Sample records for high-energy cosmic rays

  1. High-Energy Cosmic Rays from Supernovae

    NASA Astrophysics Data System (ADS)

    Morlino, Giovanni

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ˜ 1017 eV, cosmic rays are believed to be produced in the Milky Way, while above that energy, their origin is probably extragalactic. In the early 1930s, supernovae were already identified as possible sources for the galactic component of cosmic rays. After the 1970s this idea has gained more and more credibility, thanks to the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterward, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the nonlinear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources, and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.

  2. Cosmic ray antiprotons at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Martin Wolfgang, E-mail: martin.winkler@su.se

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available formore » independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.« less

  3. Progress in high-energy cosmic ray physics

    NASA Astrophysics Data System (ADS)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  4. The Need for Direct High-Energy Cosmic-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Frank C.; Streitmatter, Robert

    2004-01-01

    Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.

  5. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  6. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  7. Ultra High Energy Cosmic Rays: Strangelets?

    NASA Astrophysics Data System (ADS)

    Xu, Ren-Xin; Wu, Fei

    2003-06-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of TeV-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3×1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  8. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  9. High energy physics in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less

  10. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  11. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  12. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  13. Very high-energy gamma-ray signature of ultrahigh-energy cosmic ray acceleration in Centaurus A

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Miranda, Luis Salvador; Razzaque, Soebur; Yang, Lili

    2018-07-01

    The association of at least a dozen ultrahigh-energy cosmic ray (UHECR) events with energy ≳ 55 EeV detected by the Pierre Auger Observatory from the direction of Centaurus-A, the nearest radio galaxy, supports the scenario of UHECR acceleration in the jets of radio galaxies. In this work, we model radio to very high energy (VHE,≳ 100 GeV) γ-ray emission from Cen A, including GeV hardness detected by Fermi-LAT and TeV emission detected by the High Energy Stereoscopic System (HESS). We consider two scenarios: (i) two-zone synchrotron self-Compton (SSC) and external-Compton (EC) models, (ii) two-zone SSC, EC, and photohadronic emission from cosmic ray interactions. The GeV hardness observed by Fermi-LAT can be explained using these two scenarios, where zone 2 EC emission is very important. Hadronic emission in scenario (ii) can explain VHE data with the same spectral slope as obtained through fitting UHECRs from Cen A. The peak luminosity in cosmic ray proton at 1 TeV, to explain the VHE γ-ray data is ≈2.5 × 1046 erg s-1. The bolometric luminosity in cosmic ray protons is consistent with the luminosity required to explain the origin of 13 UHECR signal events that are correlated with Cen A.

  14. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo, E-mail: giulia.pagliaroli@gssi.infn.it, E-mail: carmelo.evoli@gssi.infn.it, E-mail: francesco.villante@lngs.infn.it

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show thatmore » a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform , thus bringing relevant information on the cosmic ray radial distribution.« less

  15. Very high-energy gamma-ray signature of ultrahigh-energy cosmic-ray acceleration in Centaurus A

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Miranda, Luis Salvador; Razzaque, Soebur; Yang, Lili

    2018-04-01

    The association of at least a dozen ultrahigh-energy cosmic-ray (UHECR) events with energy ≳ 55 EeV detected by the Pierre Auger Observatory (PAO) from the direction of Centaurus-A, the nearest radio galaxy, supports the scenario of UHECR acceleration in the jets of radio galaxies. In this work, we model radio to very high energy (VHE,≳ 100 GeV) γ-ray emission from Cen A, including GeV hardness detected by Fermi-LAT and TeV emission detected by HESS. We consider two scenarios: (i) Two zone synchrotron self-Compton (SSC) and external-Compton (EC) models, (ii) Two zone SSC, EC and photo-hadronic emission from cosmic ray interactions. The GeV hardness observed by Fermi-LAT can be explained using these two scenarios, where zone 2 EC emission is very important. Hadronic emission in scenario (ii) can explain VHE data with the same spectral slope as obtained through fitting UHECRs from Cen A. The peak luminosity in cosmic ray proton at 1 TeV, to explain the VHE γ-ray data is ≈2.5 × 1046 erg/s. The bolometric luminosity in cosmic ray protons is consistent with the luminosity required to explain the origin of 13 UHECR signal events that are correlated with Cen A.

  16. Neutrinos, ultra-high-energy cosmic rays and fundamental physics

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2001-05-01

    In the first lecture, aspects of neutrino physics beyond the Standard Model are emphasized, including the emerging default options for atmospheric and solar neutrino oscillations, namely νμ-->ντ and νe-->νμ,τ respectively, and the need to check them, the prospects opened up by the successful starts of SNO and K2K and the opportunities for future long-baseline neutrino experiments. In the second lecture, it is discussed how cosmic rays may provide opportunities for probing fundamental physics. For example, ultra-high-energy cosmic rays might originate from the decays of metastable heavy particles, and astrophysical γ rays can be used to test models of quantum gravity. Both scenarios offer ways to avoid the GZK cut-off, and might best be probed using high-energy astrophysical neutrinos. .

  17. The Galactic Magnetic Field and Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Urban, Federico R.

    The Galactic Magnetic Field is a peeving and importune screen between Ultra-High Energy Cosmic Rays and us cosmologists, engaged in the combat to unveil their properties and origin, as it deviates their paths towards the Earth in unpredictable ways. I will, in this order: briefly review the available field models on the market; explain a little trick which allows one to obtain cosmic rays deflection variances without even knowing what the (random) GMF model is; and argue that there is a lack of anisotropy in the large scales cosmic rays signal, which the Galactic field can do nothing about.

  18. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  19. Observations of High Energy Cosmic Ray Electrons by the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Chang, J.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; hide

    2009-01-01

    Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.

  20. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    NASA Astrophysics Data System (ADS)

    Sedrati, R.; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  1. High-energy multiple muons and heavy primary cosmic-rays

    NASA Technical Reports Server (NTRS)

    Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.

  2. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.

    2017-06-01

    We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.

  3. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  4. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  5. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  6. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  7. Radio detection of cosmic-ray air showers and high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    In the last fifteen years radio detection made it back to the list of promising techniques for extensive air showers, firstly, due to the installation and successful operation of digital radio experiments and, secondly, due to the quantitative understanding of the radio emission from atmospheric particle cascades. The radio technique has an energy threshold of about 100 PeV, which coincides with the energy at which a transition from the highest-energy galactic sources to the even more energetic extragalactic cosmic rays is assumed. Thus, radio detectors are particularly useful to study the highest-energy galactic particles and ultra-high-energy extragalactic particles of all types. Recent measurements by various antenna arrays like LOPES, CODALEMA, AERA, LOFAR, Tunka-Rex, and others have shown that radio measurements can compete in precision with other established techniques, in particular for the arrival direction, the energy, and the position of the shower maximum, which is one of the best estimators for the composition of the primary cosmic rays. The scientific potential of the radio technique seems to be maximum in combination with particle detectors, because this combination of complementary detectors can significantly increase the total accuracy for air-shower measurements. This increase in accuracy is crucial for a better separation of different primary particles, like gamma-ray photons, neutrinos, or different types of nuclei, because showers initiated by these particles differ in average depth of the shower maximum and in the ratio between the amplitude of the radio signal and the number of muons. In addition to air-shower measurements, the radio technique can be used to measure particle cascades in dense media, which is a promising technique for detection of ultra-high-energy neutrinos. Several pioneering experiments like ARA, ARIANNA, and ANITA are currently searching for the radio emission by neutrino-induced particle cascades in ice. In the next years

  8. Acceleration of High Energy Cosmic Rays in the Nonlinear Shock Precursor

    NASA Astrophysics Data System (ADS)

    Derzhinsky, F.; Diamond, P. H.; Malkov, M. A.

    2006-10-01

    The problem of understanding acceleration of very energetic cosmic rays to energies above the 'knee' in the spectrum at 10^15-10^16eV remains one of the great challenges in modern physics. Recently, we have proposed a new approach to understanding high energy acceleration, based on exploiting scattering of cosmic rays by inhomogenities in the compressive nonlinear shock precursor, rather than by scattering across the main shock, as is conventionally assumed. We extend that theory by proposing a mechanism for the generation of mesoscale magnetic fields (krg<1, where rg is the cosmic ray gyroradius). The mechanism is the decay or modulational instability of resonantly generated Alfven waves scattering off ambient density perturbations in the precursors. Such perturbations can be produced by Drury instability. This mechanism leads to the generation of longer wavelength Alfven waves, thus enabling the confinement of higher energy particles. A simplified version of the theory, cast in the form of a Fokker-Planck equation for the Alfven population, will also be presented. This process also limits field generation on rg scales.

  9. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  10. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  11. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  12. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  13. Terrestrial Effects of High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    2011-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Increased ionization could lead to changes in atmospheric chemistry, resulting in ozone depletion. This could increase the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit can could possibly enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates radiation dose from cosmic rays causing DNA damage and increase in the mutation rates, which can have serious biological implications for terrestrial and sub-terrestrial life. This radiation dose is an important constraint on the habitability of a planet. Using CORSIKA, we perform massive computer simulations and construct lookup tables from 10 GeV - 1 PeV primaries (1 PeV - 0.1 ZeV in progress), which can be used to quantify these effects. These tables are freely available to the community and can be used for other studies, not necessarily relevant to Astrobiology. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. This could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  14. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  15. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    PubMed

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Ecosmic rays are confined close to their sources for energies E

  16. Measurement of the flux of ultra high energy cosmic rays by the stereo technique

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, B. K.; Zhang, X.; Zhang, Y.; High Resolution Fly's Eye Collaboration

    2009-08-01

    The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen-Zatsepin-Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.

  17. The KASCADE-Grande observatory and the composition of very high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-11-01

    KASCADE-Grande is an air-shower observatory devoted to the detection of cosmic rays with energies in the range of 1016 to 1018 eV. This energy region is of particular interest for the cosmic ray astrophysics, since it is the place where some models predict the existence of a transition from galactic to extragalactic origin of cosmic rays and the presence of a break in the flux of its heavy component. The detection of these features requires detailed and simultaneous measurements of the energy and composition of cosmic rays with sufficient statistics. These kinds of studies are possible for the first time in KASCADE-Grande due to the accurate measurements of several air-shower observables, i.e., the number of charged particles, electrons and muons in the shower, using the different detector systems of the observatory. In this contribution, a detailed look into the composition of 1016 — 1018 eV cosmic rays with KASCADE-Grande is presented.

  18. Cosmic Ray Induced Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2011-11-01

    After cancer studies performed on flight crews during the 1970s, it was found that cosmic rays produce a signficant flux of thermal neutrons at airplane altitudes. In the case of high energy cosmic rays these biologically threatening neutrons are increased at ground level. Our work models the flux of neutrons produced by high energy cosmic rays, exploring the possibility of biological impact due to extended periods of increase high energy cosmic ray flux.

  19. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavish, Eyal; Eichler, David

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objectsmore » (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.« less

  20. The KLEM High-Energy Cosmic Ray Collector for the Nucleon Satellite Mission

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    The basic objective of the KLEM (Kinematic Lightweight Energy Meter) Project is to directly measure the elemental energy spectra of very high-energy (10(exp 11) - 10(exp 16) eV) cosmic rays by determining the angular distribution of secondaries produced in a target layer. A small-scale version of a KLEM device has been designed for inclusion in the NUCLEON Russian satellite mission. Despite its 3 relatively small size of 36 x 36 x 30 cubic cm, this instrument has an aperture of about 0.12 square m sr and can thus make an important contribution to data concerning the elemental energy spectra of cosmic rays up to 10(exp 15) eV. Details of the experiment and the astrophysical significance of the mission will be presented.

  1. Neutrino diagnostics of ultrahigh energy cosmic ray protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.

    2009-04-15

    The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproducemore » the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.« less

  2. Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.

    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ~36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-raymore » sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.« less

  3. A model for the origin of high-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G. E.

    1985-01-01

    It is suggested that cosmic rays, up to the highest energies observed, originate in the Galaxy and are accelerated in astrophysical shock waves. If there is a galactic wind, in analogy with the solar wind, a hierarchy of shocks ranging from supernova shocks to the galactic wind termination shock is expected. This leads to a consistent model in which most cosmic rays, up to perhaps 10 to the 14th eV energy, are accelerated by supernova shocks, but that particles with energies of 10 to the 15th eV and higher are accelerated at the termination shock of the galactic wind. Intermediate energies may be accelerated by intermediate-scale shocks, and there may be larger scale shocks associated with the Local Group of galaxies.

  4. High-energy cosmic rays and the Greisen-Zatsepin-Kuz'min effect.

    PubMed

    Watson, A A

    2014-03-01

    Although cosmic rays were discovered over 100 years ago their origin remains uncertain. They have an energy spectrum that extends from ∼1 GeV to beyond 10(20) eV, where the rate is less than 1 particle per km(2) per century. Shortly after the discovery of the cosmic microwave background in 1965, it was pointed out that the spectrum of cosmic rays should steepen fairly abruptly above about 4 × 10(19) eV, provided the sources are distributed uniformly throughout the Universe. This prediction, by Greisen and by Zatsepin and Kuz'min, has become known as the GZK effect and in this article I discuss the current position with regard to experimental data on the energy spectrum of the highest cosmic-ray energies that have been accumulated in a search that has lasted nearly 50 years. Although there is now little doubt that a suppression of the spectrum exists near the energy predicted, it is by no means certain that this is a manifestation of the GZK effect as it might be that this energy is also close to the maximum to which sources can accelerate particles, with the highest energy beam containing a large fraction of nuclei heavier than protons. The way forward is briefly mentioned.

  5. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  6. pp interaction at very high energies in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Kendi Kohara, A.; Ferreira, Erasmo; Kodama, Takeshi

    2014-11-01

    An analysis of p-air cross section data from extensive air shower measurements is presented, based on an analytical representation of the pp scattering amplitudes that describes with high precision all available accelerator data at ISR, SPS and LHC energies. The theoretical basis of the representation, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permits reliable extrapolation to high energy cosmic ray (CR) and asymptotic energy ranges. Calculations of σ p-airprod based on Glauber formalism are made using the input values of the quantities σ , ρ , BI and BR at high energies, with attention given to the independence of the slope parameters, with {{B}R}\

  7. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Takami, Hajime

    2013-06-01

    Transient generation of ultra-high-energy cosmic rays (UHECRs) has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ˜ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  8. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays

    NASA Astrophysics Data System (ADS)

    Huege, Tim; Besson, Dave

    2017-12-01

    Radio waves, perhaps because our terrestrial atmosphere and the cosmos beyond are uniquely transparent to them, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructible, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for the measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.

  9. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGES

    Abbasi, R.; Takai, H.; Allen, C.; ...

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  10. Test of high-energy hadronic interaction models with high-altitude cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Kempa, J.

    2003-09-01

    Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.

  11. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-04-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic-ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh energy cosmic rays through the state-of-the-art simulation framework CRPropa 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  12. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-07-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh ENERGY cosmic rays through the state-of-the-art simulation framework CRPROPA 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  13. Workshop on Cosmic Ray and High Energy Gamma Ray Experiments for the Space Station Era, Louisiana State University, Baton Rouge, October 17-20, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, W. V. (Editor); Wefel, J. P. (Editor)

    1985-01-01

    The potential of the Space Station as a platform for cosmic-ray and high-energy gamma-ray astronomy is discussed in reviews, reports, and specific proposals. Topics examined include antiparticles and electrons, science facilities and new technology, high-energy nuclear interactions, nuclear composition and energy spectra, Space Shuttle experiments, Space Station facilities and detectors, high-energy gamma rays, and gamma-ray facilities and techniques. Consideration is given to universal-baryon-symmetry testing on the scale of galactic clusters, particle studies in a high-inclination orbit, balloon-borne emulsion-chamber results on ultrarelativistic nucleus-nucleus interactions, ionization states of low-energy cosmic rays, a large gamma-ray telescope for point-source studies above 1 GeV, and the possible existence of stable quark matter.

  14. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  15. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  16. Correlation of γ-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraija, N., E-mail: nifraija@astro.unam.mx

    2014-03-01

    The spectral energy distribution of giant lobes shows one main peak detected by the Wilkinson Microwave Anisotropy Probe at the low energy of 10{sup –5} eV and a faint γ-ray flux imaged by the Fermi Large Area Telescope at an energy of ≥100 MeV. On the other hand, the Pierre Auger Observatory associated some ultra-high-energy cosmic rays with the direction of Centaurus A and IceCube reported 28 neutrino-induced events in a TeV-PeV energy range, although none of them related with this direction. In this work, we describe the spectra for each of the lobes, the main peak with synchrotron radiation,more » and the high-energy emission with p-p interactions. After obtaining a good description of the main peak, we deduce the magnetic fields, electron densities, and the age of the lobes. Successfully describing the γ-ray emission by p-p interactions and considering thermal particles in the lobes with density in the range 10{sup –10}-10{sup –4} cm{sup –3} as targets, we calculate the number of ultra-high-energy cosmic rays. Although the γ-spectrum is well described with any density in the range, only when 10{sup –4} cm{sup –3} is considered are the expected number of events very similar to that observed by the Pierre Auger Observatory, otherwise we obtain an excessive luminosity. In addition, correlating the γ-ray and neutrino fluxes through p-p interactions, we calculate the number of high-energy neutrinos expected in IceCube. Our analysis indicates that neutrinos above 1 TeV cannot be produced in the lobes of Centaurus A, which is consistent with the results recently published by the IceCube Collaboration.« less

  17. The spectrum of high-energy cosmic rays measured with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2012-08-01

    The energy spectrum of cosmic rays between 1016 eV and 1018 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2 · 1016 eV and a significant steepening at ≈8 · 1016 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.

  18. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  19. Japanese-American Cooperative Emulsion Experiment /JACEE/. [high energy cosmic ray studies

    NASA Technical Reports Server (NTRS)

    Huggett, R. W.; Hunter, S. D.; Jones, W. V.; Takahashi, Y.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Parnell, T. A.

    1981-01-01

    The instrumentation and results of long duration balloon flights carried out jointly by U.S. and Japan researchers to examine high energy cosmic rays are reported. Basic detector geometries are 2.5 sq m sr with operation at altitudes with 3-4 g/sq cm pressure, with observations thus far of over 100 hr. Energies from 2-100 TeV are recorded for nucleus-nucleus and hadron-nucleus interactions, and searches are made for new particle or interactions. The detector is an emulsion chamber which comprises doubly-coated nuclear emulsions on 800 micron thick methacryl substrates, X-ray films, etchable detectors, low density spacers, and lead sheets. Segmentation of the instrument into a primary charge module, a target section, a spacer section, and a lead-emulsion calorimeter allows accurate charge measurement for primary nuclei, reliable energy resolution, and a large geometrical factor for collecting high energy events. A primary Ca nucleus of 300 TeV has been observed.

  20. Cosmic gamma-rays and cosmic nuclei above 1 TeV

    NASA Technical Reports Server (NTRS)

    Watson, A. A.

    1986-01-01

    Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.

  1. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    NASA Astrophysics Data System (ADS)

    Fowler, T. Kenneth; Li, Hui

    2016-10-01

    > eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Experiments and simulations are suggested to verify the acceleration process.

  2. Study of Small-Scale Anisotropy of Ultra-High-Energy Cosmic Rays Observed in Stereo by the High Resolution Fly's Eye Detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration

    2004-08-01

    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.

  3. The EUSO program: Imaging of ultra-high energy cosmic rays by high-speed UV-video from space

    NASA Astrophysics Data System (ADS)

    Fuglesang, Christer; JEM-EUSO Collaboration

    2017-11-01

    The Extreme-Energy Cosmic Rays (EECR), with energy above 5•1019 eV, are very interesting objects to study that can provide new information about our universe. At the same time EECRs are exceptionally challenging to study because they are so rare. To obtain a reasonably large statistical sample, the JEM-EUSO collaboration aims to place a telescope into space. Various technologies are being developed and studied to achieve this goal. Several pathfinders are used for validation and testing. In particular, during 2017 a long-duration super-pressure balloon flight will observe the first high energy cosmic rays from above using the fluorescence technique, and a small test unit, Mini-EUSO, will be sent to ISS to measure the UV-background from Earth night side. In addition, these missions will provide various scientific results.

  4. Energy spectrum of cosmic-ray electrons at TeV energies.

    PubMed

    Aharonian, F; Akhperjanian, A G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernlöhr, K; Boisson, C; Bochow, A; Borrel, V; Braun, I; Brion, E; Brucker, J; Brun, P; Brucker, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Fontaine, G; Füsling, M; Gabici, S; Gallant, Y A; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jung, I; Katarzyński, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Niemiec, J; Nolan, S J; Ohm, S; Olive, J F; de Oña Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tibolla, O; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-12-31

    The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  5. Exploring the Galactic Cosmic Rays at the lowest energies

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    The solar wind prevents the lowest-energy Galactic cosmic rays (GCR) from entering the Heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a handle on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  6. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  7. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.

  8. A new measurement of the flux of the light cosmic-ray nuclei at high energies

    NASA Technical Reports Server (NTRS)

    Buckley, J.; Dwyer, J.; Mueller, D.; Swordy, S.; Tang, K. K.

    1994-01-01

    A new cosmic-ray detector utilizing a ring-imaging Cerenkov counter to determine the energy of light cosmic-ray nuclei was flown on high-altitude balloon from Fort Sumner, NM, in 1991 September. We describe the design and performance of this instrument and discuss the data analysis procedures. The measurement provides a new determination of the absolute flux and differential energy spectrum of the primary cosmic-ray species helium between 40 and 320 GeV/nucleon. The experiment also yields the spectra of carbon and oxygen and some information on the intensities of the secondary nuclei Li, Be, and B. A comparison between our results and previous measurements of heavier nuclei (Z greater than or equal to 4) from HEAO 3 and Spacelab 2 indicates good consistency between these measurements. The data set is compared with the results of a leaky box propagation model. We find good agreement with this model if the abundance of helium relative to oxygen at the source is taken to be 25 +/- 6 and if the source spectrum is given by a power law in energy proportional to E(exp -2.15).

  9. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  10. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  11. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2015-02-01

    We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  12. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe

    2011-08-19

    protons. The second source discussed here is due to the annihilation of the diffuse Galactic {gamma}-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of supernova remnants. A possible solution to this problem may be that cosmic rays undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, cosmic ray-driven turbulence.« less

  13. Very-High-Energy Solar Gamma Rays From Cosmic-Ray Interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Bei; Ng, Kenny; Beacom, John; Peter, Annika; Rott, Cartsen

    2017-01-01

    Cosmic-ray induced gamma rays from the Sun has been observed up to 100 GeV. However, there are no theoretical predictions beyond 10 GeV. We provide the first calculation of the hadronic disk component in TeV-PeV, where solar magnetic fields can be ignored. We also consider the leptonic gamma-ray halo, taking into account electrons from local pulsars. With Fermi and soon HAWC & LHAASO observations, our results provide new insights on local cosmic rays, solar magnetic fields, and solar dark matter studies. BZ is supported by OSU Fowler Fellowship. KN and FB are supported by NSF Grant PHY-1404311. AK is supported by NSF GRFP Grant No. DGE-1321846. CR is supported by the Korea Neutrino Research Center. KN is also supported by the OSU Presidential Fellowship.

  14. Ultrahigh-energy cosmic rays: physics and astrophysics at extreme energies.

    PubMed

    Sigl, G

    2001-01-05

    The origin of cosmic rays is one of the major unresolved questions in astrophysics. In particular, the highest energy cosmic rays observed have macroscopic energies up to several 10(20) electron volts and thus provide a probe of physics and astrophysics at energies unattained in laboratory experiments. Theoretical explanations range from astrophysical acceleration of charged particles, to particle physics beyond the established standard model, and processes taking place at the earliest moments of our universe. Distinguishing between these scenarios requires detectors with effective areas in the 1000-square-kilometer range, which are now under construction or in the planning stage. Close connections with gamma-ray and neutrino astrophysics add to the interdisciplinary character of this field.

  15. Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Coelho, Jaziel G.; Malheiro, M.

    2017-06-01

    The origins of ultra-high-energy cosmic rays (E ≳ 1019 eV) are a mystery and still under debate in astroparticle physics. In recent years some efforts were made to understand their nature. In this contribution we consider the possibility of Some Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) beeing white dwarf pulsars, and show that these sources can achieve large electromagnetic potentials on their surface that accelerate particle almost at the speed of light, with energies E ~ 1020-21 eV. The sources SGRs/AXPs considered as highly magnetized white dwarfs are well described in the Hillas diagram, lying close to the AR Sorpii and AE Aquarii which are understood as white dwarf pulsars.

  16. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  17. Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Silk, Joseph

    2017-11-01

    Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.

  18. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  19. On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Reville, B.; Bell, A. R.

    2014-04-01

    The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

  20. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  1. Electron calibration of a high energy cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Silverberg, R. F.; Crannell, C. J.; Gearhart, R. A.; Hagen, F. A.; Jones, W. V.; Kurz, R. J.; Ormes, J. F.; Price, R. D.

    1972-01-01

    The spectrum of cosmic ray electrons above 10 GeV was studied extensively. The spectrum is predicted to steepen at an energy which is related to the lifetime of electrons in the interstellar medium against losses due to inverse Compton collisions with photons and to synchrotron radiation in galactic magnetic fields. The experimental results diverge widely; the lack of agreement between the various measurements is due to a variety of experimental problems.

  2. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  3. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  4. Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-12-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C.L. upper limit, which amounts to E2ϕνe+νμ+ντ=1.2×10-7GeVcm-2s-1sr-1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.

  5. Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions

    NASA Technical Reports Server (NTRS)

    Scully, Sean T.; Stecker, Floyd W.

    2010-01-01

    We have previously shown that a very small amount of Lorentz invariance violation (UV), which suppresses photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with cosmic background radiation (CBR) photons, can produce a spectrum of cosmic rays that is consistent with that currently observed by the Pierre Auger Observatory (PAO) and HiRes experiments. Here, we calculate the corresponding flux of high energy neutrinos generated by the propagation of UHECR protons through the CBR in the presence of UV. We find that UV produces a reduction in the flux of the highest energy neutrinos and a reduction in the energy of the peak of the neutrino energy flux spectrum, both depending on the strength of the UV. Thus, observations of the UHE neutrino spectrum provide a clear test for the existence and amount of UV at the highest energies. We further discuss the ability of current and future proposed detectors make such observations.

  6. Plasmoid Impacts on Neutron Stars and Highest Energy Cosmic Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Rosner, R.

    Particle acceleration by electrostatic polarization fields that arise in plasmas streaming across magnetic fields is discussed as a possible acceleration mechanism of highest energy ({approx}>10{sup 20} eV) cosmic rays. Specifically, plasmoids arising in planetoid impacts onto neutron star magnetospheres are considered. We find that such impacts at plausible rates may account for the observed flux and energy spectrum of the highest energy cosmic rays.

  7. Cosmic ray nuclei of energy 50 GeV/NUC

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Streitmatter, R. E.; Ormes, J. F.

    1985-01-01

    Preliminary results from the High Energy Gas Cerenkov Spectrometer indicate that the sub-iron to iron ratio increases beyond 100 GeV/nucleon. This surprising finding is examined in light of various models for the origin and propagation of galactic cosmic rays.

  8. The dawn of the particle astronomy era in ultra-high-energy cosmic rays.

    PubMed

    Bauleo, Pablo M; Martino, Julio Rodríguez

    2009-04-16

    Cosmic rays are charged particles arriving at the Earth from space. Those at the highest energies are particularly interesting because the physical processes that could create or accelerate them are at the limit of our present knowledge. They also open the window to particle astronomy, as the magnetic fields along their paths are not strong enough to deflect their trajectories much from a straight line. The Pierre Auger Observatory is the largest cosmic-ray detector on Earth, and as such is beginning to resolve past observational disagreements regarding the origin and propagation of these particles.

  9. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  10. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  11. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collica, Laura

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyondmore » the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.« less

  12. HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraija, N.; Gonzalez, M. M.; Perez, M.

    2012-07-01

    The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entiremore » spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.« less

  13. Implications of the experimental results on high energy cosmic rays with regard to their origin

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Linsley, J.

    1985-01-01

    It was shown in an earlier report that current cosmic ray evidence supports a change in the cosmic ray composition in the region between 10 to the 6th power and 10 to the 8th power GeV total energy in the direction of a smaller average value of A. Compared to normal celestial abundances, the heavy nuclei are much less abundant, and, in fact, the composition measurements above 10 to the 8th power GeV are consistent with there being only protons. Here, these results combined with those of the energy spectrum and anisotropy of the comsic rays and other astrophysical information will be examined to try to determine their implications for the origin of the cosmic rays. In this paper, consideration is given to the implications of one or more than one type of source in the galaxy to see which are consistent with the interpretation of current measurements. The nature of the source types that would be required are discussed.

  14. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale

    2017-12-22

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  15. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  16. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strengthmore » of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.« less

  17. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  18. Ultra-high-energy cosmic rays from radio galaxies

    NASA Astrophysics Data System (ADS)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  19. Exploring the Excluded Galactic Cosmic Rays--those at the Lowest Energies.

    NASA Astrophysics Data System (ADS)

    Shapiro, Maurice M.

    2001-04-01

    The solar wind prevents the lowest- energy Galactic cosmic rays (GCR) from entering the heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a ``handle" on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  20. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  1. High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications

    NASA Astrophysics Data System (ADS)

    Zhang, B. Theodore; Murase, Kohta; Oikonomou, Foteini; Li, Zhuo

    2017-09-01

    Tidal disruption events (TDEs) by supermassive or intermediate mass black holes have been suggested as candidate sources of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos. Motivated by the recent measurements from the Pierre Auger Observatory, which indicates a metal-rich cosmic-ray composition at ultrahigh energies, we investigate the fate of UHECR nuclei loaded in TDE jets. First, we consider the production and survival of UHECR nuclei at internal shocks, external forward and reverse shocks, and nonrelativistic winds. Based on the observations of Swift J 1644 +57 , we show that the UHECRs can survive for external reverse and forward shocks, and disk winds. On the other hand, UHECR nuclei are significantly disintegrated in internal shocks, although they could survive for low-luminosity TDE jets. Assuming that UHECR nuclei can survive, we consider implications of different composition models of TDEs. We find that the tidal disruption of main sequence stars or carbon-oxygen white dwarfs does not successfully reproduce UHECR observations, namely the observed composition or spectrum. The observed mean depth of the shower maximum and its deviation could be explained by oxygen-neon-magnesium white dwarfs, although they may be too rare to be the sources of UHECRs.

  2. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.; Pierre Auger Collaboration

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  3. Cosmic Ray Studies with IceCube

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.

  4. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  5. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  6. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  7. Constraining the redshift distribution of ultrahigh-energy-cosmic-ray sources by isotropic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix

    2017-01-01

    By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.

  8. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    PubMed

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  9. Fornax A, Centaurus A other radio galaxies as sources of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2018-06-01

    The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

  10. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  11. Cosmic ray strangelets

    NASA Astrophysics Data System (ADS)

    Madsen, Jes

    2005-06-01

    Searching for strangelets in cosmic rays may be the best way to test the possible stability of strange quark matter. I review calculations of the astrophysical strangelet flux in the GV TV rigidity range, which will be investigated from the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station, and discuss the merits of strangelets as ultra-high energy cosmic rays at EeV ZeV energies, beyond the Greisen Zatsepin Kuzmin cutoff. I also address some 'counter-arguments' sometimes raised against the possibility of stable strangelets. It will be argued that stability of strange quark matter remains a viable possibility, which must be tested by experiments.

  12. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  13. Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Roelof, E. C.; Smith, E. J.; Wood, D.; Ip, W. H.

    1985-01-01

    Two cosmic rays which pass through the same point going in opposite directions will, in the absence of scattering and inhomogeneities in the magnetic field, trace helices about adjacent flux tubes, whose centerlines are separated by one gyrodiameter. A directional anisotropy at the point suggests a difference in the number of cosmic rays loading the two flux tubes; that is, a density gradient over the baseline of a gyrodiameter. Previous studies at lower energies have shown that the cosmic ray density gradients vary in time and space. It is suggested that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. Anisotropic measurements made by Cerenkov detectors on Pioneers 10 and 11 were studied. It was found that local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU.

  14. Observed antiprotons and energy dependent confinement of cosmic rays: A conflict?

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    In the frame work of energy dependent confinement for cosmic rays, the energy spectrum inside the source is flatter than that observed. Antiproton observation suggests large amount of matter is being traversed by cosmic rays in some sources. As a result, secondary particles are produced in abundance. Their spectra was calculated and it is shown that the energy dependent confinement model is in conflict with some observations.

  15. Layered water Cherenkov detector for the study of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Letessier-Selvon, Antoine; Billoir, Pierre; Blanco, Miguel; Mariş, Ioana C.; Settimo, Mariangela

    2014-12-01

    We present a new design for the water Cherenkov detectors that are in use in various cosmic ray observatories. This novel design can provide a significant improvement in the independent measurement of the muonic and electromagnetic component of extensive air showers. From such multi-component data an event by event classification of the primary cosmic ray mass becomes possible. According to popular hadronic interaction models, such as EPOS-LHC or QGSJetII-04, the discriminating power between iron and hydrogen primaries reaches Fisher values of 2 or above for energies in excess of 1019 eV with a detector array layout similar to that of the Pierre Auger Observatory.

  16. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  17. Measurement of the energy of horizontal cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Gettert, Michael

    1993-03-01

    An experiment in which the energy of cosmic ray muons is determined by measuring the electron positron pairs that they radiate off when passing through matter is described. The detector is a stack of lead converters interspersed with ionization chambers for particle detection. The chambers use as active medium the liquid tetra methyl silane (TMS). The radiated quanta initiate electromagnetic cascades in the lead and are recognized due to the characteristic shower development. The energy spectrum of horizontal muons is presented and from this the primary cosmic ray spectrum is deduced.

  18. Cosmic-ray detectors on the Moon

    NASA Technical Reports Server (NTRS)

    Linsley, John

    1988-01-01

    The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.

  19. High-Energy Cosmic-Ray Antiprotons with the CAPRICE98 experiment

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchitti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration

    2001-08-01

    Observations of cosmic-ray antiprotons were performed by the balloon-borne experiment CAPRICE98 that was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. We report on the absolute-antiproton-energy spectrum determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV.

  20. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  1. Cosmic ray experimental observations

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Mcdonald, F. B.

    1974-01-01

    The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.

  2. Ultrahigh-energy Cosmic Rays from Fanaroff Riley class II radio galaxies

    NASA Astrophysics Data System (ADS)

    Rachen, Joerg; Biermann, Peter L.

    1992-08-01

    The hot spots of very powerful radio galaxies (Fanaroff Riley class II) are argued to be the sources of the ultrahigh energy component in Cosmic Rays. We present calculations of Cosmic Ray transport in an evolving universe, taking the losses against the microwave background properly into account. As input we use the models for the cosmological radio source evolution derived by radioastronomers (mainly Peacock 1985). The model we adopt for the acceleration in the radio hot spots has been introduced by Biermann and Strittmatter (1987), and Meisenheimer et al. (1989) and is based on first order Fermi theory of particle acceleration at shocks (see, e.g., Drury 1983). As an unknown the actual proportion of energy density in protons enters, which together with structural uncertainties in the hot spots should introduce no more than one order of magnitude in uncertainty: We easily reproduce the observed spectra of high energy cosmic rays. It follows that scattering of charged energetic particles in intergalactic space must be sufficiently small in order to obtain contributions from sources as far away as even the nearest Fanaroff Riley class II radio galaxies. This implies a strong constraint on the turbulent magnetic field in intergalactic space.

  3. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    NASA Astrophysics Data System (ADS)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  4. JUPITER AS A GIANT COSMIC RAY DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, P. B.; Stark, C. R.; Helling, Ch., E-mail: pr33@st-andrews.ac.uk

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmicmore » ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.« less

  5. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  6. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  7. Cosmic ray topography

    NASA Astrophysics Data System (ADS)

    Bressler, Matthew; Goodwin, Lydia; Kryemadhi, Abaz

    2017-11-01

    Cosmic ray muons are produced when high energy particles interact with nuclei in Earth's atmosphere. Muons make up the majority of charged particles that reach sea level and are the only particles (apart from neutrinos) that can penetrate to significant depths underground. The muon flux underground decreases approximately exponentially as a function of depth. We use a cosmic ray detector developed by the QuarkNet Program at Fermi National Laboratory to map the topography of the mountain above an abandoned Pennsylvania Turnpike tunnel by analyzing muon flux at different rock overburdens. Cosmic ray muons have been used in this capacity before to search for hidden chambers in pyramids and for mapping volcanoes. This study provides a unique field experience to learn about particle physics and particle detectors, which could be of interest to students and teachers in physics.

  8. Ultra High Energy Neutrinos and Cosmic Rays: a “Vision” for the next decade

    NASA Astrophysics Data System (ADS)

    Santangelo, A.

    2007-04-01

    Ultra High Energy Neutrinos, with energies from a few 1018 eV to beyond the decade of 1020 eV, and Cosmic Rays with E≥5×10 eV appear to be the only suitable messengers to explore the Universe at frontier energies, where radiation is expected to be produced under the most extreme physical conditions. Observations of these UHE particles will certainly provide new information on the sources and on the physical mechanisms able to accelerate these extreme messengers to macroscopic energies. Moreover, they might, also, provide evidence of yet unknown physics or of exotic particles, relics of the early Universe. To reach these goals, innovative experiments with larger effective aperture (A≥10 kmsr) and good understanding of systematic uncertainties (less than ˜ 10%) must be developed. The ground-based Pierre Auger Observatory, whose southern site is expected to be completed in Malargue, Argentina by the end of 2006, will surely provide, in the near future, a more solid observational scenario (Flux, Spectral shape, Composition) for UHE Cosmic Rays (UHECR). However, only space-based observatories can reach the effective area necessary to systematically explore the UHE Universe. In the present paper 1.) we present the Science Rationale behind UHE studies; 2.) we review the status of current experimental efforts, with main emphasis on the actual generation of space-based observatories; 3.) we briefly discuss the science goals, requirements, and R&D of a “next-generation” space-based mission for UHE observations. To develop such a challenging and innovative observatory for UHE particles, the ESA “Cosmic Vision 2015-2025” long term plan provides certainly an unique opportunity.

  9. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  10. Ultrahigh energy cosmic ray nuclei from remnants of dead quasars

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto J.; Colon, Rafael A.; Guerra, Juan J.; O'Dowd, Matthew J.; Anchordoqui, Luis A.

    2017-03-01

    We re-examine the possibility of ultrahigh energy cosmic rays being accelerated in nearby dormant quasars. We particularize our study to heavy nuclei to accommodate the spectrum and nuclear composition recently reported by the Pierre Auger Collaboration. Particle acceleration is driven by the Blandford-Znajek mechanism, which wires the dormant spinning black holes as Faraday unipolar dynamos. We demonstrate that energy losses are dominated by photonuclear interactions on the ambient photon fields. We argue that the local dark fossils of the past quasar activity can be classified on the basis of how source parameters (mass of the central engine and photon background surrounding the accelerator) impact the photonuclear interaction. In this classification it is possible to distinguish two unequivocal type of sources: those in which nuclei are completely photodisintegrated before escaping the acceleration region and those in which photopion production is the major energy damping mechanism. We further argue that the secondary nucleons from the photodisintegrated nuclei (which have a steep spectral index at injection) can populate the energy region below ;the ankle; feature in the cosmic ray spectrum, whereas heavy and medium mass nuclei (with a harder spectral index) populate the energy region beyond ;the ankle;, all the way to the high energy end of the spectrum. In addition, we show that five potential quasar remnants from our cosmic backyard correlate with the hot-spot observed by the Telescope Array.

  11. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2016-06-14

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy density is determined from the radio pulses at each observer position and is interpolated using a two dimensional functionmore » that takes into account signal asymmetries due to interference between the geomagnetic and charge excess emission components. We found that the spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy – corrected for geometrical effects – is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. Finally we find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.« less

  12. All-Particle Cosmic Ray Energy Spectrum Measured with 26 Icetop Stations

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; hide

    2013-01-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, thesurface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysiswere taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 square kilometers.The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenithangle ranges between 0 and 46. Because of the isotropy of cosmic rays in this energy range the spectrafrom all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under differentassumptions on the primary mass composition. Good agreement of spectra in the three zenithangle ranges was found for the assumption of pure proton and a simple two-component model. Forzenith angles theta less than 30 deg., where the mass dependence is smallest, the knee in the cosmic ray energy spectrumwas observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indicationof a flattening of the spectrum above 22 PeV was observed.

  13. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.; Bredekamp, J. H.

    1975-01-01

    Results of detailed Monte Carlo calculations of the interaction histories of ultrahigh energy cosmic-ray nuclei with intergalactic radiation fields are presented. Estimates of these fields and empirical determinations of photonuclear cross sections are used, including multinuclear disintegrations for nuclei up to 56Fe. Intergalactic and galactic energy loss rates and nucleon loss rates for nuclei up to 56Fe are also given. Astrophysical implications are discussed in terms of expected features in the cosmic-ray spectrum between quintillion and sextillion eV for the universal and supercluster origin hypotheses. The results of these calculations indicate that ultrahigh energy cosmic rays cannot be universal in origin regardless of whether they are protons or nuclei. Both the supercluster and galactic origin hypotheses, however, are possible regardless of nuclear composition.

  14. The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station

    NASA Astrophysics Data System (ADS)

    Zhang, S. N.; Adriani, O.; Albergo, S.; Ambrosi, G.; An, Q.; Bao, T. W.; Battiston, R.; Bi, X. J.; Cao, Z.; Chai, J. Y.; Chang, J.; Chen, G. M.; Chen, Y.; Cui, X. H.; Dai, Z. G.; D'Alessandro, R.; Dong, Y. W.; Fan, Y. Z.; Feng, C. Q.; Feng, H.; Feng, Z. Y.; Gao, X. H.; Gargano, F.; Giglietto, N.; Gou, Q. B.; Guo, Y. Q.; Hu, B. L.; Hu, H. B.; He, H. H.; Huang, G. S.; Huang, J.; Huang, Y. F.; Li, H.; Li, L.; Li, Y. G.; Li, Z.; Liang, E. W.; Liu, H.; Liu, J. B.; Liu, J. T.; Liu, S. B.; Liu, S. M.; Liu, X.; Lu, J. G.; Mazziotta, M. N.; Mori, N.; Orsi, S.; Pearce, M.; Pohl, M.; Quan, Z.; Ryde, F.; Shi, H. L.; Spillantini, P.; Su, M.; Sun, J. C.; Sun, X. L.; Tang, Z. C.; Walter, R.; Wang, J. C.; Wang, J. M.; Wang, L.; Wang, R. J.; Wang, X. L.; Wang, X. Y.; Wang, Z. G.; Wei, D. M.; Wu, B. B.; Wu, J.; Wu, X.; Wu, X. F.; Xia, J. Q.; Xiao, H. L.; Xu, H. H.; Xu, M.; Xu, Z. Z.; Yan, H. R.; Yin, P. F.; Yu, Y. W.; Yuan, Q.; Zha, M.; Zhang, L.; Zhang, L.; Zhang, L. Y.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. L.; Zhao, Z. G.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.

  15. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.; Bredekamp, J. H.

    1976-01-01

    Results are presented for detailed Monte Carlo calculations of the interaction histories of ultrahigh-energy cosmic-ray nuclei with intergalactic radiation fields, using improved estimates of these fields and empirical determinations of photonuclear cross sections, including multinuclear disintegrations for nuclei up to Fe-56. Intergalactic and galactic energy-loss rates and nucleon-loss rates for nuclei up to Fe-56 are also given. Astrophysical implications are discussed in terms of expected features in the cosmic-ray spectrum between 10 to the 18th and 10 to the 21st power eV for the universal and supercluster origin hypotheses. The results of these calculations indicate that ultrahigh-energy cosmic rays cannot be universal in origin regardless of whether they are protons or nuclei. Both the supercluster and galactic origin hypotheses, however, are possible regardless of nuclear composition.

  16. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  17. Cosmic ray propagation in the local superbubble

    NASA Technical Reports Server (NTRS)

    Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.

    1984-01-01

    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.

  18. CaloCube: An isotropic spaceborne calorimeter for high-energy cosmic rays. Optimization of the detector performance for protons and nuclei

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Daddi, N.; D'Alessandro, R.; Detti, S.; Finetti, N.; Italiano, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Mori, N.; Orzan, G.; Olmi, M.; Pacini, L.; Papini, P.; Pellegriti, M. G.; Rappoldi, A.; Ricciarini, S.; Sciuto, A.; Spillantini, P.; Starodubtsev, O.; Stolzi, F.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifiro', A.; Trimarchi, M.; Vannuccini, E.; Zampa, G.; Zampa, N.

    2017-11-01

    The direct detection of high-energy cosmic rays up to the PeV region is one of the major challenges for the next generation of space-borne cosmic-ray detectors. The physics performance will be primarily determined by their geometrical acceptance and energy resolution. CaloCube is a homogeneous calorimeter whose geometry allows an almost isotropic response, so as to detect particles arriving from every direction in space, thus maximizing the acceptance. A comparative study of different scintillating materials and mechanical structures has been performed by means of Monte Carlo simulation. The scintillation-Cherenkov dual read-out technique has been also considered and its benefit evaluated.

  19. The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station

    NASA Astrophysics Data System (ADS)

    Wu, Bobing

    2015-08-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs)from five sides except the bottom. CALO is made of about 10^4 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; 2) electron/proton separation power better than 10^5 ; effective geometrical factors of > 3 m^2 sr for electron and diffuse gamma-rays, > 2 m^2 sr for cosmic ray nuclei. The prototype of about 1/40 of HERD calorimeter is under construction. A beam test in CERN with the prototype is approved and will be carried out in Nov. 2015.

  20. The microphysics and macrophysics of cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less

  1. LORD Space Experiment for Investigation of Ultrahigh Energy Cosmic-ray Particles

    NASA Astrophysics Data System (ADS)

    Ryabov, V. A.; Gusev, G. A.; Chechin, V. A.

    2013-02-01

    The problem of detecting cosmic rays and neutrinos of energies above the GZK cutoff is reviewed. Nowadays, it becomes clear that registration of nature's most energetic particles requires approaches based on new principles. First of all, we imply the detection of the coherent Cherenkov radio emission in cascades of ultrahigh-energy particles in radio-transparent natural dense media, i.e., ice shields of Antarctica, mineral salt, and lunar regolith. The Luna-Glob space mission planned for launching in the near future involves the Lunar Orbital Radio Detector (LORD) whose aperture for cosmic rays and neutrinos of energies E >= 1020 eV exceeds all existing ground-based arrays. The feasibility of LORD to detect radio signals from showers initiated by ultrahigh-energy particles interacting with the lunar regolith is examined. The design of the LORD space instrument and its scientific potentialities for registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 1025 eV is discussed.

  2. Signatures of cosmic-ray interactions on the solar surface

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  3. Anisotropy in the Arrival Directions of Ultrahigh-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Villaseñor, Luis

    2017-06-01

    In this article we illustrate, in an interactive way, the analysis and visualization of anisotropy properties in the arrival directions of ultrahigh-energy cosmic rays detected by the Telescope Array and the Pierre Auger experiments by using data released by both collaborations. We describe the use of several programs that we have written in Python and Julia languages for this purpose. We also discuss the potential sources and analyse the effect of correcting the arrival directions to take into account the deflections of the cosmic rays by the magnetic field of our galaxy for one specific model of the galactic magnetic field under several assumptions about the composition of the primary cosmic rays.

  4. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  5. A new population of very high energy gamma-ray sources in the Milky Way.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-03-25

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

  6. Cosmic Rays in Intermittent Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less

  7. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  8. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  9. All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2013-04-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.

  10. Energy spectra of cosmic gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Klebesadel, R. W.; Strong, I. B.

    1973-01-01

    Spectral measurements of six cosmic gamma-ray bursts in the energy region of 0.1 to 1.2 MeV, made using a semi-omnidirectional X-ray detector on IMP-6 are reported. These measurements confirm the hard X-ray or gamma-ray nature of the bursts, as inferred from the original observations by Klebesadel et al., (1973), and show that their maximum energy release is in this several hundred keV region. Each burst consists of several 1 or 2-second pulses each with the characteristic spectrum of approximately 150-keV exponential, followed by a softer decay. There is no evidence of line structure in this energy region, or for a marked change in the energy spectrum within a given pulse. Event size spectra are estimated for galactic and extragalactic models; the total emission is consistent with present measurements of the diffuse background, and unlikely to account for any spectral feature in the few-MeV region.

  11. Design And Development Of An Autonomous Radar Receiver For The Detection Of Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kunwar, Samridha

    The detection of ultra-high energy cosmic rays is constrained by their flux, requiring detectors with apertures of hundreds or even thousands of square kilometers and close to one hundred percent duty cycle. The sheer scale that would be required of conventional detectors, to acquire sufficient statistics for energy, composition or anisotropy studies, means that new techniques that reduce manpower and financial resources are continually being sought. In this dissertation, the development of a remote sensing technique based observatory known as bistatic radar, which aims to achieve extensive coverage of the Earth's surface, cf. Telescope Array's 700 km2 surface detector, is discussed. Construction of the radar projects transmitter station was completed in the summer of 2013, and remote receiver stations were deployed in June and November of 2014. These stations accomplish radar echo detection using an analog signal chain. Subject to less radio interference, the remote stations add stereoscopic measurement capabilities that theoretically allow unique determination of cosmic ray geometry and core location. An FPGA is used as a distributed data processing node within the project. The FPGA provides triggering logic for data sampled at 200 MSa/s, detecting Cosmic Ray shower echoes chirping at -1 to -10 Megahertz/microsecond (depending on the geometry) for several microseconds. The data acquisition system with low power consumption at a cost that is also comparatively inexpensive is described herein.

  12. The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular mode

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Myers, I.; Minamino, M.; Miyata, K.; Murano, Y.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Sonley, T. J.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2013-08-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector [T. Abu-Zayyad et al., The energy spectrum of Telescope Array's middle drum detector and the direct comparison to the high resolution fly's eye experiment, Astroparticle Physics 39 (2012) 109-119, http://dx.doi.org/10.1016/j.astropartphys.2012.05.012, Available from: ]. This combined spectrum corroborates the recently published Telescope Array surface detector spectrum [T. Abu-Zayyad, et al., The cosmic-ray energy spectrum observed with the surface detector of the Telescope Array experiment, ApJ 768 (2013) L1, http://dx.doi.org/10.1088/2041-8205/768/1/L1, Available from: ] with independent systematic uncertainties.

  13. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energymore » resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.« less

  14. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-12-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.

  15. Cosmic Ray Flux Measurement with AMANDA-II

    NASA Astrophysics Data System (ADS)

    Chirkin, Dmitry A.; AMANDA Collaboration

    2003-07-01

    AMANDA-I I is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-rayand neutrino-induced muons. The ma jority of events recorded by AMANDA-I I are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. A method is developed that results in a flux measurement of cosmic rays with energies 1.5-200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-I I have energies in this range) indep endent of ice model and optical module sensitivities. Predictions of six commonly-used high-energy interaction models QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SYBILL are compared to data. Best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS (preliminary: Φ0,H = 0.106 ± 0.007 m-2 s-1 sr-1 TeV-1 , γH = 2.70 ± 0.02).

  16. An algorithm to resolve γ-rays from charged cosmic rays with DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zun-Lei; Duan, Kai-Kai; Shen, Zhao-Qiang; Lei, Shi-Jun; Dong, Tie-Kuang; Gargano, Fabio; Garrappa, Simone; Guo, Dong-Ya; Jiang, Wei; Li, Xiang; Liang, Yun-Feng; Mazziotta, Mario Nicola; Munoz Salinas, Maria Fernanda; Su, Meng; Vagelli, Valerio; Yuan, Qiang; Yue, Chuan; Zang, Jing-Jing; Zhang, Ya-Peng; Zhang, Yun-Long; Zimmer, Stephan

    2018-03-01

    The DArk Matter Particle Explorer (DAMPE), also known as Wukong in China, which was launched on 2015 December 17, is a new high energy cosmic ray and γ-ray satellite-borne observatory. One of the main scientific goals of DAMPE is to observe GeV-TeV high energy γ-rays with accurate energy, angular and time resolution, to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays, it is challenging to identify γ-rays with sufficiently high efficiency, minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations, using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at ∼ 10GeV amounts to less than 1% of the selected sample. Finally, we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.

  17. Estimative of conversion fractions of AGN magnetic luminosity to produce ultra high energy cosmic rays from the observation of Fermi-LAT gamma rays

    NASA Astrophysics Data System (ADS)

    Coimbra-Araújo, Carlos H.; Anjos, Rita C.

    2017-01-01

    A fraction of the magnetic luminosity (LB) produced by Kerr black holes in some active galactic nuclei (AGNs) can produce the necessary energy to accelerate ultra high energy cosmic rays (UHECRs) beyond the GZK limit, observed, e.g., by the Pierre Auger experiment. Nevertheless, the direct detection of those UHECRs has a lack of information about the direction of the source from where those cosmic rays are coming, since charged particles are deflected by the intergalactic magnetic field. This problem arises the needing of alternative methods to evaluate the luminosity of UHECRs (LCR) from a given source. Methods proposed in literature range from the observation of upper limits in gamma rays to the observation of upper limits in neutrinos produced by cascade effects during the propagation of UHECRs. In this aspect, the present work proposes a method to calculate limits of the main possible conversion fractions ηCR = LCR/LB for nine UHECR AGN Seyfert sources based on the respective observation of gamma ray upper limits from Fermi-LAT data.

  18. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Miller, M. Coleman; Kotera, Kumiko

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expectedmore » to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ∼10{sup −6} Mpc{sup −3}. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a ∼>5σ detection of UHE neutrino sources with a uniform density, n {sub s} {sub ∼}10{sup −7}−10{sup −5} Mpc{sup −3}, at least ∼100−1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.« less

  19. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  20. Determination and study of the cosmic-ray composition above 100 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, G.; Haines, T.J.; Hoffman, C.M.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeVmore » (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.« less

  1. Cosmic-ray anisotropy studies with IceCube

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  2. CENTAURUS A: THE EXTRAGALACTIC SOURCE OF COSMIC RAYS WITH ENERGIES ABOVE THE KNEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biermann, Peter L.; De Souza, Vitor, E-mail: plbiermann@mpifr-bonn.mpg.de, E-mail: vitor@ifsc.usp.br

    2012-02-10

    The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10{sup 15} to 3 Multiplication-Sign 10{sup 20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data aremore » available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 Multiplication-Sign 10{sup 19} eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.« less

  3. Numerical Simulation of the Anomalous Transport of High-Energy Cosmic Rays in Galactic Superbubble

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Price, E. M.; MeWaldt, R. A.

    2013-01-01

    A continuous-time random-walk (CTRW) model to simulate the transport and acceleration of high-energy cosmic rays in galactic superbubbles has recently been put forward (Barghouty & Schnee 2102). The new model has been developed to simulate and highlight signatures of anomalous transport on particles' evolution and their spectra in a multi-shock, collective acceleration context. The superbubble is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. This work concentrates on the effects of the bubble's assumed astrophysical characteristics (cf. geometry and roughness) on the particles' spectra.

  4. Detection of Ultrahigh-Energy Cosmic Rays with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Krause, Raphael; Pierre Auger Collaboration

    2017-02-01

    Ultrahigh-energy cosmic rays interact with the Earth's atmosphere and produce great numbers of secondary particles forming an extensive air shower. These air showers emit radiation in the radio frequency range which delivers important information about the processes of radio emission in extensive air showers and properties of the primary cosmic rays, e.g. arrival direction, energy and mass with a duty cycle close to 100%. The radio extension of the world's largest cosmic-ray experiment, the Pierre Auger Observatory, is called the Auger Engineering Radio Array (AERA). In addition to the particle and fluorescence detectors of the Pierre Auger Observatory, AERA investigates the electromagnetic component of extensive air showers using 153 autonomous radio stations on an area of 17km2 .

  5. Direct observations of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Müller, Dietrich

    2012-08-01

    The mysterious " radiation ... entering our atmosphere from above" discovered by Hess in 1912 is now known to be dominated by relativistic charged particles, mostly with energies in the GeV-range, but extending to energies higher by many orders of magnitude. As none of these particles can penetrate the earth's atmosphere without interaction, detailed studies of their composition and energy spectra require observations with high-altitude balloons or spacecraft. This became possible only towards the middle of the 20th century. The direct measurements have now revealed much detail about the Galactic cosmic rays below 1015eV, but do not yet provide much overlap with the air-shower region of energies. A historic overview of the measurements is given, beginning with the realization that the majority of the cosmic rays are protons. The discovery and astrophysical significance of the heavier nuclei, and of the ultra-heavy nuclei beyond iron and up to the actinides, are then described, and measurements of the isotopic composition are discussed. Observations of the individual energy spectra are reviewed, and finally, the detection of electrons, positrons, and anti-protons in the cosmic rays, and the searches for exotic or unusual phenomena are summarized. Emphasis is given to the fact that all of these discoveries have become possible through the evolution of increasingly sophisticated detection techniques, a process that is continuing through the present time. The precise knowledge of the abundance distributions of the elements in the cosmic rays and of their isotopic composition permits a comparison with the "universal abundance scale" and provides strong constraints on the origin of the cosmic-ray material in the interstellar medium. "Clock-isotopes" reveal the time history of the particles. The shapes of the energy spectra of the individual cosmic-ray components are related to evolving ideas about particle acceleration and propagation in the Galaxy. In conclusion

  6. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  7. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  8. Crest - A Balloon-borne Instrument To Measure Cosmic-ray Electrons Above TeV Energies.

    NASA Astrophysics Data System (ADS)

    Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N.; Tarlé, G.; Wakely, S.; Yagi, A.

    2009-01-01

    The observation of high energy (E > 1 TeV) electrons in the cosmic radiation provides important information on the distribution and energetics of local cosmic-ray sources. Galactic cosmic-ray electrons are thought to be shock accelerated in supernova remnants as evident from observations of non-thermal X-rays and TeV gamma rays. Their locally observed energy spectrum above 1 TeV is expected to reflect the distribution and abundance of nearby acceleration sites. However, the rates at these energies are low and the direct detection would require unfeasibly large balloons or satellite born detectors. CREST, a balloon-borne detector array of 1024 BaF2 crystals, overcomes this hurdle: it will measure the intensity and spectrum of multi-TeV electrons by detecting synchrotron photons emitted from electrons passing through the earth's magnetic field. Thus CREST's acceptance is several times its geometric area providing sensitivity up to about 50 TeV. Following an engineering flight in spring of 2009, CREST will be flown in a circumpolar orbit on an upcoming Antarctic long-duration balloon flight. This work is supported by NASA and CSBF.

  9. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  10. Cosmic ray modulation by high-speed solar wind fluxes

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.

    1985-01-01

    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.

  11. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  12. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Aranda, V M; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; Almeida, R M de; Domenico, M De; Jong, S J de; Neto, J R T de Mello; Mitri, I De; Oliveira, J de; Souza, V de; Peral, L Del; Deligny, O; Dembinski, H; Dhital, N; Giulio, C Di; Matteo, A Di; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fujii, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; Oliveira, M A Leigui de; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Melissas, M; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Carvalho, W Rodrigues de; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, D; Schröder, F G; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Kowski, A Śmiał; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Aar, G van; Bodegom, P van; Berg, A M van den; Velzen, S van; Vliet, A van; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Zuccarello, F

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.

  13. Cosmic Rays - A Word-Wide Student Laboratory

    NASA Astrophysics Data System (ADS)

    Adams, Mark

    2017-01-01

    The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.

  14. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  15. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülβ, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-04-01

    Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  16. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Astrophysics Data System (ADS)

    Lukasiak, A.; Ferrando, P.; McDonald, F. B.; Webber, W. R.

    1994-03-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and a cosmic-ray lifetime for escape of 27 (+19, -9) x 106 years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  17. Cosmic ray composition and energy spectrum from 1-30 PeV using the 40-string configuration of IceTop and IceCube

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Silva, A. H. Cruz; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; de los Heros, C. Pérez; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Saba, S. M.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van Eijndhoven, N.; van der Drift, D.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.

    2013-02-01

    The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ˜1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.

  18. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T. Kenneth; Li, Hui

    In recent papers, we show how accretion disks around massive black holes could act as dynamos producing magnetic jets similar to the jets that create spheromaks in the laboratory. In this paper, we discuss how these magnetic astrophysical jets might naturally produce runaway ion beams accelerated tomore » $$10^{20}$$ eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Finally, experiments and simulations are suggested to verify the acceleration process.« less

  19. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    DOE PAGES

    Fowler, T. Kenneth; Li, Hui

    2016-10-10

    In recent papers, we show how accretion disks around massive black holes could act as dynamos producing magnetic jets similar to the jets that create spheromaks in the laboratory. In this paper, we discuss how these magnetic astrophysical jets might naturally produce runaway ion beams accelerated tomore » $$10^{20}$$ eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Finally, experiments and simulations are suggested to verify the acceleration process.« less

  20. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Models of Pulsars

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    This viewgraph presentation describes, in detail, the Fermi Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). Observations made from the June 11, 2008 launch and a discussion of observations made of high energy cosmic ray electrons is also presented.

  1. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  2. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-02-09

    The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

  3. Calculations of cosmic-ray helium transport in shielding materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1993-01-01

    The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.

  4. Power-law partition and entropy production of high-energy cosmic rays: Knee-ankle structure of the all-particle spectrum

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-10-01

    A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.

  5. High energy cosmic ray iron spectrum experiment

    NASA Technical Reports Server (NTRS)

    Arens, J. F.; Balasubrahmanyan, V. K.; Ormes, J. F.; Schmidt, W. K. H.; Simon, M.; Spiegelhauer, H.

    1978-01-01

    An instrument containing a gas Cerenkov counter and an iron ionization spectrometer was constructed in order to measure the cosmic-ray iron spectrum to 300 GeV/nucleon. Trajectories of particles were determined by entopistic or position-determining scintillator systems. The geometric factors with and without the gas Cerenkov counter were 0.3 and 0.6 sq m-ster, respectively. The instrument was successfully flown in June 1976 without the spectrometer and in October 1976 with the spectrometer from Palestine, Texas. The June flight yielded 14.5 h of data; the October flight, 25 h.

  6. On the origin of ultra high energy cosmic rays: subluminal and superluminal relativistic shocks

    NASA Astrophysics Data System (ADS)

    Meli, A.; Becker, J. K.; Quenby, J. J.

    2008-12-01

    Aims: The flux of ultra high energy cosmic rays (UHECRs) at E > 1018.5 eV is believed to arise in plasma shock environments in extragalactic sources. In this paper, we present a systematic study of cosmic ray (CR) particle acceleration by relativistic shocks, in particular concerning the dependence on bulk Lorentz factor and the angle between the magnetic field and the shock flow. The contribution to the observed diffuse CR spectrum provided by the accelerated particles is discussed. Methods: For the first time, Monte Carlo simulations for super- and subluminal shocks are extended to boost factors up to Γ = 1000 and systematically compared. The source spectra derived are translated into the expected diffuse proton flux from astrophysical sources by folding the spectra with the spatial distribution of active galactic nuclei (AGN) and gamma ray bursts (GRBs). Results of these predictions are compared with UHECR data. Results: While superluminal shocks are shown to be inefficient at providing acceleration to the highest energies (E > 1018.5 eV), subluminal shocks may provide particles up to 1021 eV, limited only by the Hillas-criterion. In the subluminal case, we find that mildly-relativistic shocks, thought to occur in jets of AGN (Γ ~ 10-30), yield energy spectra of dN/dE ~ E-2. Highly relativistic shocks expected in GRBs (100 < Γ < 1000), on the other hand, produce spectra as flat as ~ E-1.0 above 109.5 GeV. The model results are compared with the measured flux of CRs at the highest energies and it is shown that, while AGN spectra provide an excellent fit, GRB spectra are too flat to explain the observed flux. The first evidence of a correlation between the CR flux above 5.7 × 1010 GeV and the distribution of AGN provided by Auger are explained by our model. Although GRBs are excluded as the principle origin of UHECRs, neutrino production is expected in these sources either in mildly or highly relativistic shocks. In particular, superluminal shocks in GRBs may

  7. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2015-06-20

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10 19 eV by analyzing cosmic rays with energies above E ≥ 5×10 18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis.more » As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less

  8. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    NASA Astrophysics Data System (ADS)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  9. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  10. Observation of the large scale cosmic-ray anisotropy at TeV energies with the Milagro detector

    NASA Astrophysics Data System (ADS)

    Kolterman, Brian E.

    Cosmic-rays with energies in the range of 1-100 TeV are nearly isotropic in their arrival directions due to interactions with randomly scattered inhomogeneities in the Galactic magnetic field. Observation of the large scale anisotropy in the arrival direction of these cosmic-rays is therefore a useful tool in constraining theoretical models of cosmic-ray propagation, probing the magnetic field structure in our interstellar neighborhood, as well as providing information about the distribution of sources. In this work results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. A two- dimensional display of the anisotropy projections in right ascension is generated by the fitting of three harmonics to 18 separate declination bands. Milagro is a water Cherenkov detector located at an elevation of 2630m in the Jemez mountains outside of Los Alamos, NM. With a live time > 90 and a large field-of-view (~2 sr), Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. A sidereal anisotropy is observed with a magnitude around 0.1% for cosmic-rays with a median energy of 6 TeV. The dominant feature in this data set is a deficit region of depth (-2.85±0.06 stat. ±0.08 syst.)×10 -3 in the direction of the Galactic North Pole with a range in declination of - 10 to 45 degrees and 150 to 225 degrees in right ascension. The anisotropy also shows evidence of a time dependence, with a steady increase in the magnitude of the signal in this region over the course of seven years. An analysis of the energy dependence of the anisotropy in this region is also presented showing possible deviation of the spectral index of the anisotropy signal from that of the nominal cosmic-ray background. The anisotropy of cosmic-rays in universal time is analyzed showing a dipole structure at

  11. Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kichigin, Gennadiy

    2015-03-01

    The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).

  12. Anisotropy of low-energy Galactic cosmic rays in the outer heliosheath

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Pogorelov, N.

    2017-12-01

    Since Voyager 1 crossed the heliopause into the local interstellar medium in August 2012, it has been observing nearly unmodulated low-energy Galactic cosmic rays for over 5 years and 18 AU beyond the heliopause. The angular distribution of these cosmic rays is not isotropic, showing a slight depletion at 90-degree pitch-angle to the magnetic field lines. The anisotropy was interrupted episodically by solar disturbances transmitting through the heliopause into the local interstellar medium of outer heliosheath. These observations indicate the heliosphere still affects cosmic rays in the local interstellar medium. The paper presents a theoretical analysis of the particle transport mechanisms responsible for the observed anisotropy. In order to explain the phenomenon, we argue that cosmic rays of near 90-degree pitch angles do not a quick access to the interstellar cosmic-ray source and in the meantime, they experience some loss in the outer heliosheath. Magnetic field barriers on the both sides of the observer may reduce the access to cosmic ray source, but it still requires that pitch scattering of these particles is very weak in the magnetic field of the outer heliosheath. A possible particle loss mechanism is diffusion into the heliospheric magnetic field where they get modulated by the solar wind plasma. Our model simulation will put constraints on the rates of particle scattering and cross-field diffusion in the interstellar magnetic field of the outer heliosheath.

  13. Energy spectra of cosmic-ray nuclei from 50 to 2000 GeV per amu

    NASA Technical Reports Server (NTRS)

    Grunsfeld, John M.; L'Heureux, Jacques; Meyer, Peter; Muller, Dietrich; Swordy, Simon P.

    1988-01-01

    A direct measurement of the elemental composition of cosmic rays up to energies of several TeV/amu was performed during the Spacelab 2 flight of the Space Shuttle. Results on the spectral shape for the elements C, O, Ne, Mg, Si, and Fe, obtained from this experiment, are presented. It was found that the C and O energy spectra retain a power-law spectrum in energy with an exponent Gamma of about 2.65. The Fe spectrum is flatter (Gamma of about 2.55) up to a particle energy of about 10 to the 14th eV, indicating a steady increase in the relative abundance of iron in cosmic rays up to this energy. The energy spectra of Ne, Mg, and Si are steeper than anticipated. This behavior is unexpected within current models of cosmic-ray acceleration.

  14. Observation of ultra high energy cosmic rays from space: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Casolino, M.; Klimov, P.; Piotrowski, L.

    2017-12-01

    The study of ultra high energy cosmic rays (UHECRs) offers unique possibilities to probe the energies currently inaccessible by man-made accelerators. Recent years have shed light on several characteristics of these particles, but—due to their extremely low flux—their origin, nature, and acceleration mechanisms are still unclear. Space-based observations have the potential for an increase in statistics, up to several orders of magnitude, and would be able to cover the whole sky, allowing for a direct comparison of spectra and direction of arrival. A detector with the exposure of a few times that of the Pierre Auger Observatory would be able to clarify the observed differences between the northern and southern skies, confirm the existence of TA hot spot, and measure multipolar anisotropies with high precision. A number of novel technologies—from optics to sensors, front-end and read-out electronics—have been developed over the years to achieve this goal. In this paper we describe the progress and results obtained so far and discuss the perspectives of UHECR physics observation from space.

  15. Do cosmic ray air showers initiate lightning?: A statistical analysis of cosmic ray air showers and lightning mapping array data

    NASA Astrophysics Data System (ADS)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-08-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.

  16. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chechenin, N. G., E-mail: chechenin@sinp.msu.ru; Chuvilskaya, T. V.; Shirokova, A. A.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failuresmore » of space-vehicle electronics.« less

  17. The TUS Detector of Extreme Energy Cosmic Rays on Board the Lomonosov Satellite

    NASA Astrophysics Data System (ADS)

    Klimov, P. A.; Panasyuk, M. I.; Khrenov, B. A.; Garipov, G. K.; Kalmykov, N. N.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Yashin, I. V.; Zotov, M. Y.; Biktemerova, S. V.; Grinyuk, A. A.; Grebenyuk, V. M.; Lavrova, M. V.; Tkachev, L. G.; Tkachenko, A. V.; Park, I. H.; Lee, J.; Jeong, S.; Martinez, O.; Salazar, H.; Ponce, E.; Saprykin, O. A.; Botvinko, A. A.; Senkovsky, A. N.; Puchkov, A. E.

    2017-11-01

    The origin and nature of extreme energy cosmic rays (EECRs), which have energies above the 5\\cdot10^{19} eV—the Greisen-Zatsepin-Kuzmin (GZK) energy limit, is one of the most interesting and complicated problems in modern cosmic-ray physics. Existing ground-based detectors have helped to obtain remarkable results in studying cosmic rays before and after the GZK limit, but have also produced some contradictions in our understanding of cosmic ray mass composition. Moreover, each of these detectors covers only a part of the celestial sphere, which poses problems for studying the arrival directions of EECRs and identifying their sources. As a new generation of EECR space detectors, TUS (Tracking Ultraviolet Set-up), KLYPVE and JEM-EUSO, are intended to study the most energetic cosmic-ray particles, providing larger, uniform exposures of the entire celestial sphere. The TUS detector, launched on board the Lomonosov satellite on April 28, 2016 from Vostochny Cosmodrome in Russia, is the first of these. It employs a single-mirror optical system and a photomultiplier tube matrix as a photo-detector and will test the fluorescent method of measuring EECRs from space. Utilizing the Earth's atmosphere as a huge calorimeter, it is expected to detect EECRs with energies above 10^{20} eV. It will also be able to register slower atmospheric transient events: atmospheric fluorescence in electrical discharges of various types including precipitating electrons escaping the magnetosphere and from the radiation of meteors passing through the atmosphere. We describe the design of the TUS detector and present results of different ground-based tests and simulations.

  18. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  19. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  20. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    NASA Astrophysics Data System (ADS)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  1. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe,more » through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.« less

  2. A cosmic ray super high energy multicore family event. 2: Structure and fragmentation characteristics of the jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Quarks and gluons are not directly observable, but may be displayed through fragmentation in the form of hadronic jets, the evidence of which was first revealed in cosmic ray interactions before the advent of the modern theory of strong interactions. Experimental results from ISR and SPPS collider rendered the jet phenomena more confident and definite. All the properties of jets observed up to now at ISR and SPPS collider are in agreement with the predictions of QCD. In order to make further test of QCD in still higher energy regions, detailed study of super high energy jet events in cosmic rays is very desirable. The event KO E19 observed in the Mt. Kambala emulsion chamber is an interesting event for such study. The general features of KO E19 is described. Its total visible energy is sigma E sub gamma = 1537 TeV(E sub min = 1.5 TeV) and production height H=(70 + or - 30)m, with a hadron as its primary particle. Besides about forty small clusters, there are five super high energy cores or jets, one lying near the center of the event while the other four surrounding it, having incident directions making small angles with that of the primary particle. Detailed analysis is done on the emulsion plates inserted in the chamber, making full use of their fine granularity, superior in detecting and analyzing jet events, specially their substructures.

  3. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  4. Indications for a High-Rigidity Break in the Cosmic-Ray Diffusion Coefficient

    NASA Astrophysics Data System (ADS)

    Génolini, Yoann; Serpico, Pasquale D.; Boudaud, Mathieu; Caroff, Sami; Poulin, Vivian; Derome, Laurent; Lavalle, Julien; Maurin, David; Poireau, Vincent; Rosier, Sylvie; Salati, Pierre; Vecchi, Manuela

    2017-12-01

    Using cosmic-ray boron to carbon ratio (B/C) data recently released by the Ams-02 experiment, we find indications (decisive evidence, in Bayesian terms) in favor of a diffusive propagation origin for the broken power-law spectra found in protons (p ) and helium nuclei (He). The result is robust with respect to currently estimated uncertainties in the cross sections, and in the presence of a small component of primary boron, expected because of spallation at the acceleration site. Reduced errors at high energy as well as further cosmic ray nuclei data (as absolute spectra of C, N, O, Li, Be) may definitively confirm this scenario.

  5. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  6. First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons

    NASA Astrophysics Data System (ADS)

    Bergström, D.; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Khalchukov, F.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M. L.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2000-05-01

    We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p/p ratio is in agreement with a pure secondary interstellar production.

  7. Transport of cosmic ray nuclei in various materials

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  8. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Murase, Kohta

    2018-04-01

    The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma1. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV γ-rays are comparable, which hints at a grand unified picture2. Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and γ-rays; the highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi γ-ray background, assuming a reasonable energy output from black hole jets in clusters.

  9. Iron K shell line, a probe of low energy cosmic rays in SNRs

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji; Sato, Tamotsu

    2016-06-01

    Since the discovery of non thermal power-law X-rays at the rim of SN1006 by Koyama et al. (1995), this feature has been established to be evidence of high energy cosmic rays (HECRs). The HECRs are created by a diffuse shock acceleration process. Accordingly low energy cosmic rays (LECRS) must be presented as the injector of this acceleration process. We found for the first time that the K-shell line from neutral iron at 6.4 keV is good tracer of LECRs in SNRs. This paper present the observational facts for LECRs from intermediate aged SNRs, 3C391, Kes79, Kes 78 and W44 in the Scutum Arm region (see figure, Sato et al. 2014, 2015). Two SNRs, 3C391 and W44, exhibit recombining plasma (RP), an unusual structure in the frame work of the standard SNR evolution scenario. Together with the RP, we discuss the origin of LECRs in the SNRs.

  10. COSMIC RAYS AND COSMIC SPACE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernova, S.N.

    1960-08-01

    An account is given of recent studies of cosmic rays utilizing both earthbound stations and artificial earth satellites. Phenomena recently uncovered by sputniks are described. A description is given of the cosmic ray laboratory of Moscow University. A particle possessing an energy of l0/sup 15/ ev was detected and the equipment and procedure by which this was done are described. mu mesons in a particle shower produced by cosmic rays were detected at a depth of thirty meters underground. The apparatus required in the sputriks for the study of cosmic rays outside the earth's atmosphere is discussed. The equipment inmore » the sputniks launched to date was transistorized; scintillation counters were used to determine particle energies. A description is given of the large burst of radiation detected by the second sputnik on Nov. 7, 1957. This burst was observed only at latitudes of about 50 to 70 degrees north latitude. The third sputnik had a scintillation counter of high sensitivity which detected relatively weak fluxes of electrons. This equipment fixed the location of the high intensity radiation belt around the earth. A typical graph of count rate and energy current versus geographic location is given. Data are given that indicate the coincidence of peak radiation intensities with those regions where the aurora borealis is seen. The radiation belt extends up to approximately 60,000 km from the earth's surface and is bounded by the magnetic lines of force that intersect the earth' s surface at geomagnetic latitudes of 55 deg and 70 deg . The earth's magnetic field traps these particles and holds them in an orbit that follows magnetic lines of force and oscillates from the northern to the southern hemisphere for long periods of time. A diagram is given of the trajectory of the first Soviet cosmic rocket and changes in radiation intensity along this trajectory are indicated. A maximum radiation intensity was detected at a distance of 20,000 km from the earth

  11. Cosmic-Ray Energetics and Mass Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  12. Analysis of Large-scale Anisotropy of Ultra-high Energy Cosmic Rays in HiRes Data

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Koers, H.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration

    2010-04-01

    Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle θ s . We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless θ s > 10° and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.

  13. The Curious Case of High-energy Deuterons in Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Tomassetti, Nicola; Feng, Jie

    2017-02-01

    A new analysis of cosmic ray (CR) data collected by the SOKOL experiment in space found that the deuteron-to-helium ratio at energies between 500 and 2000 GeV/nucleon takes the value d/He ˜ 1.5. As we will show, this result cannot be explained by standard models of secondary CR production in the interstellar medium and points to the existence of a high-energy source of CR deuterons. To account for the deuteron excess in CRs, we argue that the only viable solution is hadronic interaction processes of accelerated particles inside old supernova remnants (SNRs). From this mechanism, however, the B/C ratio is also expected to increase at energies above ˜50 of GeV/nucleon, in conflict with new precision data just released by the AMS-02 experiment. Hence, if this phenomenon is a real physical effect, hadronic production of CR deuterons must occur in SNRs characterized by low metal abundance. In such a scenario, the sources accelerating C-{N}-O nuclei are not the same as those accelerating helium or protons, so that the connection between d/He ratio and B/C ratio is broken, and the latter cannot be used to place constraints on the production of light isotopes or antiparticles.

  14. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for siderealmore » modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.« less

  15. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; hide

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  16. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Wilson, C. W.; Fenton, A. G.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  17. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  18. Energy spectra of cosmic-ray nuclei to above 100 GeV per nucleon

    NASA Technical Reports Server (NTRS)

    Simon, M.; Spiegelhauer, H.; Schmidt, W. K. H.; Siohan, F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Arens, J. F.

    1980-01-01

    Energy spectra of cosmic-ray nuclei boron to iron have been measured from 2 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using an ionization calorimeter flown on a balloon from Palestine, Texas. The 3450 kg payload floated at 7 g/sq cm for almost 24 hours. The results are in excellent agreement with those of other workers where overlaps exist. The spectra are not consistent with single power laws, and demonstrate the power of using a single technique sensitive over a large dynamic range. The data are consistent with the leaky box model of cosmic-ray propagation. The boron data indicate that the cosmic-ray escape length decreases with increasing energy as E to the -(0.4 + or - 0.1) up to 100 GeV per nucleon. Secondary nuclei from iron are also consistent with this dependence. Predicted changes in the energy dependence of the ratios of primary nuclei O/C and (Fe + Ni)/(C + O) are also observed.

  19. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  20. Cosmic ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    The cosmic rays, an active gaseous component of the disk of the galaxy, are considered along with their propagation and containment as a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic ray gas pressure comparable to the magnetic pressure, but the rate of inflation is unknown. The time spent by the individual cosmic ray particles in the disk is inversely proportional to the cosmic ray production rate. It is evident from the decay of Be(1c) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  1. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  2. ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.

    2010-04-10

    Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s}more » > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.« less

  3. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  4. A Shifting Shield Provides Protection Against Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  5. A beam of particles in ultrahigh-energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Krymsky, G. F.; Pravdin, M. I.; Sleptsov, I. E.

    2017-11-01

    Three particles with energies of 36, 35, and 58 EeV arrived from one sky region were recorded by two EAS arrays during a day. The events are assumed to have been produced by the beam of particles that resulted from the interaction of cosmic rays with a relativistic shock front.

  6. Observation of the ankle and evidence for a high-energy break in the cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abuzayyad, T.; Amman, J.; Archbold, G.; Atkins, R.; Bellido, J.; Belov, K.; Belz, J.; Benzvi, S.; Bergman, D.

    2005-07-01

    We have measured the cosmic ray spectrum at energies above $10^{17}$ eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near $3\\times 10^{18}$ eV, and strong evidence for a suppression near $6\\times 10^{19}$ eV.

  7. The mass composition of ultra-high energy cosmic rays with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Martraire, D.

    2014-12-01

    Ultra-high energy cosmic rays are the most energetic particles known in nature. The Pierre Auger Observatory was built to study these amazing particles to determine their origin. The study of their mass composition can help to constrain the models concerning their origins and their production mechanisms in the astrophysical sources. To this aim, several methods have been developed to infer the composition using the Auger surface detector array data. The main difficulty is to isolate the muonic component in the signal measured by the surface detector. We present the results of the composition parameters derived from the ground level component and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models.

  8. A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Eisch, Jonathan

    Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event

  9. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; hide

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  10. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  11. Cosmic ray transport in astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less

  12. Ultra-high-energy cosmic rays from low-luminosity active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Duţan, Ioana; Caramete, Laurenţiu I.

    2015-03-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power Pj ⩽1046 erg s-1. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies ⩾ 50 EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We found that the UHECR flux is dependent on the observed radio flux density, the distance to the AGN, and the BH mass, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.

  13. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  14. PLASMA EFFECTS ON EXTRAGALACTIC ULTRAHIGH-ENERGY COSMIC-RAY HADRON BEAMS IN COSMIC VOIDS. II. KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de

    2016-02-20

    The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less

  15. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  16. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  17. Cosmic-ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1977-01-01

    The cosmic rays are an active gaseous component of the disk of the galaxy, and their propagation and containment is a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic-ray gas pressure, P, comparable to the magnetic pressure B super 2/ 8 pi, but the rate of inflation is unknown. The time spent by the individual cosmic-ray particles in the disk is inversely proportional to the cosmic-ray production rate and may be anything from 100,000 to more than 10 million years. It is evident from the decay of Be(10) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  18. A method for establishing constraints on galactic magnetic field models using ultra high energy cosmic rays and results from the data of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael Stephen

    2010-12-01

    The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise

  19. Primary mass discrimination of high energy cosmic rays using PNN and k-NN methods

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2018-02-01

    Probabilistic neural network (PNN) and k-Nearest Neighbors (k-NN) methods are widely used data classification techniques. In this paper, these two methods have been used to classify the Extensive Air Shower (EAS) data sets which were simulated using the CORSIKA code for three primary cosmic rays. The primaries are proton, oxygen and iron nuclei at energies of 100 TeV-10 PeV. This study is performed in the following of the investigations into the primary cosmic ray mass sensitive observables. We propose a new approach for measuring the mass sensitive observables of EAS in order to improve the primary mass separation. In this work, the EAS observables measurement has performed locally instead of total measurements. Also the relationships between the included number of observables in the classification methods and the prediction accuracy have been investigated. We have shown that the local measurements and inclusion of more mass sensitive observables in the classification processes can improve the classifying quality and also we have shown that muons and electrons energy density can be considered as primary mass sensitive observables in primary mass classification. Also it must be noted that this study is performed for Tehran observation level without considering the details of any certain EAS detection array.

  20. Opportunities in cosmic-ray physics and astrophysics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Board on Physics and Astronomy of the National Research Council established the Committee on Cosmic-Ray Physics to prepare a review of the field that addresses both experimental and theoretical aspects of the origin of cosmic radiation from outside the heliosphere. The following recommendations are made: NASA should provide the opportunity to measure cosmic-ray electrons, positrons, ultraheavy nuclei, isotopes, and antiparticles in space; NASA, the National Science Foundation (NSF), and the Department of Energy (DOE) should facilitate direct and indirect measurement of the elemental composition to as high an energy as possible, for which the support of long-duration ballooning and hybrid ground arrays will be needed; NSF and DOE should support the new Fly's Eye and provide for U.S. participation in the big projects on the horizon, which include giant arrays, ground-based gamma-ray astronomy, and neutrino telescopes; and NASA, NSF, and DOE should support a strong program of relevant theoretical investigations.

  1. Relative distribution of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  2. Relic neutrinos, monopoles, and cosmic rays above ~1020 eV

    NASA Astrophysics Data System (ADS)

    Weiler, Thomas J.

    1998-06-01

    The observation of cosmic ray events above the Greisen-Kuzmin-Zatsepin (GZK) cut-off of 5×1019 eV offers an enormous opportunity for the discovery of new physics. We explore two possible origins for these super-GZK events. The first example uses Standard Model (SM) physics augmented only by <~ eV neutrino masses as suggested by solar, atmospheric, and terrestrial neutrino detection, and by the cosmological need for a hot dark matter component. In this example, cosmic ray neutrinos from distant, highest energy sources annihilate relatively nearby on the relic neutrino background to produce ``Z-bursts,'' highly collimated, highly boosted (γZ~1011) hadronic jets. The SM and hot Big Bang cosmology give the probability for each neutrino flavor at its resonant energy to annihilate within the halo of our galactic supercluster as likely within an order of magnitude of 1%. The kinematics are completely determined by the neutrino masses and the properties of the Z boson. The burst energy is ER=4 (eV/mν)×1021 eV, and the burst content includes, on average, thirty photons and 2.7 nucleons with super-GZK energies. The second example goes beyond SM physics to invoke relativistic magnetic monopoles as the cosmic ray primaries. Motivations for this hypothesis are twofold: (i) conventional primaries are problematic, while monopoles are naturally accelerated to E~1020 eV by galactic magnetic fields; (ii) the observed highest energy cosmic ray flux is just a few orders of magnitude below the Parker flux limit for monopoles. By matching the cosmic monopole production mechanism to the observed highest energy cosmic ray flux we estimate the monopole mass to be <~1010 GeV. Several tests of the neutrino annihilation and monopole hypotheses are indicated.

  3. Lateral distribution of muons in IceCube cosmic ray events

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.

    2013-01-01

    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.

  4. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  5. Characteristics of cesium iodide for use as a particle discriminator for high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Kurz, R. J.; Viehmann, W.

    1973-01-01

    The possible use of CsI to discriminate between high energy cosmic ray electrons and interacting protons has been investigated. The pulse-shape properties as a function of ionization density, temperature, and spectral response are presented for thallium-activated CsI and as a function of ionization density for sodium-activated CsI. The results are based on previously published data and on corroborative measurements from the present work. Experimental results on the response of CsI to electron-induced electromagnetic cascades and to interacting hadrons are described. Bibliographies of publications dealing with the properties of CsI and with pulse-shape discrimination techniques are presented.

  6. Searching for New Physics with Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.

  7. A Numerical Assessment of Cosmic-Ray Energy Diffusion through Turbulent Media

    NASA Astrophysics Data System (ADS)

    Fatuzzo, M.; Melia, F.

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  8. Cosmic-ray neutron simulations and measurements in Taiwan.

    PubMed

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-10-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 × 10(-3) n cm(-2) s(-1), was suggested. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Aligned interactions in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempa, J., E-mail: kempa@pw.plock.pl

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a typemore » of nuclear interactions at high energy with alignment.« less

  10. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  11. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration

    2018-02-01

    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 {EeV} with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39 {EeV}. The three alternative models are favored against isotropy with 2.7σ–3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed. Any correspondence should be addressed to .

  12. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2018-02-02

    A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include allmore » types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.« less

  13. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include allmore » types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.« less

  14. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  15. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    NASA Astrophysics Data System (ADS)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-04-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher—student teams to engage in cutting edge high-energy physics research. Results showed that teachers and students could acquire enough knowledge about cosmic ray physics and self-efficacy for conducting cosmic ray research during a summer workshop to be full participants in an SSP conducting research in their schools, and a capstone anchoring approach using an authentic research activity was effective for motivating student engagement in didactic classroom learning. CROP demonstrated "proof of concept" that setting up cosmic ray detector arrays in schools run by teachers and students was feasible, but found that set-up and operation in a high-school was technically difficult.

  16. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    PubMed

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  17. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  18. Abundances and energy spectra of high energy heavy cosmic-ray nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelmy, S.D.

    1985-01-01

    We have measured the relative abundances of the cosmic rays in the iron group region at energies from a few GeV/amu to approximately 70 GeV/amu. This is done using a balloon-borne instrument consisting of gas ionization chambers, a plastic scintillator, a plastic Cherenkov counter, and a CO/sub 2/ gas Cherenkov counter. The instrument was flown from Palestine, Texas in the fall of 1982 for a total exposure of 62 m/sup 2/-ster-hr at an average atmospheric depth of 4 g/cm/sup 2/. The elemental charge was determined for a combination of the scintillator and plastic Cherenkov detector. Results are reported on themore » /sub 22/Ti//sub 26/Fe, /sub 24/Cr//sub 26/Fe, /sub 20/Ca//sub 26/Fe, and /sub 28/Ni//sub 28/Fe abundance ratios from 2 to 70 GeV/amu. Within this work results on the previously unused method of relativistic rise in gas ionization chambers is detailed as well as results on the return to nonsaturation of plastic scintillators.« less

  19. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux.

  20. The energy spectrum of cosmic ray electrons between 10 and 1000 GeV

    NASA Technical Reports Server (NTRS)

    Anand, K. C.; Daniel, R. R.; Stephens, S. A.

    1975-01-01

    Measurements made by the Bombay Group on the fluxes of cosmic ray electrons in the energy range 10-1000 GeV have been compared with those of other workers in the same energy domain with a view to understand the present confused situation on the existing observations at these high energies. Such an analysis clearly brings out the current situation in its true perspective and highlights the care and emphasis to be placed on future experimentation in this important field.

  1. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions.

    PubMed

    Stone, E C; Cummings, A C; McDonald, F B; Heikkila, B C; Lal, N; Webber, W R

    2013-07-12

    On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 10(6) electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 10(6) to 40 × 10(6) electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 10(6) electron volts.

  2. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  3. Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandreas, D.E.; Allen, R.C.; Berley, D.

    1991-03-01

    Data from an extensive air shower detector of ultrahigh-energy cosmic rays shows shadowing of the cosmic-ray flux by the Moon and the Sun with significance of 4.9 standard deviations. This is the first observation of such shadowing. The effect has been used to determine that the angular resolution of the detector is 0.75{degree} {sub {minus}0.90{degree}}{sup +0.13{degree}}.

  4. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-07-01

    The KASCADE-Grande air shower experiment [1] consists of, among others, a large scintillator array for measurements of charged particles, N, and of an array of shielded scintillation counters used for muon counting, Nμ. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to about 2000 PeV, where exploring the composition is of fundamental importance for understanding the transition from galactic to extragalactic origin of cosmic rays. Following earlier studies of the all-particle and the elemental spectra reconstructed in the knee energy range from KASCADE data [2], we have now extended these measurements to beyond 200 PeV. By analysing the two-dimensional shower size spectrum N vs. Nμ for nearly vertical events, we reconstruct the energy spectra of different mass groups by means of unfolding methods over an energy range where the detector is fully efficient. The procedure and its results, which are derived based on the hadronic interaction model QGSJET-II-02 and which yield a strong indication for a dominance of heavy mass groups in the covered energy range and for a knee-like structure in the iron spectrum at around 80 PeV, are presented. This confirms and further refines the results obtained by other analyses of KASCADE-Grande data, which already gave evidence for a knee-like structure in the heavy component of cosmic rays at about 80 PeV [3].

  5. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  6. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  7. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    DOE PAGES

    Aab, Alexander

    2016-06-14

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ± 0.7 (stat) ± 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade ofmore » extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.« less

  8. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  9. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  10. Study of cosmic rays reveals secrets of solar-terrestrial science

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.

    For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.

  11. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  12. Milagro Contributions to XXVI International Cosmic Ray Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, C.M.; Haines, T.J.; Sinnis, G.

    1999-08-01

    Milagrito, a prototype for the Milagro detector, operated for 15 months in 1997--8 and collected 8.9 x 10{sup 9} events. It was the first extensive air shower (EAS) array sensitive to showers initiated by primaries with energy below 1 TeV. The shadows of the sun and moon observed with cosmic rays can be used to study systematic pointing shifts and measure the angular resolution of EAS arrays. Below a few TeV, the paths of cosmic rays coming toward the earth are bent by the helio- and geo-magnetic fields. This is expected to distort and displace the shadows of the sunmore » and the moon. The moon shadow, offset from the nominal (unreflected) position, has been observed with high statistical significance in Milagrito. This can be used to establish energy calibrations, as well as to search for the anti-matter content of the VHE cosmic ray flux. The shadow of the sun has also been observed with high significance.« less

  13. Distributed reacceleration of cosmic rays

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Eichler, David; Letaw, John R.; Silberberg, Rein; Tsao, C. H.

    1985-01-01

    A model is developed in which cosmic rays, in addition to their initial acceleration by a strong shock, are continuously reaccelerated while propagating through the Galaxy. The equations describing this acceleration scheme are solved analytically and numerically. Solutions for the spectra of primary and secondary cosmic rays are given in a closed analytic form, allowing a rapid search in parameter space for viable propagation models with distributed reeacceleration included. The observed boron-to-carbon ratio can be reproduced by the reacceleration theory over a range of escape parameters, some of them quite different from the standard leaky-box model. It is also shown that even a very modest amount of reacceleration by strong shocks causes the boron-to-carbon ratio to level off at sufficiently high energies.

  14. EXPLAINING TEV COSMIC-RAY ANISOTROPIES WITH NON-DIFFUSIVE COSMIC-RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan, E-mail: jpharding@lanl.gov, E-mail: fryer@lanl.gov, E-mail: smendel@lanl.gov

    2016-05-10

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  15. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  16. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.

  17. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  18. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  19. New test of Lorentz symmetry using ultrahigh-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Soriano, Jorge F.

    2018-02-01

    We propose an innovative test of Lorentz symmetry by observing pairs of simultaneous parallel extensive air showers produced by the fragments of ultrahigh-energy cosmic ray nuclei which disintegrated in collisions with solar photons. We show that the search for a cross-correlation of showers in arrival time and direction becomes background free for an angular scale ≲3 ° and a time window O (10 s ) . We also show that if the solar photo-disintegration probability of helium is O (10-5.5) then the hunt for spatiotemporal coincident showers could be within range of existing cosmic ray facilities, such as the Pierre Auger Observatory. We demonstrate that the actual observation of a few events can be used to constrain Lorentz violating dispersion relations of the nucleon.

  20. Observation of ultrahigh-energy cosmic rays and neutrinos from lunar orbit: LORD space experiment

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir; Chechin, Valery; Gusev, German

    The problem of detecting highest-energy cosmic rays and neutrinos in the Universe is reviewed. Nowadays, there becomes clear that observation of these particles requires approaches based on novel principles. Projects based on orbital radio detectors for particles of energies above the CZK cut-off are discussed. We imply the registration of coherent Cherenkov radio emission produced by cascades of most energetic particles in radio-transparent lunar regolith. The Luna-Glob space mission proposed for launching in the near future involves the Lunar Orbital Radio Detector (LORD). The feasibility of LORD space instrument to detect radio signals from cascades initiated by ultrahigh-energy particles interacting with lunar regolith is examined. The comprehensive Monte Carlo calculations were carried out within the energy range of 10 (20) -10 (25) eV with the account for physical properties of the Moon such as its density, the lunar-regolith radiation length, the radio-wave absorption length, the refraction index, and the orbital altitude of a lunar satellite. We may expect that the LORD space experiment will surpass in its apertures and capabilities the majority of well-known current and proposed experiments dealing with the detection of both ultrahigh-energy cosmic rays and neutrinos. The design of the LORD space instrument and its scientific potentialities in registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 10 (25) eV is discussed as well. The designed LORD module (including an antenna system, amplifiers, and a data acquisition system) now is under construction. The LORD space experiment will make it possible to obtain important information on the highest-energy particles in the Universe, to verify modern models for the origin and the propagation of ultrahigh-energy cosmic rays and neutrinos. Successful completion of the LORD experiment will permit to consider the next step of the program, namely, a multi-satellite lunar systems to

  1. Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Interstellar Matter and High-Energy Cosmic Rays

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-09-08

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse γ-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°) are reported in this paper. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. Themore » measured integrated γ-ray emissivity is (1.63 ± 0.05) × 10 –26 photons s –1sr –1 H-atom –1 and (0.66 ± 0.02) × 10 –26 photons s –1sr –1 H-atom –1 above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. Finally, the results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ~10%.« less

  2. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV.more » The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.« less

  3. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  4. Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work

  5. The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2016-07-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 1017.2eV measured by the fluorescence detectors and a comparison with previously published results.

  6. Cosmic-Ray Energetics and Mass Processing - Unbagging and Inspection

    NASA Image and Video Library

    2017-06-22

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  7. A composition dependent energy scale and the determination of the cosmic ray primary mass in the ankle region

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.; Etchegoyen, A.; Melo, D.; Sanchez, F.

    2015-08-01

    At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays. The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to

  8. Search for Cross-Correlations of Ultrahigh-Energy Cosmic Rays with BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Blake, S. A.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration

    2006-01-01

    Data taken in stereo mode by the High Resolution Fly's Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultrahigh-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lac objects and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lac objects from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.

  9. Overview of galactic cosmic ray solar modulation in the AMS-02 era

    NASA Astrophysics Data System (ADS)

    Bindi, V.; Corti, C.; Consolandi, C.; Hoffman, J.; Whitman, K.

    2017-08-01

    A new era in cosmic rays physics has started thanks to the precise and continuous observations from space experiments such as PAMELA and AMS-02. Invaluable results are coming out from these new data that are rewriting the theory of acceleration and propagation of cosmic rays. Both at high energies, where several new behaviors have been measured, challenging the accuracy of theoretical models, and also at low energies, in the region affected by the solar modulation. Precise measurements are increasing our knowledge of the effects of solar modulation on low energy cosmic rays, allowing a detailed study of propagation and composition as it has never been done before. These measurements will serve as a high-precision baseline for continued studies of GCR composition, GCR modulation over the solar cycle, space radiation hazards, and other topics. In this review paper, the status of the latest measurements of the cosmic rays in the context of solar modulation are presented together with the current open questions and the future prospects. How new measurements from the AMS-02 experiment will address these questions is also discussed.

  10. Cosmic ray models for early galactic lithium, beryllium, and boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To better understand the early galactic production of Li, Be, and B by cosmic ray spallation and fusion reactions, the dependence of these production rates on cosmic ray models and model parameters is examined. The sensitivity of elemental and isotropic production to the cosmic ray pathlength magnitude and energy dependence, source spectrum spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B-versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic ray models for the early Galaxy.

  11. Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Scully, S. T.; Stecker, F. W.

    2009-01-01

    There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.

  12. Intensity of primary cosmic-ray electrons of energy exceeding 8 GeV

    NASA Technical Reports Server (NTRS)

    Freier, P.; Gilman, C.; Waddington, C. J.

    1977-01-01

    Results are reported for measurement of the intensity and energy spectrum of primary cosmic-ray electrons with a spark-chamber-counter-emulsion detector flown at a mean altitude of 3 g/sq cm residual atmosphere. A least-squares fit to the flight data yields an electron spectrum from 8 to 80 GeV of approximately 93E to the -2.91 power electrons/sq m/sec per sr/GeV. The results are compared with those of previous experiments as well as with the spectrum obtained for galactic nonthermal radiation. It is concluded that a 'clumpy' magnetic field proportional to the square root of matter density is consistent with measurements of high-energy electrons and synchrotron radiation toward the center of the Galaxy, that a gradual steepening of the electron spectrum relative to the proton spectrum is consistent with an electron lifetime of 1 million years, and that the density of cosmic-ray nucleons and electrons should be essentially uniform throughout the Galaxy if the nucleons have the same lifetime as the electrons and if they traversed 4 to 5 g/sq cm in that lifetime.

  13. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  14. Acceleration and propagation of ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin

    2013-02-01

    The origin of the highest energy cosmic rays represents one of the most conspicuous enigmas of modern astrophysics, in spite of gigantic experimental efforts in the past fifty years, and of active theoretical research. The past decade has known exciting experimental results, most particularly the detection of a cut-off at the expected position for the long sought Greisen-Zatsepin-Kuzmin suppression as well as evidence for large scale anisotropies. This paper summarizes and discusses recent achievements in this field.

  15. Constraints on cosmic ray and PeV neutrino production in blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B. Theodore; Li, Zhuo, E-mail: zhangbing91@pku.edu.cn, E-mail: zhuo.li@pku.edu.cn

    2017-03-01

    IceCube has detected a cumulative flux of PeV neutrinos, which origin is unknown. Blazars, active galactic nuclei with relativistic jets pointing to us, are long and widely expected to be one of the strong candidates of high energy neutrino sources. The neutrino production depends strongly on the cosmic ray power of blazar jets, which is largely unknown. The recent null results in stacking searches of neutrinos for several blazar samples by IceCube put upper limits on the neutrino fluxes from these blazars. Here we compute the cosmic ray power and PeV neutrino flux of Fermi-LAT blazars, and find that themore » upper limits for known blazar sources give stringent constraint on the cosmic ray loading factor of blazar jets (i.e., the ratio of the cosmic ray to bolometric radiation luminosity of blazar jets), ξ{sub cr} ∼< (2–10)ζ{sup −1} (with ζ ∼< 1 the remained fraction of cosmic ray energy when propagate into the blazar broad line region) for flat cosmic ray spectrum, and that the cumulative PeV neutrino flux contributed by all-sky blazars is a fraction ∼< (10–50)% of the IceCube detected flux.« less

  16. Measurement Over Large Solid Angle of Low Energy Cosmic Ray Muon Flux

    NASA Astrophysics Data System (ADS)

    Schreiner, H. F., III; Schwitters, R. F.

    2015-12-01

    Recent advancements in portable muon detectors have made cosmic ray imaging practical for many diverse applications. Working muon attenuation detectors have been built at the University of Texas and are already successfully being used to image tunnels, structures, and Mayan pyramids. Most previous studies have focused on energy measurements of the cosmic ray spectrum from of 1 GeV or higher. We have performed an accurate measurement of the ultra-low energy (<2 GeV in E cos θ) muon spectrum down to the acceptance level of our detector, around one hundred MeV. Measurements include angular dependence, with acceptance approaching horizontal. Measurements were made underwater using a custom enclosure in Lake Travis, Austin, TX. This measurement will allow more accurate predictions and simulations of attenuation for small (<5 m) targets for muon tomography.

  17. Cosmic ray production in modified gravity

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Dolgov, A. D.; Reverberi, L.

    2018-06-01

    This paper is a reply to the criticism of our work on particle production in modified gravity by Gorbunov and Tokareva. We show that their arguments against efficient particle production are invalid. F( R) theories can lead to an efficient generation of high energy cosmic rays in contracting systems.

  18. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  19. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  20. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  1. CREST: a New Multi-TeV Cosmic-Ray Electron Detector

    NASA Astrophysics Data System (ADS)

    Coutu, Stephane; Wakely, Scott; Anderson, Tyler; Bower, Charles; Geske, Matthew; Mueller, Dietrich; Musser, James; Nutter, Scott; Schubnell, Michael; Tarle, Gregory; Yagi, Atsushi

    Recent observations of TeV gamma rays from supernova remnants, coupled with measurements of non-thermal X-ray emission, are interpreted as evidence for shock acceleration of cosmic rays in supernova remnants. While it is often assumed that the particles accelerated in these sources include electrons up to multi-TeV energies, direct cosmic-ray electron observations are currently restricted to energies below about 2 TeV. Any attempt to extend the energy range is hampered by limited exposure and low fluxes. However, significant intensities at these energies would indicate the presence of relatively nearby acceleration sites. We describe a new balloonborne detector, the Cosmic Ray Electron Synchrotron Telescope (CREST). This instrument achieves high sensitivity by detecting the synchrotron x-ray photons emitted by an electron in the Earth's magnetic field, rather than the primary electron itself. A 5.3 m2 array of 1024 BaF2 crystals surrounded by veto scintillators will be flown by balloon in Antarctica in 2009, preceded by a prototype test flight from Ft Sumner, NM, in Spring 2008. We expect to explore the TeV energy region of primary electrons, with sensitivity up to about 50 TeV. Here we describe the CREST science, instrument design and performance.

  2. Polarimetry of X-rays and messengers of High Energy phenomena

    NASA Astrophysics Data System (ADS)

    Costa, E.

    2017-05-01

    Astrophysics of High Energies has been historically based on radio, X-ray and γ -ray data. Understanding the mechanism and the site of acceleration of Cosmic Rays, has been probably the most important goal of this discipline. Recently high energy neutrinos and gravitational waves have shown up as new messengers and we expect a major role from X-ray observations, to understand the nature and location of the emitters. In fact X-rays have been for more than half a century the driver to study the Violent Universe. Yet one feature of this messengers, the Polarimetry, is still totally unexploited. Within a few years, a mission will add two important parameters to understand the physical context of high energy phenomena, namely the amount and angle of X-ray polarimetry.

  3. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  4. Explaining TeV cosmic-ray anisotropies with non-diffusive cosmic-ray propagation

    DOE PAGES

    Harding, James Patrick; Fryer, Chris Lee; Mendel, Susan Marie

    2016-05-11

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. Furthermore, the features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  5. Snow water equivalent measured with cosmic-ray neutrons: reviving a little known but highly successful field method

    NASA Astrophysics Data System (ADS)

    Desilets, D.

    2012-12-01

    Secondary cosmic-ray neutrons are attenuated strongly by water in either solid or liquid form, suggesting a method for measuring snow water equivalent that has several advantages over alternative technologies. The cosmic-ray attenuation method is passive, portable, highly adaptable, and operates over an exceptionally large range of snow pack thicknesses. But despite promising initial observations made in the 1970s, the technique today remains practically unknown to snow hydrologists. Side-by-side measurements performed over the past several years with a snow pillow and a submerged cosmic-ray probe demonstrate that the cosmic-ray attenuation method merits consideration for a wide range of applications—especially those where alternative methods are made problematic by dense vegetation, rough terrain, deep snowpack or a lack of vehicular access. During the snow-free season, the instrumentation can be used to monitor soil moisture, thus providing another widely sought field measurement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, C.A., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

  6. Cosmic ray composition investigations using ICE/ISEE-3

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1992-01-01

    The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.

  7. Single particle effects, Biostack, and risk evaluation - Studies on the radiation risk from Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.

  8. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  9. A likelihood method for measuring the ultrahigh energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abu-Zayyad, T.; Amman, J. F.; Archbold, G. C.; Belov, K.; Blake, S. A.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, M.; Schnetzer, S.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.

    2006-08-01

    Air fluorescence detectors traditionally determine the dominant chemical composition of the ultrahigh energy cosmic ray flux by comparing the averaged slant depth of the shower maximum, Xmax, as a function of energy to the slant depths expected for various hypothesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron by comparing the shapes of the expected Xmax distributions to the distribution for data. The advantages of this method includes the use of information of the full distribution and its ability to calculate a flux for various cosmic ray compositions. The same method can be expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the technique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons and iron in the parent sample and show that the uncertainties are meaningful.

  10. Cosmic ray muon study with the NEVOD-DECOR experiment

    NASA Astrophysics Data System (ADS)

    Saavedra San Martin, Oscar

    2017-06-01

    The experiment NEVOV-DECOR, which is desinged to study the cosmic muons at very inclined directions, is running under the collaboration of the Moscow Engineering Physics Institute, Moscow, Russia, and the Instituto Nazionale di Astrofisica and the Dipartimento di Fisica, Università di Torino, Italy. The main purpose of this experiment is to study the characteristics of the high multiplicity muons in muon bundles and their angular distributions. The result has shown the observation of the second knee at 1017 eV in the primary cosmic ray spectrum. In addition, we found that the number of high energy muons in EAS is more than 30% of what is predicted by the Monte Carlo models. This effect was found also by other experiments like Auger, but at primary cosmic ray energies higher than 1018 eV. We will present and discuss the main results of these investigations.

  11. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    NASA Astrophysics Data System (ADS)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  12. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Cholis, Ilias; Linden, Tim

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. Inmore » light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.« less

  13. The shape of the extragalactic cosmic ray spectrum from galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban, E-mail: harari@cab.cnea.gov.ar, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar

    2016-08-01

    We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E / Z < 1 EeVmore » . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.« less

  14. Exact solutions for sporadic acceleration of cosmic rays

    NASA Technical Reports Server (NTRS)

    Cowsik, R.

    1985-01-01

    The steady state spectra of cosmic rays which are subject to a sporadic acceleration process, wherein the gain in energy in each encounter is a finite fraction of the particle energy are discussed. They are derived from a mathematical model which includes the possibility of energy dependent leakage of cosmic rays from the galaxy. Comparison with observations allows limits to be placed on the frequency and efficiency of such encounters.

  15. Cosmic Ray Observation at Mount Chacaltaya for beyond the Knee Region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Y.; Kakimoto, F.; Furuhata, F.; Matsumoto, H.; Sugawara, T.; Wakamatsu, H.; Gotoh, E.; Nakatani, H.; Nishi, K.; Tajima, N.; Yamada, Y.; Shimoda, S.; Yoshii, H.; Kaneko, T.; Ogio, S.; Matsubara, Y.; Kadota, K.; Tokuno, H.; Mizumoto, Y.; Shirasaki, Y.; Toyoda, Y.; Burgoa, O.; Flores, V.; Miranda, P.; Salinas, J.; Velarde, A.

    We have installed a new air shower array at Mount Chacaltaya (5,200m above sea level) to observe primary cosmic rays with energies greater than 1015 eV. In our previous experiments, we measured energy spectrum and nuclear composition of primary cosmic rays around the knee region. Above all, we obtained the cosmic ray composition with three independent techniques, namely from the equi-intensity cuts, the arrival time distributions of Cherenkov lights associated with air showers, and the lateral distributions of Cherenkov photons around the shower axis. All the results from these experiments are in agreement and show that the average mass of cosmic ray nuclei increases with energies below and above the knee, and dominated by heavier nuclei as iron at 1016 eV. This result is consistent with the confinement and rigidity dependent acceleration models, and suggests that the cosmic ray origins are supernova remnants of massive population as Wolf-Rayet stars. It is of quite interest whether the mass of cosmic ray nuclei continues to increase with energies, or decreases by contributions of lighter components expected from the extra-galactic cosmic ray models. In this paper, we describe the characteristics of the new array and preliminary results from the first observation.

  16. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  17. Acceleration of cosmic rays in supernova-remnants

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.

  18. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F

  19. New look on the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.

    2017-06-01

    From the analysis of the flux of high energy particles, E > 3 · 1018 eV, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, q̅(E) ∝ E-2.7, with the same index of 2.7 that has the distribution of Galactic cosmic rays before the so called `knee', E < 3 · 1015 eV. However, the average power of extragalactic sources, which is of ɛ ≃ 1043 erg s-1, exceeds by at least two orders the power emitted by the Galaxy in cosmic rays, assuming that the density of galaxies is estimated as Ng ≃ 1 Mpc-3. Considering that such power can be provided by relativistic jets from active galactic nuclei with the power ɛ ≃ 1045 - 1046 erg s-1, we estimate the density of extragalactic sources of cosmic rays as Ng ≃ 10-2 - 10-3 Mpc-3. Assuming the same nature of Galactic and extragalactic rays, we conclude that the Galactic rays were produced by a relativistic jet emitted from the Galactic center during the period of its activity in the past. The remnants of a bipolar jet are now observed in the form of bubbles of relativistic gas above and below the Galactic plane. The break, observed in the spectrum of Galactic rays (`knee'), is explained by fast escape of energetic particles, E > 3 · 1015 eV, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, D∝E0.7. The obtained index of the density distribution of particles over energy, N(E)∝E-2.7-0.7/2=E-3.05, for E > 3 · 1015 eV agrees well with the observed one, N(E)∝E-3.1. The estimated time of the termination of the jet in the Galaxy is 4.2 · 104 years ago.

  20. Results on the energy dependence of cosmic-ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.

  1. Questions and Answers in Extreme Energy Cosmic Rays - a guide to explore the data set of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Andringa, S.; Diogo, F.; Espírito Santo, M. C.; Pierre Auger Collaboration

    2016-04-01

    The Pierre Auger Observatory is the largest extensive air shower detector, covering 3000 km2 in Argentina. The Observatory makes available, for educational and outreach purposes, 1% of its cosmic ray data set, corresponding after 10 years of running to more than 35 000 cosmic ray events. Several different proposals of educational activities have been developed within the collaboration and are available. We will focus on the activity guide we developed with the aim of exploring the rich education and outreach potential of cosmic rays with Portuguese high school students. In this guide we use the Auger public data set as a starting point to introduce open questions on the origin, nature and spectrum of high energy cosmic rays. To address them, the students learn about the air-shower cascade development, data reconstruction and its statistical analysis. The guide has been used both in the context of student summer internships at research labs and directly in schools, under the supervision of trained teachers and in close collaboration with Auger researchers. It is now available in Portuguese, English and Spanish.

  2. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  3. Calculation of Cosmic Ray Induced Single Event Upsets: Program CRUP, Cosmic Ray Upset Program

    DTIC Science & Technology

    1983-09-14

    1.., 0 .j ~ u M ~ t R A’- ~~ ’ .~ ; I .: ’ 1 J., ) ’- CALCULATION OF COSMIC RAY INDUCED SINGLE EVEI’o"T UPSETS: PROGRAM CRUP , COSMIC RAY UPSET...neceuety end Identity by blo..;k number) 0Thls report documents PROGR.Al\\1 CRUP , COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic...34. » » •-, " 1 » V »1T"~ Calculation of Cosmic Ray Induced Single Event Upsets: PROGRAM CRUP , COSMIC RAY UPSET PROGRAM I. INTRODUCTION Since the

  4. Cosmic-ray effects on diffuse gamma-ray measurements.

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1972-01-01

    Evaluation of calculations and experimental evidence from 600-MeV proton irradiation indicating that cosmic-ray-induced radioactivity in detectors used to measure the diffuse gamma-ray background produces a significant counting rate in the energy region around 1 MeV. It is concluded that these counts may be responsible for the observed flattening of the diffuse photon spectrum at this energy.

  5. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  6. The influence of the observatory latitude on the study of ultra high energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Rita C. dos; De Souza, Vitor; De Almeida, Rogerio M.

    2017-07-01

    Recent precision measurements of the Ultra High Energy Cosmic Rays (UHECR) arrival directions, spectrum and parameters related to the mass of the primary particle have been done by the HiRes, Pierre Auger and Telescope Array (TA) Observatories. In this paper, distributions of arrival directions of events in the nearby Universe are assumed to correlate with sources in the 2MASS Redshift Survey (2MRS), IRAS 1.2 Jy Survey, Palermo Swift-BAT and Swift-BAT catalogs, and the effect of the latitude of the observatory on the measurement of the energy spectrum and on the capability of measuring anisotropy is studied. The differences between givenmore » latitudes on the northern and southern hemispheres are quantified. It is shown that the latitude of the observatory: a) has an influence on the total flux measured and b) imposes an important limitation on the capability of measuring an anisotropic sky.« less

  7. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  8. A measurement of the cosmic ray elements C to Fe in the two energy intervals 0.5-2.0 GeV/n and 20-60 GeV/n

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Parnell, T. A.; Watts, J. W.; Gregory, J. C.

    1985-01-01

    The study of the cosmic ray abundances beyond 20 GeV/n provides additional information on the propagation and containment of the cosmic rays in the galaxy. Since the average amount of interstellar material traversed by cosmic rays decreases as its energy increases, the source composition undergoes less distortion in this higher energy region. However, data over a wide energy range is necessary to study propagation parameters. Some measurements of some of the primary cosmic ray abundance ratios at both low (near 2 GeV/n) and high (above 20 GeV/n) energy are given and compared to the predictions of the leaky box mode. In particular, the integrated values (above 23.7 GeV/n) for the more abundant cosmic ray elements in the interval C through Fe and the differential flux for carbon, oxygen, and the Ne, Mg, Si group are presented. Limited statistics prevented the inclusion of the odd Z elements.

  9. Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with IceCube neutrinos?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Fujii, Toshihiro; Linden, Tim

    2014-10-20

    The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible sourcemore » classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.« less

  10. The origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1986-01-01

    Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.

  11. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  12. Identifying Galactic Cosmic Ray Origins With Super-TIGER

    NASA Technical Reports Server (NTRS)

    deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; hide

    2009-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 < or equal Z < or equal 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 60. It will also measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 14 < or equal Z < or equal 30 at energies 0.8 < or equal E < or equal 10 GeV/nucleon. These spectra will give a sensitive test of the hypothesis that microquasars or other sources could superpose spectral features on the otherwise smooth energy spectra previously measured with less statistical accuracy. Super-TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.

  13. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-09-01

    Cosmic rays are high-energy particles arriving from space; some have energies far beyond those that human-made particle accelerators can achieve. The sources of higher-energy cosmic rays remain under debate, although we know that lower-energy cosmic rays come from the solar wind. The Pierre Auger Collaboration reports the observation of thousands of cosmic rays with ultrahigh energies of several exa–electron volts (about a Joule per particle), arriving in a slightly dipolar distribution (see the Perspective by Gallagher and Halzen). The direction of the rays indicates that the particles originated in other galaxies and not from nearby sources within our own Milky Way Galaxy.

  14. A lower bound on the number of cosmic ray events required to measure source catalogue correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolci, Marco; Romero-Wolf, Andrew; Wissel, Stephanie, E-mail: marco.dolci@polito.it, E-mail: Andrew.Romero-Wolf@jpl.nasa.gov, E-mail: swissel@calpoly.edu

    2016-10-01

    Recent analyses of cosmic ray arrival directions have resulted in evidence for a positive correlation with active galactic nuclei positions that has weak significance against an isotropic source distribution. In this paper, we explore the sample size needed to measure a highly statistically significant correlation to a parent source catalogue. We compare several scenarios for the directional scattering of ultra-high energy cosmic rays given our current knowledge of the galactic and intergalactic magnetic fields. We find significant correlations are possible for a sample of >1000 cosmic ray protons with energies above 60 EeV.

  15. Cosmic Rays and Research in Schools: One School's Experience

    ERIC Educational Resources Information Center

    Chaffer, Andy; Tedd, Bernie

    2016-01-01

    The High School Project on Astrophysics Research with Cosmics (HiSPARC) is an international project in which secondary schools and academic institutions join forces to form a network of detectors to measure cosmic rays with extremely high energy. We present results of research done by students at the King Edward VI High School For Girls,…

  16. Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Roelof, E. C.; Smith, E. J.; Wood, D.; Ip, W. H.

    1985-01-01

    Previous studies at lower energies have shown that the cosmic ray density gradients vary in space and time, and many authors currently are suggesting that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the Sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. With this in mind, the anisotropy measurements made by the UCSD Cerenkov detectors on Pioneers 10 and 11 are studied. It is shown that the local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU.

  17. High energy gamma ray results from the second small astronomy satellite

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.

    1974-01-01

    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.

  18. Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yasunobu

    Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.

  19. A Demonstration Device for Cosmic Rays Telescopes

    ERIC Educational Resources Information Center

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon…

  20. Geothermal Energy in Planetary Icy Large Objects via Cosmic Rays Muon–Catalyzed Fusion

    NASA Astrophysics Data System (ADS)

    de Morais, A.

    2018-05-01

    We propose the possibility that muon-catalyzed fusion, produced by cosmic rays, might add energy to the interior of planetary icy large objects of the solar system, and other solar systems, interesting for astrobiological considerations.

  1. Cosmic-ray models for early Galactic Lithium, Beryllium, and Boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To understand better the early Galactic production of Li, Be, and B by comsmic-ray spallation and fusion reactions, the dependence of these production rates on cosmic-ray models and model parameters is examined. The sensitivity of elemental and isotopic production to the cosmic-ray path length magnitude and energy dependence, source spectrum, spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B- versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high-energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic-ray models for the early Galaxy.

  2. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  3. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  4. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  5. Cosmic Ray Interactions in Shielding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less

  6. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    NASA Astrophysics Data System (ADS)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  7. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 6

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers contributed to the 19th International Cosmic Ray Conference which address high energy interactions and related phenomena are compiled. Particular topic areas include cross sections; particle production; nuclei and nuclear matter; nucleus-nucleus collisions; gamma ray and hadron spectra; C-jets, a-jets, and super families; and emulsion chamber simulations.

  8. Crest: A Balloon-borne Instrument to Measure Cosmic-ray Electrons above TeV Energies

    NASA Astrophysics Data System (ADS)

    Nutter, S.; Anderson, T.; Coutu, S.; Geske, M.; Bower, C.; Musser, J.; Muller, D.; Park, N.; Wakely, S.; Schubnell, M.; Tarle, G.; Yagi, A.

    2009-05-01

    The flux of high-energy (>1 TeV) electrons provides information about the spatial distribution and abundance of nearby cosmic ray sources. CREST, a balloon-borne array of 1024 BaF2 crystals viewed by PMTs, will measure the spectrum of multi-TeV electrons through detection of the x-ray synchrotron photons generated as the electrons traverse the Earth's magnetic field. This method naturally discriminates against the proton and gamma ray backgrounds, and achieves very large detector apertures, since the instrument need only intersect a portion of the kilometers-long line of photons and not the electron itself. Thus CREST's acceptance is several times its geometric area up to energies of 50 TeV, ˜10 times higher in energy than ground based techniques can reach. This measurement will overlap the recent HESS results and extend to higher energies. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica in 2010. An overview of the detector design and status will be presented.

  9. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  10. Cosmic-ray physics with the milagro gamma-ray observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    The Milagro gamma-ray observatory is a water Cherenkov detector with an energy response between 100 GeV and 100 TeV. While the major scientific goals of Milagro were to detect and study cosmic sources of TeV gamma rays, Milagro has made measurements important to furthering our understanding of the cosmic radiation that pervades our Galaxy. Milagro has made the first measurement of the Galactic diffuse emission in the TeV energy band. In the Cygnus Region we measure a flux {approx}2.7 times that predicted by GALPROP. Milagro has also made measurements of the anisotropy of the arrival directions of the local cosmicmore » radiation. On large scales the measurements made by Milagro agree with those previously reported by the Tibet AS{gamma} array. However, we have also discovered a time dependence to this anisotropy, perhaps due to solar modulation. On smaller scales, {approx}10 degrees, we have detected two regions of excess. These excesses have a spectrum that is inconsistent with the local cosmic-ray spectrum.« less

  11. Lunar surface cosmic ray experiment S-152, Apollo 16

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Carter, M.; Comostock, G. M.; Renshaw, A.; Woods, R. T.

    1973-01-01

    This investigation was directed at determining the energy spectra and abundances of low energy heavy cosmic rays (0.03 E or = 150 MeV/nucleon). The cosmic rays were detected using plastic and glass particle track detectors. Particles emitted during the 17 April 1972 solar flare dominated the spectra for energies below about 70 MeV/nucleon. Two conclusions emerge from the low energy data: (1) The differential energy spectra for solar particles vary rapidly for energies as low as 0.05 MeV/nucleon for iron-group nuclei. (2) The abundance ratio of heavy elements changes with energy at low energies; heavy elements are enhanced relative to higher elements increasingly as the energy decreases. Galactic particle fluxes recorded within the spacecraft are in agreement with those predicted taking into account solar modulation and spacecraft shielding. The composition of the nuclei at energies above 70 MeV/nucleon imply that these particles originate outside the solar system and hence are galactic cosmic rays.

  12. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE PAGES

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-06-26

    This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  13. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai, E-mail: mzhang@fit.edu

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  14. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  15. Characterising CCDs with cosmic rays

    DOE PAGES

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  16. Cosmic Ray Physics with the KASCADE-Grande Observatory

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    The existence of a knee at a few PeV in the all-particle cosmic ray energy spectrum has been well established by several experiments but its physical origin has eluded researches for a long time. It is believed that keys to disentangle the mystery could be found in the spectrum and the composition of cosmic rays between 1 PeV and 1 EeV. A first detailed look into the elemental chemical abundances of cosmic rays in this energy regime was provided by both the KASCADE and the KASCADE-Grande experiments. Their measurements opened the door to a wealth of new data on the subject, which led to the discovery of new structures in the all-particle energy spectrum and the confirmation of knee-like features in the spectra of individual mass groups, as well as the observation of an unexpected ankle-like structure at around 100 PeV in the flux of the light component of cosmic rays. In this contribution, early findings with the KASCADE-Grande experiment will be reviewed and then a short update on the analyses currently performed with the data of the observatory will be presented.

  17. Monopole, astrophysics and cosmic ray observatory at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Demarzo, C.; Enriquez, O.; Giglietto, N.; Posa, F.; Attolini, M.; Baldetti, F.; Giacomelli, G.; Grianti, F.; Margiotta, A.; Serra, P.

    1985-01-01

    A new large area detector, MACRO was approved for installation at the Gran Sasso Laboratory in Italy. The detector will be dedicated to the study of naturally penetrating radiation deep underground. It is designed with the general philosophy of covering the largest possible area with a detector having both sufficient built-in redundancy and use of complementary techniques to study very rare phenomena. The detector capabilities will include monopole investigations significantly below the Parker bound; astrophysics studies of very high energy gamma ray and neutrino point sources; cosmic ray measurements of single and multimuons; and the general observation of rare new forms of matter in the cosmic rays.

  18. Ultrahigh-energy Cosmic Rays from the "En Caul" Birth of Magnetars

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Kollmeier, Juna A.

    2016-07-01

    Rapidly spinning magnetars can potentially form through the accretion induced collapse of a white dwarf or by neutron star (NS) mergers if the equation of state of the nuclear density matter is such that two low-mass NSs can form a massive NS rather than a black hole. In either case, the newborn magnetar is an attractive site for the production of ultrahigh-energy cosmic rays (particles with individual energies exceeding {10}18 {{eV}}; UHECRs). The short-period spin and strong magnetic field are able to accelerate particles up to appropriate energies, and the composition of material on and around the magnetar may naturally explain recent inferences of heavy elements in UHECRs. We explore whether the small amount of natal debris surrounding these magnetars allows UHECRs to escape easily. We also investigate the impact on the UHECRs of the unique environment around the magnetar, which consists of a bubble of relativistic particles and magnetic field within the debris. The rates and energetics of UHECRs are consistent with such an origin, even though the rates of events that produce rapidly spinning magnetars remain very uncertain. The low ejecta mass also helps the high-energy neutrino background associated with this scenario to be below current IceCube constraints over most of the magnetar parameter space. A unique prediction is that UHECRs may be generated in old stellar environments without strong star formation, in contrast to what would be expected for other UHECR scenarios, such as active galactic nuclei or long gamma-ray bursts. The “en caul” birth refers to the rare circumstance in which a newborn emerges in a fully intact amniotic sac. A birth of this nature is considered to be a sign of good fortune in many cultures. Here, we refer to the newborn magnetar similarly surrounded by a small amount of natal material and similarly fortunate as a cosmic-ray accelerator.

  19. Search for point-like sources of cosmic rays with energies above 1018.5 eV in the HiRes-I monocular data set

    NASA Astrophysics Data System (ADS)

    High-Resolution Fly'S Eye Collaboration; Abbai, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Blake, S. A.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Rodriguez, D.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; Zhang, X.

    2007-07-01

    We report the results of a search for point-like deviations from isotropy in the arrival directions of ultra-high energy cosmic rays in the northern hemisphere. In the monocular data set collected by the High-Resolution Fly’s Eye, consisting of 1525 events with energy exceeding 1018.5 eV, we find no evidence for point-like excesses. We place a 90% c.l. upper limit of 0.8 hadronic cosmic rays/km2 yr on the flux from such sources for the northern hemisphere and place tighter limits as a function of position in the sky.

  20. Apollo-Soyuz pamphlet no. 6: Cosmic ray dosage. [experimental designiradiation hazards and dosage

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The radiation hazard inside spacecraft is discussed with emphasis on its effects on the crew, biological specimens, and spacecraft instruments. The problem of light flash sensations in the eyes of astronauts is addressed and experiment MA-106 is described. In this experiment, light flashes seen by blindfolded astronauts were counted and high energy cosmic ray intensity in the command module cabin were measured. The damage caused by cosmic ray hits on small living organisms was investigated in the Biostack 3 experiment (MA-107). Individual cosmic rays were tracked through layers of bacterial spores, small seeds, and eggs interleaved with layers of AgCl-crystal wafers, special plastic, and special photographic film that registered each cosmic ray particle passed.

  1. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    NASA Astrophysics Data System (ADS)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  2. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E < 1015 eV) PCR-IIPrimary cosmic rays II (E > 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the

  3. Primary Cosmic-Ray Spectra in the Knee Region

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, Samvel V.; Biermann, P. L.

    2003-07-01

    Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.

  4. Implications of supernova remnant origin model of galactic cosmic rays on gamma rays from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Banik, Prabir; Bhadra, Arunava

    2017-06-01

    It is widely believed that Galactic cosmic rays are originated in supernova remnants (SNRs), where they are accelerated by a diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. In recent theoretical developments of the DSA theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are the true generators of cosmic rays, they should accelerate not only protons but also heavier nuclei with the right proportions, and the maximum energy of the heavier nuclei should be the atomic number (Z ) times the mass of the proton. In this work, we investigate the implications of the acceleration of heavier nuclei in SNRs on energetic gamma rays produced in the hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition compared to that of pure protons to explain observations. In addition, the gamma-ray flux above a few tens of TeV would be significantly higher if cosmic ray particles could attain energies Z times the knee energy in lieu of 200 TeV, as suggested earlier for nonamplified magnetic fields. The two stated maximum energy paradigms will be discriminated in the future by upcoming gamma-ray experiments like the Cherenkov telescope array (CTA).

  5. Recent high energy gamma-ray results from SAS-2

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.

    1977-01-01

    Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.

  6. Description of Differential Cross Sections for 63Cu + p Nuclear Reactions Induced by High-Energy Cosmic-Ray Protons

    NASA Astrophysics Data System (ADS)

    Chuvilskaya, T. V.; Shirokova, A. A.

    2018-03-01

    The results of calculation of 63Cu + p differential cross sections at incident-proton energies between 10 and 200 MeV and a comparative analysis of these results are presented as a continuation of the earlier work of our group on developing methods for calculating the contribution of nuclear reactions to radiative effects arising in the onboard spacecraft electronics under the action of high-energy cosmic-ray protons on 63Cu nuclei (generation of single-event upsets) and as a supplement to the earlier calculations performed on the basis of the TALYS code in order to determine elastic- and inelastic-scattering cross sections and charge, mass, and energy distributions of recoil nuclei (heavy products of the 63Cu + p nuclear reaction). The influence of various mechanisms of the angular distributions of particles emitted in the 63Cu + p nuclear reaction is also discussed.

  7. A large light-mass component of cosmic rays at 10(17)-10(17.5) electronvolts from radio observations.

    PubMed

    Buitink, S; Corstanje, A; Falcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Dettmar, R-J; van Diepen, G; Duscha, S; Eislöffel, J; Engels, D; Enriquez, J E; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J M; Gunst, A W; van Haarlem, M P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Horneffer, A; Iacobelli, M; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, G M; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Mulcahy, D D; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H J A; Scaife, A M M; Schwarz, D J; Serylak, M; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, M C; Vermeulen, R; Vocks, C; Vogt, C; van Weeren, R J; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, J A

    2016-03-03

    Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

  8. Measurement of Cosmic-Ray TeV Electrons

    NASA Astrophysics Data System (ADS)

    Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.; Tarle, G.; Wakely, S.

    2011-09-01

    The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. At these energies distant sources will not contribute to the local electron spectrum due to the strong energy losses of the electrons and thus TeV observations will reflect the distribution and abundance of nearby acceleration sites. CREST will detect electrons indirectly by measuring the characteristic synchrotron photons generated in the Earth's magnetic field. The instrument consist of an array of 1024 BaF2 crystals viewed by photomultiplier tubes surrounded by a hermetic scintillator shield. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica during the 2011-12 season.

  9. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.

  10. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  11. A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per amu

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Y.; Hayashi, T.; Thoburn, C.; Parnell, T. A.; Watts, John W., Jr.; Fowler, P. H.; Masheder, M. R. W.; Derrickson, James H.

    1991-01-01

    A group collaboration was made in the development of the Bristol University Gas Spectrometer number 4 (BUGS 4). The BUGS 4 detector is designed to measure the charge spectrum for species between oxygen and the iron peak as a function of energy per nucleon, between 20 and 1000 GeV/amu. It is particularly concerned with energies above 50 GeV/amu. The high energy component is considerably less affected by propagation through the interstellar medium than the lower energy component and is expected to approach the original charge spectrum of the source more closely. This information allows one to unravel the effects of cosmic ray production, acceleration, and propagation. The detector is described in total detail. The method of estimating the charge and energy of a cosmic ray depends on the energy of the particle. Calculations and experiments lead to the expectation of a nearly constant charge resolution of about 0.2 charge units over the whole energy range except 4.5 less than gamma less than 20. In this band, the experiment is insensitive to energy. A balloon flight is planned in 1993.

  12. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.

    PubMed

    Mishev, A L

    2016-03-01

    A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Observation of Anisotropy in the Galactic Cosmic Ray Arrival Directions at 400 TEV With IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2011-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33x l0(epx 9) muon events with a median angular resolution of approx 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 Te V. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.30 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  14. A cosmic and solar X-ray and gamma-ray instrument for a scout launch

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.

    1988-01-01

    An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.

  15. Gamma-ray bursts from cusps on superconducting cosmic strings at large redshifts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1988-01-01

    Babul et al. (1987) proposed that some gamma-ray bursts may be caused by energy released at the cusps of oscillating loops made of superconducting cosmic strings. It is claimed that there were some errors and omissions in that work, which are claimed to be corrected in the present paper. Arguments are presented, that given certain assumptions, the cusps on oscillating superconducting cosmic strings produce highly collimated and energetic electromagnetic bursts and that a fair fraction of electromagnetic energy is likely to come out as gamma rays.

  16. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    NASA Astrophysics Data System (ADS)

    Tamburro, Alessio

    2014-04-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.

  17. Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers

    NASA Astrophysics Data System (ADS)

    Wittor, D.; Vazza, F.; Brüggen, M.

    2017-02-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.

  18. Impact of energetic cosmic-ray ions on astrophysical ice grains

    NASA Astrophysics Data System (ADS)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M.

    2017-02-01

    Using molecular-dynamics simulation with REAX potentials, we study the consequences of cosmic-ray ion impact on ice grains. The grains are composed of a mixture of H2O, CO2, NH3, and CH3OH molecules. Due to the high energy deposition of the cosmic-ray ion, 5 keV/nm, a strong pressure wave runs through the grain, while the interior of the ion track gasifies. Abundant molecular dissociations occur; reactions of the fragments form a variety of novel molecular product species.

  19. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weidenhaupt, K.; Weindl, A.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 × 10 19 eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1° from the position of an active galactic nucleus within 75 Mpc (using the Véron-Cetty and Véron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is 38-6+7%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of 69-13+11%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.

  20. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  1. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  2. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  3. The Ultimate Monte Carlo: Studying Cross-Sections With Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2007-01-01

    The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.

  4. Results from Two Low Mass Cosmic Ray Experiments Flown on the HASP Platform

    NASA Astrophysics Data System (ADS)

    Fontenot, R. S.; Hollerman, W. A.; Tittsworth, M.; Fountain, W.; Christl, M.; Thibodaux, C.; Broussard, B. M.

    2009-03-01

    The High Altitude Student Payload (HASP) program is designed to carry twelve student experiments to an altitude of about 123,000 feet (˜37 km). In 2006, students participated in the first HASP launch to measure cosmic ray intensities using traditional film and absorbers. This 10 kg payload flew from Fort Sumner, New Mexico in early September 2006 and was a great success. In 2007, students participated in the second HASP flight to measure the cosmic ray intensity and flux using a traditional film and absorber stack with five layers of optically stimulated luminescent (OSL) dosimeters. Results from both payloads showed that the cosmic ray flux decreases as a function of payload depth. As the cosmic rays go through the stack, they deposit their energy in the payload material. Determining cosmic ray flux is a tedious task. It involves digitizing the film and determining the real cosmic ray density. For the first HASP payload, students used a program known as GlobalLab to count particles. For the second payload, the students decided to use a combination of the GREYCStoration image regularization algorithm, an embossing filter, and a depth-merging filter to reconstruct the paths of the cosmic rays.

  5. Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-08-01

    We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3° and a median energy of ~20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 ± 0.2 stat. ± 0.8 syst.) × 10-4.

  6. Indications of Proton-Dominated Cosmic-Ray Composition above 1.6 EeV

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amman, J. F.; Anderson, R. J.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Liu, J.; Lundquist, J. P.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, N.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S.; Thomas, S. B.; Thomas, J. R.; Thomson, G. B.; Tupa, D.; Zech, A.; Zhang, X.

    2010-04-01

    We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (Xmax⁡), for air shower events collected by the High-Resolution Fly’s Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d⟨Xmax⁡⟩/d[log⁡(E)] of 47.9±6.0(stat)±3.2(syst)g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4×1018eV.

  7. Indications of proton-dominated cosmic-ray composition above 1.6 EeV.

    PubMed

    Abbasi, R U; Abu-Zayyad, T; Al-Seady, M; Allen, M; Amman, J F; Anderson, R J; Archbold, G; Belov, K; Belz, J W; Bergman, D R; Blake, S A; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Ivanov, D; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Loh, E C; Liu, J; Lundquist, J P; Maestas, M M; Manago, N; Marek, L J; Martens, K; Matthews, J A J; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Rodriguez, D; Sasaki, N; Schnetzer, S R; Scott, L M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S; Thomas, S B; Thomas, J R; Thomson, G B; Tupa, D; Zech, A; Zhang, X

    2010-04-23

    We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d/d[log(E)] of 47.9+/-6.0(stat)+/-3.2(syst) g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4x10(18) eV.

  8. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  9. A grey incidence algorithm to detect high-Z material using cosmic ray muons

    NASA Astrophysics Data System (ADS)

    He, W.; Xiao, S.; Shuai, M.; Chen, Y.; Lan, M.; Wei, M.; An, Q.; Lai, X.

    2017-10-01

    Muon scattering tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear materials. However, the flux of cosmic ray muons is low, in the real life application, the detection has to be done a short timescale with small numbers of muons. In this paper, we present a novel approach to detection of special nuclear material by using cosmic ray muons. We use the degree of grey incidence to distinguish typical waste fuel material, uranium, from low-Z material, medium-Z material and other high-Z materials of tungsten and lead. The result shows that using this algorithm, it is possible to detect high-Z materials with an acceptable timescale.

  10. Energy spectrum and arrival direction of primary cosmic rays of energy above 10 to the 18th power eV

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Nagano, M.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.; Mori, M.; Ohoka, H.

    1985-01-01

    The observation of ultra high energy cosmic rays with 20 sq km array has started at Akeno. The preliminary results on energy spectrum and arrival direction of energies above 10 to the 18th eV are prsented with data accumulated for four years with the 1 sq km array, for two years with the 4 sq km array and for a half year with the new array. The energy spectrum is consistent with the previous experiments showing the flattening above 10 to the 18.5 eV.

  11. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  12. Investigating the origin of ultrahigh-energy cosmic rays with CRPropa

    NASA Astrophysics Data System (ADS)

    Bouchachi, Dallel; Attallah, Reda

    2016-07-01

    Ultrahigh-energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. Yet, their sources and acceleration mechanisms are still unknown. To better understand the origin of these particles, we carried out extensive numerical simulations of their propagation in extragalactic space. We used the public CRPropa code which considers all relevant particle interactions and magnetic deflections. We examined the energy spectrum, the mass composition, and the distribution of arrival directions under different scenarios. Such a study allows, in particular, to properly interpret the data of modern experiments like "The Pierre Auger Observatory" and "The Telescope Array".

  13. Elemental composition, isotopes, electrons and positrons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.

    1979-01-01

    Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.

  14. An investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1977-01-01

    An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

  15. A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.

    1984-01-01

    The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.

  16. THE HIGHEST-ENERGY COSMIC RAYS CANNOT BE DOMINANTLY PROTONS FROM STEADY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Kotera, Kumiko

    The bulk of observed ultrahigh-energy cosmic rays could be light or heavier elements and originate from an either steady or transient population of sources. This leaves us with four general categories of sources. Energetic requirements set a lower limit on single-source luminosities, while the distribution of particle arrival directions in the sky sets a lower limit on the source number density. The latter constraint depends on the angular smearing in the skymap due to the magnetic deflections of the charged particles during their propagation from the source to the Earth. We contrast these limits with the luminosity functions from surveysmore » of existing luminous steady objects in the nearby universe and strongly constrain one of the four categories of source models, namely, steady proton sources. The possibility that cosmic rays with energy >8 × 10{sup 19} eV are dominantly pure protons coming from steady sources is excluded at 95% confidence level, under the safe assumption that protons experience less than 30° magnetic deflection on flight.« less

  17. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    NASA Astrophysics Data System (ADS)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  18. Observation of Anisotropy in the Galactic Cosmic-Ray Arrival Directions at 400 TeV with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-02-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 × 109 muon events with a median angular resolution of ~3°. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3σ. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  19. Energy spectrum of cosmic-ray iron nucleus observed with emulsion chamber

    NASA Technical Reports Server (NTRS)

    Sato, Y.; Shimada, E.; Ohta, I.; Tasaka, S.; Tanaka, S.; Sugimoto, H.; Taira, K.; Tateyama, N.

    1985-01-01

    Energy spectrum of cosmic-ray Fe-nucleus has been measured from 4 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using emulsion chambers on a balloon from Sanriku, Japan. The energies were estimated by the opening angle method after calibrated using 1.88 GeV per nucleon Fe collisions. The spectrum of Fe is approximately E-2.5 in the range from 10 to 200 GeV per nucleon. This result is in good agreement with those of other experiments.

  20. Very high energy gamma-ray binary stars.

    PubMed

    Lamb, R C; Weekes, T C

    1987-12-11

    One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.

  1. Voyager measurements of the isotopic composition of cosmic-ray aluminum and implications for the propagation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of aluminum in the low-energy range form 75 to 206 MeV per nucleon.This measurement was made using the high-energy telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1993 with an average solar modulation level about 497 MV, roughly the same as at Earth near sunspot minimum. We obtain approximately 430 Al events of which approximately 35 are Al-26 and 395 are Al-27. The Al isotopes were separated with an average mass resolution sigma of 0.35 amu. Our interpretation of the isotopic composition of cosmic-ray aluminum is based on a standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the latest cross sections of the New Mexico-Saclay collaboration as well as a disk-halo diffusion model. From our observed ratio Al-26/Al-27 of 8.3 +/- 2.4 % we deduce an average interstellar density of about 0.52 (+0.26, -0.2) atoms per cu cm. This density is larger than the value of 0.28 (+0.14, -0.11) atoms per cu cm we found from an analysis of the observed abundance of the longer lived Be-10 made using data from the Voyager detectors over almost the same time interval and using essentially the same propagation program.

  2. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  3. Cosmic-ray electrons and galactic radio emission - A conflict

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Daniel, R. R.; Stephens, S. A.

    1977-01-01

    An analysis which takes into account the observed energy spectrum of cosmic-ray electrons above 5 GeV and calculated mean magnetic field data shows that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic-ray electron measurements. It is found that the absolute intensities of cosmic-ray electrons measured by some of the experimenters are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk toward the anticenter.

  4. High energy gamma-ray astronomy; Proceedings of the International Conference, ANN Arbor, MI, Oct. 2-5, 1990

    NASA Astrophysics Data System (ADS)

    Matthews, James

    The present volume on high energy gamma-ray astronomy discusses the composition and properties of heavy cosmic rays greater than 10 exp 12 eV, implications of the IRAS Survey for galactic gamma-ray astronomy, gamma-ray emission from young neutron stars, and high-energy diffuse gamma rays. Attention is given to observations of TeV photons at the Whipple Observatory, TeV gamma rays from millisecond pulsars, recent data from the CYGNUS experiment, and recent results from the Woomera Telescope. Topics addressed include bounds on a possible He/VHE gamma-ray line signal of Galactic dark matter, albedo gamma rays from cosmic ray interactions on the solar surface, source studies, and the CANGAROO project. Also discussed are neural nets and other methods for maximizing the sensitivity of a low-threshold VHE gamma-ray telescope, a prototype water-Cerenkov air-shower detector, detection of point sources with spark chamber gamma-ray telescopes, and real-time image parameterization in high energy gamma-ray astronomy using transputers. (For individual items see A93-25002 to A93-25039)

  5. Weibull thermodynamics: Subexponential decay in the energy spectrum of cosmic-ray nuclei

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2017-10-01

    The spectral number density of cosmic-ray nuclei is shown to be a multiply broken power law with subexponential spectral cutoff. To this end, a spectral fit is performed to data sets covering the 1GeV - 1011GeV interval of the all-particle cosmic-ray spectrum. The flux points of the ultra-high energy spectral tail measured with the Telescope Array indicate a Weibull cutoff exp(-(E /(kB T)) σ) and permit a precise determination of the cutoff temperature kB T =(2 . 5 ± 0 . 1) × 1010 GeV and the spectral index σ = 0 . 66 ± 0 . 02. Based on the spectral number density inferred from the least-squares fit, the thermodynamics of this stationary non-equilibrium system, a multi-component mixture of relativistic nuclei, is developed. The derivative of entropy with respect to internal energy defines the effective temperature of the nuclei, S,U = 1 /Teff ,kBTeff ≈ 16 . 1 GeV, and the functional dependence between the cutoff temperature in the Weibull exponential and the effective gas temperature is determined. The equipartition ratio is found to be U /(NkBTeff) ≈ 0 . 30. The isochoric and isobaric heat capacities of the nuclear gas are calculated, as well as the isothermal and adiabatic compressibilities and the isobaric expansion coefficient, and it is shown that this non-equilibrated relativistic gas mixture satisfies the thermodynamic inequalities 0

  6. High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, T. A.; Moskalenko, I. V.; Jóhannesson, G., E-mail: tporter@stanford.edu

    High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions frommore » the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.« less

  7. A search for ultrahigh-energy neutrinos and measurement of cosmic ray radio emission with the Antarctic Impulsive Transient Antenna

    NASA Astrophysics Data System (ADS)

    Hoover, Stephen Lam Douglas

    2010-11-01

    New astronomical messengers may reveal unexpected aspects of the Universe and have often provided a unique source of fresh physical insights. Neutrinos are a promising new messenger particle, capable of carrying information from otherwise inaccessible sources. The ANtarctic Impulsive Transient Antenna (ANITA) seeks to make the first detection of an ultrahigh-energy (E > 1018 eV) neutrino flux. Such a neutrino flux almost certainly exists, produced in interactions of ultrahigh-energy cosmic rays with photons from the cosmic microwave background. ANITA is a balloon payload which monitors large volumes of the Antarctic ice sheet from an altitude of 38 km. An ultrahigh-energy neutrino which interacts in the ice sheet will produce a particle shower which will coherently radiate Cherenkov radiation in radio wavelengths (<3 GHz). Antennas on the balloon payload can then detect the resulting impulsive radio signal. The full ANITA flew for the first time from 15 December 2006 to 19 January 2007. In this dissertation, I will describe the ground calibration system used to transmit calibration signals to the payload in-flight. I will then describe techniques for analysis of ANITA data and give limits on the ultrahigh-energy neutrino flux implied by the null result of that analysis. Finally, I will demonstrate that ANITA is also sensitive to ultrahigh-energy cosmic rays and show the detection of 16 ultrahigh-energy cosmic-ray events during ANITA's first flight. This constitutes the highest frequency and widest bandwidth radio observations of cosmic-ray emission to date I show the average waveform and spectrum of these events and describe their polarization properties, which are strongly correlated with the geomagnetic field.

  8. From Auger to AugerPrime: Understanding Ultrahigh-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Montanet, F.; Pierre Auger Collaboration

    2016-12-01

    Ultrahigh-energy cosmic rays (UHECRs), whose origin is still mysterious, provide a unique probe of the most extreme environments in the universe, of the intergalactic space and of particle physics beyond the reach of terrestrial accelerators. The Pierre Auger Observatory started operating more than a decade ago. Outperforming preceding experiments both in size and in precision, it has boosted forward the field of UHECRs as witnessed by a wealth of results. These include the study of the energy spectrum beyond 1 EeV with its spectral suppression around 40 EeV, of the large-scale anisotropy, of the mass composition, as well as stringent limits on photon and neutrino fluxes. But any harvest of new results also calls for new questions: what is the true nature of the spectral suppression: a propagation effect (so-called Greisen, Zatsepin and Kuz'min or GZK cutoff) or cosmic accelerators running out of steam? What is the composition of UHECRs at the highest energies? In order to answer these questions, the Auger Collaboration is undertaking a major upgrade program of its detectors, the AugerPrime project. The science case and motivations, the technical strategy and the scientific prospects are presented.

  9. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2010-06-01

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased frommore » 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.« less

  10. Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA): Status, results and perspectives

    NASA Astrophysics Data System (ADS)

    Kuzmichev, L.; Astapov, I.; Bezyazeekov, P.; Boreyko, V.; Borodin, A.; Brückner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Epimakhov, S.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Haungs, A.; Horns, D.; Huege, T.; Ivanova, A.; Jurov, D.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, V.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigal, R.; Osipova, E.; Pakharukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Pushnin, A.; Rubtsov, G.; Ryabov, E.; Sagan, Y.; Samoliga, V.; Schröder, F. G.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenko, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Sulakov, V.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2017-06-01

    We present the current status of high-energy cosmic-ray physics and gamma-ray astronomy at the Tunka Astrophysical Center (AC). This complex is located in the Tunka Valley, about 50 km from Lake Baikal. Present efforts are focused on the construction of the first stage of the gamma-ray observatory TAIGA - the TAIGA prototype. TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is designed for the study of gamma rays and charged cosmic rays in the energy range 1013 eV-1018 eV. The array includes a network of wide angle timing Cherenkov stations (TAIGA-HiSCORE), each with a FOV = 0.6 sr, plus up to 16 IACTs (FOV - 10∘× 10∘). This part covers an area of 5 km2. Additional muon detectors (TAIGA-Muon), with a total coverage of 2000 m2, are distributed over an area of 1 km2.

  11. Bioeffectiveness of Cosmic Rays Near the Earth Surface

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.

    2014-10-01

    Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the

  12. An alternative interpretation for cosmic ray peaks

    DOE PAGES

    Kim, Doojin; Park, Jong -Chul

    2015-10-03

    We propose an alternative mechanism based upon dark matter (DM) interpretation for anomalous peak signatures in cosmic ray measurements, assuming an extended dark sector with two DM species. This is contrasted with previous effort to explain various line-like cosmic-ray excesses in the context of DM models where the relevant DM candidate directly annihilates into Standard Model (SM) particles. The heavier DM is assumed to annihilate to an on-shell intermediate state. As the simplest choice, it decays directly into the lighter DM along with an unstable particle which in turn decays to a pair of SM states corresponding to the interestingmore » cosmic anomaly. We show that a sharp continuum energy peak can be readily generated under the proposed DM scenario, depending on dark sector particle mass spectra. Remarkably, such a peak is robustly identified as half the mass of the unstable particle. Furthermore, other underlying mass parameters are analytically related to the shape of energy spectrum. We apply this idea to the two well-known line excesses in the cosmic photon spectrum: 130 GeV γ-ray line and 3.5 keV X-ray line. As a result, each observed peak spectrum is well-reproduced by theoretical expectation predicated upon our suggested mechanism, and moreover, our resulting best fits provide rather improved χ 2 values.« less

  13. Towards a Unified Source-Propagation Model of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Molla, M.

    2010-07-01

    It is well known that the cosmic ray energy spectrum is multifractal with the analysis of cosmic ray fluxes as a function of energy revealing a first “knee” slightly below 1016 eV, a second knee slightly below 1018 eV and an “ankle” close to 1019 eV. The behaviour of the highest energy cosmic rays around and above the ankle is still a mystery and precludes the development of a unified source-propagation model of cosmic rays from their source origin to Earth. A variety of acceleration and propagation mechanisms have been proposed to explain different parts of the spectrum the most famous of course being Fermi acceleration in magnetised turbulent plasmas (Fermi 1949). Many others have been proposd for energies at and below the first knee (Peters & Cimento (1961); Lagage & Cesarsky (1983); Drury et al. (1984); Wdowczyk & Wolfendale (1984); Ptuskin et al. (1993); Dova et al. (0000); Horandel et al. (2002); Axford (1991)) as well as at higher energies between the first knee and the ankle (Nagano & Watson (2000); Bhattacharjee & Sigl (2000); Malkov & Drury (2001)). The recent fit of most of the cosmic ray spectrum up to the ankle using non-extensive statistical mechanics (NESM) (Tsallis et al. (2003)) provides what may be the strongest evidence for a source-propagation system deviating significantly from Boltmann statistics. As Tsallis has shown (Tsallis et al. (2003)), the knees appear as crossovers between two fractal-like thermal regimes. In this work, we have developed a generalisation of the second order NESM model (Tsallis et al. (2003)) to higher orders and we have fit the complete spectrum including the ankle with third order NESM. We find that, towards the GDZ limit, a new mechanism comes into play. Surprisingly it also presents as a modulation akin to that in our own local neighbourhood of cosmic rays emitted by the sun. We propose that this is due to modulation at the source and is possibly due to processes in the shell of the originating supernova. We

  14. On galactic origin of cosmic rays with energy up to 10(19) eV

    NASA Technical Reports Server (NTRS)

    Efimov, N. N.; Mikhailov, A. A.

    1985-01-01

    The experimental data on ultrahigh energy cosmic ray anisotropy are considered. In supposed models of galactic magnetic field the main characteristics of expected anisotropy are estimated and are compared with the experimental data. It is shown that particles with energy up to 10 to the 19th power eV are of galactic origin.

  15. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    young scientist from the Graz University, started to investigate how γ-radiations change their intensity with the distance from their sources, i.e. from the ground. When he performed his historical experiments on balloons in 1911-1912, it was found that at the beginning (up to approximately one km) ionization did not change, but with increase of the altitude for up to 4 - 5 km, the ionization rate escalates several times. Victor Hess drew a conclusion that some new unknown source of ionization of extra terrestrial origin exists. He named it 'high altitude radiation'. 5. Many scientists did not agree with this conclusion and tried to prove that the discovered new radiation has terrestrial origin (e.g., radium and other emanations from radioactive substances in the ground, particle acceleration up to high energies during thunderstorms, and so on). However, a lot of experiments showed that Victor Hess's findings are right: the discovered new radiation has extra terrestrial origin. 6. In 1926 the great American scientist Robert Millikan named them 'cosmic rays': cosmic as coming from space, and rays because it was generally wrongly accepted at those time that the new radiation mostly consisted of γ-rays. Robert Millikan believed that God exists and continues to work: in space God has creates He atoms from four atoms of H with the generation high energy gamma rays (in contradiction with physical laws, as this reaction can occur only at very high temperature and great density, e.g., as inside stars). 7. On this problem, interesting to many people, there was a famous public discussion between two Nobel laureates Arthur Compton and Robert Millikan, widely reported in newspapers. Only after a lot of latitude surveys in the 1930s, organized mostly by Compton and Millikan, it became clear that 'cosmic rays' are mostly not γ-rays, but rather charged particles (based on Störmer's theory about behavior of charged energetic particles in the geomagnetic field, developed in 1910

  16. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.

  17. Differences in the spectra of cosmic ray nuclear species below approximately 5 GeV/nuc

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lezniak, J. A.; Kish, J.

    1974-01-01

    Extension of previous measurements made at high energies, which show clear evidence for energy-dependent changes in cosmic ray composition, to lower energies. The new data point to the fact that these spectral differences extend over the entire energy band from a few hundred MeV/nucleon to several tens of GeV/nucleon. The details of these composition variations are examined by studying in a systematic way the variations of the ratios of secondary to primary and different groups of primary cosmic ray nuclei.

  18. Studies of the performance of the ATLAS detector using cosmic-ray muons

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-03-29

    Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been usedmore » through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.« less

  19. Studies of the performance of the ATLAS detector using cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Silva, J.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Yildiz, H. Duran; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Martin, T. Fonseca; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jež, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; King, B. T.; King, M.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuze, M.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tani, K.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Della Porta, G. Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2011-03-01

    Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.

  20. Cosmic Ray Exposure & Linear-Energy-Transfer Evaluations for the COBE Mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    Magnetospherically attenuated, orbit integrated, surface incident cosmic ray fluxes of galactic origin were determined for the COBE mission. All heavy ions up to Nickel (z=28) were considered in this, evaluation. In order to provide worst case approximations, estimates were based on solar minimum conditions. Transport and material shielding calculations were then performed for these vehicle encountered particles, for a simple spherical 3-D aluminum geometry, and the materially attenuated cosmic ray distributions emerging behind selected shield thicknesses were obtained. Finally, Linear-Energy-Transfer (LET) spectra were evaluated for the energy spectra of each ion specie and these were, in turn, integrated into the sum-total LET distribution contained in this report. The results are presented in tabular and graphical form for eight (8) different shield thicknesses from.01 to 10.0 gm/cm2 of aluminum. They show most conclusively, and not unexpectedly, that material shielding has virtually no 'effect on the final LET spectrum, at least not for aluminum shields. This was predictable. Please note that in the LET graphs, two curves were plotted. Of these, please ignore the one labeled "grazing" and use only the one labeled "normal". Again, it should be remembered that the end results contain contributions from all elements up to Nickel (z=28).

  1. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  2. Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade

    NASA Astrophysics Data System (ADS)

    Biehl, D.; Boncioli, D.; Fedynitch, A.; Winter, W.

    2018-04-01

    Aim. We discuss neutrino and cosmic ray emission from gamma-ray bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photodisintegration can fully develop in the source. Our main objective is to test whether recent results from the IceCube and the Pierre Auger Observatory can be accommodated within the paradigm that GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). Methods: We simulate this scenario in a combined source-propagation model. While our key results are obtained using an internal shock model of the source, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. Results: We demonstrate that the expected neutrino flux from GRBs weakly depends on the injection composition for the same injection spectra and luminosities, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  3. Preliminary CALET Ultra Heavy Cosmic Ray Abundance Measurements

    NASA Astrophysics Data System (ADS)

    Rauch, Brian; CALET Collaboration

    2017-01-01

    The CALorimetric Electron Telescope (CALET) on the International Space Station (ISS) was launched August 19, 2015 and has been returning excellent data for over a year. The main calorimeter (CAL) on CALET measures the fluxes of high-energy electrons, nuclei and gamma rays. In addition to measuring the energy spectra of the more abundant cosmic-ray nuclei through 26Fe, CAL has the dynamic range to measure the abundances of the ultra-heavy (UH) cosmic-ray nuclei through 40Zr. In an anticipated 5 year mission on the ISS CALET will collect a UH data set with statistics comparable to that achieved with the first flight of the SuperTIGER balloon-borne instrument. The CALET space-based measurement has the advantage of not requiring corrections for atmospheric losses, and unlike other UH measurements the abundances of all nuclei from 1H through 40Zr are observed with the same instrument. We present preliminary CALET UH analysis results from the first year of operation. This research was supported by NASA at Washington University under Grant Number NNX11AE02G.

  4. Cosmic Ray Energetics and Mass (CREAM)

    NASA Technical Reports Server (NTRS)

    Coutu, Stephane

    2005-01-01

    The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.

  5. Cosmic ray antimatter: Is it primary or secondary?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1981-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.

  6. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the

  7. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  8. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  9. Some aspects of the scientific significance of high energy gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1991-01-01

    The attraction of high energy gamma-ray astronomy lies in this radiation relating directly to those processes in astrophysical situations which deviate most from thermo-dynamic equilibrium. Some examples of these phenomena which are known to or expected to emit gamma rays are cosmic rays as they interact in intergalactic space, the high energy particles in the magnetic fields of neutron stars, the death of a black hole, the explosion and residual of a supernova, lumps of Weakly Interacting Massive Particles, energetic solar particles interacting near the sun, and very high energy particles in the extreme conditions associated with active galaxies. Although the intensities are known to be low as seen near the earth, a partially compensating characteristic is that the very penetrating nature of high energy gamma rays increases the probability that they can escape from their origin and reach the solar system.

  10. Observation of an Anisotropy in the Galactic Cosmic Ray Arrival Direction at 400 TeV with IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2012-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33 x 10(exp 9) muon events with a median angular resolution of approx. 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  11. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  12. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 8

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. The present volume contains papers addressing high energy interactions and related phenomena. Specific topic areas include muons, neutrinos, magnetic monopoles, nucleon decay, searches for new particles, and acoustic and thermoluminescence detection techniques.

  13. TIME STRUCTURE OF GAMMA-RAY SIGNALS GENERATED IN LINE-OF-SIGHT INTERACTIONS OF COSMIC RAYS FROM DISTANT BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosekin, Anton; Aharonian, Felix; Essey, Warren

    2012-10-01

    Blazars are expected to produce both gamma rays and cosmic rays. Therefore, observed high-energy gamma rays from distant blazars may contain a significant contribution from secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. Unlike the standard models of blazars that consider only the primary photons emitted at the source, models that include the cosmic-ray contribution predict that even {approx}10 TeV photons should be detectable from distant objects with redshifts as high as z {>=} 0.1. Secondary photons contribute to signals of point sources only if the intergalactic magnetic fields aremore » very small, B {approx}< 10{sup -14} G, and their detection can be used to set upper bounds on magnetic fields along the line of sight. Secondary gamma rays have distinct spectral and temporal features. We explore the temporal properties of such signals using a semi-analytical formalism and detailed numerical simulations, which account for all the relevant processes, including magnetic deflections. In particular, we elucidate the interplay of time delays coming from the proton deflections and from the electromagnetic cascade, and we find that, at multi-TeV energies, secondary gamma rays can show variability on timescales of years for B {approx} 10{sup -15} G.« less

  14. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T.; Komori, Y.; Yoshida, K.

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energymore » range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.« less

  15. HEATING OF THE WARM IONIZED MEDIUM BY LOW-ENERGY COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Mark A., E-mail: Mark.Walker@manlyastrophysics.org

    2016-02-10

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be highermore » than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.« less

  16. A demonstration device for cosmic rays telescopes

    NASA Astrophysics Data System (ADS)

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon telescope, while the other one shows the key avalanche process of electronic ionization that effectively allows muon detection through a photomultiplier. Incoming cosmic rays are visualized in terms of laser beams, whose 3D trajectory is highlighted by turning on LEDs on two orthogonal matrices. Instead the avalanche ionization process is demonstrated through the avalanche falling off glass marbles on an inclined plane, finally turning on a LED. A pictured poster accompanying the demonstrator is as effective in assisting cosmic ray demonstration and its detection. The success of the demonstrator has been fully proven by the general public during a science festival, in which the corresponding project won the Honorable Mention in a dedicated competition.

  17. Exploring results of the possibility on detecting cosmic ray particles by acoustic way

    NASA Technical Reports Server (NTRS)

    Jiang, Y.; Yuan, Y.; Li, Y.; Chen, D.; Zheng, R.; Song, J.

    1985-01-01

    It has been demonstrated experimentally and theoretically that high energy particles produce detectable sounds in water. However, no one has been able to detect an acoustic signal generated by a high energy cosmic ray particle in water. Results show that transient ultrasonic signals in a large lake or reservoir are fairly complex and that the transient signals under water may arise mainly from sound radiation from microbubbles. This field is not explored in detail. Perhaps, the sounds created by cosmic ray particles hide in these ultrasonic signals. In order to develop the technique of acoustic detection, it is most important to make a thorough investigation of these ultrasonic signals in water.

  18. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  19. Cosmic ray energy spectrum around the knee obtained by the Tibet Experiment and future prospects

    NASA Astrophysics Data System (ADS)

    Katayose, Yusaku

    The measurement of the energy spectrum and the chemical composition of cosmic rays at the 'Knee' energy region have been made in the Tibet-AS experiment since 1990. The 1st phase of the Tibet hybrid experiment(1996-1999) consisted of Tibet II air-shower array(AS), Emulsion Chamber(EC) and burst detector(BD). The EC was used to detect high energy-gamma-families of the energy greater than 20 TeV at the core of ASs of which more than 80% are induced by light nuclei like protons or helium. Due to the high spatial resolution of the EC, proton and helium events were separated from others and we obtained the energy spectrum of each of them using 177 family events. We also obtained all-particle energy spectrum of primary cosmic rays in a wide range from 1014 eV to 1017 eV by the Tibet-III air-shower array. The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. These results strongly indicated that the fraction of the light component to the all particle spectrum is decreasing around the knee.The observation of the AS core has been continued with upgraded Tibet III array and burst detectors without using X-ray films, which still works as the selector for the air showers induced by light component (pHe). This second phase experiment shows that the dominance of the heavy elements at the knee reported by the first phase experiment is confirmed with higher statistics by one order.Our results suggest that the main component at the knee is heavy elements (heavier than helium) because of the low intensities of observed proton and helium fluxes, whose summed flux are less than 30% of all particles. A new air-shower-core detector(YAC) will be added to the Tibet AS array to explicitly measure the heavy elements around the knee and beyond. In this paper, the results of composition study with the Tibet experiment are summarized and the prospects for the next phase experiment are described.

  20. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  1. Galactic Disk Winds Driven by Cosmic Ray Pressure

    NASA Astrophysics Data System (ADS)

    Mao, S. Alwin; Ostriker, Eve C.

    2018-02-01

    Cosmic ray pressure gradients transfer energy and momentum to extraplanar gas in disk galaxies, potentially driving significant mass loss as galactic winds. This may be particularly important for launching high-velocity outflows of “cool” (T ≲ 104 K) gas. We study cosmic ray-driven disk winds using a simplified semi-analytic model assuming streamlines follow the large-scale gravitational potential gradient. We consider scaled Milky Way–like potentials including a disk, bulge, and halo with a range of halo velocities V H = 50–300 km s-1 and streamline footpoints with radii in the disk R 0 = 1–16 kpc at a height of 1 kpc. Our solutions cover a wide range of footpoint gas velocity u 0, magnetic–to–cosmic ray pressure ratio, gas–to–cosmic ray pressure ratio, and angular momentum. Cosmic ray streaming at the Alfvén speed enables the effective sound speed C eff to increase from the footpoint to a critical point where C eff,c = u c ∼ V H; this differs from thermal winds, in which C eff decreases outward. The critical point is typically at a height of 1–6 kpc from the disk, increasing with V H, and the asymptotic wind velocity exceeds the escape speed of the halo. Mass-loss rates are insensitive to the footpoint values of the magnetic field and angular momentum. In addition to numerical parameter space exploration, we develop and compare to analytic scaling relations. We show that winds have mass-loss rates per unit area up to \\dot{Σ}∼ Π0VH-5/3u02/3, where Π0 is the footpoint cosmic ray pressure and u 0 is set by the upwelling of galactic fountains. The predicted wind mass-loss rate exceeds the star formation rate for V H ≲ 200 km s-1 and u 0 = 50 km s-1, a typical fountain velocity.

  2. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  3. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-04-09

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  4. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertaintiesmore » associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a

  5. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Atwood, W. B.

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  6. Fermi-LAT Observations of the Diffuse γ-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Ziegler, M.; Zimmer, S.

    2012-05-01

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray

  7. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  8. Simulation of High Energy Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri

    Gamma-Ray Bursts (GRBs) are the must violent explosions after the Big-Bang. Their high energy radiation can potentially carry information about the most inner part of the accretion disk of a collapsing star, ionize the surrounding material in the host galaxy, and thereby influence the process of star formation specially in the dense environment at high redshifts. They can also have a significant contribution in the formation of high energy cosmic-rays. Here we present new simulations of GRBs according to a dynamically consistent relativistic shock model for the prompt emission, with or without the presence of an magnetic field. They show that the properties of observed bursts are well reproduced by this model up to GeV energies. They help to better understand GRB phenomenon, and provide an insight into characteristics of relativistic jets and particle acceleration which cannot yet be simulated with enough precision from first principles.

  9. From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2014-01-01

    Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi's intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth's magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.

  10. Disentangling Hadronic and Leptonic Cascade Scenarios from the Very-High-Energy Gamma-Ray Emission of Distant Hard-Spectrum Blazars

    DOE PAGES

    Takami, Hajime; Murase, Kohta; Dermer, Charles D.

    2013-06-26

    We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less

  11. Ultimate Spectrum of Solar/Stellar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Struminsky, Alexei

    2015-08-01

    We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).

  12. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-06-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  13. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  14. Radio Detection of Cosmic Rays-Achievements and Future Potential

    NASA Astrophysics Data System (ADS)

    Huege, Tim

    When modern efforts for radio detection of cosmic rays started about a decade ago, hopes were high but the true potential was unknown. Since then, we have achieved a detailed understanding of the radio emission physics and have consequently succeeded in developing sophisticated detection schemes and analysis approaches. In particular, we have demonstrated that the important air-shower parameters arrival direction, particle energy and depth of shower maximum can be reconstructed reliably from radio measurements, with a precision that is comparable with that of other detection techniques. At the same time, limitations inherent to the radio-emission mechanisms have become apparent. In this article, I shortly review the capabilities of radio detection in the very high-frequency band, and discuss the potential for future application in existing and new experiments for cosmic-ray detection.

  15. XII Multifrequency Behaviour of High Energy Cosmic Sources Workshop

    NASA Astrophysics Data System (ADS)

    2017-06-01

    This is the twelfth edition of the series of Frascati Workshops on "Multifrequency Behaviour of High Energy Cosmic Sources" which is undoubtedly a largely accepted biennial meeting in which an updated experimental and theoretical panorama will be depicted. This edition comes at the 33rd anniversary of the first historical "multifrequency" workshop about "Multifrequency Behaviour of GalacticAccreting Sources", held in Vulcano in September 1984. This surely renders the Frascati Workshop Series the oldest among the many devoted to "Multifrequency Studies of Cosmic Sources". The study of the physics governing the cosmic sources will be the main goal of the workshop. A session devoted to the ongoing and next generation ground- and space-based experiments will give the actual prospects for the first decades of this millennium. The following items will be reviewed: Cosmology: Cosmic Background, Clusters of Galaxies Extragalactic Sources: Active Galaxies, Normal Galaxies Gamma-Rays Burst: Experiments versus Theories Galactic Sources: Pre-Main-Sequence and Main-Sequence Stars, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources,Nucleosynthesis. The Astrophysics with the Ongoing and Future Experiments: Space-Based Experiments,Ground-Based Experiments. The workshop will include few 30-minute general review talks to introduce the current problems, and typically 20-minute talks discussing new experimental and theoretical results. A series of 20-minute talks will discuss the ongoing and planned ground- and space- based experiments. The cadence of the workshop is biennial. The participation will be only by invitation. All participants are kindly invited to attend the whole workshop. However, to keep alive the workshop it was decided that all presentations should be compulsorily given to the LOC, so that they can be inserted into the web page of the workshop. These presentations will form the basis for writing the

  16. Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Atwood, W. B.; Baldini, L.

    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. Here, we derive upper limits on the CRE flux from the Sun’s direction, and use these bounds to constrain two classes ofmore » dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.« less

  17. Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    DOE PAGES

    Ajello, M.; Atwood, W. B.; Baldini, L.; ...

    2011-08-15

    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. Here, we derive upper limits on the CRE flux from the Sun’s direction, and use these bounds to constrain two classes ofmore » dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.« less

  18. New fermionic dark matters, extended Standard Model and cosmic rays

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Kwang

    2017-08-01

    Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 1015 eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of -4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.

  19. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray

  20. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  1. Galactic cosmic ray antiprotons and supersymmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Walsh, T.; Rudaz, S.

    1985-01-01

    The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain.

  2. Anisotropy of cosmic rays above 10(14) eV

    NASA Technical Reports Server (NTRS)

    Wdowczyk, J.; Wolfendale, A. W.

    1985-01-01

    A survey is made of the anisotropy of cosmic rays at energies above 10 to the 14th power eV. It is concluded that cosmic gamma-rays may have an effect in the range 10 to the 14 power - 10 to the 16th power eV, above which protons dominate. Evidence is presented for an excess in the general direction of the Galactic plane which grows with increasing energy until about 10 to the 19th power eV, indicating a Galactic origin for these particles. At higher energies an Extragalactic origin is indicated.

  3. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  4. The converter mechanism of particle acceleration and the maximum energy of cosmic rays

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vl. V.; Aharonian, F. A.; Derishev, E. V.; Kocharovsky, V. V.

    We consider the fundamental limits on the energy of particles accelerated by electromagnetic forces in various astrophysical objects [1]. We show that accelerator's parameters are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion) but also by the curvature and other types of radiative losses of accelerated particles. Optimization of these requirements in terms of accelerator's size and the magnetic field strength results in the ultimate lower limit on the overall source energy budget, which scales as the fifth power of attainable particle energy. It is demonstrated that the curvature gamma-rays accompanying the acceleration gives further restrictions for potential acceleration sites. We compare different acceleration mechanisms and show, that the converter mechanism, which we suggested earlier [2], is the least sensitive to the geometry of the magnetic field in accelerators and allows to reach cosmic-ray energies close to the fundamental limit. The converter mechanism works most efficiently in relativistic shocks or shear flows. It utilizes multiple conversions of charged particles into neutral ones (protons to neutrons and electrons/positrons to photons) and back by means of photon-induced reactions or inelastic nucleon- nucleon collisions. We discuss the properties of gamma-ray radiation, which accompanies acceleration of cosmic rays via the converter mechanism and can provide an evidence for the latter. 1. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 66, 023005 (2002). 2. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 68, 043003 (2003).

  5. Toward a descriptive model of galactic cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Cummings, A. C.; Adams, James H., Jr.; Evenson, Paul; Fillius, W.; Jokipii, J. R.; Mckibben, R. B.; Robinson, Paul A., Jr.

    1988-01-01

    Researchers review the elements that enter into phenomenological models of the composition, energy spectra, and the spatial and temporal variations of galactic cosmic rays, including the so-called anomalous cosmic ray component. Starting from an existing model, designed to describe the behavior of cosmic rays in the near-Earth environment, researchers suggest possible updates and improvements to this model, and then propose a quantitative approach for extending such a model into other regions of the heliosphere.

  6. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  7. Uncertainties in energy reconstruction of cosmic rays for ANITA III caused by differences in models of radio emission in atmospheric showers

    NASA Astrophysics Data System (ADS)

    Bugaev, Viatcheslav; Rauch, Brian; Schoorlemmer, Harm; Lam, Joe; Urdaneta, David; Wissel, Stephanie; Belov, Konstantin; Romero-Wolf, Andrew; Anita Collaboration

    2015-04-01

    The third flight of the high-altitude balloon-borne Antarctic Impulsive Transient Antenna (ANITA III) was launched on a high-altitude balloon from McMurdo, Antarctica on December 17th, 2014 and flew for 22 days. It was optimized for the measurement of impulsive radio signals from the charged component of extensive air showers initiated by ultra-high energy cosmic rays in the frequency range ~ 180 - 1200 MHz. In addition it is designed to detect radio impulses initiated by high-energy neutrinos interacting in the Antarctic ice, which was the primary objective of the first two ANITA flights. Based on an extensive set of Monte Carlo simulations of radio emissions from cosmic rays (CR) with the ZHAireS and CoREAS simulation packages, we estimate uncertainties in the electric fields at the payload due to different models used in the two packages. The uncertainties in the emission are then propagated through an algorithm for energy reconstruction of individual CR showers to assess uncertainties in the energy reconstruction. We also discuss optimization of this algorithm. This research is supported by NASA under Grant # NNX11AC49G.

  8. Investigation of the properties of galactic cosmic rays with the KASCADE-Grande experiment

    NASA Astrophysics Data System (ADS)

    Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-02-01

    The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 1014 and 1018 eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1970-01-01

    This schematic details the third High Energy Astronomy Observatory (HEAO)-3. The HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.

  10. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect components for the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  11. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  12. CaloCube: A new-concept calorimeter for the detection of high-energy cosmic rays in space

    NASA Astrophysics Data System (ADS)

    Vannuccini, E.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; D'Alessandro, R.; Detti, S.; Fasoli, M.; Finetti, N.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Miritello, M.; Mori, N.; Orzan, G.; Olmi, M.; Pacini, L.; Papini, P.; Pellegriti, M. G.; Pirzio, F.; Rappoldi, A.; Ricciarini, S.; Spillantini, P.; Starodubtsev, O.; Stolzi, F.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifiro, A.; Trimarchi, M.; Vedda, A.; Zampa, G.; Zampa, N.; Zerbo, B.

    2017-02-01

    The direct observation of high-energy cosmic rays, up to the PeV region, will increasingly rely on highly performing calorimeters, and the physics performance will be primarily determined by their geometrical acceptance and energy resolution. Thus, it is extremely important to optimize their geometrical design, granularity, and absorption depth, with respect to the total mass of the apparatus, which is among the most important constraints for a space mission. Calocube is a homogeneous calorimeter whose basic geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic scintillating crystals. This design forms the basis of a three-year R &D activity which has been approved and financed by INFN. A comparative study of different scintillating materials has been performed. Optimal values for the size of the crystals and spacing among them have been studied. Different geometries, besides the cubic one, and the possibility to implement dual-readout techniques have been investigated. A prototype, instrumented with CsI(Tl) cubic crystals, has been constructed and tested with particle beams. An overview of the obtained results will be presented and the perspectives for future space experiments will be discussed.

  13. On the spectrum of stable secondary nuclei in cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, P.

    2017-10-01

    The ratio of the fluxes of secondary and primary nuclei in cosmic rays has long been used as an indicator of the grammage traversed in the journey of cosmic ray particles throughout the Galaxy. The basic idea is that primary particles are accelerated in astrophysical sources, such as supernova remnant shocks and eventually propagate in the Galactic volume, occasionally interacting with gas, mainly in the disc of the Galaxy, and there they produce secondary nuclei through spallation. At sufficiently high energy, typically ≳100 GeV/n, the ratio of fluxes of the secondary nucleus to that of the main primary nucleus is found to scale as Ek^{-δ }, where Ek is the energy per nucleon (a conserved quantity in spallation reactions) and δ identifies the energy dependence of the diffusion coefficient. The same shock waves that may be responsible for cosmic ray acceleration in the first place also pick up any other charged particle in the upstream, provided being above threshold for injection. The secondary nuclei produced by spallation in the interstellar medium are no exception, hence they also get accelerated. This effect is unavoidable, only its strength may be subject of debate. We compute the spectrum of secondary elements such as boron and lithium taking into account shock reacceleration and compare our predictions with the recent observations of the B/C ratio and preliminary measurements of the boron and lithium flux. Both these sets of data seem to confirm that reacceleration of secondary nuclei indeed plays an important role, thereby affecting the validity of those scaling rules that are often used in cosmic ray physics.

  14. COULD COSMIC RAYS AFFECT INSTABILITIES IN THE TRANSITION LAYER OF NONRELATIVISTIC COLLISIONLESS SHOCKS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroman, Thomas; Pohl, Martin; Niemiec, Jacek

    2012-02-10

    There is an observational correlation between astrophysical shocks and nonthermal particle distributions extending to high energies. As a first step toward investigating the possible feedback of these particles on the shock at the microscopic level, we perform particle-in-cell (PIC) simulations of a simplified environment consisting of uniform, interpenetrating plasmas, both with and without an additional population of cosmic rays. We vary the relative density of the counterstreaming plasmas, the strength of a homogeneous parallel magnetic field, and the energy density in cosmic rays. We compare the early development of the unstable spectrum for selected configurations without cosmic rays to themore » growth rates predicted from linear theory, for assurance that the system is well represented by the PIC technique. Within the parameter space explored, we do not detect an unambiguous signature of any cosmic-ray-induced effects on the microscopic instabilities that govern the formation of a shock. We demonstrate that an overly coarse distribution of energetic particles can artificially alter the statistical noise that produces the perturbative seeds of instabilities, and that such effects can be mitigated by increasing the density of computational particles.« less

  15. Impact of Cosmic-Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  16. Perspective on the Cosmic-ray Electron Spectrum above TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Kun; Wang, Bing-Bing; Bi, Xiao-Jun

    2017-02-20

    The AMS-02 has measured the cosmic-ray electron (plus positron) spectrum up to ∼TeV with unprecedented precision. The spectrum can be well described by a power law without any obvious features above 10 GeV. The satellite instrument Dark Matter Particle Explorer (DAMPE), which was launched a year ago, will measure the electron spectrum up to 10 TeV with high-energy resolution. The cosmic electrons beyond TeV may be attributed to few local cosmic-ray sources, such as supernova remnants. Therefore, spectral features, such as cut-off and bumps, can be expected at high energies. In this work, we provide a careful study on themore » perspective of the electron spectrum beyond TeV. We first examine our astrophysical source models on the latest leptonic data of AMS-02 to give a self-consistent picture. Then we focus on the discussion about the candidate sources, which could be electron contributors above TeV. Depending on the properties of the local sources (especially on the nature of Vela), DAMPE may detect interesting features in the electron spectrum above TeV in the future.« less

  17. Cosmic Ray investigations on peak Musala in Bulgaria: A memoir

    NASA Astrophysics Data System (ADS)

    Kavlakov, S.

    2009-11-01

    A very brief historical description of the Bulgarian Cosmic Ray investigations, in the Cosmic Ray Station on peak Musala (2925 m.a.s.l.) is presented. Difficulties of the high mountain measurements that time are mentioned, together with the hard emotional and successful work done by a small staff of young Bulgarian cosmic ray scientists.

  18. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  19. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  20. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  1. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  2. Progress report on the ultra heavy cosmic ray experiment (AO178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1993-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side-viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels employing sixteen peripheral Long Duration Exposure Facility (LDEF) trays. The extended duration of the LDEF mission has resulted in a greatly enhanced scientific yield from the UHCRE. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m-sr, giving a total exposure factor of 170 sq m-sr-y at an orbital inclination of 28.4 degrees. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide (Z greater than 88) cosmic rays. Results to date are presented including details of ultra-heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of +/- 0.8 e for uranium and +/- 0.6 e for the platinum-lead group. The precision of charge assignment as a function of energy is derived and evidence for remarkably good charge resolution achieved in the UHCRE is considered. Astrophysical implications of the UHCRE charge spectrum are discussed.

  3. Measurements of the absolute energy spectra of cosmic-ray positrons and electrons above 7 GeV

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Stephens, S. A.; Cafagna, F. S.; Basini, G.; Bellotti, R.; Brunetti, M. T.; Circella, M.; Codino, A.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Golden, R. L.; Hof, M.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Pfeifer, C.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Spillantini, P.; Stochaj, S. J.; Streitmatter, R. E.

    2002-09-01

    A measurement of the energy spectra of cosmic-ray positrons and electrons was made with a balloon-borne magnet-spectrometer, which was flown at a mean geomagnetic cut-off of 4.5 GV/c. The observed positron flux in the energy range 7-16 GeV is approximately an order of magnitude lower than that of electrons, as measured in other experiments at various energies. The power law spectral index of the observed differential energy spectrum of electrons is -2.89 +/- 0.10 in the energy interval 7.5-47 GeV. For positrons the overall fit of the available data above 7 GeV has been considered. The spectral index is found to be -3.37 +/- 0.26 and the fraction of positrons, e+/(e+,+ e-), has a mean value of 0.064 +/- 0.003. The world data on e+/(e+,+ e-) from 0.1 to 30 GeV indicate that a plerion type electron spectrum is preferred over the other types. The trend of the presently existing high energy data also suggests a possible contribution of positrons produced at the pulsar polar cap. High resolution experiments capable of identifying positrons at least up to 100 GeV with high statistics are required to pinpoint the origin of both electrons and positrons in the cosmic radiation.

  4. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  5. Earth's magnetic field as a radiator to detect cosmic ray electrons of energy greater than 10 to the 12th eV

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Stephens, S. A.

    1983-01-01

    Synchrotron emission by a high-energy electron in the geomagnetic field and its dependence upon different arrival directions over Palestine, Texas, where major balloon-borne experiments are being conducted, is studied. The dependence of detector response on the arrival direction of electron, the different criteria which are adopted to identify an electron event, the area of the detector, and the energy of the electron are discussed. An omnidirectional circular detector is used to examine whether it is possible to determine the energy of an electron without knowing its arrival direction. The collecting power of a detector is estimated as a function of the energy of electrons for different detector areas with different selection criteria, and this information is used to calculate the event rates expected by folding in the energy spectrum of cosmic ray electrons to show the viability of detecting cosmic ray electrons at energies greater than a few TeV.

  6. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  7. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  8. The Parker Instability with Cosmic-Ray Streaming

    NASA Astrophysics Data System (ADS)

    Heintz, Evan; Zweibel, Ellen G.

    2018-06-01

    Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.

  9. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara

    Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.

  10. KCDC — The KASCADE Cosmic-ray Data Centre

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Blumer, J.; Fuchs, B.; Kang, D.; Schoo, S.; Wochele, D.; Wochele, J.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Zabierowski, J.

    2015-08-01

    KCDC, the ‘KASCADE Cosmic-ray Data Centre’, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measurement of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.

  11. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  12. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Sauer, H H; Smart, D F

    1996-01-01

    Galactic cosmic rays, which are thought to be produced and accelerated by a variety of mechanisms in the Milky Way galaxy, interact with the solar wind, the earth's magnetic field, and its atmosphere to produce hadron, lepton, and photon fields at aircraft altitudes that are quite unlike anything produced in the laboratory. The energy spectra of these secondary particles extend from the lowest possible energy to energies over an EeV. In addition to cosmic rays, energetic particles, generated on the sun by solar flares or coronal mass ejections, bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as cosmic rays. The authors have calculated atmospheric cosmic-ray angular fluxes, spectra, scalar fluxes, and ionization, and compared them with experimental data. Agreement with these data is seen to be good. These data have been used to calculate equivalent doses in a simplified human phantom at aircraft altitudes and the estimated health risks to aircraft crews. The authors have also calculated the radiation doses from several large solar energetic particle events (known as GLEs, or Ground Level Events), which took place in 1989, including the very large event known as GLE 42, which took place on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory. Unfortunately, there are essentially no experimental data with which to compare these calculations.

  13. Search for Point Sources of Ultra-High-Energy Cosmic Rays above 4.0 × 1019 eV Using a Maximum Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; Ben-Zvi, S. Y.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Farrar, G. R.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.

    2005-04-01

    We present the results of a search for cosmic-ray point sources at energies in excess of 4.0×1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Fly's Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.

  14. Constraining the p¯/p ratio in TeV cosmic rays with observations of the Moon shadow by HAWC

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Belmont-Moreno, E.; BenZvi, S. Y.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Engel, K.; Enríquez-Rivera, O.; Fleischhack, H.; Fraija, N.; Galván-Gámez, A.; García-González, J. A.; González Muñoz, A.; González, M. M.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hona, B.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lee, W. H.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Seglar Arroyo, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Torres, I.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Yodh, G. B.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2018-05-01

    An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed toward the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the p ¯/p fraction, which in the absence of any direct measurements provide the tightest available constraints of ˜1 % on the antiproton fraction for energies between 1 and 10 TeV.

  15. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  16. Studies of the cosmic ray spectrum and large scale anisotropies with the KASCADE-Grande experiment

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Cossavella, F.; Curcio, C.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2014-08-01

    KASCADE-Grande is an air shower observatory devoted to the detection of cosmic rays in the 1016 - 1018eV energy range. For each event the arrival direction, the total number of charged particles (Nch) and the total number of muons (Nμ), at detection level (i.e. 110 m a.s.l.), are measured. The detection of these observarbles, with high accuracy, allows the study of the primary spectrum, chemical composition and large scale anisotropies, that are the relevant informations to investigate the astrophysics of cosmic rays in this energy range. These studies are of main importance to deeply investigate the change of slope of the primary spectrum detected at ~ 4 × 1015 eV, also known as the knee, and to search for the transition from galactic to extra-galactic cosmic rays.

  17. Calibration of the Cherenkov telescope array using cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Parsons, R. D.; Hinton, J. A.; Schoorlemmer, H.

    2016-11-01

    Cosmic ray electrons represent a background for gamma-ray observations with Cherenkov telescopes, initiating air-showers which are difficult to distinguish from photon-initiated showers. This similarity, however, and the presence of cosmic ray electrons in every field observed, makes them potentially very useful for calibration purposes. Here we study the precision with which the relative energy scale and collection area/efficiency for photons can be established using electrons for a major next generation instrument such as CTA. We find that variations in collection efficiency on hour timescales can be corrected to better than 1%. Furthermore, the break in the electron spectrum at ∼ 0.9 TeV can be used to calibrate the energy scale at the 3% level on the same timescale. For observations on the order of hours, statistical errors become negligible below a few TeV and allow for an energy scale cross-check with instruments such as CALET and AMS. Cosmic ray electrons therefore provide a powerful calibration tool, either as an alternative to intensive atmospheric monitoring and modelling efforts, or for independent verification of such procedures.

  18. Progress towards a measurement of the UHE cosmic ray electron flux using the CREST Instrument

    NASA Astrophysics Data System (ADS)

    Musser, Jim; Wakely, Scott; Coutu, Stephane; Geske, Matthew; Nutter, Scott; Tarle, Gregory; Park, Nahee; Schubnell, Michael; Gennaro, Joseph; Muller, Dietrich

    2012-07-01

    Electrons of energy beyond about 3 TeV have never been detected in the flux of cosmic rays at Earth despite strong evidence of their presence in a number of supernova remnants (e.g., SN 1006). The detection of high energy electrons at Earth would be extremely significant, yielding information about the spatial distribution of nearby cosmic ray sources. With the Cosmic Ray Electron Synchrotron Telescope (CREST), our collaboration has adopted a novel approach to the detection of electrons of energies between 2 and 50 TeV which results in a substantial increase in the acceptance and sensitivity of the apparatus relative to its physics size. The first LDB flight of the CREST detector took place in January 2012, with a float duration of approximately 10 days. In this paper we describe the flight performance of the instrument, and progress in the analysis of the data obtained in this flight.

  19. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-12-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  20. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-09-20

    This Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-3, lifted off on September 20, 1979. The HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.