microsoft Kinect V1 device. The high-end acquisition system is the BTS SMART that requires the use of reflective markers to be placed on the subject's body. Three practical working activities involving object lifting and displacement have been investigated. The operational risk has been evaluated according to the lifting equation proposed by the American National Institute for Occupational Safety and Health. The results of the study show that the risk multipliers computed from the two acquisition methodologies are very close for all the analysed activities. In agreement to this outcome, the marker-less methodology based on the Microsoft Kinect V1 device seems very promising to promote the dissemination of computer-aided assessment of ergonomics while maintaining good accuracy and affordable costs. PRACTITIONER’S SUMMARY: The study is motivated by the increasing interest for on-site working ergonomics assessment. We compared a low-cost marker-less methodology with a high-end marker-based system. We tested them on three different working tasks, assessing the working risk of lifting loads. The two methodologies showed comparable precision in all the investigations.

  14. Computing Across the Physics and Astrophysics Curriculum

    NASA Astrophysics Data System (ADS)

    DeGioia Eastwood, Kathy; James, M.; Dolle, E.

    2012-01-01

    Computational skills are essential in today's marketplace. Bachelors entering the STEM workforce report that their undergraduate education does not adequately prepare them to use scientific software and to write programs. Computation can also increase student learning; not only are the students actively engaged, but computational problems allow them to explore physical problems that are more realistic than the few that can be solved analytically. We have received a grant from the NSF CCLI Phase I program to integrate computing into our upper division curriculum. Our language of choice is Matlab; this language had already been chosen for our required sophomore course in Computational Physics because of its prevalence in industry. For two summers we have held faculty workshops to help our professors develop the needed expertise, and we are now in the implementation and evaluation stage. The end product will be a set of learning materials in the form of computational modules that we will make freely available. These modules will include the assignment, pedagogical goals, Matlab code, samples of student work, and instructor comments. At this meeting we present an overview of the project as well as modules written for a course in upper division stellar astrophysics. We acknowledge the support of the NSF through DUE-0837368.

  15. Heat deposition analysis for the High Flux Isotope Reactor’s HEU and LEU core models

    DOE PAGES

    Davidson, Eva E.; Betzler, Benjamin R.; Chandler, David; ...

    2017-08-01

    The High Flux Isotope Reactor at Oak Ridge National Laboratory is an 85 MW th pressurized light-water-cooled and -moderated flux-trap type research reactor. The reactor is used to conduct numerous experiments, advancing various scientific and engineering disciplines. As part of an ongoing program sponsored by the US Department of Energy National Nuclear Security Administration Office of Material Management and Minimization, studies are being performed to assess the feasibility of converting the reactor’s highly enriched uranium fuel to low-enriched uranium fuel. To support this conversion project, reference models with representative experiment target loading and explicit fuel plate representation were developed andmore » benchmarked for both fuels to (1) allow for consistent comparison between designs for both fuel types and (2) assess the potential impact of low-enriched uranium conversion. These high-fidelity models were used to conduct heat deposition analyses at the beginning and end of the reactor cycle and are presented herein. This article (1) discusses the High Flux Isotope Reactor models developed to facilitate detailed heat deposition analyses of the reactor’s highly enriched and low-enriched uranium cores, (2) examines the computational approach for performing heat deposition analysis, which includes a discussion on the methodology for calculating the amount of energy released per fission, heating rates, power and volumetric heating rates, and (3) provides results calculated throughout various regions of the highly enriched and low-enriched uranium core at the beginning and end of the reactor cycle. These are the first detailed high-fidelity heat deposition analyses for the High Flux Isotope Reactor’s highly enriched and low-enriched core models with explicit fuel plate representation. Lastly, these analyses are used to compare heat distributions obtained for both fuel designs at the beginning and end of the reactor cycle, and they are essential for enabling comprehensive thermal hydraulics and safety analyses that require detailed estimates of the heat source within all of the reactor’s fuel element regions.« less

  16. Visualization for Hyper-Heuristics: Back-End Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Luke

    Modern society is faced with increasingly complex problems, many of which can be formulated as generate-and-test optimization problems. Yet, general-purpose optimization algorithms may sometimes require too much computational time. In these instances, hyperheuristics may be used. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario, finding the solution significantly faster than its predecessor. However, it may be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics and an easy-to-understand scientific visualizationmore » for the produced solutions. To support the development of this GUI, my portion of the research involved developing algorithms that would allow for parsing of the data produced by the hyper-heuristics. This data would then be sent to the front-end, where it would be displayed to the end user.« less

  17. Predicting Cost/Performance Trade-Offs for Whitney: A Commodity Computing Cluster

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey C.; Nitzberg, Bill; VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)

    1997-01-01

    Recent advances in low-end processor and network technology have made it possible to build a "supercomputer" out of commodity components. We develop simple models of the NAS Parallel Benchmarks version 2 (NPB 2) to explore the cost/performance trade-offs involved in building a balanced parallel computer supporting a scientific workload. We develop closed form expressions detailing the number and size of messages sent by each benchmark. Coupling these with measured single processor performance, network latency, and network bandwidth, our models predict benchmark performance to within 30%. A comparison based on total system cost reveals that current commodity technology (200 MHz Pentium Pros with 100baseT Ethernet) is well balanced for the NPBs up to a total system cost of around $1,000,000.

  18. Is it all in the game? Flow experience and scientific practices during an INPLACE mobile game

    NASA Astrophysics Data System (ADS)

    Bressler, Denise M.

    Mobile science learning games show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. Using an embedded mixed methods design, this study investigated whether an INPLACE mobile game promotes flow experience, scientific practices, and effective team collaboration. Students playing the game (n=59) were compared with students in a business-as-usual control activity (n=120). Using an open-ended instrument designed to measure scientific practices and a self-report flow survey, this study empirically assessed flow and learner's scientific practices. The game players had significantly higher levels of flow and scientific practices. Using a multiple case study approach, collaboration among game teams (n=3 teams) were qualitatively compared with control teams (n=3 teams). Game teams revealed not only higher levels of scientific practices but also higher levels of engaged responses and communal language. Control teams revealed lower levels of scientific practice along with higher levels of rejecting responses and command language. Implications for these findings are discussed.

  19. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveci, Berk; Maynard, Robert

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less

  20. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    DOE PAGES

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; ...

    2017-06-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less

  1. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less

  2. The nature of the (visualization) game: Challenges and opportunities from computational geophysics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.

  3. 76 FR 47596 - Notice of Scientific Summit; The Science of Compassion-Future Directions in End-of-Life and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ...; The Science of Compassion--Future Directions in End-of-Life and Palliative Care SUMMARY: Notice is... science at the end-of-life. On August 11-12, the summit will feature keynote presentations, three plenary...), Department of Health and Human Services, will convene a scientific summit titled ``The Science of Compassion...

  4. ISCR Annual Report: Fical Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGraw, J R

    2005-03-03

    Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technologymore » enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for short- and long-term visits with the aim of encouraging long-term academic research agendas that address LLNL's research priorities. Through such collaborations, ideas and software flow in both directions, and LLNL cultivates its future workforce. The Institute strives to be LLNL's ''eyes and ears'' in the computer and information sciences, keeping the Laboratory aware of and connected to important external advances. It also attempts to be the ''feet and hands'' that carry those advances into the Laboratory and incorporates them into practice. ISCR research participants are integrated into LLNL's Computing and Applied Research (CAR) Department, especially into its Center for Applied Scientific Computing (CASC). In turn, these organizations address computational challenges arising throughout the rest of the Laboratory. Administratively, the ISCR flourishes under LLNL's University Relations Program (URP). Together with the other five institutes of the URP, it navigates a course that allows LLNL to benefit from academic exchanges while preserving national security. While it is difficult to operate an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met and worth the continued effort.« less

  5. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  6. Key issues surrounding the health impacts of electronic nicotine delivery systems (ENDS) and other sources of nicotine.

    PubMed

    Drope, Jeffrey; Cahn, Zachary; Kennedy, Rosemary; Liber, Alex C; Stoklosa, Michal; Henson, Rosemarie; Douglas, Clifford E; Drope, Jacqui

    2017-11-01

    Answer questions and earn CME/CNE Over the last decade, the use of electronic nicotine delivery systems (ENDS), including the electronic cigarette or e-cigarette, has grown rapidly. More youth now use ENDS than any tobacco product. This extensive research review shows that there are scientifically sound, sometimes competing arguments about ENDS that are not immediately and/or completely resolvable. However, the preponderance of the scientific evidence to date suggests that current-generation ENDS products are demonstrably less harmful than combustible tobacco products such as conventional cigarettes in several key ways, including by generating far lower levels of carcinogens and other toxic compounds than combustible products or those that contain tobacco. To place ENDS in context, the authors begin by reviewing the trends in use of major nicotine-containing products. Because nicotine is the common core-and highly addictive-constituent across all tobacco products, its toxicology is examined. With its long history as the only nicotine product widely accepted as being relatively safe, nicotine-replacement therapy (NRT) is also examined. A section is also included that examines snus, the most debated potential harm-reduction product before ENDS. Between discussions of NRT and snus, ENDS are extensively examined: what they are, knowledge about their level of "harm," their relationship to smoking cessation, the so-called gateway effect, and dual use/poly-use. CA Cancer J Clin 2017;67:449-471. © 2017 American Cancer Society. © 2017 American Cancer Society.

  7. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Services Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year period beginning on July 1, 2013. The Committee will provide advice to the Director, Office of Science (DOE), on the Advanced Scientific Computing Research Program managed...

  8. Computer Literacy Course for Teacher for the 21st Century

    ERIC Educational Resources Information Center

    Tatkovic, Nevenka; Ruzic, Maja

    2004-01-01

    The life and activities of every man in the transitional period from the second to the third millennium has been characterized by huge changes that resulted from scientific and technological revolution in which dominates a highly developed IT-Communicational Technology. This paper concludes that to attain IT-literacy and computer literacy would…

  9. Soapy: an adaptive optics simulation written purely in Python for rapid concept development

    NASA Astrophysics Data System (ADS)

    Reeves, Andrew

    2016-07-01

    Soapy is a newly developed Adaptive Optics (AO) simulation which aims be a flexible and fast to use tool-kit for many applications in the field of AO. It is written purely in the Python language, adding to and taking advantage of the already rich ecosystem of scientific libraries and programs. The simulation has been designed to be extremely modular, such that each component can be used stand-alone for projects which do not require a full end-to-end simulation. Ease of use, modularity and code clarity have been prioritised at the expense of computational performance. Though this means the code is not yet suitable for large studies of Extremely Large Telescope AO systems, it is well suited to education, exploration of new AO concepts and investigations of current generation telescopes.

  10. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  11. Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing

    NASA Astrophysics Data System (ADS)

    Meng, Xiang

    The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7).

  12. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Mary

    2014-09-19

    Enhancing the performance of SciDAC applications on petascale systems has high priority within DOE SC. As we look to the future, achieving expected levels of performance on high-end com-puting (HEC) systems is growing ever more challenging due to enormous scale, increasing archi-tectural complexity, and increasing application complexity. To address these challenges, PERI has implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineering of high profile applications. The PERI performance modeling and prediction activity is developing and refining performance models, significantly reducing the cost of collecting the data upon whichmore » the models are based, and increasing model fidelity, speed and generality. Our primary research activity is automatic tuning (autotuning) of scientific software. This activity is spurred by the strong user preference for automatic tools and is based on previous successful activities such as ATLAS, which has automatically tuned components of the LAPACK linear algebra library, and other re-cent work on autotuning domain-specific libraries. Our third major component is application en-gagement, to which we are devoting approximately 30% of our effort to work directly with Sci-DAC-2 applications. This last activity not only helps DOE scientists meet their near-term per-formance goals, but also helps keep PERI research focused on the real challenges facing DOE computational scientists as they enter the Petascale Era.« less

  13. A Concept for the One Degree Imager (ODI) Data Reduction Pipeline and Archiving System

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia; Stobie, B.; Michael, S.; Valdes, F.; Marru, S.; Henschel, R.; Pierce, M.

    2010-05-01

    The One Degree Imager (ODI), currently being built by the WIYN Observatory, will provide tremendous possibilities for conducting diverse scientific programs. ODI will be a complex instrument, using non-conventional Orthogonal Transfer Array (OTA) detectors. Due to its large field of view, small pixel size, use of OTA technology, and expected frequent use, ODI will produce vast amounts of astronomical data. If ODI is to achieve its full potential, a data reduction pipeline must be developed. Long-term archiving must also be incorporated into the pipeline system to ensure the continued value of ODI data. This paper presents a concept for an ODI data reduction pipeline and archiving system. To limit costs and development time, our plan leverages existing software and hardware, including existing pipeline software, Science Gateways, Computational Grid & Cloud Technology, Indiana University's Data Capacitor and Massive Data Storage System, and TeraGrid compute resources. Existing pipeline software will be augmented to add functionality required to meet challenges specific to ODI, enhance end-user control, and enable the execution of the pipeline on grid resources including national grid resources such as the TeraGrid and Open Science Grid. The planned system offers consistent standard reductions and end-user flexibility when working with images beyond the initial instrument signature removal. It also gives end-users access to computational and storage resources far beyond what are typically available at most institutions. Overall, the proposed system provides a wide array of software tools and the necessary hardware resources to use them effectively.

  14. Performance measurement and modeling of component applications in a high performance computing environment : a case study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robert C.; Ray, Jaideep; Malony, A.

    2003-11-01

    We present a case study of performance measurement and modeling of a CCA (Common Component Architecture) component-based application in a high performance computing environment. We explore issues peculiar to component-based HPC applications and propose a performance measurement infrastructure for HPC based loosely on recent work done for Grid environments. A prototypical implementation of the infrastructure is used to collect data for a three components in a scientific application and construct performance models for two of them. Both computational and message-passing performance are addressed.

  15. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  16. Batched matrix computations on hardware accelerators based on GPUs

    DOE PAGES

    Haidar, Azzam; Dong, Tingxing; Luszczek, Piotr; ...

    2015-02-09

    Scientific applications require solvers that work on many small size problems that are independent from each other. At the same time, the high-end hardware evolves rapidly and becomes ever more throughput-oriented and thus there is an increasing need for an effective approach to develop energy-efficient, high-performance codes for these small matrix problems that we call batched factorizations. The many applications that need this functionality could especially benefit from the use of GPUs, which currently are four to five times more energy efficient than multicore CPUs on important scientific workloads. This study, consequently, describes the development of the most common, one-sidedmore » factorizations, Cholesky, LU, and QR, for a set of small dense matrices. The algorithms we present together with their implementations are, by design, inherently parallel. In particular, our approach is based on representing the process as a sequence of batched BLAS routines that are executed entirely on a GPU. Importantly, this is unlike the LAPACK and the hybrid MAGMA factorization algorithms that work under drastically different assumptions of hardware design and efficiency of execution of the various computational kernels involved in the implementation. Thus, our approach is more efficient than what works for a combination of multicore CPUs and GPUs for the problems sizes of interest of the application use cases. The paradigm where upon a single chip (a GPU or a CPU) factorizes a single problem at a time is not at all efficient in our applications’ context. We illustrate all of these claims through a detailed performance analysis. With the help of profiling and tracing tools, we guide our development of batched factorizations to achieve up to two-fold speedup and three-fold better energy efficiency as compared against our highly optimized batched CPU implementations based on MKL library. Finally, the tested system featured two sockets of Intel Sandy Bridge CPUs and we compared with a batched LU factorizations featured in the CUBLAS library for GPUs, we achieve as high as 2.5× speedup on the NVIDIA K40 GPU.« less

  17. High resolution global climate modelling; the UPSCALE project, a large simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-01-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  18. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-08-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environment Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  19. Software and the Scientist: Coding and Citation Practices in Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, Lorraine; Fish, Allison; Soito, Laura; Smith, MacKenzie; Kellogg, Louise H.

    2017-11-01

    In geodynamics as in other scientific areas, computation has become a core component of research, complementing field observation, laboratory analysis, experiment, and theory. Computational tools for data analysis, mapping, visualization, modeling, and simulation are essential for all aspects of the scientific workflow. Specialized scientific software is often developed by geodynamicists for their own use, and this effort represents a distinctive intellectual contribution. Drawing on a geodynamics community that focuses on developing and disseminating scientific software, we assess the current practices of software development and attribution, as well as attitudes about the need and best practices for software citation. We analyzed publications by participants in the Computational Infrastructure for Geodynamics and conducted mixed method surveys of the solid earth geophysics community. From this we learned that coding skills are typically learned informally. Participants considered good code as trusted, reusable, readable, and not overly complex and considered a good coder as one that participates in the community in an open and reasonable manor contributing to both long- and short-term community projects. Participants strongly supported citing software reflected by the high rate a software package was named in the literature and the high rate of citations in the references. However, lacking are clear instructions from developers on how to cite and education of users on what to cite. In addition, citations did not always lead to discoverability of the resource. A unique identifier to the software package itself, community education, and citation tools would contribute to better attribution practices.

  20. GPU Implementation of High Rayleigh Number Three-Dimensional Mantle Convection

    NASA Astrophysics Data System (ADS)

    Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.

    2010-12-01

    Although we have entered the age of petascale computing, many factors are still prohibiting high-performance computing (HPC) from infiltrating all suitable scientific disciplines. For this reason and others, application of GPU to HPC is gaining traction in the scientific world. With its low price point, high performance potential, and competitive scalability, GPU has been an option well worth considering for the last few years. Moreover with the advent of NVIDIA's Fermi architecture, which brings ECC memory, better double-precision performance, and more RAM to GPU, there is a strong message of corporate support for GPU in HPC. However many doubts linger concerning the practicality of using GPU for scientific computing. In particular, GPU has a reputation for being difficult to program and suitable for only a small subset of problems. Although inroads have been made in addressing these concerns, for many scientists GPU still has hurdles to clear before becoming an acceptable choice. We explore the applicability of GPU to geophysics by implementing a three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal convection on an NVIDIA GPU using C for CUDA. Our code reaches sufficient resolution, on the order of 500x500x250 evenly-spaced finite-difference gridpoints, on a single GPU. We make extensive use of highly optimized CUBLAS routines, allowing us to achieve performance on the order of O( 0.1 ) µs per timestep*gridpoint at this resolution. This performance has allowed us to study high Rayleigh number simulations, on the order of 2x10^7, on a single GPU.

  1. Self-Directed Cooperative Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Morris, Robert (Technical Monitor)

    2003-01-01

    The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.

  2. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer's and Parkinson's data, we provide several examples of translational applications using this infrastructure1. PMID:24795619

  3. Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds

    NASA Astrophysics Data System (ADS)

    Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.

    In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

  4. Large scale and cloud-based multi-model analytics experiments on climate change data in the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; Płóciennik, Marcin; Doutriaux, Charles; Blanquer, Ignacio; Barbera, Roberto; Donvito, Giacinto; Williams, Dean N.; Anantharaj, Valentine; Salomoni, Davide D.; Aloisio, Giovanni

    2017-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated, such as the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the talk discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC). The general "environment" of the case study relates to: (i) multi-model data analysis inter-comparison challenges; (ii) addressed on CMIP5 data; and (iii) which are made available through the IS-ENES/ESGF infrastructure. The added value of the solution proposed in the INDIGO-DataCloud project are summarized in the following: (i) it implements a different paradigm (from client- to server-side); (ii) it intrinsically reduces data movement; (iii) it makes lightweight the end-user setup; (iv) it fosters re-usability (of data, final/intermediate products, workflows, sessions, etc.) since everything is managed on the server-side; (v) it complements, extends and interoperates with the ESGF stack; (vi) it provides a "tool" for scientists to run multi-model experiments, and finally; and (vii) it can drastically reduce the time-to-solution for these experiments from weeks to hours. At the time the contribution is being written, the proposed testbed represents the first concrete implementation of a distributed multi-model experiment in the ESGF/CMIP context joining server-side and parallel processing, end-to-end workflow management and cloud computing. As opposed to the current scenario based on search & discovery, data download, and client-based data analysis, the INDIGO-DataCloud architectural solution described in this contribution addresses the scientific computing & analytics requirements by providing a paradigm shift based on server-side and high performance big data frameworks jointly with two-level workflow management systems realized at the PaaS level via a cloud infrastructure.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  6. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) learning systems; (4) high performance networks and technology; and (5) graphics, visualization, and virtual environments. In the past year, parallel compiler techniques and adaptive numerical methods for flows in complicated geometries were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade. We concluded a summer student visitors program during this six months. We had six visiting graduate students that worked on projects over the summer and presented seminars on their work at the conclusion of their visits. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period July 1, 1992 through December 31, 1992 is provided.

  7. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  8. A parallel implementation of an off-lattice individual-based model of multicellular populations

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe

    2015-07-01

    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.

  9. Young Engineers and Scientists (YES 2K6): Independent and Group Mentorship Projects

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2006-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 14 years, and YES 2K6 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences and engineering. YES 2K6 consists of two parts: 1) a three-week summer workshop and 2) a mentorship where students complete individual research projects during their academic year. The intensive workshop is held at SwRI where students experience the research environment first-hand. They also develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. YES 2K6 students developed a website for the Magnetospheric Multiscale (MMS) Mission from the perspective of a high school student. The collegial mentorship takes place during their academic year where students complete individual research projects under the guidance of their mentors and earn honors credit. At the end of the school year, students publicly present and display their work at their schools. This acknowledges their accomplishments and spreads career awareness to other students and teachers. Over the past 14 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the benefits of YES for their academic preparation and choice of college majors. We acknowledge E/PO funding from the NASA MMS Mission and local charitable foundations.

  10. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  11. YES 2K7: A Mentorship Program for Young Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P.

    2007-10-01

    The Young Engineers and Scientists 2007 (YES 2K7) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years, with YES 2K7 continuing this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K7 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  12. Ideas for Integrating the Microcomputer with High School Science.

    ERIC Educational Resources Information Center

    Podany, Zita

    This report discusses how computers are being used in high school science classrooms. For this report, four high school science teachers were interviewed. The approach to science instruction described in these four interviews deals with the areas of scientific and technological literacy, making science learning fun and attractive, and stimulating…

  13. The Pulsar Search Collaboratory: A Comprehensive Project for Students and Teachers

    NASA Astrophysics Data System (ADS)

    Rosen, Rachel; Heatherly, S.; McLauglin, M.; Lorimer, D.

    2009-01-01

    The National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) have partnered to improve the quality of science education in West Virginia high schools through the Pulsar Search Collaboratory (PSC). One of the primary goals of the PSC is to engage students in STEM (science, technology, engineering, and mathematics) and related fields by using information technology to conduct current scientific research, specifically searching for new pulsars. To this end, we also are improving rural teachers' knowledge of the nature of science, the importance of information technology to scientific discovery, and methodologies for incorporating inquiry-based education into the classroom. The PSC hopes to make school science more like the practice of science and to make science fun and interesting for high school students. In 2007, an international team of astronomers received 900 hours of time on the Green Bank Telescope (GBT) during the summer shutdown to search for new pulsars. In conjunction with this group, we applied for and received 300 hours of observing time on the GBT for the PSC students. Around the same time, we were awarded an NSF iTEST grant to fund the Pulsar Search Collaboratory (PSC) project. Over the past year, we have been working with colleagues in the WVU Department of Computer Science to develop a graphical interface through which the students will analyze pulsar search plots (see psrsearch.wvu.edu). We also initiated a robust processing pipeline on a cluster in the WVU Computer Science Department. The PSC started in earnest this summer with a three week workshop in Green Bank where the teachers attended an intensive astronomy mini-course and techniques on introducing astronomy into the classroom. The students joined their teachers for the third week and participated in various activities to teach them about radio astronomy, radio frequency interference, and pulsars.

  14. A Secure Web Application Providing Public Access to High-Performance Data Intensive Scientific Resources - ScalaBLAST Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Darren S.; Peterson, Elena S.; Oehmen, Chris S.

    2008-05-04

    This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface. This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroicmore » effort to overcome the computational bottleneck associated with genome analysis. The current version of SWA includes a user account management system, a web based user interface, and a backend process that generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel processing job on a dedicated cluster.« less

  15. Final Report. Institute for Ultralscale Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu; Galli, Giulia; Gygi, Francois

    The SciDAC Institute for Ultrascale Visualization brought together leading experts from visualization, high-performance computing, and science application areas to make advanced visualization solutions for SciDAC scientists and the broader community. Over the five-year project, the Institute introduced many new enabling visualization techniques, which have significantly enhanced scientists’ ability to validate their simulations, interpret their data, and communicate with others about their work and findings. This Institute project involved a large number of junior and student researchers, who received the opportunities to work on some of the most challenging science applications and gain access to the most powerful high-performance computing facilitiesmore » in the world. They were readily trained and prepared for facing the greater challenges presented by extreme-scale computing. The Institute’s outreach efforts, through publications, workshops and tutorials, successfully disseminated the new knowledge and technologies to the SciDAC and the broader scientific communities. The scientific findings and experience of the Institute team helped plan the SciDAC3 program.« less

  16. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  17. Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge

    NASA Astrophysics Data System (ADS)

    Wallace, Michael L.

    This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS' images of science towards a more informed view of NOS.

  18. Integrating Data Base into the Elementary School Science Program.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document describes seven science activities that combine scientific principles and computers. The objectives for the activities are to show students how the computer can be used as a tool to store and arrange scientific data, provide students with experience using the computer as a tool to manage scientific data, and provide students with…

  19. Making Technological Timelines: Anticipatory Repair and Testing in High Performance Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, Benjamin

    Think of some examples of repair in everyday life. Maybe you had a car accident and took your car to the body shop. Maybe the head came off your child’s doll and you had to glue it back on. Maybe the handle of your shovel cracked and you wrapped the cracked area with duct tape to hold it together. These are examples of what could be called reactive repair, where an unexpected accident initiates a sequence of action and decision-making that ends in repair. In these cases, most of the thinking and planning surrounding repair takes place after a breakdownmore » has been identified. This type of repair is often taken to be distinct from deliberate design, as it occurs within the context of technology that is already in operation, often has an improvisational character, and may be performed by end users or technicians rather than credentialed experts. But does repair always have to be reactive? And if not, what does this tell us about the distinction between design and repair, and their respective roles in shaping technological change? The short answer is that repair, like design, can play a dynamic and forward-looking role in shaping technological trajectories – not only stabilizing existing systems, but anticipating change and generating new technological futures.« less

  20. Making Technological Timelines: Anticipatory Repair and Testing in High Performance Scientific Computing

    DOE PAGES

    Sims, Benjamin

    2017-05-23

    Think of some examples of repair in everyday life. Maybe you had a car accident and took your car to the body shop. Maybe the head came off your child’s doll and you had to glue it back on. Maybe the handle of your shovel cracked and you wrapped the cracked area with duct tape to hold it together. These are examples of what could be called reactive repair, where an unexpected accident initiates a sequence of action and decision-making that ends in repair. In these cases, most of the thinking and planning surrounding repair takes place after a breakdownmore » has been identified. This type of repair is often taken to be distinct from deliberate design, as it occurs within the context of technology that is already in operation, often has an improvisational character, and may be performed by end users or technicians rather than credentialed experts. But does repair always have to be reactive? And if not, what does this tell us about the distinction between design and repair, and their respective roles in shaping technological change? The short answer is that repair, like design, can play a dynamic and forward-looking role in shaping technological trajectories – not only stabilizing existing systems, but anticipating change and generating new technological futures.« less

  1. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  2. Nurturing a growing field: Computers & Geosciences

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Pebesma, Edzer

    2017-10-01

    Computational issues are becoming increasingly critical for virtually all fields of geoscience. This includes the development of improved algorithms and models, strategies for implementing high-performance computing, or the management and visualization of the large datasets provided by an ever-growing number of environmental sensors. Such issues are central to scientific fields as diverse as geological modeling, Earth observation, geophysics or climatology, to name just a few. Related computational advances, across a range of geoscience disciplines, are the core focus of Computers & Geosciences, which is thus a truly multidisciplinary journal.

  3. Metadata Management on the SCEC PetaSHA Project: Helping Users Describe, Discover, Understand, and Use Simulation Data in a Large-Scale Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.

    2007-12-01

    Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.

  4. High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems

    DTIC Science & Technology

    2017-05-01

    addition to high -fidelity RF propagation modeling, lower-fidelity mod- els, which are less computationally burdensome, are available via a C++ API...expensive to perform, requiring roughly one hour of computer time with 36 available cores and ray tracing per- formed by a single high -end GPU...ER D C TR -1 7- 2 Military Engineering Applied Research High -Fidelity Simulations of Electromagnetic Propagation and RF Communication

  5. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  6. Integrating Computer/Multimedia Technology in a High School Biology Curriculum.

    ERIC Educational Resources Information Center

    Matray, Paul; Proulx, Steve

    1995-01-01

    Discusses hardware and software used to teach scientific method, ecology, evolution, mitosis and meiosis, photosynthesis, cellular respiration, circulatory and respiratory systems, reproduction and drugs, behavior, and genetics. (MKR)

  7. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  8. An Analysis of Cryptographically Significant Boolean Functions With High Correlation Immunity by Reconfigurable Computer

    DTIC Science & Technology

    2010-12-01

    with high correlation immunity and then evaluate these functions for other desirable cryptographic features. C. METHOD The only known primary methods...out if not used) # ---------------------------------- # PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1...finding the fuction value for a //set u and for each value of v. end end

  9. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    ERIC Educational Resources Information Center

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  10. Dynamics of co-authorship and productivity across different fields of scientific research.

    PubMed

    Parish, Austin J; Boyack, Kevin W; Ioannidis, John P A

    2018-01-01

    We aimed to assess which factors correlate with collaborative behavior and whether such behavior associates with scientific impact (citations and becoming a principal investigator). We used the R index which is defined for each author as log(Np)/log(I1), where I1 is the number of co-authors who appear in at least I1 papers written by that author and Np are his/her total papers. Higher R means lower collaborative behavior, i.e. not working much with others, or not collaborating repeatedly with the same co-authors. Across 249,054 researchers who had published ≥30 papers in 2000-2015 but had not published anything before 2000, R varied across scientific fields. Lower values of R (more collaboration) were seen in physics, medicine, infectious disease and brain sciences and higher values of R were seen for social science, computer science and engineering. Among the 9,314 most productive researchers already reaching Np ≥ 30 and I1 ≥ 4 by the end of 2006, R mostly remained stable for most fields from 2006 to 2015 with small increases seen in physics, chemistry, and medicine. Both US-based authorship and male gender were associated with higher values of R (lower collaboration), although the effect was small. Lower values of R (more collaboration) were associated with higher citation impact (h-index), and the effect was stronger in certain fields (physics, medicine, engineering, health sciences) than in others (brain sciences, computer science, infectious disease, chemistry). Finally, for a subset of 400 U.S. researchers in medicine, infectious disease and brain sciences, higher R (lower collaboration) was associated with a higher chance of being a principal investigator by 2016. Our analysis maps the patterns and evolution of collaborative behavior across scientific disciplines.

  11. Stuck in the Shallow End: Education, Race, and Computing. Updated Edition

    ERIC Educational Resources Information Center

    Margolis, Jane

    2017-01-01

    The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a…

  12. A laboratory breadboard system for dual-arm teleoperation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Szakaly, Z.; Kim, W. S.

    1990-01-01

    The computing architecture of a novel dual-arm teleoperation system is described. The novelty of this system is that: (1) the master arm is not a replica of the slave arm; it is unspecific to any manipulator and can be used for the control of various robot arms with software modifications; and (2) the force feedback to the general purpose master arm is derived from force-torque sensor data originating from the slave hand. The computing architecture of this breadboard system is a fully synchronized pipeline with unique methods for data handling, communication and mathematical transformations. The computing system is modular, thus inherently extendable. The local control loops at both sites operate at 100 Hz rate, and the end-to-end bilateral (force-reflecting) control loop operates at 200 Hz rate, each loop without interpolation. This provides high-fidelity control. This end-to-end system elevates teleoperation to a new level of capabilities via the use of sensors, microprocessors, novel electronics, and real-time graphics displays. A description is given of a graphic simulation system connected to the dual-arm teleoperation breadboard system. High-fidelity graphic simulation of a telerobot (called Phantom Robot) is used for preview and predictive displays for planning and for real-time control under several seconds communication time delay conditions. High fidelity graphic simulation is obtained by using appropriate calibration techniques.

  13. Parallelization and Visual Analysis of Multidimensional Fields: Application to Ozone Production, Destruction, and Transport in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Schwan, Karsten

    1997-01-01

    This final report has four sections. We first describe the actual scientific results attained by our research team, followed by a description of the high performance computing research enhancing those results and prompted by the scientific tasks being undertaken. Next, we describe our research in data and program visualization motivated by the scientific research and also enabling it. Last, we comment on the indirect effects this research effort has had on our work, in terms of follow up or additional funding, student training, etc.

  14. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  15. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  16. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Madden, E. H.; Wollherr, S.; Uphoff, C.; Rettenberger, S.; Bader, M.

    2017-12-01

    SeisSol (www.seissol.org) is an open-source software package based on an arbitrary high-order derivative Discontinuous Galerkin method (ADER-DG). It solves spontaneous dynamic rupture propagation on pre-existing fault interfaces according to non-linear friction laws, coupled to seismic wave propagation with high-order accuracy in space and time (minimal dispersion errors). SeisSol exploits unstructured meshes to account for complex geometries, e.g. high resolution topography and bathymetry, 3D subsurface structure, and fault networks. We present the up-to-date largest (1500 km of faults) and longest (500 s) dynamic rupture simulation modeling the 2004 Sumatra-Andaman earthquake. We demonstrate the need for end-to-end-optimization and petascale performance of scientific software to realize realistic simulations on the extreme scales of subduction zone earthquakes: Considering the full complexity of subduction zone geometries leads inevitably to huge differences in element sizes. The main code improvements include a cache-aware wave propagation scheme and optimizations of the dynamic rupture kernels using code generation. In addition, a novel clustered local-time-stepping scheme for dynamic rupture has been established. Finally, asynchronous output has been implemented to overlap I/O and compute time. We resolve the frictional sliding process on the curved mega-thrust and a system of splay faults, as well as the seismic wave field and seafloor displacement with frequency content up to 2.2 Hz. We validate the scenario by geodetic, seismological and tsunami observations. The resulting rupture dynamics shed new light on the activation and importance of splay faults.

  17. Investigating Flow Experience and Scientific Practices During a Mobile Serious Educational Game

    NASA Astrophysics Data System (ADS)

    Bressler, Denise M.; Bodzin, Alec M.

    2016-10-01

    Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game ( n = 59) were compared with students in a business-as-usual control activity ( n = 120). In both scenarios, students worked in small teams. Data measures included an open-ended instrument designed to measure scientific practices, a self-report flow survey, and classroom observations. The game players had significantly higher levels of flow and scientific practices compared to the control group. Observations revealed that game teams received less whole-class instruction and review compared to the control teams. Game teachers had primarily a guide-on-the-side role when facilitating the game, while control teachers predominantly used didactic instruction when facilitating the control activity. Implications for these findings are discussed.

  18. 15 CFR 762.2 - Records to be retained.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pertaining to the types of transactions described in § 762.1(a) of this part, which are made or obtained by a..., High Performance Computers; (7) supplement No. 3 to part 742 High Performance Computers, Safeguards and...; (44) § 745.2, End-use certificates; (45) § 758.2(c), Assumption writing; and (46) § 734.4(g), de...

  19. The Effect of Color Choice on Learner Interpretation of a Cosmology Visualization

    ERIC Educational Resources Information Center

    Buck, Zoe

    2013-01-01

    As we turn more and more to high-end computing to understand the Universe at cosmological scales, dynamic visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better…

  20. The New Human Condition and Climate Change: Humanities and Social Science Perceptions of Threat

    NASA Astrophysics Data System (ADS)

    Holm, Poul; Travis, Charles

    2017-09-01

    Thinking, no doubt, plays an enormous role in every scientific enterprise, but it is the role of a means to an end; the end is determined by a decision about what is worth-while knowing and this decision cannot be scientific.

  1. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    NASA Astrophysics Data System (ADS)

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  2. The End of Theory? Does the Data Deluge Make the Scientific Method Obsolete?

    NASA Astrophysics Data System (ADS)

    Kreinovich, Vladik; McClure, John; Symons, John

    2008-10-01

    Why do we need theory? One of the purposes of science is to predict: e.g., how a complex material behaves in different situations. There are a lot of records describing how different materials behave in different situations. In the past, it was not possible to find a similar record and simply recall what happened then. The only possibility was to extract, from the data, a simple dependence, and then use this dependence for predictions. For example, we can use Ohm's law V=I.R to predict the voltage V based on the current I and the resistance R. Nowadays, computer searches are so fast that there seems to be no need for any theoretical laws anymore: if we want to predict, we can simply search through all the records and find what happened in a similar situation. So maybe we do not need theory at all. This was the argument developed in a recent (June 2008) article in a popular Wired magazine. In our presentation, we will describe this argument in detail, and give our opinion on whether the computer progress will indeed lead to the end of the theory as we know it.

  3. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  4. A Fishy Problem for Advanced Students

    ERIC Educational Resources Information Center

    Patterson, Richard A.

    1977-01-01

    While developing a research course for gifted high school students, improvements were made in a local pond. Students worked for a semester learning research techniques, statistical analysis, and limnology. At the end of the course, the three students produced a joint scientific paper detailing their study of the pond. (MA)

  5. Getting real with the upcoming challenge of electronic nicotine delivery systems: The way forward for the South-East Asia region.

    PubMed

    Kaur, Jagdish; Rinkoo, Arvind Vashishta

    2017-09-01

    Electronic nicotine delivery systems (ENDS) are being marketed to tobacco smokers for use in places where smoking is not allowed or as aids similar to pharmaceutical nicotine products to help cigarette smokers quit tobacco use. These are often flavored to make them more attractive for youth - ENDS use may lead young nonsmokers to take up tobacco products. Neither safety nor efficacy as a cessation aid of ENDS has been scientifically demonstrated. The adverse health effects of secondhand aerosol cannot be ruled out. Weak regulation of these products might contribute to the expansion of the ENDS market - in which tobacco companies have a substantial stake - potentially renormalizing smoking habits and negating years of intense tobacco control campaigning. The current situation calls for galvanizing policy makers to gear up to this challenge in the Southeast Asia Region (SEAR) where the high burden of tobacco use is compounded by large proportion of young vulnerable population and limited established tobacco cessation facilities. Banning ENDS in the SEAR seems to be the most plausible approach at present. In the SEAR, Timor-Leste, Democratic People's Republic of Korea, and Thailand have taken the lead in banning these products. The other countries of the SEAR should follow suit. The SEAR countries may, however, choose to revise their strategy if unbiased scientific evidence emerges about efficacy of ENDS as a tobacco cessation aid. ENDS industry must show true motivation and willingness to develop and test ENDS as effective pharmaceutical tools in the regional context before asking for market authorization.

  6. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX)

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-01-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning. PMID:26217710

  7. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  8. Profiling and Improving I/O Performance of a Large-Scale Climate Scientific Application

    NASA Technical Reports Server (NTRS)

    Liu, Zhuo; Wang, Bin; Wang, Teng; Tian, Yuan; Xu, Cong; Wang, Yandong; Yu, Weikuan; Cruz, Carlos A.; Zhou, Shujia; Clune, Tom; hide

    2013-01-01

    Exascale computing systems are soon to emerge, which will pose great challenges on the huge gap between computing and I/O performance. Many large-scale scientific applications play an important role in our daily life. The huge amounts of data generated by such applications require highly parallel and efficient I/O management policies. In this paper, we adopt a mission-critical scientific application, GEOS-5, as a case to profile and analyze the communication and I/O issues that are preventing applications from fully utilizing the underlying parallel storage systems. Through in-detail architectural and experimental characterization, we observe that current legacy I/O schemes incur significant network communication overheads and are unable to fully parallelize the data access, thus degrading applications' I/O performance and scalability. To address these inefficiencies, we redesign its I/O framework along with a set of parallel I/O techniques to achieve high scalability and performance. Evaluation results on the NASA discover cluster show that our optimization of GEOS-5 with ADIOS has led to significant performance improvements compared to the original GEOS-5 implementation.

  9. MAPTEACH | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska's Cultural Heritage) is a hands-on education program for middle and high school students in Alaska computer-based maps of scientific, cultural and personal significance. The project emphasizes the

  10. Preface: SciDAC 2006

    NASA Astrophysics Data System (ADS)

    Tang, William M., Dr.

    2006-01-01

    The second annual Scientific Discovery through Advanced Computing (SciDAC) Conference was held from June 25-29, 2006 at the new Hyatt Regency Hotel in Denver, Colorado. This conference showcased outstanding SciDAC-sponsored computational science results achieved during the past year across many scientific domains, with an emphasis on science at scale. Exciting computational science that has been accomplished outside of the SciDAC program both nationally and internationally was also featured to help foster communication between SciDAC computational scientists and those funded by other agencies. This was illustrated by many compelling examples of how domain scientists collaborated productively with applied mathematicians and computer scientists to effectively take advantage of terascale computers (capable of performing trillions of calculations per second) not only to accelerate progress in scientific discovery in a variety of fields but also to show great promise for being able to utilize the exciting petascale capabilities in the near future. The SciDAC program was originally conceived as an interdisciplinary computational science program based on the guiding principle that strong collaborative alliances between domain scientists, applied mathematicians, and computer scientists are vital to accelerated progress and associated discovery on the world's most challenging scientific problems. Associated verification and validation are essential in this successful program, which was funded by the US Department of Energy Office of Science (DOE OS) five years ago. As is made clear in many of the papers in these proceedings, SciDAC has fundamentally changed the way that computational science is now carried out in response to the exciting challenge of making the best use of the rapid progress in the emergence of more and more powerful computational platforms. In this regard, Dr. Raymond Orbach, Energy Undersecretary for Science at the DOE and Director of the OS has stated: `SciDAC has strengthened the role of high-end computing in furthering science. It is defining whole new fields for discovery.' (SciDAC Review, Spring 2006, p8). Application domains within the SciDAC 2006 conference agenda encompassed a broad range of science including: (i) the DOE core mission of energy research involving combustion studies relevant to fuel efficiency and pollution issues faced today and magnetic fusion investigations impacting prospects for future energy sources; (ii) fundamental explorations into the building blocks of matter, ranging from quantum chromodynamics - the basic theory that describes how quarks make up the protons and neutrons of all matter - to the design of modern high-energy accelerators; (iii) the formidable challenges of predicting and controlling the behavior of molecules in quantum chemistry and the complex biomolecules determining the evolution of biological systems; (iv) studies of exploding stars for insights into the nature of the universe; and (v) integrated climate modeling to enable realistic analysis of earth's changing climate. Associated research has made it quite clear that advanced computation is often the only means by which timely progress is feasible when dealing with these complex, multi-component physical, chemical, and biological systems operating over huge ranges of temporal and spatial scales. Working with the domain scientists, applied mathematicians and computer scientists have continued to develop the discretizations of the underlying equations and the complementary algorithms to enable improvements in solutions on modern parallel computing platforms as they evolve from the terascale toward the petascale regime. Moreover, the associated tremendous growth of data generated from the terabyte to the petabyte range demands not only the advanced data analysis and visualization methods to harvest the scientific information but also the development of efficient workflow strategies which can deal with the data input/output, management, movement, and storage challenges. If scientific discovery is expected to keep apace with the continuing progression from tera- to petascale platforms, the vital alliance between domain scientists, applied mathematicians, and computer scientists will be even more crucial. During the SciDAC 2006 Conference, some of the future challenges and opportunities in interdisciplinary computational science were emphasized in the Advanced Architectures Panel and by Dr. Victor Reis, Senior Advisor to the Secretary of Energy, who gave a featured presentation on `Simulation, Computation, and the Global Nuclear Energy Partnership.' Overall, the conference provided an excellent opportunity to highlight the rising importance of computational science in the scientific enterprise and to motivate future investment in this area. As Michael Strayer, SciDAC Program Director, has noted: `While SciDAC may have started out as a specific program, Scientific Discovery through Advanced Computing has become a powerful concept for addressing some of the biggest challenges facing our nation and our world.' Looking forward to next year, the SciDAC 2007 Conference will be held from June 24-28 at the Westin Copley Plaza in Boston, Massachusetts. Chairman: David Keyes, Columbia University. The Organizing Committee for the SciDAC 2006 Conference would like to acknowledge the individuals whose talents and efforts were essential to the success of the meeting. Special thanks go to Betsy Riley for her leadership in building the infrastructure support for the conference, for identifying and then obtaining contributions from our corporate sponsors, for coordinating all media communications, and for her efforts in organizing and preparing the conference proceedings for publication; to Tim Jones for handling the hotel scouting, subcontracts, and exhibits and stage production; to Angela Harris for handling supplies, shipping, and tracking, poster sessions set-up, and for her efforts in coordinating and scheduling the promotional activities that took place during the conference; to John Bui and John Smith for their superb wireless networking and A/V set-up and support; to Cindy Latham for Web site design, graphic design, and quality control of proceedings submissions; and to Pamelia Nixon-Hartje of Ambassador for budget and quality control of catering. We are grateful for the highly professional dedicated efforts of all of these individuals, who were the cornerstones of the SciDAC 2006 Conference. Thanks also go to Angela Beach of the ORNL Conference Center for her efforts in executing the contracts with the hotel, Carolyn James of Colorado State for on-site registration supervision, Lora Wolfe and Brittany Hagen for administrative support at ORNL, and Dami Rich and Andrew Sproles for graphic design and production. We are also most grateful to the Oak Ridge National Laboratory, especially Jeff Nichols, and to our corporate sponsors, Data Direct Networks, Cray, IBM, SGI, and Institute of Physics Publishing for their support. We especially express our gratitude to the featured speakers, invited oral speakers, invited poster presenters, session chairs, and advanced architecture panelists and chair for their excellent contributions on behalf of SciDAC 2006. We would like to express our deep appreciation to Lali Chatterjee, Graham Douglas, Margaret Smith, and the production team of Institute of Physics Publishing, who worked tirelessly to publish the final conference proceedings in a timely manner. Finally, heartfelt thanks are extended to Michael Strayer, Associate Director for OASCR and SciDAC Director, and to the DOE program managers associated with SciDAC for their continuing enthusiasm and strong support for the annual SciDAC Conferences as a special venue to showcase the exciting scientific discovery achievements enabled by the interdisciplinary collaborations championed by the SciDAC program.

  11. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  12. Do students with higher self-efficacy exhibit greater and more diverse scientific inquiry skills: An exploratory investigation in "River City", a multi-user virtual environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    In this thesis, I conduct an exploratory study to investigate the relationship between students' self-efficacy on entry into authentic scientific activity and the scientific inquiry behaviors they employ while engaged in that process, over time. Scientific inquiry has been a major standard in most science education policy doctrines for the past two decades and is exemplified by activities such as making observations, formulating hypotheses, gathering and analyzing data, and forming conclusions from that data. The self-efficacy literature, however, indicates that self-efficacy levels affect perseverance and engagement. This study investigated the relationship between these two constructs. The study is conducted in a novel setting, using an innovative science curriculum delivered through an interactive computer technology that recorded each student's conversations, movements, and activities while behaving as a practicing scientist in a "virtual world" called River City. River City is a Multi-User Virtual Environment designed to engage students in a collaborative scientific inquiry-based learning experience. As a result, I was able to follow students' moment-by-moment choices of behavior while they were behaving as scientists. I collected data on students' total scientific inquiry behaviors over three visits to River City, as well as the number of sources from which they gathered their scientific data. I analyzed my longitudinal data on the 96 seventh-graders using individual growth modeling. I found that self-efficacy played a role in the number of data-gathering behaviors students engaged in initially, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. However, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender; by the end of the study, student self-efficacy did not impact data gathering. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. There are indications in my results that novel interventions like a Multi-user Virtual Environment might act as a catalyst for change in student learning. Further research using these techniques may enable a better understanding of the interaction between self-efficacy and scientific inquiry, and eventually science learning outcomes.

  13. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; Bell, J; Estep, D

    2008-02-15

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as themore » high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing devices in a remote-sensing network? (8) How can new materials be designed with a specified desirable set of properties? In comparing and contrasting these and other questions of importance to DOE, the panel found that while the scientific breadth of the requirements is enormous, a central theme emerges: Scientists are being asked to identify or provide technology, or to give expert analysis to inform policy-makers that requires the scientific understanding of increasingly complex physical and engineered systems. In addition, as the complexity of the systems of interest increases, neither experimental observation nor mathematical and computational modeling alone can access all components of the system over the entire range of scales or conditions needed to provide the required scientific understanding.« less

  14. Introduction to the LaRC central scientific computing complex

    NASA Technical Reports Server (NTRS)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  15. NCI's Transdisciplinary High Performance Scientific Data Platform

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and additional communities practices, and a foundation for new exploratory developments. To that end, NCI is already participating in numerous current and emerging collaborations internationally including the Earth System Grid Federation (ESGF); Climate and Weather Data from International agencies such as NASA, NOAA, and UK Met Office; Remotely Sensed Satellite Earth Imaging through collaborations through GEOS and CEOS; EU-led Ocean Data Interoperability Platform (ODIP) and Horizon2020 Earth Server2 project; as well as broader data infrastructure community activities such as Research Data Alliance (RDA). Each research community is heavily engaged in international standards such as ISO, OGC and W3C, adopting community-led conventions for data, supporting improved data organisation such as controlled vocabularies, and creating workflows that use mature APIs and data services. NCI is engaging with these communities on NERDIP to ensure that such standards are applied uniformly and tested in practice by working with the variety of data and technologies. This includes benchmarking exemplar cases from individual communities, documenting their use of standards, and evaluating their practical use of the different technologies. Such a process fully establishes the functionality and performance, and is required to safely transition when improvements or rationalisation is required. Work is now underway to extend the NERDIP platform for better utilisation in the subsurface geophysical community, including maximizing national uptake, as well as better integration with international science platforms.

  16. Trends in life science grid: from computing grid to knowledge grid.

    PubMed

    Konagaya, Akihiko

    2006-12-18

    Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  17. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  18. Making Cloud Computing Available For Researchers and Innovators (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, R.

    2010-12-01

    High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.

  19. OMPC: an Open-Source MATLAB®-to-Python Compiler

    PubMed Central

    Jurica, Peter; van Leeuwen, Cees

    2008-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB®, the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB® functions into Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB®. OMPC is available at http://ompc.juricap.com. PMID:19225577

  20. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2008-10-16

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  1. Expectations of Competency: The Mismatch between Employers' and Graduates' Views of End-User Computing Skills Requirements in the Workplace

    ERIC Educational Resources Information Center

    Gibbs, Shirley; Steel, Gary; Kuiper, Alison

    2011-01-01

    The use of computers has become part of everyday life. The high prevalence of computer use appears to lead employers to assume that university graduates will have the good computing skills necessary in many graduate level jobs. This study investigates how well the expectations of employers match the perceptions of near-graduate students about the…

  2. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  3. Scientific Computing Paradigm

    NASA Technical Reports Server (NTRS)

    VanZandt, John

    1994-01-01

    The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.

  4. Commentary: Considerations in Pedagogy and Assessment in the Use of Computers to Promote Learning about Scientific Models

    ERIC Educational Resources Information Center

    Adams, Stephen T.

    2004-01-01

    Although one role of computers in science education is to help students learn specific science concepts, computers are especially intriguing as a vehicle for fostering the development of epistemological knowledge about the nature of scientific knowledge--what it means to "know" in a scientific sense (diSessa, 1985). In this vein, the…

  5. GREEN SUPERCOMPUTING IN A DESKTOP BOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY

    2007-01-17

    The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicatedmore » computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.« less

  6. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress fracture injuries in women

    DTIC Science & Technology

    2017-03-23

    performance computing resources made available by the US Department of Defense High Performance Computing Modernization Program at the Air Force...1Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United...States Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA Full list of author information is available at the end of the article

  7. Review of An Introduction to Parallel and Vector Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Lefton, Lew

    2006-06-30

    On one hand, the field of high-performance scientific computing is thriving beyond measure. Performance of leading-edge systems on scientific calculations, as measured say by the Top500 list, has increased by an astounding factor of 8000 during the 15-year period from 1993 to 2008, which is slightly faster even than Moore's Law. Even more importantly, remarkable advances in numerical algorithms, numerical libraries and parallel programming environments have led to improvements in the scope of what can be computed that are entirely on a par with the advances in computing hardware. And these successes have spread far beyond the confines of largemore » government-operated laboratories, many universities, modest-sized research institutes and private firms now operate clusters that differ only in scale from the behemoth systems at the large-scale facilities. In the wake of these recent successes, researchers from fields that heretofore have not been part of the scientific computing world have been drawn into the arena. For example, at the recent SC07 conference, the exhibit hall, which long has hosted displays from leading computer systems vendors and government laboratories, featured some 70 exhibitors who had not previously participated. In spite of all these exciting developments, and in spite of the clear need to present these concepts to a much broader technical audience, there is a perplexing dearth of training material and textbooks in the field, particularly at the introductory level. Only a handful of universities offer coursework in the specific area of highly parallel scientific computing, and instructors of such courses typically rely on custom-assembled material. For example, the present reviewer and Robert F. Lucas relied on materials assembled in a somewhat ad-hoc fashion from colleagues and personal resources when presenting a course on parallel scientific computing at the University of California, Berkeley, a few years ago. Thus it is indeed refreshing to see the publication of the book An Introduction to Parallel and Vector Scientic Computing, written by Ronald W. Shonkwiler and Lew Lefton, both of the Georgia Institute of Technology. They have taken the bull by the horns and produced a book that appears to be entirely satisfactory as an introductory textbook for use in such a course. It is also of interest to the much broader community of researchers who are already in the field, laboring day by day to improve the power and performance of their numerical simulations. The book is organized into 11 chapters, plus an appendix. The first three chapters describe the basics of system architecture including vector, parallel and distributed memory systems, the details of task dependence and synchronization, and the various programming models currently in use - threads, MPI and OpenMP. Chapters four through nine provide a competent introduction to floating-point arithmetic, numerical error and numerical linear algebra. Some of the topics presented include Gaussian elimination, LU decomposition, tridiagonal systems, Givens rotations, QR decompositions, Gauss-Seidel iterations and Householder transformations. Chapters 10 and 11 introduce Monte Carlo methods and schemes for discrete optimization such as genetic algorithms.« less

  8. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Charles; Bell, Greg; Canon, Shane

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less

  9. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  10. Hot Chips and Hot Interconnects for High End Computing Systems

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  11. Learning Density in Vanuatu High School with Computer Simulation: Influence of Different Levels of Guidance

    ERIC Educational Resources Information Center

    Moli, Lemuel; Delserieys, Alice Pedregosa; Impedovo, Maria Antonietta; Castera, Jeremy

    2017-01-01

    This paper presents a study on discovery learning of scientific concepts with the support of computer simulation. In particular, the paper will focus on the effect of the levels of guidance on students with a low degree of experience in informatics and educational technology. The first stage of this study was to identify the common misconceptions…

  12. USSR Report, Kommunist, No. 13, September 1986.

    DTIC Science & Technology

    1987-01-07

    all-union) program for specialization of NPO and industrial enterprises and their scientific research institutes and design bureaus could play a major...machine tools with numerical programming (ChPU), processing centers, automatic machines and groups of automatic machines controlled by computers, and...automatic lines, computer- controlled groups of equipment, comprehensively automated shops and sections) is the most important feature of high technical

  13. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Making holograms in middle and high schools

    NASA Astrophysics Data System (ADS)

    Jeong, Tung H.

    2000-06-01

    Holography is a worthy topic that should become an integral part of any basic science curriculum. It embodies basic scientific principle that include the direct applications of three Nobel Prize physics concepts; it involves procedures that teaches the scientific method of problem solving; it can be learned by `doing' without previous experience; it is artistically creative; it can be appreciated by students of all ranges of abilities; and it is an open-ended subject so that specially interested students can continue to pursue deeper and more creative projects beyond the scope that fits into the curriculum. Finally, with the availability of high quality and low cost diode lasers, it is an affordable unit for any school.

  15. Numerical Study of Solar Storms from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Jiang, Chaowei; Zhou, Yufen

    2017-04-01

    As solar storms are sweeping the Earth, adverse changes occur in geospace environment. How human can mitigate and avoid destructive damages caused by solar storms becomes an important frontier issue that we must face in the high-tech times. It is of both scientific significance to understand the dynamic process during solar storm's propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. So far, numerical studies based on magnetohydrodynamics (MHD) have gone through the transition from the initial qualitative principle researches to systematic quantitative studies on concrete events and numerical predictions. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the transition of these models to operational use depends on the availability of computational resources at reasonable cost and that the models' prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways. In this talk, we briefly focus on our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.

  16. Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab

    NASA Astrophysics Data System (ADS)

    Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.

    2017-10-01

    The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called Distributed Computing Access with Federated Identities (DCAFI) has been put in place that has eliminated our dependence on a Fermilab-specific third-party Certificate Authority service and better accommodates FIFE collaborators without a Fermilab Kerberos account. DCAFI integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and a MyProxy service using a new general purpose open source tool. We will discuss the general FIFE onboarding strategy, progress in expanding FIFE experiments presence on the Open Science Grid, new tools for job monitoring, the POMS service, and the DCAFI project.

  17. History and Legacy

    ERIC Educational Resources Information Center

    Mason, Diana S.

    2004-01-01

    The history of the computer usage in high school laboratories is discussed. Students learned scientific methods by acknowledging measurement errors, using significant digits, questioning their own results, and without doubts, they benefited from applying skill learned in mathematics classes.

  18. Peer Mentoring to Facilitate Original Scientific Research by Students With Special Needs

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2007-12-01

    Developed to allow high school students with special needs to participate in original scientific research, the Peer Mentoring Program was a supplement to existing science instruction for students in a self-contained classroom. Peer mentors were high school seniors at the end of a three-year advanced science research course who used their experience to create and develop inquiry-based research activities appropriate for students in the self- contained classroom. Peer mentors then assisted cooperative learning groups of special education students to facilitate the implementation of the research activities. Students with special needs successfully carried out an original research project and developed critical thinking and laboratory skills. Prior to embarking on their undergraduate course of study in the sciences, peer mentors developed an appreciation for the need to bring original scientific research to students of all levels. The program will be expanded and continued during the 2007-2008 school year.

  19. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  20. Fundamentals of Modeling, Data Assimilation, and High-performance Computing

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.

    2005-01-01

    This lecture will introduce the concepts of modeling, data assimilation and high- performance computing as it relates to the study of atmospheric composition. The lecture will work from basic definitions and will strive to provide a framework for thinking about development and application of models and data assimilation systems. It will not provide technical or algorithmic information, leaving that to textbooks, technical reports, and ultimately scientific journals. References to a number of textbooks and papers will be provided as a gateway to the literature.

  1. Ermittlung von Wortstaemmen in russischen wissenschaftlichen Fachsprachen mit Hilfe des Computers (Establishing Word Stems in Scientific Russian With the Aid of a Computer)

    ERIC Educational Resources Information Center

    Halbauer, Siegfried

    1976-01-01

    It was considered that students of intensive scientific Russian courses could learn vocabulary more efficiently if they were taught word stems and how to combine them with prefixes and suffixes to form scientific words. The computer programs developed to identify the most important stems is discussed. (Text is in German.) (FB)

  2. Scientific Visualization: The Modern Oscilloscope for "Seeing the Unseeable" (LBNL Summer Lecture Series)

    ScienceCinema

    Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division and Scientific Visualization Group

    2018-05-07

    Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  3. An Ephemeral Burst-Buffer File System for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Teng; Moody, Adam; Yu, Weikuan

    BurstFS is a distributed file system for node-local burst buffers on high performance computing systems. BurstFS presents a shared file system space across the burst buffers so that applications that use shared files can access the highly-scalable burst buffers without changing their applications.

  4. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  5. Computer Lab Modules as Problem Solving Tools. Final Report.

    ERIC Educational Resources Information Center

    Ignatz, Mila E.; Ignatz, Milton

    There are many problems involved in upgrading scientific literacy in high schools: poorly qualified teachers, the lack of good instructional materials, and economic and academic disadvantages all contribute to the problem. This document describes a project designed to increase the opportunities available to the high school science student to…

  6. Computer sciences

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  7. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1993-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a testbed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  8. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1992-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  9. Scientific Visualization, Seeing the Unseeable

    ScienceCinema

    LBNL

    2017-12-09

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  10. Java Performance for Scientific Applications on LLNL Computer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapfer, C; Wissink, A

    2002-05-10

    Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less

  11. [Algorithms of artificial neural networks--practical application in medical science].

    PubMed

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  12. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  13. Pseudo-hemothorax at computed tomography due to residual contrast media.

    PubMed

    Romero, Matías; Bächler, Pablo

    2014-01-01

    Pleural effusion is a clinical problem that has many causes, with hemothorax being one of them. Computed tomography readily characterizes pleural fluid with determination of the attenuation value, helping to distinguish hemothorax from other types of effusion. Herein, we report the case of a 67-year-old man with end-stage renal disease in which a high-density pleural effusion due to residual contrast media was misinterpreted as hemothorax. Radiologists should consider the possibility of contrast media retention when interpreting a high-density pleural effusion in patients with end-stage renal disease. Recognition of this entity is crucial to avoid misdiagnosis, which might lead to unnecessary testing or procedures. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yier

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from thismore » project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.« less

  15. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  16. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  17. A Multidisciplinary Guided Practical on Type I Diabetes Engaging Students in Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Mingueneau, M.; Chaix, A.; Scotti, N.; Chaix, J.; Reynders, A.; Hammond, C.; Thimonier, J.

    2015-01-01

    In the present article, we describe a 3-day experimental workshop on type I diabetes aimed at helping high school students to understand how fundamental research on glycemia regulation contributes to the development of scientific knowledge and therapeutic strategies. The workshop engaged students in open-ended investigations and guided…

  18. OMPC: an Open-Source MATLAB-to-Python Compiler.

    PubMed

    Jurica, Peter; van Leeuwen, Cees

    2009-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.

  19. Solving optimization problems on computational grids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less

  20. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such as the national and regional electricity grid, carbon sequestration, virtual engineering, and the nuclear fuel cycle. The successes of the first five years of SciDAC have demonstrated the power of using advanced computing to enable scientific discovery. One measure of this success could be found in the President’s State of the Union address in which President Bush identified ‘supercomputing’ as a major focus area of the American Competitiveness Initiative. Funds were provided in the FY 2007 President’s Budget request to increase the size of the NERSC-5 procurement to between 100-150 teraflops, to upgrade the LCF Cray XT3 at Oak Ridge to 250 teraflops and acquire a 100 teraflop IBM BlueGene/P to establish the Leadership computing facility at Argonne. We believe that we are on a path to establish a petascale computing resource for open science by 2009. We must develop software tools, packages, and libraries as well as the scientific application software that will scale to hundreds of thousands of processors. Computer scientists from universities and the DOE’s national laboratories will be asked to collaborate on the development of the critical system software components such as compilers, light-weight operating systems and file systems. Standing up these large machines will not be business as usual for ASCR. We intend to develop a series of interconnected projects that identify cost, schedule, risks, and scope for the upgrades at the LCF at Oak Ridge, the establishment of the LCF at Argonne, and the development of the software to support these high-end computers. The critical first step in defining the scope of the project is to identify a set of early application codes for each leadership class computing facility. These codes will have access to the resources during the commissioning phase of the facility projects and will be part of the acceptance tests for the machines. Applications will be selected, in part, by breakthrough science, scalability, and ability to exercise key hardware and software components. Possible early applications might include climate models; studies of the magnetic properties of nanoparticles as they relate to ultra-high density storage media; the rational design of chemical catalysts, the modeling of combustion processes that will lead to cleaner burning coal, and fusion and astrophysics research. I have presented just a few of the challenges that we look forward to on the road to petascale computing. Our road to petascale science might be paraphrased by the quote from e e cummings, ‘somewhere I have never traveled, gladly beyond any experience . . .’

Top