Science.gov

Sample records for high-energy neutron therapy

  1. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    SciTech Connect

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should be

  2. High-energy neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Sutton, Michele Rhea

    2001-12-01

    Fluence-to-dose conversion coefficients for the radiation protection quantity effective dose were calculated for neutrons, photons and protons with energies up to 2 GeV using the MCNPX code. The calculations were performed using the Pacific Northwest National Laboratory versions of the MIRD-V male and female anthropomorphic phantoms modified to include the skin and esophagus. The latest high-energy neutron evaluated cross-section libraries and the recommendations given in ICRP Publication 60 and ICRP Publication 74 were utilized to perform the calculations. Sets of fluence-to- effective dose conversion coefficients are given for anterior-posterior, posterior-anterior, left-lateral, right-lateral and rotational irradiation geometries. This is the first set of dose conversion coefficients over this energy range calculated for the L-LAT irradiation geometry. A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. The phantom and the experimental set-up were modeled using MCNPX. Comparisons of the experimental and computational depth- dose distributions indicate that the absorbed dose calculated by MCNPX is within 13% for neutrons with energies up to 750 MeV. This experiment will serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  3. Canadian high energy neutron spectrometry system (chenss)

    NASA Astrophysics Data System (ADS)

    Bennett, Les

    The Canadian high-energy neutron spectrometry system (CHENSS) has been constructed in order to accurately characterize the fluence and energy distribution of high-energy neutrons encountered on space missions in low-Earth orbit. The CHENSS is a proton-recoil spectrometer based on a cylindrical gelled scintillator, with pulse-shape discrimination properties comparable to those of a liquid scintillator, completely surrounded by thin plastic panels, which can be used to veto coincident events due to charged particles. The CHENSS has been irradiated by monoenergetic neutron reference beams with energies up to 19 MeV at the Physikalisch- TechnischeBundesanstalt and in quasi-monoenergetic neutron beams at 100 and 200 MeV at the iThemba Labs facilities. Comparison of the data with fluence determinations performed in parallel to the CHENSS measurements shows good consistency and demonstrates the efficacy of the spectrometer for measurements in space.

  4. High energy radiation from neutron stars

    SciTech Connect

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs. (GHT)

  5. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  6. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  7. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  8. First observations of power MOSFET burnout with high energy neutrons

    SciTech Connect

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-12-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage {ge}400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

  9. A comparison of the response of PADC neutron dosemeters in high-energy neutron fields.

    PubMed

    Trompier, F; Boschung, M; Buffler, A; Domingo, C; Cale, E; Chevallier, M-A; Esposito, A; Ferrarini, M; Geduld, D R; Hager, L; Hohmann, E; Mayer, S; Musso, A; Romero-Esposito, M; Röttger, S; Smit, F D; Sashala Naik, A; Tanner, R; Wissmann, F; Caresana, M

    2014-10-01

    Within the framework of the EURADOS Working Group 11, a comparison of passive neutron dosemeters in high-energy neutron fields was organised in 2011. The aim of the exercise was to evaluate the response of poly-allyl-glycol-carbonate neutron dosemeters from various European dosimetry laboratories to high-energy neutron fields. Irradiations were performed at the iThemba LABS facility in South Africa with neutrons having energies up to 66 and 100 MeV. PMID:24298170

  10. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  11. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams

    PubMed Central

    Naseri, Alireza; Mesbahi, Asghar

    2010-01-01

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature. PMID:24376940

  12. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  13. High Energy Telescope With Neutron Detection Capabilities (HETn)

    NASA Astrophysics Data System (ADS)

    Posner, A.; Wimmer-Schweingruber, R. F.; Böhm, E.; Böttcher, s.; Connell, J. J.; Dröge, W.; Hassler, D. M.; Heber, B.; Lopate, C.; McKibben, R. B.; Steigies, C. T.

    2007-01-01

    The High-Energy Telescope with neutron detection capabilities (HETn) for the Solar Orbiter will measure and resolve energetic charged particles, in particular electrons, proton, and heavy ions up to Fe including selected isotopes up to energies equivalen to the penetration depth of 100 MeV protons. The full active anti-coincidence encloses detectors sensitive to 1-30 MeV neutrons and 0.5-5 MeV X-/gamma-rays. The sensor consists of the angle-detecting inclined sensors (ADIS) solid-state detector detector telescope utilizing a shared calorimeter for total energy and X-/gamma-ray measurement. A separate plastic detector provides sensitivity to neutrons via the recoil process. HETn will open a new window on solar eruptive events with its neutron detection capability and allows determination of high-energy close to the Sun. Timing and spectral information on neutral particles (neutrons and X-/gamma rays ), on relativistic electrons and high-energy heavy ions will provide new insights into the processes which accelerate particles to high energies at the sun and into transport processes between the source and the spacecraft in the near-Sun environment.

  14. Measurement of neutron and charged particle contamination in high energy medical therapy x-ray beams using recoil track registration in polycarbonate foils

    SciTech Connect

    Sanders, M. E.; Morgan, K. Z.; McGinley, P. H.

    1980-01-01

    The production of photoneutrons and high-energy charged particles by betatrons and linear accelerators used in radiotherapy is measured. It is concluded there exists sufficient contamination in high-energy x-ray beams to be a consideration in certain radiotherapy situations. (ACR)

  15. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground. PMID:17766258

  16. High-energy neutron detection and spectrometry with superheated emulsions

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco; Prokofiev, Alexander; Sannikov, Alexander; Schuhmacher, Helmut

    2003-06-01

    The response of some superheated emulsions was investigated using quasi-monoenergetic neutron beams in the 46-134 MeV energy range at the Université Catholique de Louvain, Louvain la Neuve, Belgium and at The Svedberg Laboratory, Uppsala, Sweden. In order to determine the detector response to the high-energy beams, the spectra of incident neutrons were folded over functions modeled after the cross-sections for the neutron-induced production of heavy ions from the detector elements. The cross-sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade-exciton model of nuclear interactions.

  17. High-Energy Neutron Imaging Development at LLNL

    SciTech Connect

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. The design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.

  18. Fusion materials high energy-neutron studies. A status report

    SciTech Connect

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  19. In-phantom neutron dose distribution for bladder cancer cases treated with high-energy photons

    NASA Astrophysics Data System (ADS)

    Khaled, N. E.; Attalla, E. M.; Ammar, H.; Khalil, W.

    2011-06-01

    This work presents an estimation of the neutron dose distribution for common bladder cancer cases treated with high-energy photons of 15 MV therapy accelerators. Neutron doses were measured in an Alderson phantom, using TLD 700 and 600 thermoluminescence dosimeters, resembling bladder cancer cases treated with high-energy photons from 15 MV LINAC and having a treatment plan using the four-field pelvic box technique. Thermal neutron dose distribution in the target area and the surrounding tissue was estimated. The sensitivity of all detectors for both gamma and neutrons was estimated and used for correction of the TL reading. TLD detectors were irradiated with a Co60 gamma standard source and thermal neutrons at the irradiation facility of the National Institute for Standards (NIS). The TL to dose conversion factor was estimated in terms of both Co60 neutron equivalent dose and thermal neutron dose. The dose distribution of photo-neutrons throughout each target was estimated and presented in three-dimensional charts and isodose curves. The distribution was found to be non-isotropic through the target. It varied from a minimum of 0.23 mSv/h to a maximum of 2.07 mSv/h at 6 cm off-axis. The mean neutron dose equivalent was found to be 0.63 mSv/h, which agrees with other published literature. The estimated average neutron equivalent to the bladder per administered therapeutic dose was found to be 0.39 mSv Gy-1, which is also in good agreement with published literature. As a consequence of a complete therapeutic treatment of 50 Gy high-energy photons at 15 MV, the total thermal neutron equivalent dose to the abdomen was found to be about 0.012 Sv.

  20. Implications of high-energy neutron observations from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.; Kozlovsky, B.; Lingenfelter, R. E.

    1983-01-01

    The time-dependent flux of high-energy neutrons discovered from the solar flare of 1980 June 21 provides a new technique for determining the total number and energy spectrum of accelerated protons and nuclei at the sun. The implications of these observations on gamma-ray emission, relativistic electron spectrum and number, proton and electron energy contents, and the location of the interaction region are also examined.

  1. High-energy neutron dosimetry with superheated drop detectors.

    PubMed

    d'Errico, F; Agosteo, S; Sannikov, A V; Silari, M

    2002-01-01

    A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Université Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect. PMID:12382936

  2. High-Energy Neutron Imaging Development at LLNL

    SciTech Connect

    Hall, J; Rusnak, B; Fitsos, P

    2006-12-06

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing or proposed facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our programmatic accomplishments to date, highlighting recent (FY06) progress on engineering and technology development issues related to the proposed imaging system. We will also discuss our preliminary project plan for FY07, including engineering initiatives, proposed radiation damage experiments (neutrons and x rays) and potential options for conducting classified neutron imaging experiments at LLNL.

  3. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere).

  4. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  5. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  6. Neutron emission and fragment yield in high-energy fission

    SciTech Connect

    Grudzevich, O. T. Klinov, D. A.

    2013-07-15

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

  7. Third intercomparison of DOE High-Energy Neutron Personnel Dosimeters

    SciTech Connect

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1995-12-31

    An intercomparison of the dose equivalent response of personal dosimeters in use at U.S. Department of Energy (DOE) accelerator facilities was performed at the European Laboratory for Particle Physics (CERN). This is the third such intercomparison sponsored by the DOE. The two previous intercomparisons were performed in a U.S. laboratory using a source of high-energy neutrons. This intercomparison was performed at two positions relative to the main beam line at CERN. The neutron-energy spectra present at these two locations were measured by CERN personnel using Bonner sphere spectrometer systems. In addition, the dose equivalents at these two positions were also measured by CERN personnel using a tissue equivalent proportional counter system. The DOE dosimeters were mailed to CERN and returned after irradiation for readout. The results of this intercomparison are relatively consistent with the two previous intercomparisons performed in the U.S. The relative dose equivalent responses of neutron dosimeter types, such as albedo, nuclear emulsion and track-etch plastics, were found to have variations relative to the mean value responses of up to a factor of three.

  8. Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey.

    PubMed

    Mitrofanov, I; Anfimov, D; Kozyrev, A; Litvak, M; Sanin, A; Tret'yakov, V; Krylov, A; Shvetsov, V; Boynton, W; Shinohara, C; Hamara, D; Saunders, R S

    2002-07-01

    After 55 days of mapping by the High Energy Neutron Detector onboard Mars Odyssey, we found deficits of high-energy neutrons in the southern highlands and northern lowlands of Mars. These deficits indicate that hydrogen is concentrated in the subsurface. Modeling suggests that water ice-rich layers that are tens of centimeters in thickness provide one possible fit to the data.

  9. Iodine neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  10. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm‑2s‑1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  11. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  12. A phoswich detector for high-energy neutrons.

    PubMed

    Takada, M; Nakamura, T

    2007-01-01

    A phoswich detector was developed to measure neutron energy spectra from a few MeV to a few hundreds MeV in aircrafts and space crafts. Radiation fields, which both crafts are exposured, consist of neutrons, gamma rays, protons, etc. The phoswich detector can measure neutrons separately from gamma rays and protons. The capability of particle discrimination was tested at HIMAC and was found to be excellent. Detector response functions to neutrons were simulated with the MCNPX code using the measured light outputs of charged particles and were measured with quasi-mono-energetic neutrons produced by the p-Li reaction at the NIRS cyclotron. Test flight measurements at high altitudes, 6.5 and 8.5 km, were performed above the middle part of Japan (cut-off rigidity, 12 GV).

  13. Tolerance of the human spinal cord to high energy p(66)Be(49) neutrons

    SciTech Connect

    Cohen, L.; Ten Haken, R.K.; Mansell, J.; Yalavarthi, S.D.; Hendrickson, F.R.; Awschalom, M.

    1985-04-01

    The risk of post irradiation myelopathy was evaluated in 76 patients followed for 1-5 years after neutron irradiation of the cervical and thoracic regions. No overt myelopathy was observed. Forty-six patients received doses (central cord dose) in excess of 10 Gy, 9 received doses in excess of 12 Gy, and 5 received doses between 13 and 17 Gy, all without any evidence of spinal cord injury. A review of available literature revealed a total of 14 patients with myelopathy, 13 of whom received doses in excess of 13 Gy delivered with relatively low energy neutrons generated by the deuteron + beryllium reaction. It is concluded from these studies that the tolerance limit for the human spinal cord irradiated with high energy (p(66)Be(49)) neutrons is close to 15 Gy, above which the risk of cord injury becomes significant. Central cord doses of 13 Gy or less appear to be well tolerated with little, if any, risk of myelopathy. These conclusions are valid for a treatment time of 4 weeks or more with two or more fractions per week (9 or more fractions). The RBE for the human spinal cord irradiated under the above conditions compared with conventionally fractionated photon therapy does not exceed 4.0.

  14. Measurement of high energy neutrons via Lu(n,xn) reactions

    SciTech Connect

    Henry, E.A.; Becker, J.A.; Archer, D.E.; Younes, W.; Stoyer, M.A.; Slaughter, D.

    1997-07-01

    High energy neutrons can be assayed by the use of the nuclear diagnostic material lutetium. We are measuring the (n,xn) cross sections for natural lutetium in order to develop it as a detector material. We are applying lutetium to diagnose the high energy neutrons produced in test target/blanket systems appropriate for the Accelerator Production of Tritium Project. 3 refs., 5 figs., 1 tab.

  15. Advances in Neutron Capture Therapy

    SciTech Connect

    Soloway, A.H.; Barth, R.F.; Carpenter, D.E.

    1993-12-31

    This volume contains the proceedings of the Fifth International Symposium on Neutron Capture Therapy held September 14--17, 1992 in Columbus, Ohio. Individual papers were separately abstracted and indexed for the database.

  16. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  17. A Canadian high-energy neutron spectrometry system for measurements in space.

    PubMed

    Jonkmans, G; Andrews, H R; Clifford, E T H; Frketich, G; Ing, H; Koslowsky, V T; Noulty, R A; Miller, R C; Zhou, Y; Mortimer, A; Peterson, D; Wilkinson, R

    2005-01-01

    Bubble Technology Industries Inc. (BTI), with the support of the Canadian Space Agency, has finished the construction of the Canadian High-Energy Neutron Spectrometry System (CHENSS). This spectrometer is intended to measure the high energy neutron spectrum (approximately 1-100 MeV) encountered in spacecraft in low earth orbit. CHENSS is designed to fly aboard a US space shuttle and its scientific results should facilitate the prediction of neutron dose to astronauts in space from readings of different types of radiation dosimeters that are being used in various missions.

  18. A Canadian high-energy neutron spectrometry system for measurements in space.

    PubMed

    Jonkmans, G; Andrews, H R; Clifford, E T H; Frketich, G; Ing, H; Koslowsky, V T; Noulty, R A; Miller, R C; Zhou, Y; Mortimer, A; Peterson, D; Wilkinson, R

    2005-01-01

    Bubble Technology Industries Inc. (BTI), with the support of the Canadian Space Agency, has finished the construction of the Canadian High-Energy Neutron Spectrometry System (CHENSS). This spectrometer is intended to measure the high energy neutron spectrum (approximately 1-100 MeV) encountered in spacecraft in low earth orbit. CHENSS is designed to fly aboard a US space shuttle and its scientific results should facilitate the prediction of neutron dose to astronauts in space from readings of different types of radiation dosimeters that are being used in various missions. PMID:15835056

  19. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  20. High energy particle background at neutron spallation sources and possible solutions

    NASA Astrophysics Data System (ADS)

    Cherkashyna, N.; Kanaki, K.; Kittelmann, T.; Filges, U.; Deen, P.; Herwig, K.; Ehlers, G.; Greene, G.; Carpenter, J.; Connatser, R.; Hall-Wilton, R.; Bentley, P. M.

    2014-07-01

    Modern spallation neutron sources are driven by proton beams ~ GeV energies. Whereas low energy particle background shielding is well understood for reactors sources of neutrons (~20 MeV), for high energies (100s MeV to multiple GeV) there is potential to improve shielding solutions and reduce instrument backgrounds significantly. We present initial measured data on high energy particle backgrounds, which illustrate the results of particle showers caused by high energy particles from spallation neutron sources. We use detailed physics models of different materials to identify new shielding solutions for such neutron sources, including laminated layers of multiple materials. In addition to the steel and concrete, which are used traditionally, we introduce some other options that are new to the neutron scattering community, among which there are copper alloys as used in hadronic calorimeters in high energy physics laboratories. These concepts have very attractive energy absorption characteristics, and simulations predict that the background suppression could be improved by one or two orders of magnitude. These solutions are expected to be great benefit to the European Spallation Source, where the majority of instruments are potentially affected by high energy backgrounds, as well as to existing spallation sources.

  1. Neutron techniques. [for study of high-energy particles produced in large solar flares

    NASA Technical Reports Server (NTRS)

    Frye, Glenn M., Jr.; Dunphy, Philip P.; Chupp, Edward L.; Evenson, Paul

    1988-01-01

    Three experimental methods are described which hold the most promise for improved energy resolution, time resolution and sensitivity in the detection of solar neutrons on satellites and/or long duration balloon flights: the neutron calorimeter, the solar neutron track chamber, and the solar neutron decay proton detector. The characteristics of the three methods as to energy range, energy resolution, time resolution, detection efficiency, and physical properties are delineated. Earlier techniques to measure the intensity of high-energy cosmic-ray neutrons at the top of the atmosphere and to search for solar neutrons are described. The past three decades of detector development has now reached the point where it is possible to make comprehensive and detailed measurements of solar neutrons on future space missions.

  2. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  3. Biological effects of high-energy neutrons measured in vivo using a vertebrate model.

    PubMed

    Kuhne, Wendy W; Gersey, Brad B; Wilkins, Richard; Wu, Honglu; Wender, Stephen A; George, Varghese; Dynan, William S

    2009-10-01

    Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0-0.5 Gy of high-energy neutron radiation or 0-15 Gy of reference gamma radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference gamma radiation, indicates an RBE of 24.9 (95% CI 13.6-40.7). A higher RBE of 48.1 (95% CI 30.0-66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure.

  4. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  5. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  6. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  7. Production of charm mesons by high-energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons ED{sup *{plus minus}}, D{sup 0}, and D{sub s}{sup {plus minus}} have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 {plus minus} 19 events was investigated in the decay mode D{sup *{plus minus}} {yields} D{sup 0} {pi}{sup {plus minus}} with the subsequent decay mode D{sup 0} {yields} K{sup +}K{sup {minus}}. The cross section per nucleon for D{sup *}{plus minus}, at most probable energy {radical}s = 35 GeV, was measured to be: d{sigma}(xf)/dxf {center dot} BR = 2.11 {plus minus} .43({plus minus}63){mu}b/nucleon for 0.0 < x{sub f} < 0.14 (x{sub f} = .07). The branching ratio (BR) is defined as: BR {identical to} BR(D{sup *} {yields} D{sub {pi}}) {times} BR(D {yields} K{sup +}K{sup {minus}}). The dependence of the cross section per nucleus on number of nucleons in the target was fit to a form A{sup {alpha}} and it was found that {alpha} = .96 {plus minus} .17. A sample of 64 {plus minus} 16 D{sub s}{sup {plus minus}} events was investigated for the decay D{sub s}{sup {plus minus}} {yields} {phi}{pi}{sup {plus minus}}. The differential cross section for D{sub s}{sup {plus minus}} production averaged over the particle and antiparticle states is: BR {center dot} {1/2} d{sigma}D{sub s}{sup +}/dxf + d{sigma}(D{sub s}{sup {minus}}/dxf) = 2.8 {plus minus} 0.80 {plus minus} .86 {mu}b/nucleon at x{sub f} = 0.175 where the first error is statistical and the second error is systematic. The branching fraction is defined as BR {identical to} BR(D{sub s} {yields} {phi}{pi}), and a linear A dependence was assumed.

  8. Production of charm mesons by high energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons D/sup /plus minus//, D/sup 0/, and D/sub s//sup /plus minus//, have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 /plus minus/ 19 events as investigated in the decay D/sup /plus minus// /yields/ D/sup 0//pi//sup /plus minus// with the subsequent decay mode D/sup 0/ /yields/ K/sup +/K/sup /minus//. The cross section per nucleon for D/sup /plus minus//, at most probable energy /radical/s = 35 GeV, was measured to be 2.11 /plus minus/ .43 (plusreverse arrowminus/.63)/mu/b/nucleon for 0.0 < x/sub f/ < 0.14 (/bar x//sub f/ = .07). The branching ratio (BR) is defined as: BR /identicalreverse arrowto/ Br(D /yields/ D/pi/) /times/ BR(D /yields/ K/sup +/K/sup /minus//). The dependence of the cross section per nucleus on number of nucleons in target was fit to a form A /sup /alpha// and it was found that /alpha/ = .96 /plusreverse arrowminus/ .17. A sample of 64 /plusreverse arrowminus/ 16 D/sub s//sup /plus minus// events was investigates for the decay D/sub s//sup /plus minus// /yields/ /phi//pi//sup /plus minus//. The differential cross section for D/sub s//sup /plus minus// production averaged over the particle and antiparticle states is: BR.(1/2)(d/sigma/(D/sub s//sup +/)/dx/sub f/ + d/sigma/(D/sub s//sup /minus//) = 2.85 /plusreverse arrowminus/ 0.80 /plusreverse arrowminus/ .86 /mu/b/nucleon at x/sub f/ = 0.175 where the first errors is statistical and the second error is systematic. The branching fraction is defined as BR /equivalentreverse arrowto/ BR(D/sub s/ /yields/ /phi//pi/), and a linear A dependence was assumed. An estimate of relative cross section is: 0.19 /plusreverse arrowminus/ 0.09 at x/sub f/ = 0. 36 refs., 43 figs., 5 tabs.

  9. Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment

    NASA Technical Reports Server (NTRS)

    Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu

    2012-01-01

    The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This

  10. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  11. A diamond 14 MeV neutron energy spectrometer with high energy resolution.

    PubMed

    Shimaoka, Takehiro; Kaneko, Junichi H; Ochiai, Kentaro; Tsubota, Masakatsu; Shimmyo, Hiroaki; Chayahara, Akiyoshi; Umezawa, Hitoshi; Watanabe, Hideyuki; Shikata, Shin-ichi; Isobe, Mitsutaka; Osakabe, Masaki

    2016-02-01

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the (12)C(n, α)(9)Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  12. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  13. Response investigations of a TEPC in high energy proton and neutron beams using the variance method.

    PubMed

    Kyllönen, J E; Grindborg, J E; Lindborg, L

    2002-01-01

    Results from measurements in proton and neutron beams between 68 and 174 MeV at the T. Svedberg Laboratory in Uppsala are presented. The result indicate that a TEPC might underestimate the high-energy contribution to H*(10) in cosmic radiation applications such as measurements onboard aircraft.

  14. Development of high-energy neutron imaging for use in NDE applications

    SciTech Connect

    Dietrich, F; Hall, J; Logan, C; Schmid, G

    1999-06-01

    We are currently developing a high-energy (10 - 15 MeV) neutron imaging system for use in NDE applications. Our goal is to develop an imaging system capable of detecting cubic-mm-scale voids or other structural defects in heavily-shielded low-Z materials within thick sealed objects. The system will be relatively compact (suitable for use in a small laboratory) and capable of acquiring tomographic image data sets. The design of a prototype imaging detector and multi-axis staging system will be discussed and selected results from recent imaging experiments will be presented. The development of an intense, accelerator-driven neutron source suitable for use with the imaging system will also be discussed. Keywords: neutron imaging, neutron radiography, computed tomography, non-destructive inspection, neutron sources

  15. [High energy extracorporeal shockwave therapy (ESWT) in pseudarthrosis].

    PubMed

    Schoellner, C; Rompe, J D; Decking, J; Heine, J

    2002-07-01

    The gold standard for treatment of pseudarthrosis is operation with osteosynthesis and grafting. More than 10 years ago, extracorporeal shock wave therapy (ESWT) was additionally introduced as a noninvasive and low-risk treatment for pseudarthrosis. The aim of our prospective study was to analyze the treatment effect in a homogeneous group of patients and to develop prognostic factors. Forty-three consecutive patients were included in this study. All patients had been operated on for trauma or undergone selective osteotomy and had developed pseudarthrosis that persisted for 9 months. All patients received high-energy ESWT (0.6 mJ/mm2) with 3000 impulses (Siemens Osteostar) in one session under regional anesthesia. To differentiate active from inactive pseudarthrosis, a bone scintigraphy was compulsory. Clinical and radiological follow-ups were done at 4-week intervals starting 8 weeks after ESWT for 9 months. Cortical bridging was found in 31 of 43 (72.1%) pseudarthroses at 4.0 +/- 0.6 months after ESWT. Of 31 (80.6%) successfully treated patients, 25 had a positive scintigraphy compared to 4 of 12 (33.3%) treatment failures. Of 35 (82.9%) patients with a positive bone scintigraphy, 29 had bony healing compared to 2 of 8 (25%) patients with a negative bone scintigraphy. Six of these eight patients smoked more than 20 cigarettes a day. ESWT is still a clinically experimental treatment method. The absence of complications justifies its use for pseudarthrosis treatment. Further controlled studies are mandatory.

  16. Liquid lithium target as a high intensity, high energy neutron source

    DOEpatents

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  17. Micronuclei induction in human fibroblasts exposed in vitro to Los Alamos high-energy neutrons

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth's atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/h and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study the effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a γ source at a similar low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with the 9.9 cm water shielding, respectively.

  18. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  19. Boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Haque, A. M.; Moschini, G.; Valkovic, Vlado; Zafiropoulos, D.

    1995-03-01

    The final goal of any radiotherapy project is to expose the tumor as the target to a lethal dose of ionizing radiation, sparing thereby the surrounding healthy tissues to a maximum extent. Precise treatment is nevertheless essential for cure, since the danger exists that the tumor might re-establish itself if every cancer cell is not destroyed. The conventional therapy treatments existing to date, e.g., surgery, radiation therapy, and chemotherapy, have been successful in curing some kinds of cancers, but still there are many exceptions. In the following, the progress of a promising therapy tool, called the boron neutron capture therapy (BNCT), which has made its dynamic evolution in recent years, is briefly described. The approach towards clinical trials with BNCT is described in detail.

  20. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  1. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  2. High energy neutron treatment for pelvic cancers: study stopped because of increased mortality.

    PubMed Central

    Errington, R D; Ashby, D; Gore, S M; Abrams, K R; Myint, S; Bonnett, D E; Blake, S W; Saxton, T E

    1991-01-01

    OBJECTIVE--To compare high energy fast neutron treatment with conventional megavoltage x ray treatment in the management of locally advanced pelvic carcinomas (of the cervix, bladder, prostate, and rectum). DESIGN--Randomised study from February 1986; randomisation to neutron treatment or photon treatment was unstratified and in the ratio of 3 to 1 until January 1988, when randomisation was in the ratio 1 to 1 and stratified by site of tumour. SETTING--Mersey regional radiotherapy centre at Clatterbridge Hospital, Wirral. PATIENTS--151 patients with locally advanced, non-metastatic pelvic cancer (27 cervical, 69 of the bladder, seven prostatic, and 48 of the rectum). INTERVENTION--Randomisation to neutron treatment was stopped in February 1990. MAIN OUTCOME MEASURES--Patient survival and causes of death in relation to the development of metastatic disease and treatment related morbidity. RESULTS--In the first phase of the trial 42 patients were randomised to neutron treatment and 14 to photon treatment, and in the second phase 48 to neutron treatment and 47 to photon treatment. The relative risk of mortality for photons compared with neutrons was 0.66 (95% confidence interval 0.40 to 1.10) after adjustment for site of tumour and other important prognostic factors. Short term and long term complications were similar in both groups. CONCLUSIONS--The trial was stopped because of the increased mortality in patients with cancer of the cervix, bladder, or rectum treated with neutrons. PMID:1903663

  3. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  4. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  5. Identification of High Energy Solar Particle Signals on the Mexico City Neutron Monitor Database

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.; Vargas-Cardenas, B.

    2012-12-01

    We performed a search for ground level solar cosmic ray enhancements on the full five minute database of the Mexico City neutron monitor using wavelet filters and two different statistical tests. We present a detailed analysis of the time series of November 2, 1992, where we found a previously unreported increment matching the onset time of the impulsive phase of GLE 54, thus providing evidence of an effective detection of high energy solar cosmic rays.

  6. High-Energy Solar Flare Studies with HAWC and Neutron Monitors

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; de Nolfo, G. A.; HAWC Collaboration

    2013-05-01

    Solar flares can produce ions in excess of 1 GeV/nuc, both impulsively and for extended periods of time. We know this by way of the γ radiation those ions produce. We have witnessed this in several Fermi flares above 100 MeV as well as in the data from SMM and Compton. Our ability to deduce the nature of parent ion population responsible for the γ rays is limited by the confounding multiple processes that separate the ion population from the consequent photons. However, when neutrons (>500 MeV) are produced, which should be almost every time pions are produced, we have complementary information about the ion spectrum if those neutrons are measured. The γ rays are most closely tied to the ion spectrum near the pion production threshold, while the ground level neutrons sample the ion spectrum >1 GeV. Together these two measurements provide information on the ion spectral shape and its turnover at high energy. The turnover embodies critical information about the parameters of the acceleration process and environment. Above 500 MeV, neutrons can be detected at the ground near the subsolar point. HAWC, the High Altitude Water Čerenkov γ-ray telescope is designed to measure cosmic TeV γ-ray sources. HAWC resides on Sierra Negra in Mexico at a latitude of 19 degrees and an altitude of 623 mbar. Neutron signals detected by HAWC will be from higher energy ions at the Sun, compared to the bulk of photons detected by Fermi. If a γ signal is also present in HAWC, this will be additional information with which to examine the solar ion spectrum. The neutron and γ data from HAWC and neutron monitors when combined with data from Fermi LAT/GBM will constitute the the most comprehensive measure of the high-energy solar ion spectrum.

  7. High-Energy Solar Flare Studies with HAWC and Neutron Monitors

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.

    2013-12-01

    Solar flares can produce ions in excess of 1 GeV/nuc, both impulsively and for extended periods of time. We know this by way of the γ radiation those ions produce. We have witnessed this in several Fermi flares above 100 MeV as well as in the data from SMM and Compton. Our ability to deduce the nature of parent ion population responsible for the γ rays is limited by the confounding multiple processes that separate the ion population from the consequent photons. However, when neutrons (>500 MeV) are produced, which should be almost every time pions are produced, we have complementary information about the ion spectrum if those neutrons are measured. The γ rays are most closely tied to the ion spectrum near the pion production threshold, while the ground level neutrons sample the ion spectrum >1 GeV. Together these two measurements provide information on the ion spectral shape and its turnover at high energy. The turnover embodies critical information about the parameters of the acceleration process and environment. Above 500 MeV, neutrons can be detected at the ground near the subsolar point. HAWC, the High Altitude Water Čerenkov γ-ray telescope is designed to measure cosmic TeV γ-ray sources. HAWC resides on Sierra Negra in Mexico at a latitude of 19 degrees and an altitude of ~14,000 ft., 623 mbar. Neutron signals detected by HAWC will be from higher energy ions at the Sun, compared to the bulk of photons detected by Fermi. If a γ signal is also present in HAWC, this will be additional information with which to examine the solar ion spectrum. The neutron and γ data from HAWC and neutron monitors when combined with data from Fermi LAT/GBM will constitute the the most comprehensive measure of the high-energy solar ion spectrum.

  8. Workshop on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  9. Monitor units are not predictive of neutron dose for high-energy IMRT

    PubMed Central

    2012-01-01

    Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV) techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units. PMID:22883384

  10. Neutron capture therapy for melanoma

    SciTech Connect

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  11. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  12. COMPTEL measurements of the omnidirectional high-energy neutron flux in near-earth orbit.

    PubMed

    Morris, D J; Aarts, H; Bennett, K; Lockwood, J A; McConnell, M L; Ryan, J M; Schonfelder, V; Steinle, H; Weidenspointner, G

    1998-01-01

    On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (> 12.8 MeV) neutron flux near an altitude of 450 km. The D1 modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo. PMID:11542901

  13. Apparatus, Method and Program Storage Device for Determining High-Energy Neutron/Ion Transport to a Target of Interest

    NASA Technical Reports Server (NTRS)

    Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)

    2012-01-01

    An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.

  14. The Impact of Neutrons in Clinical Proton Therapy.

    PubMed

    Schneider, Uwe; Hälg, Roger

    2015-01-01

    In proton therapy, high-energy proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long-term health of cancer patients. Due to the high biological effectiveness of neutrons with regard to cancer induction, small neutron doses can be important. Published comparisons of neutron dose measurements and the corresponding estimates of cancer risk between different treatment modalities differ over orders of magnitude. In this report, the controversy about the impact of the neutron dose in proton therapy is critically discussed and viewed in the light of new epidemiological studies. In summary, the impact of neutron dose on cancer risk can be determined correctly only if the dose distributions are carefully measured or computed. It is important to include not only the neutron component into comparisons but also the complete deposition of energy as precisely as possible. Cancer risk comparisons between different radiation qualities, treatment machines, and techniques have to be performed under similar conditions. It seems that in the past, the uncertainty in the models which lead from dose to risk were overestimated when compared with erroneous dose comparisons. Current risk models used with carefully obtained dose distributions predict a second cancer risk reduction for active protons vs. photons and a more or less constant risk of passive protons vs. photons. Those findings are in general agreement with newly obtained epidemiologically results.

  15. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  16. The Fascinating High-Energy World of Neutron Stars and Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2006-06-01

    The past few years have witnessed a fast growth in the high-energy astrophysics community in Canada, thanks to new opportunities including the University Faculty Award (UFA) program introduced by the Natural Sciences and Engineering Research Council of Canada (NSERC) to appoint promising female researchers to faculty positions in science and engineering. As a UFA fellow at the University of Manitoba, I have had the unique opportunity to contribute to the launch of a new astronomy program in the department of Physics (renamed to Physics and Astronomy). My research focuses on observational studies of neutron stars, pulsar wind nebulae, and supernova remnants. The study of these exotic objects helps address the physics of the extreme and probe some of the most energetic events in the Universe. I will highlight exciting discoveries in this field and some of the questions to be addressed with current and future high-energy missions.

  17. High-energy and thermal-neutron imaging and modeling with an amorphous silicon flat-panel detector.

    PubMed

    Claytor, Thomas N; Taddeucci, Terry N; Hills, Charles R; Summa, Deborah A; Davis, Anthony W; McDonald, Thomas E; Schwab, Mark J

    2004-10-01

    The Los Alamos Neutron Science Center (LANSCE) operates two spallation neutron sources dedicated to research in materials science, condensed-matter physics, and fundamental and applied nuclear physics. Prior to 1995, all thermal neutron radiography at Los Alamos was done on a beam port attached to the Omega West reactor, a small 8MW research reactor used primarily for radioisotope production and prompt and delayed neutron activation analysis. After the closure of this facility, two largely independent radiography development efforts were begun at LANSCE using moderated cold and thermal neutrons from the Target-1 source and high-energy neutrons from the Target-4 source. Investigations with cold and thermal neutrons employed a neutron converter and film, a scintillation screen and CCD camera system, and a new high-resolution amorphous silicon (a-Si) flat-panel detector system. Recent work with high-energy neutrons (En > 1 MeV) has involved storage-phosphor image plates. Some comparison high-energy images were obtained with both image plates and the a-Si panel and showed equivalent image quality for approximately equal exposure times. PMID:15246402

  18. Proton linacs for boron neutron capture therapy

    SciTech Connect

    Lennox, A.J. |

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in {approximately}4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented.

  19. Radiation tolerance survey of selected silicon photomultipliers to high energy neutron irradiation

    SciTech Connect

    Barbosa, Fernando J.; McKisson, John E.; Qiang, Yi; Steinberger, William; Xi, Wenze; Zorn, Carl J.

    2012-11-01

    A key feature of silicon photomultipliers (SiPMs) that can hinder their wider use in medium and high energy physics applications is their relatively high sensitivity to high energy background radiation, with particular regard to high energy neutrons. Dosages of 1010 neq/cm2 can damage them severely. In this study, some standard versions along with some new formulations are irradiated with a high intensity 241AmBe source up to a total dose of 5 × 109 neq/cm2. Key parameters monitored include dark noise, photon detection efficiency (PDE), gain, and voltage breakdown. Only dark noise was found to change significantly for this range of dosage. Analysis of the data indicates that within each vendor's product line, the change in dark noise is very similar as a function of increasing dose. At present, the best strategy for alleviating the effects of radiation damage is to cool the devices to minimize the effects of increased dark noise with accumulated dose.

  20. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry.

    PubMed

    Howell, R M; Burgett, E A; Wiegel, B; Hertel, N E

    2010-12-01

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (Burgett, 2008 and Howell et al., 2009).However, when the initial test of the system was carried-out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9 % and 16.7 % and the arithmetic mean for all spheres was (10.9 ± 1.8) %. These sphere specific correction factors will be applied for all future measurements carried-out with the BSE.

  1. Tumor Therapy with High-Energy Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Schardt, D.

    2001-09-01

    Heavy-ion beams offer favourable conditions for the treatment of deep-seated local tumors. The well defined range and the small lateral beam spread make it possible to deliver the dose with millimeter precision. In addition, heavy ions have an enhanced biological efficiency in the Bragg peak region which is caused by the dense ionization and the resulting reduced cellular repair rate. Furthermore, heavy ions offer the unique possibility of in-vivo range monitoring by applying Positron-Emission-Tomography (PET) techniques. Taking advantage of these clinically relevant properties, a therapy unit using 12C beams with energies of 80-430 MeV/u was constructed at GSI. The fully active beam delivery system includes a magnetic raster scan device providing a high degree of dose conformation to the target volume while healthy tissue and radiosensitive structures are spared to a maximum extent. In the framework of a clinical study 68 patients have been treated since December 1997 with promising results so far. Plans for a dedicated heavy-ion treatment center at the Radiological Clinic Heidelberg will be further pursued.

  2. Accelerator based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  3. Production of the D/sub s//sup +- / by high-energy neutrons

    SciTech Connect

    Shipbaugh, C.; Wiss, J.; Binkley, M.; Butler, J.; Cumalat, J.P.; Coteus, P.; DiCorato, M.; Diesburg, M.; Enagonio, J.; Filaseta, J.; and others

    1988-05-23

    We have observed the production of the D/sub s//sup +- / by a high-energy neutron beam on nuclear targets. The D/sub s//sup +- / was observed in the decay mode D/sub s//sup +- /..-->..phi..pi../sup +- /, phi..-->..K/sup +/K/sup -/. The average of the inclusive cross sections for D/sub s//sup +/ and D/sub s//sup -/ hadroproduction is measured to be B dsigmadchi/sub F/ = 2.85 +- 0.80 +- 0.86 ..mu..bnucleon at chi/sub F/ = 0.175 on the assumption of a linear A dependence, where BequivalentGAMMA(D/sub s//sup +- /..-->..phi..pi../sup +- /)GAMMA(D/sub s//sup +- /..-->..all). GAMMA(D/sub s//sup +- /..-->..all)

  4. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.

    PubMed

    Nigg, D W; Wemple, C A; Risler, R; Hartwell, J K; Harker, Y D; Laramore, G E

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  5. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy

    SciTech Connect

    Nigg, David W.; Wemple, Charles A.; Risler, Ruedi; Hartwell, John K.; Harker, Yale D.; Laramore, George E.

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  6. High-energy particle production in the 1997 November 6 flare as viewed from gamma rays and neutrons

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.; Share, G. H.; Murphy, R. J.

    2001-08-01

    Yohkoh observed hard Xand gamma-rays from a X9.4 flare on November 6, 1997. Strong gamma-rays were emitted in 11:52-11:56 UT (peak phase). After that, weak and extended gamma-ray production lasted for 600s (extended phase). The OSSE aboard CGRO detected neutrons associated with this flare between 12:08 and 12:28 UT. The neutron count-rate time profile exhibit a gradually decrease with time. We derive the proton spectra and the timing of particle acceleration to explain the observed neutron time profile. The proton spectra of E-3.5 in the peak phase and of E-3.0 in the extended phase give a good fit to the observed neutron time profile. We present detailed calculations of the neutron arrival time profiles and discuss high-energy particle production processes from the gamma-ray neutron observations.

  7. Approach to magnetic neutron capture therapy

    SciTech Connect

    Kuznetsov, Anatoly A. . E-mail: spod@sky.chph.ras.ru; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-11-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.

  8. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  9. Gadolinium as a Neutron Capture Therapy Agent

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  10. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  11. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  12. Boron neutron capture therapy for cancer

    SciTech Connect

    Barth, R.E.; Soloway, A.H. ); Fairchild, R.G. State Univ. of New York, Stony Brook )

    1990-10-01

    Boron neutron capture therapy (BNCT) bring together two components that when kept separate have only minor effects on normal cells. The first component is a stable isotope of boron (boron 10) that can be concentrated in tumor cells. The second is a beam of low-energy neutrons that produces short-range radiation when absorbed, or captured, by the boron. The combination of these two conditions at the site of a tumor releases intense radiation that can destroy malignant tissues. BNCT is based on the nuclear reaction that occurs when boron 10 is irradiated with an absorbs neutrons. The neutrons that it takes up are called thermal, or slow, neutrons. They are of such low energy that they cause little tissue damage as compared with other forms of radiation such as protons, gamma rays and fast neutrons. When an atom of boron 10 captures a neutron, an unstable isotope, boron 11, forms. The boron 11 instantly fissions, yielding lithium 7 nuclei and energetic alpha particles. These heavy particles, which carry 2.79 million electron volts of energy, are a highly lethal form of radiation. If the treatment proceeds as intended, the destructive effects of the capture reaction would occur primarily in those cancer cells that have accumulated boron 10. Normal cells with low concentrations of boron would be spared.

  13. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  14. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  15. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  16. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  17. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  18. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  19. Testing The High-Energy Prompt Neutron Signature At Low Beam Energies

    SciTech Connect

    Thompson, Scott J.; Kinlaw, Mathew T.; Hunt, Alan W.

    2011-06-01

    Prompt fission neutrons continue to be examined as a signature for detecting the presence of fissionable material. This technique exploits the neutron energy limitations inherent with photonuclear emissions from non-fissionable material, allowing prompt fission neutrons to be identified and engaged for detecting nuclear material. Prompt neutron signal measurements were acquired with bremsstrahlung endpoint energies of 6 MeV for 18 targets comprised of both fissionable and non-fissionable material; delayed neutron measurements were also collected as a reference. The {sup 238}U target was also shielded with increasing thicknesses of lead or borated polyethylene to compare the resulting detection rates of the prompt and delayed fission neutron signals.

  20. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    SciTech Connect

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Lopez, A. Legrand

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  1. Pulse Radiolysis Using Very-high-energy Ions for Optimizing Cancer Therapy.

    PubMed

    Getoff, Nikola

    2016-01-01

    Cancer therapy by means of high-energy ions is very efficient. As a consequence of the linear-energy-transfer effect only a negligible part of the produced free radicals can escape combination processes to form molecular products and to cause undesired side processes. Positrons (e⁺) and γ-rays, generated by the nuclear interaction of high-energy ions in the medium, serve in monitoring the radiation dose absorbed by the tumor. However, due to the dipole nature of water molecules a small proportion of thermalized positrons (e⁺th) can become solvated (e⁺aq). Hence, they are stabilized, live longer and can initiate side reactions. In addition, positronium (Ps), besides solvated electrons (e⁺aq), can be generated and involved in the reaction mechanisms. For a better understanding of the reaction mechanisms involved and to improve cancer therapy, a time-resolved pulse radiolysis instrument using high-energy particles is discussed here. The proposed method is examined and recommended by CERN experts. It is planned to be realized at the MedAustron Radiation Therapy and Research Centre in Wiener Neustadt, Austria. PMID:26912822

  2. Recent advances in neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  3. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  4. A Step Toward Physics-Based Cosmogenic Nuclide Production Rates: Measurements of High-Energy Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Caffee, M. W.; Welten, K. C.; Ninomiya, K.; Omoto, T.; Nakagaki, R.; Takahashi, N.; Kasamatsu, Y.; Shima, T.; Sekimoto, S.; Yashima, H.; Shibata, S.; Matsumura, H.; Bajo, K.; Nagao, K.; Satoh, D.; Iwamoto, Y.; Hagiwara, M.; Shinohara, A.; Imamura, M.; Nishiizumi, K.

    2010-12-01

    Cosmic-ray produced nuclides are found in terrestrial and extraterrestrial materials. In extra-terrestrial materials it is in many instances possible to find samples with exposure times much longer than a specifc radionuclide’s half-life so the production rate for a specific geometry can be determined from the saturation activity. For most terrestrial applications this condition is not met, so an exposure age can only be determined if the production rate is independently determined. For terrestrial applications these production rates are ascertained by using geologic calibration sites. These calibrations themselves are not without ambiguity at times. Physics-based production rates are an alternative means by which production rates can be determined. Monte Carlo neutron transport codes are the essential tool in model calculations of cosmogenic nuclide production rates in terrestrial and extraterrestrial materials. However, even when the fundamental physics of neutron transport within planetary materials (atmospheres and surface materials) is modeled properly, the reliability of the results is limited by the lack of measured cross sections. Indeed, at the present time, the lack of the excitation functions for nuclides produced by high-energy neutrons that dominate the production of cosmogenic nuclides, is the largest uncertainty in cosmogenic nuclide production rate models. To improve the accuracy of cosmogenic nuclide production rates we are performing measurements of the high-energy neutron excitation functions [1]. Target materials, representing compounds found in naturally occurring minerals, were exposed to quasi-monoenergetic neutrons at the Research Center for Nuclear Physics (RCNP), Osaka University. The neutrons are produced utilizing the reaction 7Li(p, n). The first two irradiations used 300 MeV and 392 MeV primary proton beams, yielding average neutron energies of 287 MeV and 370 MeV, respectively. After bombardment by neutrons, the short half

  5. Assessment of ideal neutron beams for neutron capture therapy.

    PubMed

    Storr, G J

    1992-09-01

    The discrete-ordinates transport computer code DORT has been used to develop a two-dimensional cylindrical phantom model for use as a tool to assess beam design and dose distributions for boron neutron capture therapy. The model uses an S8 approximation for angular fluxes and a P3 Legendre approximation for scattering cross sections. A one-dimensional discrete-ordinates model utilizing the computer code ANISN was used to validate the energy-group structure used in the two-dimensional calculations. In the two-dimensional model the effects of varying basic parameters such as aperture width, neutron source energy, and tissue composition have been studied. Identical results were obtained when comparing narrow beam calculations to fine-mesh higher-order Sn treatments (up to S32), and with P5 cross sections. It is shown that, when the correct assessment volume is used, narrow beams will give little or no advantage for therapy even with an optimum-energy ideal neutron beam.

  6. Characterisation of neutron fields around high-energy x-ray radiotherapy machines.

    PubMed

    Králík, M; Turek, K

    2004-01-01

    Photoneutron spectra around the treatment bed of a Varian Clinac 2100C machine were measured using a Bonner sphere spectrometer. To overcome problems with pulse pile-up and detection of non-neutron-induced events, the active detector of thermal neutrons normally used at the centre of the spheres was replaced by a sandwich of four CR-39 track detectors interleaved with 10B radiators. Track densities measured for the CR-39 detectors in Bonner spheres were used for the unfolding of neutron spectra. Neutron fluence and ambient dose equivalent for the whole energy range and partial energy intervals were derived from the neutron spectra.

  7. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  8. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.

    PubMed

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-06-01

    High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the viewpoint of fast neutron contamination control, whether high energy proton beam is ideal for AB-BNCT or not. In this study, D2O, PbF4, CaF2, and Fluental(™) were used standalone as moderator materials to slow down 1-, 6-, and 10-MeV parallelly incident neutrons. From the calculated results, we concluded that neutrons produced by high energy proton beam could not be easily moderated by a single moderator to an acceptable contamination level and still with reasonable epithermal neutron beam intensity. Hence, much more complicated and sophisticated designs of beam shaping assembly have to be developed when using high energy proton beams.

  9. Measurements of high-energy neutron and proton fluxes on-board "Mir-Spectr" orbital complex.

    PubMed

    Kudryavtsev, M I; Bogomolov, A V; Bogomolov, V V; Denisov YuI; Svertilov, S I

    1998-01-01

    The measurements of high-energy neutron (with energies approximately 30-300 MeV) and proton (with energies approximately 1-200 MeV) fluxes are being conducted on-board "Mir-Spectr" orbital complex. Neutrons are detected by the undirected (FOV approximately 4 pi sr) scintillator spectrometer, consisting of 4 identical CsI(T1) detector units (the effective area for neutrons approximately 30 cm2). The gamma-quanta, which can be also detected by this instrument, are separated from neutrons by the analysis of the scintillator output pulse shape. To exclude registration of charged particles an anticoincidence plastic scintillator shield is realized in each detector unit. The proton fluxes are measured by the telescope based on 3 semiconductor detectors with small geometry factor (approximately 1 cm2 x sr). As the first result of the experiment the upper limit of the integral flux of local and albedo neutrons in the equatorial region (L<1. 1) was estimated. The results of this measurements can be useful for the radiation security. Also, the neutrons of solar flares can be detected in this experiment. PMID:11542900

  10. Pancreatic carcinoma: results with fast neutron therapy

    SciTech Connect

    Kaul, R.; Cohen, L.; Hendrickson, F.; Awschalom, M.; Hrejsa, A.F.; Rosenberg, I.

    1981-02-01

    Results of therapy in 31 of 50 patients who were treated for advanced pancreatic carcinoma at Fermi National Accelerator Laboratory are presented here. To date, six patients are alive and four are free of disease. Since the main reason for failure was lack of control of primary tumor, the tumor dose has been increased by 15%. Based on our results, a nationwide study has been launched to assess the effectiveness of neutrons vs photons in the treatment of locally advanced pancreatic carcinoma.

  11. Effect of wall thickness on measurement of dose for high energy neutrons.

    PubMed

    Perez-Nunez, Delia; Braby, Leslie A

    2010-01-01

    Neutrons produced from the interaction between galactic cosmic rays and spacecraft materials are responsible for a very important portion of the dose received by astronauts. The neutron energy spectrum depends on the incident charged particle spectrum and the scattering environment but generally extends to beyond 100 MeV. Tissue-equivalent proportional counters (TEPC) are used to measure the dose during the space mission, but their weight and size are very important factors for their design and construction. To achieve ideal neutron dosimetry, the wall thickness should be at least the range of a proton having the maximum energy of the neutrons to be monitored. This proton range is 0.1 cm for 10 MeV neutrons and 7.6 cm for 100 MeV neutrons. A 7.6 cm wall thickness TEPC would provide charged particle equilibrium (CPE) for neutrons up to 100 MeV, but for space applications it would not be reasonable in terms of weight and size. In order to estimate the errors in measured dose due to absence of CPE, MCNPX simulations of energy deposited by 10 MeV and 100 MeV neutrons in sites with wall thickness between 0.1 cm and 8.5 cm were performed. The results for 100 MeV neutrons show that energy deposition per incident neutron approaches a plateau as the wall thickness approaches 7.6 cm. For the 10 MeV neutrons, energy deposition per incident neutron decreases as the wall thickness increases above 0.1 cm due to attenuation. PMID:19959949

  12. Effect of wall thickness on measurement of dose for high energy neutrons.

    PubMed

    Perez-Nunez, Delia; Braby, Leslie A

    2010-01-01

    Neutrons produced from the interaction between galactic cosmic rays and spacecraft materials are responsible for a very important portion of the dose received by astronauts. The neutron energy spectrum depends on the incident charged particle spectrum and the scattering environment but generally extends to beyond 100 MeV. Tissue-equivalent proportional counters (TEPC) are used to measure the dose during the space mission, but their weight and size are very important factors for their design and construction. To achieve ideal neutron dosimetry, the wall thickness should be at least the range of a proton having the maximum energy of the neutrons to be monitored. This proton range is 0.1 cm for 10 MeV neutrons and 7.6 cm for 100 MeV neutrons. A 7.6 cm wall thickness TEPC would provide charged particle equilibrium (CPE) for neutrons up to 100 MeV, but for space applications it would not be reasonable in terms of weight and size. In order to estimate the errors in measured dose due to absence of CPE, MCNPX simulations of energy deposited by 10 MeV and 100 MeV neutrons in sites with wall thickness between 0.1 cm and 8.5 cm were performed. The results for 100 MeV neutrons show that energy deposition per incident neutron approaches a plateau as the wall thickness approaches 7.6 cm. For the 10 MeV neutrons, energy deposition per incident neutron decreases as the wall thickness increases above 0.1 cm due to attenuation.

  13. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  14. SECONDARY NEUTRON DOSES IN A PROTON THERAPY CENTRE.

    PubMed

    De Saint-Hubert, M; Saldarriaga Vargas, C; Van Hoey, O; Schoonjans, W; De Smet, V; Mathot, G; Stichelbaut, F; Manessi, G; Dinar, N; Aza, E; Cassell, C; Silari, M; Vanhavere, F

    2016-09-01

    The formation of secondary high-energy neutrons in proton therapy can be a concern for radiation protection of staff. In this joint intercomparative study (CERN, SCK•CEN and IBA/IRISIB/ULB), secondary neutron doses were assessed with different detectors in several positions in the Proton Therapy Centre, Essen (Germany). The ambient dose equivalent H(*)(10) was assessed with Berthold LB 6411, WENDI-2, tissue-equivalent proportional counter (TEPC) and Bonner spheres (BS). The personal dose equivalent Hp(10) was measured with two types of active detectors and with bubble detectors. Using spectral and basic angular information, the reference Hp(10) was estimated. Results concerning staff exposure show H(*)(10) doses between 0.5 and 1 nSv/monitoring unit in a technical room. The LB 6411 showed an underestimation of H(*)(10), while WENDI-2 and TEPC showed good agreement with the BS data. A large overestimation for Hp(10) was observed for the active personal dosemeters, while the bubble detectors showed only a slight overestimation.

  15. Pulsed Neutron Monitoring at High Energy Electron Accelerators with Silver Lined Proportional Counter

    NASA Astrophysics Data System (ADS)

    Dighe, P. M.; Ghodgaonkar, M. D.; Dhairyawan, M. P.; Haridas, P.

    2007-01-01

    To meet the challenging requirement of pulsed neutron background measurement, which is present around electron accelerators at the Indus-1 facility of the Raja Ramanna Centre for Advanced Technology (RRCAT) Indore, a silver lined proportional counter with 0.2cps/n cm-2s-1 thermal neutron sensitivity has been developed. The detector has been tested for its performance in continuous thermal neutron field at Apsara reactor and in pulsed neutron field at Indus-1 facility. The detector shows ±11% signal linearity at various reactor powers and follows the silver decay scheme during reactor scram experiment. Off-line measurements made in pulsed neutron background at the Indus-1 facility compare well with nuclear track detectors (CR-39). For monitoring on-line neutron flux, electronic gating circuit was used that can switch off the scalar counter unit during the prompt X-ray response of the detector taking trigger pulse from the accelerator and experiments showed that the neutron flux measured by the detector is in close agreement with CR-39 values.

  16. Estimate of the risk in radiation therapy due to unwanted neutrons

    SciTech Connect

    Swanson, W.P.

    1980-03-01

    The integral dose of accelerator-produced leakage neutrons to patients undergoing high-energy photon therapy is estimated and compared to other sources of integral dose. The leakage neutron component contributes about 5 g rad (1 rad=10/sup -2/ Gy) for a typical treatment course of 5000 rad. When averaged over a 70-kg tissue volume, the corresponding dose amounts to only 0.36 rad. From this, the risk of inducing fatal malignancies by leakage neutrons is estimated to be about 50 x 10/sup -6/ per year following treatment. This is compared to other risks to which the patient is unavoidably exposed, and it is argued that the unwanted neutrons pose such small additional risk that regulatory intervention is not warranted. This assessment is performed without reference to neutron RBE or quality factor.

  17. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer. PMID:27461603

  18. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  19. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  20. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    PubMed

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code.

  1. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    PubMed

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code. PMID:15353654

  2. Monte Carlo assessment of soil moisture effect on high-energy thermal neutron capture gamma-ray by 14N.

    PubMed

    Pazirandeh, Ali; Azizi, Maryam; Farhad Masoudi, S

    2006-01-01

    Among many conventional techniques, nuclear techniques have shown to be faster, more reliable, and more effective in detecting explosives. In the present work, neutrons from a 5 Ci Am-Be neutron source being in water tank are captured by elements of soil and landmine (TNT), namely (14)N, H, C, and O. The prompt capture gamma-ray spectrum taken by a NaI (Tl) scintillation detector indicates the characteristic photo peaks of the elements in soil and landmine. In the high-energy region of the gamma-ray spectrum, besides 10.829 MeV of (15)N, single escape (SE) and double escape (DE) peaks are unmistakable photo peaks, which make the detection of concealed explosive possible. The soil has the property of moderating neutrons as well as diffusing the thermal neutron flux. Among many elements in soil, silicon is more abundant and (29)Si emits 10.607 MeV prompt capture gamma-ray, which makes 10.829 MeV detection difficult. The Monte Carlo simulation was used to adjust source-target-detector distances and soil moisture content to yield the best result. Therefore, we applied MCNP4C for configuration very close to reality of a hidden landmine in soil.

  3. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  4. (A neutron scattering experiment to study the high-energy spin dynamics of the itinerant antiferromagnet Mn sub 90 Cu sub 10 )

    SciTech Connect

    Fernandez-Baca, J.A.

    1990-10-26

    The traveler performed a neutron scattering experiment to study the high-energy spin dynamics of the itinerant antiferromagnet. This experiment was conducted at a unique instrument located at the hot-neutron source at the ILL. The traveler also held various scientific discussions with ILL research staff members and visiting scientists.

  5. Spectromicroscopy in Boron Neutron Capture Therapy Research

    NASA Astrophysics Data System (ADS)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  6. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  7. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  8. A multileaf collimator for neutron radiation therapy

    NASA Astrophysics Data System (ADS)

    Farr, J. B.; Maughan, R. L.; Yudelev, M.; Forman, J. D.; Blosser, E. J.; Horste, T.

    2001-12-01

    A multi-leaf collimator (MLC) has been designed for installation on the super-conducting cyclotron at the Gershenson Radiation Oncology Center. This MLC will replace the existing multi-rod collimator and the increased efficiency thus achieved should allow for a 50% increase in the number of patients treated. A study of the penumbra region of the neutron beam with focused and unfocused collimator leaves has been completed, together with activation measurements in steel and tungsten. Results of these studies were used to finalize the collimator leaf design. A steel collimator leaf with a 5 mm projection at the isocenter and a wedge shaped section has been chosen, to provide beam divergence in the direction perpendicular to the leaf motion. The leaf profile is "stepped" to prevent neutron leakage. The rationale for this leaf design is discussed. The overall design of the collimator system and the incorporation of a remote wedge-changing device will be presented. Each leaf is positioned using a stepping motor; the leaf position is independently confirmed using an optical system incorporating a coherent fiber optic and a CCD camera. The control system is being designed to allow for the implementation of intensity modulated neutron radiation therapy (IMNRT).

  9. Research needs for neutron capture therapy

    SciTech Connect

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  10. Measurement of high-energy neutrons at ISS by SEDA-AP

    NASA Astrophysics Data System (ADS)

    Koga, K.; Goka, T.; Matsumoto, H.; Obara, T.; Muraki, Y.; Yamamoto, T.

    2011-09-01

    A new type of solar neutron detector (NEM) was launched by the space shuttle Endeavour on 16 July 2009 and it began collecting data on 25 August 2009 at the International Space Station (ISS). In this paper we introduce preliminary results obtained by the NEM.

  11. High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1994-01-01

    The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

  12. New estimation method of neutron skyshine for a high-energy particle accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Jung, Nam-Suk; Lee, Hee-Seock; Ko, Seung-Kook

    2016-09-01

    A skyshine is the dominant component of the prompt radiation at off-site. Several experimental studies have been done to estimate the neutron skyshine at a few accelerator facilities. In this work, the neutron transports from a source place to off-site location were simulated using the Monte Carlo codes, FLUKA and PHITS. The transport paths were classified as skyshine, direct (transport), groundshine and multiple-shine to understand the contribution of each path and to develop a general evaluation method. The effect of each path was estimated in the view of the dose at far locations. The neutron dose was calculated using the neutron energy spectra obtained from each detector placed up to a maximum of 1 km from the accelerator. The highest altitude of the sky region in this simulation was set as 2 km from the floor of the accelerator facility. The initial model of this study was the 10 GeV electron accelerator, PAL-XFEL. Different compositions and densities of air, soil and ordinary concrete were applied in this calculation, and their dependences were reviewed. The estimation method used in this study was compared with the well-known methods suggested by Rindi, Stevenson and Stepleton, and also with the simple code, SHINE3. The results obtained using this method agreed well with those using Rindi's formula.

  13. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    NASA Astrophysics Data System (ADS)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  14. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump, Part II: Monte Carlo Simulations

    SciTech Connect

    Roesler, Stefan

    2002-09-19

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  15. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    PubMed

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H (*)(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H (*)(10) value of 2.7 μSv Gy(-1) was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H (*)(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy(-1) at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to

  16. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H *(10) value of 2.7 μSv Gy-1 was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy-1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal

  17. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H *(10) value of 2.7 μSv Gy‑1 was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy‑1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal

  18. Neutron capture therapy: Years of experimentation---Years of reflection

    SciTech Connect

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

  19. Neutron dosimetry at a high-energy electron-positron collider

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  20. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  1. The properties of gamma-radiation and high-energy neutron fluxes in "MIR" station orbit.

    PubMed

    Bogomolov, A V; Bogomolov, V V; Denisov, Yu I; Logachev, Yu I; Svertilov, S I; Kudryavtsev, M I; Lyagushin, V I; Ershova, T V

    2002-10-01

    The study of radiation background components in the near-Earth space is very important for different branches of space research, in particular for space dosimetry and for the planning of gamma-astronomy experiments. Detailed information on the neutral components (gamma-quanta, neutrons) of background radiation was obtained during the Grif-1 experiment onboard Mir orbital station (OS). The measurements of fluxes of 0.05-50 MeV gamma-quanta and >30 MeV neutrons with a large area instrument (approximately 250 cm2 for gamma-quanta, approximately 30 cm2 for neutrons) as well as corresponding charged particle measurements (0.4-1.5 MeV electrons, 1-200 MeV protons) were made during this experiment. The background components induced by the station's own radiation as well as the albedo gamma-rays from the Earth's atmosphere were revealed as the result of data analysis for about 600 h of observation. A mathematical model describing the latitude and energy dependences of atmospheric albedo gamma-rays as well as of those of gamma-quanta produced in the material of the station due to cosmic ray interactions was developed. An analytical approximation of the spectrum of induced gamma-rays from radioactive isotopes stored in the station and instrument's materials is presented. The dynamics of gamma-quantum background fluxes during the geomagnetic disturbances of January 10-11, 1997 are discussed. An analytical representation of the latitude dependence of the integral flux of neutrons with >30 MeV is given.

  2. The properties of gamma-radiation and high-energy neutron fluxes in "MIR" station orbit.

    PubMed

    Bogomolov, A V; Bogomolov, V V; Denisov, Yu I; Logachev, Yu I; Svertilov, S I; Kudryavtsev, M I; Lyagushin, V I; Ershova, T V

    2002-10-01

    The study of radiation background components in the near-Earth space is very important for different branches of space research, in particular for space dosimetry and for the planning of gamma-astronomy experiments. Detailed information on the neutral components (gamma-quanta, neutrons) of background radiation was obtained during the Grif-1 experiment onboard Mir orbital station (OS). The measurements of fluxes of 0.05-50 MeV gamma-quanta and >30 MeV neutrons with a large area instrument (approximately 250 cm2 for gamma-quanta, approximately 30 cm2 for neutrons) as well as corresponding charged particle measurements (0.4-1.5 MeV electrons, 1-200 MeV protons) were made during this experiment. The background components induced by the station's own radiation as well as the albedo gamma-rays from the Earth's atmosphere were revealed as the result of data analysis for about 600 h of observation. A mathematical model describing the latitude and energy dependences of atmospheric albedo gamma-rays as well as of those of gamma-quanta produced in the material of the station due to cosmic ray interactions was developed. An analytical approximation of the spectrum of induced gamma-rays from radioactive isotopes stored in the station and instrument's materials is presented. The dynamics of gamma-quantum background fluxes during the geomagnetic disturbances of January 10-11, 1997 are discussed. An analytical representation of the latitude dependence of the integral flux of neutrons with >30 MeV is given. PMID:12442742

  3. New concepts for compact accelerator/target for Boron Neutron Capture Therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-12-31

    Two new target concepts, NIFTI and DISCOS, that enable a large reduction in the proton beam current needed to produce epithermal neutrons for BNCT (Boron Neutron Capture Therapy) are described. In the NIFTI concept, high energy neutrons produced by (p, n) reactions of 2.5 MeV protons on Li are down scattered to treatment energies ({approximately} 20 keV) by relatively thin layers of PbF{sub 2} and iron. In the DISCOS concept, treatment energy neutrons are produced directly in a succession of thin ({approximately} 1 micron) liquid Li films on rotating Be foils. These foils interact with a proton beam that operates just above threshold for the (p, n) reaction, with an applied DC field to re-accelerate the proton beam between the target foils.

  4. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  5. Fast neutron therapy in treatment of soft tissue sarcoma--the Berlin-Buch study.

    PubMed

    Steingräber, M; Lessel, A; Jahn, U

    1996-01-01

    From 1975-1994, 221 adult patients with a total of 232 radiation sites for soft tissue sarcomas were irradiated with fast neutrons with a mean energy of 6.2 MeV in Berlin-Buch/Dresden-Rossendorf. The tumour dose ranged between 6 and 12 Gy and was limited by the low dose penetration of the neutron beam. A local control rate of 66% was obtained. The local control was affected by the tumour differentiation, residual status and histological subtype. Severe fibrosis of the subcutaneous tissues occurred in 40% usually after 2 years. No serious general side effects occurred. To optimize neutron therapy, a high energy clinically-based cyclotron with a fully rotational gantry and a multileaf collimator should be utilized. It seems that patients with locally advanced and well differentiated sarcomas can benefit from this therapy.

  6. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    SciTech Connect

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  7. First calibration of the Canadian high-energy neutron spectrometry system with HAWK TEPC and Liulin at PTB

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Boudreau, M.; Lewis, B. J.; Smith, M. B.; Zhang, M.; Ing, H.

    The Canadian high-energy neutron spectrometry system CHENSS was constructed for the Canadian Space Agency CSA to measure accurately the neutron spectrum in low-Earth orbit A large specially formulated viscoelastic scintillator uses proton recoil and good pulse-shape discrimination to measure from a few MeV to about 100 MeV With delays in the NASA flight schedule for the shuttle opportunities exist to calibrate the CHENSS at up to three reference calibration fields Measurements were taken at Physikalisch-Technische Bundesanstalt PTB in late 2005 and similar calibrations are planned at Institut de Physique Nucl e aire of the Universit e catholique de Louvain UCL and the iThemba Laboratory for Accelerator-Based Sciences In separate exposures two spectrometers a HAWK tissue equivalent proportional counter TEPC and a Liulin and an Eberline FH41B-10 gamma-ray and neutron-sensitive meter used for airborne cosmic radiation measurements were calibrated for comparison The CHENSS HAWK and Liulin were subjected to 2 5 5 0 14 8 and 19 0 MeV neutrons with fluence measurements taken by PTB staff In addition since the HAWK and Liulin are capable of measuring the total dose equivalent they were also calibrated with PTB s Cs-137 and Cf-252 sources The results of these calibrations and comparison with all of the equipment will be reported in the paper The knowledge gained from this first calibration effort will be beneficial for the CHENSS when flown in a GAS can on a future shuttle flight as well as for the HAWK Liulin and FH41B-10 used

  8. Boron thermal/epithermal neutron capture therapy

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the /sup 10/B(n, ..cap alpha..)/sup 7/Li reaction is approx. 10..mu.., or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor.

  9. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  10. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  11. The inelastic neutron scattering spectrum of chromous acid at high energy transfers

    NASA Astrophysics Data System (ADS)

    Tomkinson, J.; Taylor, A. D.; Howard, J.; Eckert, J.; Goldstone, J. A.

    1985-02-01

    The inelastic incoherent neutron scattering spectrum of chromous acid, at 77 K, is presented. It is dominated by the intense bending mode at 1254 cm-1 with some modes at lower frequencies showing indications of dispersion. The antisymmetric stretch νas(OHS) {‖1>-‖2>} was assigned to a broad band centered at ˜2050 cm-1, significantly displaced for the IR assignment (1650 cm-1). The breadth of the band is due to the dispersion, and kinematic coupling, that is anticipated for this compound. These new data allows us to fit chromous acid more clearly into the general trend of hydrogen bonded compounds. Chromous acid compares very well in its overall INS spectrum with the isomorphous sodium bifluoride, except that the kinematic coupling between νas(OHO) and the symmetric stretch does not occur in this compound.

  12. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  13. Californium-252 Neutron Therapy in China

    SciTech Connect

    Sharwin X. Zeng; Jian H. Gu

    2000-11-12

    Californium-252 brachytherapy, believed to be the most successful source for neutron therapy, gives most of the cures as well as long-term and complication-free survivals. Chinese radiation oncologists were interested in californium neutron therapy (Cf-NT) in the early 1980s, but {sup 252}Cf sources for medical use were not available in China until 1992 when a californium joint venture was established by the China Institute of Atomic Energy (Beijing) and the Research Institute for Nuclear Reactors (Dimitrovgrad) of Russia. In 1995, 25 seeds of {sup 252}Cf with a strength of 3 {mu}g each were sent to China for preclinical investigation. Three years later, a high dose rate (HDR) {sup 252}Cf source was imported and transferred into a home-made remote after-loader for intracavitary treatment in Chongqing, and a clinical trail was started in February 1999. This is the first time that Cf-NT was performed for cancer patients in China. Since then, Cf-NT in China has developed rapidly. It is estimated that one-tenth of those radiation oncology centers with brachytherapy practice will be equipped with californium units in 5 yr. That means more than 30 units will be in use in hospitals. That is significant compared with other countries, but it is just one, on average, for each province or one per 40 million people in China. Progress also has been achieved in the {sup 252}Cf treatment delivery equipment. Preliminary clinical trails showed complete response observed in all cases treated, with a rapid clearance of tumors and mild reactions in normal tissues. The short-term results are quite encouraging. To deal with problems due to the demand for Cf-NT in China, attention should be paid to the following particulars: (1) A high-strength miniature source is needed for HDR/MDR interstitial therapy to extend the Cf-NT coverage. (2) Basic work on radiophysics and radiobiology needs to be done, including source calibration, clinical dosimetry, clinical RBE determination, and Cf

  14. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Yin, Yan; Ma, Yan-Yun; Zhu, Qing-Jun

    2015-12-15

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D{sup +} and T{sup +}. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 10{sup 16 }J/m{sup 3}, which is about five orders of magnitude higher than the threshold for high energy density physics, 10{sup 11 }J/m{sup 3}. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 10{sup 35}/m{sup 3} s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications.

  15. Neutron therapy for salivary and thyroid gland cancer

    NASA Astrophysics Data System (ADS)

    Gribova, O. V.; Musabaeva, L. I.; Choynzonov, E. L.; Lisin, V. A.; Novikov, V. A.

    2016-08-01

    The purpose of this study was to analyze the results of the combined modality treatment and radiation therapy using 6.3 MeV fast neutrons for salivary gland cancer and prognostically unfavorable thyroid gland cancer. The study group comprised 127 patients with salivary gland cancer and 46 patients with thyroid gland cancer, who received neutron therapy alone and in combination with surgery. The results obtained demonstrated that the combined modality treatment including fast neutron therapy led to encouraging local control in patients with salivary and thyroid gland cancers.

  16. Neutron sources for a neutron capture therapy facility

    SciTech Connect

    Lennox, A.J.

    1993-04-01

    Recent advances in the development of boron pharmaceuticals have reopened the possibility of using epithermal neutrons to treat brain tumors containing boron-10. This paper summarizes the approaches being used to generate the neutron sources and identifies specific areas where more research and development are needed.

  17. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  18. Slightly focused high-energy shockwave therapy: a potential adjuvant treatment for osteoporotic fracture.

    PubMed

    Chen, Xiao-Feng; Huang, Hai-Ming; Li, Xiao-Lin; Liu, Ge-Jun; Zhang, Hui

    2015-01-01

    Slightly focused high-energy shockwave (HESW) therapy is characterized by a wide focal area, a large therapy zone, easy positioning and less pain during treatment. The objective of this study was to perform for the first time an in vivo test of the slightly focused HESWs for osteoporotic fractures. Bilateral proximal tibial osteotomies were made in 30 ovariectomized (OVX) Sprague-Dawley rats and secured with internal fixation. The osteotomy site in the left tibia was subsequently treated with slightly focused HESWs with the energy flux density of 0.26 mj/mm(2), shock repetition frequency of 1 Hz and 2000 shocks (OVX + HESW group). The contralateral right tibia was not treated and served as the control (OVX group). Roentgenographic examination 2, 4, 6, and 8 weeks after osteotomy showed that HESW treatment accelerated tibia fracture healing in osteoporotic rats. Histological examination 2, 4, and 8 weeks after HESW treatment showed a greater inflammatory reaction in the OVX + HESW group, with more mature collagen and trabeculae than in the OVX group. Micro computer tomography (Micro-CT) scanning after 4 and 8 weeks showed that bone volume (BV), bone volume/tissue volume (BV/TV), mean trabecular thickness (Tb.Th), and mean trabecular number (Tb.N) were about 45.0% and 33.1%, 18.4% and 20.1%, 38.2% and 20.9%, 26.7% and 28.4%, respectively, higher in the treatment group than in the control group (P < 0.05); and the mean trabecular separation (Tb.Sp) was about 16.7% and 27.3% lower in the treatment group (P < 0.05). Four and eight weeks after HESW treatment, the maximum compressive callus endurance was about 72.3% and 25.5%, respectively, higher in the treatment group than in the control group (P < 0.05). These results show that slightly focused HESW therapy has a beneficial effect on osteoporotic tibial fracture healing. Slightly focused HESWs could increase callus endurance, induce bone formation, and improve trabecular bone microarchitecture and biomechanical

  19. Impact of nuclear data on fast neutron therapy

    SciTech Connect

    Hartmann Siantar, C.L.; Chandler, W.P.; Rathkopf, J.A.; Resler, D.A.; Cox, L.J.; Chadwick, M.B.; White, R.M.

    1994-05-12

    By combining a new, all-particle Monte Carlo radiation transport code, PEREGRINE, with the Lawrence Livermore National Laboratory (LLNL) nuclear data base, we have studied the importance of various neutron reactions on dose distributions in biological materials. Monte Carlo calculations have been performed for 5--20 MeV neutron pencil beams incident on biologically relevant materials arranged in several simple geometries. Results highlight the importance of nuclear data used for calculating dose distributions resulting from fast neutron therapy.

  20. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  1. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  2. Neutron capture therapy: Years of experimentation---Years of reflection

    SciTech Connect

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

  3. Neutron capture therapy research in Australia.

    PubMed

    Allen, B J

    1989-01-01

    Neutron capture therapy research in Australia has continued to grow since the first Australia-Japan workshop in April, 1986. The support base has broadened and the wide range of contributing laboratories includes universities, research institutes, and hospitals. Considerable progress has been made in boron chemistry--an accurate boron assay technique has been developed, boron analogues of chlorpromazine and thiouracil have been synthesised or nearly so, and decaborane conjugation with monoclonal antibodies has been achieved to the required loadings. In vitro cell survival experiments are proceeding in the Moata reactor using human melanoma and mouse cell lines incubated with enriched boronophenylalanine and boron tetraphenyl porphyrins. Electron microscopy examination of radiation damaged morphology shows considerable differences between cell lines. Progress with the nude mouse human melanoma model has been slow because of the lack of a reliable in vivo melanotic melanoma line, and the B16 mouse line is found to be more efficacious. Tailored beam calculations for the 10 MW HIFAR reactor indicate the difficulty of obtaining a suitable therapeutic beam because of the generated gamma dose in the beam filters. A new approach to NCT utilises the enormous cross section of 157Gd and the induced-Auger effect which has been shown to cause double strand breaks in circular DNA.

  4. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  5. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  6. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  7. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  8. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized. by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  9. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  10. Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault

    PubMed Central

    Zheng, Yuanshui; Newhauser, Wayne; Klein, Eric; Low, Daniel

    2014-01-01

    Neutron production is of principal concern when designing proton therapy vault shielding. Conventionally, neutron calculations are based on analytical methods, which do not accurately consider beam shaping components and nozzle shielding. The goal of this study was to calculate, using Monte Carlo modeling, the neutron spectral fluence and neutron dose equivalent generated by a realistic proton therapy nozzle and evaluate how these data could be used in shielding calculations. We modeled a contemporary passive scattering proton therapy nozzle in detail with the MCNPX simulation code. The neutron spectral fluence and dose equivalent at various locations in the treatment room were calculated and compared to those obtained from a thick iron target bombarded by parallel proton beams, the simplified geometry on which analytical methods are based. The neutron spectral fluence distributions were similar for both methods, with deeply penetrating high-energy neutrons (E > 10 MeV) being most prevalent along the beam central axis, and low-energy neutrons predominating the neutron spectral fluence in the lateral region. However, unlike the inverse square falloff used in conventional analytical methods, this study shows that the neutron dose equivalent per therapeutic dose in the treatment room decreased with distance approximately following a power law, with an exponent of about −1.63 in the lateral region and −1.73 in the downstream region. Based on the simulated data according to the detailed nozzle modeling, we developed an empirical equation to estimate the neutron dose equivalent at any location and distance in the treatment vault, e.g. for cases in which detailed Monte Carlo modeling is not feasible. We applied the simulated neutron spectral fluence and dose equivalent to a shielding calculation as an example. PMID:19887713

  11. Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault.

    PubMed

    Zheng, Yuanshui; Newhauser, Wayne; Klein, Eric; Low, Daniel

    2009-11-21

    Neutron production is of principal concern when designing proton therapy vault shielding. Conventionally, neutron calculations are based on analytical methods, which do not accurately consider beam shaping components and nozzle shielding. The goal of this study was to calculate, using Monte Carlo modeling, the neutron spectral fluence and neutron dose equivalent generated by a realistic proton therapy nozzle and evaluate how these data could be used in shielding calculations. We modeled a contemporary passive scattering proton therapy nozzle in detail with the MCNPX simulation code. The neutron spectral fluence and dose equivalent at various locations in the treatment room were calculated and compared to those obtained from a thick iron target bombarded by parallel proton beams, the simplified geometry on which analytical methods are based. The neutron spectral fluence distributions were similar for both methods, with deeply penetrating high-energy neutrons (E > 10 MeV) being most prevalent along the beam central axis, and low-energy neutrons predominating the neutron spectral fluence in the lateral region. However, unlike the inverse square falloff used in conventional analytical methods, this study shows that the neutron dose equivalent per therapeutic dose in the treatment room decreased with distance approximately following a power law, with an exponent of about -1.63 in the lateral region and -1.73 in the downstream region. Based on the simulated data according to the detailed nozzle modeling, we developed an empirical equation to estimate the neutron dose equivalent at any location and distance in the treatment vault, e.g. for cases in which detailed Monte Carlo modeling is not feasible. We applied the simulated neutron spectral fluence and dose equivalent to a shielding calculation as an example.

  12. Neutron and proton therapy in the treatment of cancer

    SciTech Connect

    Lennox, A.J. |

    1996-08-01

    Several decades of clinical research have established that neutron and proton therapy constitute useful and practical additions to the radiation oncologist`s treatment modalities. This paper discusses the rationale for using these therapies and describes practical solutions to their implementation.

  13. Potential to raise the efficiency of neutron and neutron-photon therapy using metal nonradioactive nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmatov, M. L.

    2016-07-01

    The use of metal nonradioactive nanoparticles (specifically, gold ones) in neutron and neutron-photon cancer therapy is proposed. The minimum therapeutically effective average density of gold within a tumor subjected to neutron irradiation is estimated as a value on the order of 10-5-10-4 g/cm3. Potential benefits of the use of data obtained when using Peteosthor (a drug containing 224Ra and colloidal platinum) and Thorotrast (a radiopaque contrast agent containing thorium oxide nanoparticles) and its analogues in the analysis of safety and efficiency of application of nonradioactive nanoparticles in radiation therapy and diagnostics are discussed.

  14. Fission reactor neutron sources for neutron capture therapy--a critical review.

    PubMed

    Harling, Otto K; Riley, Kent J

    2003-01-01

    The status of fission reactor-based neutron beams for neutron capture therapy (NCT) is reviewed critically. Epithermal neutron beams, which are favored for treatment of deep-seated tumors, have been constructed or are under construction at a number of reactors worldwide. Some of the most recently constructed epithermal neutron beams approach the theoretical optimum for beam purity. Of these higher quality beams, at least one is suitable for use in high through-put routine therapy. It is concluded that reactor-based epithermal neutron beams with near optimum characteristics are currently available and more can be constructed at existing reactors. Suitable reactors include relatively low power reactors using the core directly as a source of neutrons or a fission converter if core neutrons are difficult to access. Thermal neutron beams for NCT studies with small animals or for shallow tumor treatments, with near optimum properties have been available at reactors for many years. Additional high quality thermal beams can also be constructed at existing reactors or at new, small reactors. Furthermore, it should be possible to design and construct new low power reactors specifically for NCT, which meet all requirements for routine therapy and which are based on proven and highly safe reactor technology.

  15. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump. Part II: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Roesler, S.; Liu, J. C.; Rokni, S. H.; Taniguchi, S.

    2003-05-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  16. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  17. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  18. Experience of boron neutron capture therapy in Japan

    NASA Astrophysics Data System (ADS)

    Kanda, Keiji

    1997-02-01

    In Japan the boron neutron capture therapy has been applied to more than 200 patients, mostly brain tumors and some melanomas. For brain tumors, Kyoto University, Kyoto Prefectural University of Medicine, Tsukuba University and National Kagawa Children's Hospital accept patients, and for melanomas, Kobe University and Mishima Institute of Dermatological Research accept patients so far. Recently the heavy water facility of Kyoto University Reactor has been upgraded for epithermal neutron as well as thermal neutron irradiations, and for the patient treatment during the continuous operation of the KUR.

  19. Research in Boron Neutron Capture Therapy at MIT LABA

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.; Howard, W.B.; Song, H.; Blackburn, B.; Binello, E.

    1997-02-01

    A 4.1 MeV tandem electrostatic accelerator designed for research into Boron Neutron Capture Therapy (BNCT) has recently been installed in the MIT Laboratory for Accelerator Beam Applications (LABA). This accelerator uses a very high current switch mode high voltage power supply in conjunction with a multi-cusp negative ion source to supply the multimilliampere current required for clinical BNCT applications. A number of individual research projects aimed at evaluating the potential of this accelerator design as a hospital-based neutron source for radiation therapy of both tumors and rheumatoid arthritis are described here. {copyright} {ital 1997 American Institute of Physics.}

  20. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  1. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  2. Hospital based superconducting cyclotron for neutron therapy: Medical physics perspective

    NASA Astrophysics Data System (ADS)

    Yudelev, M.; Burmeister, J.; Blosser, E.; Maughan, R. L.; Kota, C.

    2001-12-01

    The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the neutron beam and to collect the data necessary for treatment planning. This included profiles of the dose distribution in a water phantom, relative output factors and the design of various beam modifiers, i.e., wedges and tissue compensators. The beam was calibrated in accordance with international protocol for fast neutron dosimetry. Dosimetry and radiobiology intercomparions with three neutron therapy facilities were performed prior to clinical use. The radiation safety program was established in order to monitor and reduce the exposure levels of the personnel. The activation products were identified and the exposure in the treatment room was mapped. A comprehensive quality assurance (QA) program was developed to sustain safe and reliable operation of the unit at treatment standards comparable to those for conventional photon radiation. The program can be divided into three major parts: maintenance of the cyclotron and related hardware; QA of the neutron beam dosimetry and treatment delivery; safety and radiation protection. In addition the neutron beam is used in various non-clinical applications. Among these are the microdosimetric characterization of the beam, the effects of tissue heterogeneity on dose distribution, the development of boron neutron capture enhanced fast neutron therapy and variety of radiobiology experiments.

  3. Accelerator based epithermal neutron source for neutron capture therapy. Annual report, [October 1990--April 1991

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  4. Design of a boron neutron capture enhanced fast neutron therapy assembly

    SciTech Connect

    Wang, Zhonglu

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured

  5. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  6. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  7. Neutron-induced gamma dose from a reactor beam filter for boron neutron capture therapy.

    PubMed

    Harrington, B V

    1989-01-01

    For the boron neutron capture therapy (NCT) of deep-seated metastatic melanoma, an epithermal (up to a few keV energy) neutron beam from a reactor horizontal facility could be useful if the inherent contamination from fast neutrons and gamma rays could be minimised. Calculations for ANSTO's 10 MW research reactor HIFAR have shown that, even though a filter material such as AlF3 attenuates the fast neutron dose, the beam quality improvement is counteracted by a relative increase in the gamma dose because of the gammas arising from neutron captures in the filter material, particularly the aluminium. The aluminium gammas, most of which arise from thermal neutron capture, are hard and cannot be attenuated by lead or bismuth without comparable attenuation of the epithermal neutron flux. Addition of an absorber such as 6Li to the AlF3 filter was investigated as a means of reducing the hard gamma dose, but the improvement in beam quality was small and at considerable cost to dose intensity. Dose characteristics calculations confirmed the superiority of a tangential beam over a radial beam with better results from an unfiltered tangential beam than from an AlF3 filter in a radial beam. This study showed conclusively that assessments of filter assemblies based on the effect of individual components on either the neutron or gamma dose in isolation are inadequate. In assessing any epithermal neutron filter, thermal neutron shield, and gamma shield combination, the total effect of each on the neutron, gamma, and boron-10 dose must be considered.

  8. Boronated antibodies and promazine derivatives for potential neutron capture therapy

    SciTech Connect

    Alam, F.; Soloway, A.H.; Barth, R.F.; Adams, D.M.; Mafune, N.

    1986-01-01

    The theoretical basis for boron neutron capture therapy (BNCT) derives from the irradiation of /sup 10/B with thermal neutrons, resulting in a fission reaction yielding /sup 7/Li and alpha particles. The fission products have short path lengths and high linear energy transfer (LET). Each component of this binary system, thermal neutrons and /sup 10/B, independently are nontumoricidal, but together they can be highly lethal. Success depends on localizing enough of the /sup 10/B (approx.20 ..mu..g/g of tumor) and delivering a requisite fluence of thermal neutrons (approx.10/sup 13/ n/cm/sup 9/) at the site of the tumor. This report describes the boronation of antibodies and the development of boron-containing promazine derivatives to selectively deliver /sup 10/B to tumor cells for BNCT.

  9. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    SciTech Connect

    Langen, K.M.

    1997-12-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated.

  10. [Liposomal boron delivery system for neutron capture therapy].

    PubMed

    Nakamura, Hiroyuki

    2008-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment based on the nuclear reaction of two essentially nontoxic species, (10)B and thermal neutrons. High accumulation and selective delivery of boron into tumor tissue are the most important requirements to achieve efficient neutron capture therapy of cancers. This review focuses on the liposomal boron delivery system (BDS) as a recent promising approach that meets these requirements for BNCT. BDS involves two strategies: (1) encapsulation of boron in the aqueous core of liposomes and (2) accumulation of boron in the liposomal bilayer. Various boronated liposomes have been developed and significant boron accumulation into tumor tissue with high tumor/blood boron ratios has been achieved by BDS.

  11. The Prototype of Detector for Registration Neutron Fluxes Initiated by Electrons and Protons of High Energy in the Calorimeter

    NASA Astrophysics Data System (ADS)

    Gnezdilov, I. I.; Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    A prototype of detector for neutron fluxes, induced by electron and proton showers, registration has been designed. Neutron detector (ND) consists of three alternating layers composed of cadmium plates and plastic scintillator. An optimal detector solution based on a mathematical simulation has been proposed. This article contains technical information and a description of the experiment to determine neutron detection efficiency, as well as experimental and simulation data analysis results.

  12. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  13. Proceedings of the first international symposium on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Brownell, G.L.

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  14. Clinical considerations for neutron capture therapy of brain tumors

    SciTech Connect

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr. )

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the United States in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should now be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam causes gamma rays to be generated when it interacts with tissue, we think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue. I look forward to the remainder of this Workshop, which will detail recent progress in the development of epithermal, as well as thermal, beams and new methods for tracking and measuring the uptake of boron in normal and tumor tissues. 10 references.

  15. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  16. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  17. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  18. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  19. Neutron Tube Design Study for Boron Neutron Capture TherapyApplication

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-01-04

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  20. Melanogenesis investigation leading to selective melanoma neutron capture therapy and diagnosis.

    PubMed

    Mishima, Y

    1994-11-01

    Basic investigation into the nature of melanin monomer and polymer synthesis in pigment cells has revealed many of the new underlying factors involved in its regulation and control by three melanogenesis-related genes, tyrosinase, TRP-1 and TRP-2, and other non-tyrosinase glycoproteins. Pigment cells can undergo clinically and biologically recognizable progressive multi-step carcinogenesis. Generally parallel to this progressive cancerization is accentuated melanogenesis. Using this accentuated melanogenesis to develop a specific diagnosis and cure for melanoma (Mm) has long been a challenge. However, until recently, no success was achieved. As an example, attempting to utilize the fact that dopa accumulates as a melanin substrate within Mm cells, hybrid compounds of dopa and cytotoxic drugs were developed. However, these compounds were found to have severe systemic side effects and were therefore unusable. Another newer Mm treatment involves high energy radiation such as fast neutrons. But this is quite non-selective, killing both the target cancer and the normal surrounding tissue. Since 1972, I have developed the idea of coupling the high energy releasing system of thermal neutron irradiation with the non-toxic 10B-dopa analogue, 10B1-L-p-boronophenylalanine (10B1-L-BPA). Thermal neutrons are essentially harmless, but, after specific absorption by 10B, release high LET alpha-particles and 7Li-atoms with an energy of 2.33 MeV up to a distance of 14 mu, the diameter of Mm cells, thus selectively killing them without damaging surrounding normal tissue. After the synthesis of 10B1-L-BPA, exhaustive in vitro and in vivo radiological studies on its enhanced killing effect were done to develop optimal Mm Boron Neutron Capture Therapy (NCT).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Amsterdam fast neutron therapy project: a final report

    SciTech Connect

    Battermann, J.J.; Mijnheer, B.J.

    1986-12-01

    In the period from February 1975 through September 1981 a total of 435 patients received radiotherapy with the 14 MeV d + T neutron generator, hospital based in the Netherlands Cancer Institute. Preliminary data on clinical results were published during the past few years. In this paper a final report is given of the program. The results can be summarized as follows: The neutron generator fulfilled the criteria for clinical use, that is it was reliable and had the required minimal output of 10(12) neutrons s-1. However, the dose distribution was more comparable with a 250 kV X-ray machine than with a modern accelerator. A number of physical parameters of importance for clinical neutron dosimetry have been determined for our therapy unit. These data, as well as the results of dosimetry intercomparisons in which our institute participated, contributed in the drafting of a European protocol for clinical neutron dosimetry. Pilot studies were carried out on different tumor sites, including head and neck, brain, pelvis, soft tissue and pulmonary metastases. In many patients local tumor control was seen, however, often concomitant with severe complications, especially in deep seated tumors. Randomized clinical trials were carried out for head and neck tumors (in collaboration with some other European centers) and for inoperable bladder and rectal tumors. No significant difference was observed in local tumor control or late morbidity between photon and neutron irradiation for the head and neck tumors. Also the results for pelvic tumors failed to demonstrate an advantage for neutron therapy.

  2. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  3. Scintillating Fiber Array Characterization and Alignment for Neutron Imaging using the High Energy X-ray (HEX) Facility

    SciTech Connect

    Buckles, R. A., Ali, Z. A., Cradick, J. R., Traille, A. J., Warthan, W. A.

    2009-09-04

    The Neutron Imager diagnostic at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) will produce high-resolution, gated images of neutron-generating implosions. A similar pinhole imaging experiment (PINEX) diagnostic was recently deployed at the Z facility at Sandia National Laboratories (SNL). Both the SNL and LLNL neutron imagers use similar fiber array scintillators (BCF-99-555). Despite diverse resolution and magnification requirements, both diagnostics put significant onus on the scintillator spatial quality and alignment precision to maintain optimal point spread. Characterization and alignment of the Z-PINEX scintillator and imaging system were done at NSTec/Livermore Operations in 2009, and is currently underway for the NIF Neutron Imager.

  4. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  5. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  6. A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne

    2008-09-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum.

  7. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  8. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  9. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    SciTech Connect

    Broekman, J. D.; Nigg, D. W.; Hawthorne, M. F.

    2013-07-01

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  10. Helium and hydrogen generation in pure metals irradiated with high-energy protons and spallation neutrons in LANSCE

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; James, M. R.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    High-power spallation neutron sources will require accurate estimates of cross-sections for generation of He and H in structural materials. At high-proton energies, very high levels of gas atoms are generated in all constituents of typical iron-based and nickel-based structural alloys, with He typically ˜150 appm/dpa and H at levels ˜3-5 times higher. Improved estimates of these cross-sections have been derived from a series of irradiations conducted at relatively low temperatures (<100 °C) in the Los Alamos Neutron Science Center as part of a test program supporting the Accelerator Production of Tritium Program. Pure metal dosimetry foils were irradiated in two different spectra ranging from ˜800 MeV protons to a mixed distribution of both protons and spallation neutrons. Most of the gas production was due to spallation reactions with the proton beam, although gas and especially damage production from lower-energy spallation neutrons became more significant at the mixed proton/neutron location. The measured He concentrations are similar to those derived in other proton environments, but larger by about a factor of two than those calculated using the LAHET/MCNPX code system. Unlike He, the measured H retention levels are affected by diffusional losses, but H is still retained at rather high concentrations, allowing a lower bound estimate of the H generation cross-sections.

  11. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments

    SciTech Connect

    Marshall, F. J.; DeHaas, T.; Glebov, V. Yu.

    2010-10-15

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated ({approx}10{sup 14} DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from {approx}10{sup 7} to {approx}10{sup 9} neutrons/cm{sup 2} and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to {approx}10{sup 15}, depending on distance and shielding.

  12. Charge-Injection-Device Performance in the High-Energy-Neutron Environment of Laser-Fusion Experiments

    SciTech Connect

    Marshall, F.J.; DeHaas, T.; Glebov, V.Yu.

    2010-10-22

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester’s OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (~10^14 DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick–Baez microscopes. The neutron fluences ranged from ~10^7 to ~10^9 neutrons/cm^2 and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ~10^15, depending on distance and shielding.

  13. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments.

    PubMed

    Marshall, F J; DeHaas, T; Glebov, V Yu

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼10(14) DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼10(7) to ∼10(9) neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼10(15), depending on distance and shielding.

  14. Feasibility studies of the self-TOF detector for high-energy neutron measurements in shielding experiments

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Nakao, M.; Shibata, T.; Nakao, N.; Nakamura, T.

    2000-05-01

    The feasibility of a new type of neutron detector was studied. The detector consists of a radiator, a start counter and a stop counter. The radiator is composed of 20 thin plastic-scintillation detectors and the stop counter is segmented into nine plastic-scintillation detectors. Neutrons impinging on the radiator emit charged particles. The time of flight of protons emitted at a forward angle is measured using the start and stop counters, therefore, we call the detector the "self-TOF detector". The proton time-of-flight spectrum is converted to the energy spectrum of neutrons using a measured response function. The basic properties of the detector, such as detection efficiency, signal-to-noise ratio, particle identification capability, and energy resolution, were studied.

  15. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    SciTech Connect

    Kroc, T.K.; /Fermilab

    2009-10-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  16. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  17. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    PubMed

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  18. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    NASA Astrophysics Data System (ADS)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  19. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L. |; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  20. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    PubMed

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  1. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    PubMed

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  2. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  3. [3D-navigated high energy shockwave therapy and axis correction after failed distraction treatment of congenital tibial pseudarthrosis].

    PubMed

    Schatz, K D; Nehrer, S; Dorotka, R; Kotz, R

    2002-07-01

    The treatment of congenital tibial pseudarthrosis using a distraction procedure as described by Ilizarov is a standard surgical intervention. Nevertheless, there are problems in achieving bony stability in about 10% of cases even after repeated surgery as reported by Lammens et al. (2000). Traub et al. (1999) found a rate of 50% amputations in 33 cases treated since 1927. To prevent an Ilizarov procedure from resulting in a delayed union or nonunion, Paley et al. (1992) recommended autografting immediately after distraction. Based on the good results in the stimulation of osteogenesis in adults, we started to treat delayed bone union following distraction treatment with high-energy shock wave therapy also in children. In patients suffering from congenital tibial pseudarthrosis with a deviation of the bony axis, we combine this surgery-substituting therapy with fixation of a Taylor spatial frame in order to correct the axis. Using this new method of treatment, we were able to achieve stability in four children who previously had had nonunion even after multiple surgical interventions.

  4. Measurement and calculation of high-energy neutron spectra behind shielding at the CERF 120 GeV/c hadron beam facility

    NASA Astrophysics Data System (ADS)

    Nakao, N.; Taniguchi, S.; Roesler, S.; Brugger, M.; Hagiwara, M.; Vincke, H.; Khater, H.; Prinz, A. A.; Rokni, S. H.; Kosako, K.

    2008-01-01

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133°. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.

  5. Measurement And Calculation of High-Energy Neutron Spectra Behind Shielding at the CERF 120-GeV/C Hadron Beam Facility

    SciTech Connect

    Nakao, N.; Taniguchi, S.; Roesler, S.; Brugger, M.; Hagiwara, M.; Vincke, H.; Khater, H.; Prinz, A.A.; Rokni, S.H.; Kosako, K.; /Shimizu, Tokyo

    2009-06-09

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.

  6. Spot scanning proton therapy minimizes neutron dose in the setting of radiation therapy administered during pregnancy.

    PubMed

    Wang, Xin; Poenisch, Falk; Sahoo, Narayan; Zhu, Ronald X; Lii, MingFwu; Gillin, Michael T; Li, Jing; Grosshans, David

    2016-01-01

    This is a real case study to minimize the neutron dose equivalent (H) to a fetus using spot scanning proton beams with favorable beam energies and angles. Minimum neutron dose exposure to the fetus was achieved with iterative planning under the guidance of neutron H measurement. Two highly conformal treatment plans, each with three spot scanning beams, were planned to treat a 25-year-old pregnant female with aggressive recurrent chordoma of the base of skull who elected not to proceed with termination. Each plan was scheduled for delivery every other day for robust target coverage. Neutron H to the fetus was measured using a REM500 neutron survey meter placed at the fetus position of a patient simulating phantom. 4.1 and 44.1 μSv/fraction were measured for the two initial plans. A vertex beam with higher energy and the fetal position closer to its central axis was the cause for the plan that produced an order higher neutron H. Replacing the vertex beam with a lateral beam reduced neutron H to be comparable with the other plan. For a prescription of 70 Gy in 35 fractions, the total neutron H to the fetus was estimated to be 0.35 mSv based on final measurement in single fraction. In comparison, the passive scattering proton plan and photon plan had an estimation of 26 and 70 mSv, respectively, for this case. While radiation therapy in pregnant patients should be avoided if at all possible, our work demonstrated spot scanning beam limited the total neutron H to the fetus an order lower than the suggested 5 mSv regulation threshold. It is far superior than passive scattering beam and careful beam selection with lower energy and keeping fetus further away from beam axis are essential in minimizing the fetus neutron exposure. PMID:27685136

  7. Search for Sources of High-energy Neutrons with Four Years of Data from the IceTop Detector

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-10-01

    IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 (E/PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (1016 eV) arriving within a small solid angle. The all-sky search method covers from ‑90° to approximately ‑50° in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.

  8. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  9. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons.

    PubMed

    Mukherjee, B; Simrock, S; Khachan, J; Rybka, D; Romaniuk, R

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a (60)Co source up to a dose level in excess of 1.0 kGy (1.0 x 10(5) rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted.

  10. Microdosimetric investigations at the Fast Neutron Therapy Facility at Fermilab

    SciTech Connect

    Langen, K.M.

    1997-12-31

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e. oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated. In the unmodified beam, a negligible enhancement for a 50 ppm boron loading was measured. To boost the boron dose enhancement to 3% it was necessary to change the primary proton energy from 66 MeV and to filter the beam by 90 mm of tungsten.

  11. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  12. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  13. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  14. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    SciTech Connect

    Nigg, David Waler

    2003-03-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use.

  15. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  16. Real-time dosimetry for boron-neutron capture therapy

    SciTech Connect

    Bliss, M.; Craig, R.A.; Reeder, P.L.; Sunberg, D.S.

    1994-09-01

    Epithermal/thermal boron neutron-capture therapy (BNCT) is promising treatment method for malignant tumors. Because the doses and dose rates for medical therapeutic radiation are very close to the normal tissue tolerance, small errors in radiation delivery can result in harmful overdoses. A substantial need exists for a device that will monitor, in real time, the radiation dose being delivered to a patient. Pacific Northwest Laboratory (PNL) has developed a scintillating glass optical fiber that is sensitive to thermal neutrons. The small size of the fibers offers the possibility of in vivo dose monitoring at several points within the radiation field. The count rate of such detectors can approach 10 MHz because the lifetime of the cerium activator is fast. Fluxes typical of those in BNCT (i.e., 10{sup 9} n/cm{sup 2}/sec) may be measured because of this potentially high count rate and the small diameter of the fiber.

  17. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  18. First steps towards a fast-neutron therapy planning program

    PubMed Central

    2011-01-01

    Background The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body). Results In both cases, the dose distributions were very similar to those measured in the water phantom, up to a depth of 30 cm. In order to model the situation of patients treated at the FRM II MEDAPP therapy beamline for salivary gland tumors, a human voxel phantom was implemented in GEANT4 and irradiated with the implemented MEDAPP neutron and photon spectra. The 3D dose distribution calculated inside the head of the phantom was similar to the depth dose curves in the water phantom, with some differences that are explained by differences in elementary composition. The lateral dose distribution was studied at various depths. The calculated cumulative dose volume histograms for the voxel phantom show the exposure of organs at risk surrounding the tumor. Conclusions In order to minimize the dose to healthy tissue, a conformal treatment is necessary. This can only be accomplished with the help of an advanced treatment planning system like the one developed here. Although all calculations were done for absorbed dose only, any biological dose weighting can be implemented easily, to take into account the increased radiobiological effectiveness of neutrons compared to photons. PMID:22118299

  19. Carborane derivative development for boron neutron capture therapy. Final report

    SciTech Connect

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-04-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [{sup 10}B]. Cytotoxic {sup 7}Li nuclei and {alpha}-particles are emitted, with a range in tissue of 9 and 5 {micro}m, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm {sup 10}B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry.

  20. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  1. Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Naik, Haladhara; Shahid, Muhammad; Lee, Manwoo

    2015-08-01

    The cross-sections for 209Bi(n, 4n)206Bi, 209Bi(n, 5n)205Bi, natPb(n, xn)204mPb, natPb(n, xn)203Pb, natPb(n, xn)202mPb,natPb(n, xn)201Pb, natPb(n, xn)200Pb, natPb(n, αxn)203Hg and natPb(n, p xn)202Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the 9Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code.

  2. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  3. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila

    2002-01-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.

  4. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons

    SciTech Connect

    Chilingarian, A.; Daryan, A.; Arakelyan, K.; Hovhannisyan, A.; Mailyan, B.; Melkumyan, L.; Hovsepyan, G.; Chilingaryan, S.; Reymers, A.; Vanyan, L.

    2010-08-15

    The Aragats Space Environmental Center facilities continuously measure fluxes of neutral and charged secondary cosmic ray incidents on the Earth's surface. Since 2003 in the 1-minute time series we have detected more than 100 enhancements in the electron, gamma ray, and neutron fluxes correlated with thunderstorm activities. During the periods of the count rate enhancements, lasting tens of minutes, millions of additional particles were detected. Based on the largest particle event of September 19, 2009, we show that our measurements support the existence of long-lasting particle multiplication and acceleration mechanisms in the thunderstorm atmosphere. For the first time we present the energy spectra of electrons and gamma rays from the particle avalanches produced in the thunderstorm atmosphere, reaching the Earth's surface.

  5. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field.

    PubMed

    Badhwar, G D; Huff, H; Wilkins, R; Thibeault, Sheila

    2002-12-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study.

  6. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  7. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    SciTech Connect

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  8. Osteogenic Sarcoma of the Maxilla: Neutron Therapy for Unresectable Disease

    DOE PAGES

    Smoron, Geoffrey L.; Lennox, Arlene J.; Mcgee, James L.

    1999-01-01

    Purpose. To present a case study involving the use of fast neutron therapy to treat an extensive unresectable osteogenic sarcoma arising from the left maxilla. Patient. A 14-year-old male presented with a massive tumor producing severe distortion of his facial structures. He had already received six courses of chemotherapy, which had reduced his pain, but had not measurably reduced the tumor. Methods. The patient was treated with 66 MeV fast neutrons to a dose of 20.4 Gy in 13 fractions over 35 days. Results. CT assessments indicate gradually increasing calcification and noticeable reduction of soft-tissue disease in the frontalmore » sinus, orbit and maxillary antrum.There has been some recontouring of the facial structures.The boy conducts an active life, has no pain, and feels well. He was 17 years old at the last follow-up. Discussion. Fast neutrons have a greater biological effectiveness than conventional photon beams. Their use has been associated with improved chance for local control of unresectable disease.This case illustrates their effectiveness in controlling an unusual and aggressive osteogenic sarcoma of the facial bone and sinuses.« less

  9. Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of malignant melanoma

    DOEpatents

    Gabel, D.

    1991-06-04

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  10. Boron containing compounds and their preparation and use in neutron capture therapy

    DOEpatents

    Gabel, D.

    1992-09-01

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  11. Boron neutron capture therapy for malignant melanoma: An experimental approach

    SciTech Connect

    Larsson, B.S.; Larsson, B.; Roberto, A. )

    1989-07-01

    Previous studies have shown that some thioamides, e.g., thiouracil, are incorporated as false precursors into melanin during its synthesis. If boronated analogs of the thioamides share this property, the melanin of melanotic melanomas offers a possibility for specific tumoural uptake and retention of boron as a basis for neutron capture therapy. We report on the synthesis of boronated 1H-1,2,4-triazole-3-thiol (B-TZT), boronated 5-carboxy-2-thiouracil (B-CTU), and boronated 5-diethylaminomethyl-2-thiouracil (B-DEAMTU) and the localization of these substances in melanotic melanomas transplanted to mice. The distribution in the mice was studied by boron neutron capture radiography. B-TZT and B-CTU showed the highest tumour:normal tissue concentration ratios, with tumour:liver ratios of about 4 and tumour:muscle ratios of about 14; B-DEAMTU showed corresponding ratios of 1.4 and 5, respectively. The absolute concentration of boron in the tumours, however, was more than three times higher in the mice injected with B-TZT, compared with B-CTU. The results suggest that B-TZT may be the most promising compound of the three tested with regard to possible therapy of melanotic melanomas.

  12. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.

    PubMed

    Rogus, R D; Harling, O K; Yanch, J C

    1994-10-01

    During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes rapidly as the incident epithermal neutrons scatter and thermalize, and a photon field is generated from neutron capture in hydrogen. In this paper, a method to determine the doses from thermal and fast neutrons, photons, and the B-10(n, alpha)Li-7 reaction is presented. The photon and fast neutron doses are measured with ionization chambers, in realistic phantoms, using the dual chamber technique. The thermal neutron flux is measured with gold foils using the cadmium difference technique, the thermal neutron and B-10 doses are determined by the kerma factor method. Representative results are presented for a unilateral irradiation of the head. Sources of error in the method as applied to BNCT dosimetry, and the uncertainties in the calculated doses are discussed.

  13. Correlation of radiation-induced changes in mechanical properties and microstructural development of Alloy 718 irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Garner, F. A.; Hamilton, M. L.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    Alloy 718 is a γ '(Ni 3(Al,Ti))-γ″(Ni 3Nb) hardenable superalloy with attractive strength, and corrosion resistance. This alloy is a candidate material for use in accelerator production of tritium (APT) target and blanket applications, where it would have to withstand low-temperature irradiation by high-energy protons and spallation neutrons. The existing data base, relevant to such irradiation conditions, is very limited. Alloy 718 has therefore been exposed to a particle flux and spectrum at the Los Alamos Neutron Science Center (LANSCE), closely matching those expected in the APT target and blanket applications. The yield stress of Alloy 718 increases with increasing dose up to ˜0.5 dpa, and then decreases with further increase in dose. The uniform elongation, however, drastically decreases with increasing dose at very low doses (<0.5 dpa), and does not recover when the alloy later softens somewhat. Transmission electron microscopy (TEM) investigation of Alloy 718 shows that superlattice spots corresponding to the age-hardening precipitate phases γ ' and γ″ are lost from the diffraction patterns for Alloy 718 by only 0.6 dpa, the lowest proton-induced dose level achieved in this experiment. Examination of samples that were neutron irradiated to doses of only ˜0.1 dpa showed that precipitates are faintly visible in diffraction patterns but are rapidly becoming invisible. It is proposed that the γ ' and γ″ first become disordered (by <0.6 dpa), but remain as solute-rich aggregates that still contribute to the hardness at relatively low dpa levels, and then are gradually dispersed at higher doses.

  14. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  15. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  16. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system.

  17. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2001-01-01

    We have proposed the utilization of `hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  18. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T

    2001-01-01

    We have proposed the utilization of 'hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  19. New compounds for neutron capture therapy (NCT) and their significance

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Clearly the most effective tumor therapy would be obtained by the selective targeting of cytotoxic agents to tumor cells. Although many biomolecules are known to be taken up in tumors, the targeting of cytotoxic agents to tumors is limited by the fact that other essential cell pools compete with equal or even greater effectiveness. The approach of delivering stable non-toxic isotopes to tumor, with activation by means of an external radiation beam, is advantageous for two reasons: (1) it obviates problems associated with high uptake of isotopes in normal tissues, as these cell pools can be excluded from the radiation field, and (2) the general tumor area can be included in the activating beam field; thus, the possibility exists that all microscopic tumor extensions can be irradiated. As long as range of reaction products is short, dose will be restricted to the tumor, with a resultant high therapeutic ratio. This method can be accomplished with either photon activation therapy (PAT) or Neutron Capture Therapy (NCT), the latter will be emphasized here. The range of the high LET, low OER particles from the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is approx. 10 ..mu..m, or one cell diameter; hence this reaction is optimal for cell killing. A number of biomolecules have been investigated as possible vehicles for transport of boron to tumors, including phenothiazines, thiouracils, porphyrins, nucleosides, and amino acids. Biodistributions of these compounds show selective concentration in tumor adequate for therapy. The biological halflives are in the order of days, allowing the possibility of fractionated or protracted irradiations. The radiobiological and physical implication of these parameters on NCT are discussed. The possibility of using an approximately-monoenergetic, scandium-filtered beam of about 2 keV, to reduce the dose from background radiations by about 85%, is also discussed. (ERB)

  20. Tetrakis(p-Carboranylthio-Tetrafluorophenyl)Chlorin (TPFC): Application for Photodynamic Therapy and Boron Neutron Capture Therapy

    PubMed Central

    HIRAMATSU, RYO; KAWABATA, SHINJI; TANAKA, HIROKI; SAKURAI, YOSHINORI; SUZUKI, MINORU; ONO, KOJI; MIYATAKE, SHIN-ICHI; KUROIWA, TOSHIHIKO; HAO, ERHONG; VICENTE, M. GRAÇA H.

    2015-01-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC’s applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm2) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 1012 n/cm2) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37–43 days). PMID:25546823

  1. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    PubMed

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days).

  2. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  3. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  4. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Riley, K. J.; Binns, P. J.; Harling, O. K.

    2004-08-01

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  5. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.

    PubMed

    Riley, K J; Binns, P J; Harling, O K

    2004-08-21

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  6. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  7. MCNP speed advances for boron neutron capture therapy

    SciTech Connect

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

  8. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1988-01-01

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  9. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  10. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  11. X-ray absorption, neutron diffraction, and M{umlt o}ssbauer effect studies of MnZn{endash}ferrite processed through high-energy ball milling

    SciTech Connect

    Fatemi, D.J.; Harris, V.G.; Chen, M.X.; Malik, S.K.; Yelon, W.B.; Long, G.J.; Mohan, A.

    1999-04-01

    MnZn{endash}ferrite has been prepared via high-energy ball milling of elemental oxides MnO, ZnO, and {alpha}-Fe{sub 2}O{sub 3}. Neutron diffraction measurements suggest a high density of vacancies in a spinel structure. The spinel phase appears to comprise 99.8 wt;{percent} of the material in the sample milled for 40 h, with the remainder attributable to unreacted {alpha}-Fe{sub 2}O{sub 3}. The x-ray absorption near-edge structure was analyzed to provide an understanding of the charge state of the constituent Fe ions. This analysis reveals about 2/3 of Fe cations to be trivalent, increasing to about 3/4 after a 5 h anneal at 450;{degree}C. The heat treatment is also observed to induce a cation redistribution in the ball-milled ferrite toward that of a standard processed via ceramics methods. Results from M{umlt o}ssbauer spectroscopy determine the average hyperfine fields in the sample milled 40 h to be 289 and 487 kOe at 295 and 78 K, respectively. The average isomer shift is 0.32 mm/s at 295 K and 0.46 mm/s at 78 K, values which are typical of iron (III) in a spinel oxide lattice. As expected for a cubic-like environment, the quadrupole shifts are very small, ranging from 0.07 mm/s at 295 K to 0.00 mm/s at 78 K. {copyright} {ital 1999 American Institute of Physics.}

  12. Commercial Clinical Application of Boron Neutron Capture Therapy

    SciTech Connect

    N /A

    1999-09-03

    CRADA No. 95-CR-09 among the LITCO--now Bechtel BWXT Idaho, LLC; a private company, Neutron Therapies Limited Liability Company, NTL formerly Ionix Corporation; and Washington State University was established in 1996 to further the development of BNCT. NTL has established a laboratory for the synthesis, under US FDA approved current Good Manufacturing Practices (cGMP) guidelines, of key boron intermediates and final boron agents for BNCT. The company has focused initially on the development of the compound GB-10 (Na{sub 2}B{sub 10}H{sub 10}) as the first boron agent of interest. An Investigational New Drug (IND) application for GB-10 has been filed and approved by the FDA for a Phase I human biodistribution trial in patients with non-small cell lung cancer and glioblastoma multiforme at UW under the direction of Professor Keith Stelzer, Principal Investigator (PI). These trials are funded by NTL under a contract with the UW, Department of Radiation Oncology, and the initial phases are nearing completion. Initial results show that boron-10 concentrations on the order of 100 micrograms per gram (100 ppm) can be achieved and maintained in blood with no indication of toxicity.

  13. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  14. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  15. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    SciTech Connect

    Zhou, X.L.; McMichael, G.E.

    1994-10-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 {times} 10{sup 9} n/cm{sup 2}s epithermal flux with 7 {times} 10{sup 5} {gamma}/cm{sup 2}s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 {times} 10{sup 7} n/cm{sup 2}s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E{sub p} = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL.

  16. Using the TREAT reactor in support of boron neutron capture therapy (BNCT) experiments: A feasibility analysis

    SciTech Connect

    Grasseschi, G.L.; Schaefer, R.W.

    1996-03-01

    The technical feasibility of using the TREAT reactor facility for boron neutron capture therapy (BNCT) research was assessed. Using one-dimensional neutronics calculations, it was shown that the TREAT core neutron spectrum can be filtered to reduce the undesired radiation (contamination) dose per desired neutron more effectively than can the core spectra from two prominent candidate reactors. Using two-dimensional calculations, it was demonstrated that a non-optimized filter replacing the TREAT thermal column can yield a fluence of desired-energy neutrons more than twice as large as the fluence believed to be required and, at the same time, have a contamination dose per desired neutron almost as low as that from any other candidate facility. The time, effort and cost required to adapt TREAT for a mission supporting BNCT research would be modest.

  17. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  18. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    SciTech Connect

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  19. Treatment of rat Walker-256 carcinosarcoma with photodynamic therapy and endotoxin irradiated with high-energy electrons

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Vasiliu, Virgil V.; Laky, Dezideriu; Ionescu, Mircea D.; Dima, Stefan V.

    1994-03-01

    Experiments were performed on five batches of Wistar inbred rats with Walker-256 carcinosarcoma receiving sole treatment photodynamic therapy (PDT), irradiated endotoxin (R-LPS), native-endotoxin (N-LPS), or associated therapy (PDT + R-LPS) and the control batch (saline) consisted of animals with untreated Walker-256 tumors. The results were as follows: the sole treatment (PDT, R-LPS, N-LPS) gave survival rates between 56.3 and 60.7% and cure rates ranging from 32.1 to 37.5%. The `combined' therapy in multiple doses increased significantly (88.6%) the survival rate of tumor bearing rats as well as the highest incidence of complete tumor regression (71.4%). This work demonstrates that `combined' photodynamic and immunotherapy with irradiated endotoxin stimulates cell-mediated antitumoral activity and induces changes in the tumoral incidence in Walker-256 carcinosarcoma in the rat model.

  20. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    SciTech Connect

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  1. Optimization of Beam-Shaping Assemblies for BNCS Using the High-Energy Neutron Sources D-D and D-T

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2001-06-15

    Boron neutron capture synovectomy is a novel approach for the treatment of rheumatoid arthritis. The goal of the treatment is the ablation of diseased synovial membranes in articulating joints. The treatment of knee joints is the focus of this work. A method was developed, as discussed previously, to predict the dose distribution in a knee joint from any neutron and photon beam spectra incident on the knee. This method is validated and used to design moderators for the deuterium-deuterium (D-D) and deuterium-tritium (D-T) neutron sources. Treatment times >2 h were obtained with the D-D reaction. They could potentially be reduced if the {sup 10}B concentration in the synovium was increased. For D-T neutrons, high therapeutic ratios and treatment times <5 min were obtained for neutron yields of 10{sup 14} s{sup -1}. This treatment time makes the D-T reaction attractive for boron neutron capture synovectomy.

  2. Measurements of high energy neutrons penetrated through iron shields using the Self-TOF detector and an NE213 organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Nakao, N.; Nunomiya, T.; Nakamura, T.; Fukumura, A.; Takada, M.

    2002-11-01

    Neutron energy spectra penetrated through iron shields were measured using the Self-TOF detector and an NE213 organic liquid scintillator which have been newly developed by our group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS), Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ion on a thick (stopping-length) copper target. The neutron spectra in the energy range from 20 to 800 MeV were obtained through the FORIST unfolding code with their response functions and compared with the MCNPX calculations combined with the LA150 cross section library. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX, and evaluated the contribution of the room-scattered neutrons. The calculations are in fairly good agreement with the measurements. Neutron fluence attenuation lengths were obtained from the experimental results and the calculation.

  3. a New Method for Neutron Capture Therapy (nct) and Related Simulation by MCNP4C Code

    NASA Astrophysics Data System (ADS)

    Shirazi, Mousavi; Alireza, Seyed; Ali, Taheri

    2010-01-01

    Neutron capture therapy (NCT) is enumerated as one of the most important methods for treatment of some strong maladies among cancers in medical science thus is unavoidable controlling and protecting instances in use of this science. Among of treatment instances of this maladies with use of nuclear medical science is use of neutron therapy that is one of the most important and effective methods in treatment of cancers. But whereas fast neutrons have too destroyer effects and also sake of protection against additional absorbed energy (absorbed dose) by tissue during neutron therapy and also naught damaging to rest of healthy tissues, should be measured absorbed energy by tissue accurately, because destroyer effects of fast neutrons is almost quintuple more than gamma photons. In this article for neutron therapy act of male's liver has been simulated a system by the Monte Carlo method (MCNP4C code) and also with use of analytical method, thus absorbed dose by this tissue has been obtained for sources with different energies accurately and has been compared results of this two methods together.

  4. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    SciTech Connect

    Sakurai, Yoshinori Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  5. Spectrum evaluation at the filter-modified neutron irradiation field for neutron capture therapy in Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2004-10-01

    The Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor (KUR-HWNIF) was updated in March 1996, mainly to improve the facility for neutron capture therapy (NCT). In this facility, neutron beams with various energy spectra, from almost pure thermal to epithermal, are available. The evaluation of the neutron energy spectra by multi-activation-foil method was performed as a series of the facility characterization. The spectra at the normal irradiation position were evaluated for the combinations of heavy-water thickness of the spectrum shifter and the open-close condition of the cadmium and boral filters. The initial spectra were made mainly using a two-dimensional transport code, and the final spectra were obtained using an adjusting code. For the verification of the evaluated spectra, simulation calculations using a phantom were performed on the assumption of NCT-clinical-irradiation conditions. It resulted that the calculated data for the depth neutron-flux distributions were in good agreement with the experimental ones.

  6. High energy electron beams characterization using CaSO4:Dy+PTFE phosphors for clinical therapy applications.

    PubMed

    Rivera, T; Espinoza, A; Von, S M; Alvarez, R; Jiménez, Y

    2012-07-01

    In the present work high energy electron beam dosimetry from linear accelerator (LINACs) for clinical applications using dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO4:Dy+PTFE) was studied. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator (LINAC) Varian, CLINAC 2300C/D, for clinical practice purpose. The electron irradiations were obtained using the water solid in order to guarantee electronic equilibrium conditions (EEC). Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO4:Dy+PTFE were conducted under high electrons beams irradiations. The TL response of the pellets showed an intensity peak centered at around 215 °C. TL response of CaSO4:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO4:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. PMID:22182630

  7. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  8. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    SciTech Connect

    Ackermann, A.L.

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  9. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    SciTech Connect

    Young, L; Yang, F; Sandison, G; Woodworth, D; McCormick, Z

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  10. SU-E-T-566: Neutron Dose Cloud Map for Compact ProteusONE Proton Therapy

    SciTech Connect

    Syh, J; Patel, B; Syh, J; Rosen, L; Wu, H

    2015-06-15

    Purpose: To establish the base line of neutron cloud during patient treatment in our new compact Proteus One proton pencil beam scanning (PBS) system with various beam delivery gantry angles, with or without range shifter (RS) at different body sites. Pencil beam scanning is an emerging treatment technique, for the concerns of neutron exposure, this study is to evaluate the neutron dose equivalent per given delivered dose under various treatment conditions at our proton therapy center. Methods: A wide energy neutron dose equivalent detector (SWENDI-II, Thermo Scientific, MA) was used for neutron dose measurements. It was conducted in the proton therapy vault during beam was on. The measurement location was specifically marked in order to obtain the equivalent dose of neutron activities (H). The distances of 100, 150 and 200 cm at various locations are from the patient isocenter. The neutron dose was measured of proton energy layers, # of spots, maximal energy range, modulation width, field radius, gantry angle, snout position and delivered dose in CGE. The neutron dose cloud is reproducible and is useful for the future reference. Results: When distance increased the neutron equivalent dose (H) reading did not decrease rapidly with changes of proton energy range, modulation width or spot layers. For cranial cases, the average mSv/CGE was about 0.02 versus 0.032 for pelvis cases. RS will induce higher H to be 0.10 mSv/CGE in average. Conclusion: From this study, neutron per dose ratio (mSv/CGE) slightly depends upon various treatment parameters for pencil beams. For similar treatment conditions, our measurement demonstrates this value for pencil beam scanning beam has lowest than uniform scanning or passive scattering beam with a factor of 5. This factor will be monitored continuously for other upcoming treatment parameters in our facility.

  11. Routine operation of the University of Washington fast neutron therapy facility and plans for improvements

    NASA Astrophysics Data System (ADS)

    Risler, R.; Emery, R.; Laramore, G. E.

    1999-06-01

    The fast neutron therapy facility in Seattle is based on a cyclotron, which produces a 50.5 MeV proton beam. Neutrons are produced in a beryllium target installed in an isocentric gantry equipped with a multi-leaf collimator. The system has been in routine operation for 14 years and over 1800 patients have been treated. Downtime has been minimal, over the past 10 years less than 1.5% of the scheduled daily treatment sessions could not be delivered for equipment related reasons. Fast neutron therapy has been shown to be highly effective for the treatment of salivary gland tumors, sarcomas of bone and soft tissues and for certain prostate cancers. In addition there are situations such as non-small cell lung cancer, where results are promising, but success is limited by normal tissue complications. A relatively small selective increase in the tumor dose might lead to a significant clinical improvement in these situations. The use of a boron neutron capture (BNC) boost, utilizing the moderated slow neutrons naturally present in the tissue during fast neutron therapy, may be beneficial for such patients. Experimental work to adapt the facility for such a modified treatment modality is presently ongoing.

  12. Routine operation of the University of Washington fast neutron therapy facility and plans for improvements

    SciTech Connect

    Risler, R.; Emery, R.; Laramore, G. E.

    1999-06-10

    The fast neutron therapy facility in Seattle is based on a cyclotron, which produces a 50.5 MeV proton beam. Neutrons are produced in a beryllium target installed in an isocentric gantry equipped with a multi-leaf collimator. The system has been in routine operation for 14 years and over 1800 patients have been treated. Downtime has been minimal, over the past 10 years less than 1.5% of the scheduled daily treatment sessions could not be delivered for equipment related reasons. Fast neutron therapy has been shown to be highly effective for the treatment of salivary gland tumors, sarcomas of bone and soft tissues and for certain prostate cancers. In addition there are situations such as non-small cell lung cancer, where results are promising, but success is limited by normal tissue complications. A relatively small selective increase in the tumor dose might lead to a significant clinical improvement in these situations. The use of a boron neutron capture (BNC) boost, utilizing the moderated slow neutrons naturally present in the tissue during fast neutron therapy, may be beneficial for such patients. Experimental work to adapt the facility for such a modified treatment modality is presently ongoing.

  13. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  14. SU-E-T-329: Tissue-Equivalent Phantom Materials for Neutron Dosimetry in Proton Therapy

    SciTech Connect

    Halg, R; Lomax, A; Clarke, S; Wieger, B; Pryser, E; Arghal, R; Pozzi, S; Bashkirov, V; Schulte, R; Schneider, U

    2014-06-01

    Purpose: To characterize tissue equivalence of phantom materials in terms of secondary neutron production and dose deposition from neutrons produced in radiation therapy phantom materials in the context of proton therapy using Monte Carlo simulations and measurements. Methods: In order to study the influence of material choice on neutron production in therapeutic proton beams, Monte Carlo simulations using the Geant4 and MCNPX-PoliMi transport codes were performed to generate the neutron fields produced by protons of 155 and 200 MeV. A simple irradiation geometry was used to investigate the effect of different materials. The proton beams were stopped in slab phantoms to study the production of secondary neutrons. The investigated materials were water, Lucite, and tissue-equivalent phantom materials (CIRS Inc., Norfolk, VA). Neutron energy spectra and absorbed dose by neutrons and their secondary particles were scored. In addition, simulations were performed for reference tissues (ICRP/ICRU) to assess tissue equivalence with respect to neutron generation and transport. In order to benchmark the simulation results, measurements were performed with a system developed at the University of Michigan; organic liquid scintillators were used to detect the neutron emissions from the irradiation of tissue-equivalent materials. Additionally, the MPPost code was used to calculate the scintillator response from the MCNPX-PoliMi output. Results: The simulated energy spectra and depth dose curves of the neutrons produced in different phantom materials showed similar shape. The differences of spectra and fluences between all studied materials and reference tissues were well within the achievable precision of neutron dosimetry. The shape of the simulated detector response of the liquid scintillators agreed well with measurements on the proton beamline. Conclusion: Based on Geant4 and MCNPX-PoliMi simulations, the investigated materials appear to be suitable to study the production

  15. Estimation of Secondary Neutron Dose during Proton Therapy

    NASA Astrophysics Data System (ADS)

    Urban, Tomas; Klusoň, Jaroslav

    2014-06-01

    During proton radiotherapy, secondary neutrons are produced by nuclear interactions in the material along the beam path, in the treatment nozzle (including the fixed scatterer, range modulator, etc.) and, of course, after entering the patient. The dose equivalent deposited by these neutrons is usually not considered in routine treatment planning. In this study, there has been estimated the neutron dose in patient (in as well as around the target volume) during proton radiotherapy using scattering and scanning techniques. The proton induced neutrons (and photons) have been simulated in the simple geometry of the single scattering and the pencil beam scanning universal nozzles and in geometry of the plastic phantom (made of tissue equivalent material - RW3 - imitate the patient). In simulations of the scattering nozzle, different types of brass collimators have been used as well. Calculated data have been used as an approximation of the radiation field in and around the chosen/potential target volume in the patient (plastic phantom). For the dose equivalent evaluation, fluence-to-dose conversion factors from ICRP report have been employed. The results of calculated dose from neutrons in various distances from the spot for different treatment technique and for different energies of incident protons have been compared and evaluated in the context of the dose deposited in the target volume. This work was supported by RVO: 68407700 and Grant Agency of the CTU in Prague, grant No. SGS12/200/OHK4/3T/14.

  16. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  17. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.

    PubMed

    Ghassoun, J; Senhou, N

    2012-04-01

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses.

  18. Improved monitoring system of neutron flux during boron-neutron capture therapy

    SciTech Connect

    Harasawa, S.; Nakamoto, A.; Hayakawa, Y.; Egawa, J.

    1981-10-01

    Continuous and simultaneous monitoring of neutron flux in the course of a boron-neutron capture operation on a brain tumor has been achieved using a new monitoring system. A silicon surface barrier diode mounted with /sup 6/LiF instead of the previously reported borax is used to sense neutrons. The pulse heights of /sup 3/H and ..cap alpha.. particles from /sup 6/Li(n, ..cap alpha..)/sup 2/H reaction are sufficiently high and well separated from noises due to ..gamma.. rays. The effect of pulse-height reduction due to the radiation damage of the diode thus becomes smaller, permitting continuous monitoring. The relative error of the monitoring is within 2% over 5 hr for a neutron-flux density of 2 x 10/sup 9/ n/cm/sup 2/ sec.

  19. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  20. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  1. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  2. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  3. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  4. Measurement of the High Energy Neutron Flux on the Surface of the Natural Uranium Target Assembly QUINTA Irradiated by Deuterons of 4 and 8 GeV Energy

    NASA Astrophysics Data System (ADS)

    Adam, J.; Baldin, A. A.; Chilap, V.; Furman, W.; Katovsky, K.; Khushvaktov, J.; Kumar, V.; Pronskikh, V.; Mar'in, I.; Solnyshkin, A.; Suchopar, M.; Tsupko-Sitnikov, V.; Tyutyunnikov, S.; Vrzalova, J.; Wagner, V.; Zavorka, L.

    Experiments with the natural uranium target assembly "QUINTA" exposed to 4 and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The reaction rates of 27Al(n,y1)24Na, 27Al(n,y2)22Na and 27Al(n,y3)7Be reactions with effective threshold energies of 5, 27, and 119 MeV were measured at both 4 GeV and 8 GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for 4 or 8 GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 GeV to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with the MCNPX 2.7 code.

  5. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump,Part I: Measurements

    SciTech Connect

    Roesler, Stefan

    2002-09-24

    Neutron energy and time-of-flight spectra were measured behind the lateral shield of the electron beam dump at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were produced by a 28.7 GeV electron beam hitting the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shield. The measurements were performed using a NE213 organic liquid scintillator behind different thicknesses of the concrete shield of 274 cm, 335 cm, and 396 cm, respectively. The neutron energy spectra between 6 and 800 MeV were obtained by unfolding the measured pulse height spectrum with the detector response function. The attenuation length of neutrons in concrete was then derived. The spectra of neutron time-of-flight between beam on dump and neutron detection by NE213 were also measured. The corresponding experimental results were simulated with the FLUKA Monte Carlo code. The experimental results show good agreement with the simulated results.

  6. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump. Part I: measurements

    NASA Astrophysics Data System (ADS)

    Taniguchi, S.; Nakamura, T.; Nunomiya, T.; Iwase, H.; Yonai, S.; Sasaki, M.; Rokni, S. H.; Liu, J. C.; Kase, K. R.; Roesler, S.

    2003-05-01

    Neutron energy and time-of-flight spectra were measured behind the lateral shield of the electron beam dump at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were produced by a 28.7 GeV electron beam hitting the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shield. The measurements were performed using an NE213 organic liquid scintillator behind different thicknesses of the concrete shield of 274, 335, and 396 cm, respectively. The neutron energy spectra between 6 and 800 MeV were obtained by unfolding the measured pulse height spectrum with the detector response function. The attenuation length of neutrons in concrete was then derived. The spectra of neutron time-of-flight between beam on dump and neutron detection by NE213 were also measured. The corresponding experimental results were simulated with the FLUKA Monte Carlo code. The experimental results show good agreement with the simulated results.

  7. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1990-01-01

    This document briefly describes recent advances in the author's laboratory. Topics described include neutron beam design, high- resolution autoradiography, boronated phenylalanine (BPA) distribution and survival studies in glioma bearing mice, computer- aided treatment planning, prompt gamma boron 10 analysis facility at MITI-II, non-rodent BPA toxicity studies, and preparations for clinical studies.

  8. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1989-01-01

    This report describes accomplishments by this laboratory concerning development of high-resolution alpha-autoradiography design of an optimized epithermal neutron beam dosimetry and treatment planning Using Monte Carlo techniques development of a prompt-gamma {sup 10}B analysis facility.

  9. Experience with fast neutron therapy for locally advanced sarcomas

    SciTech Connect

    Salinas, R.; Hussey, D.H.; Fletcher, G.H.; Lindberg, R.D.; Martin, R.G.; Peters, L.J.; Sinkovics, J.G.

    1980-03-01

    Between October 1972 and April 1978, 34 patients with locally advanced sarcomas were treated with fast neutrons using the Texas A and M variable energy cyclotron. The clinical material included 29 patients with soft tissue sarcomas, 4 with chondrosarcomas, and one with an osteosarcoma. The best results were achieved for patients with soft tissue sarcomas; 69% (20/29) had local control of their tumor. Only one of 4 patients with chondrosarcomas was classified as having local tumor control, and one patient with osteosarcoma had persistent disease. With most fractionation schedules, local tumor control was superior for patients who received doses greater than 6500 rad/sub eq/ (2100 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons). The incidence of major complications was notably increased when maximum radiation doses of 7500 rad/sub eq/ or greater were administered (2400 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons). In patients who underwent subsequent surgery, healing was satisfactory if the maximum radiation dose was limited to 4500 to 5500 rad/sub eq/(1450 to 1775 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons).

  10. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    PubMed

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.

  11. LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?

    SciTech Connect

    Zullo, John R. Kudchadker, Rajat J.; Zhu, X. Ronald; Sahoo, Narayan; Gillin, Michael T.

    2010-04-01

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.

  12. Tissue equivalency of phantom materials for neutron dosimetry in proton therapy

    SciTech Connect

    Dowdell, Stephen; Clasie, Ben; Wroe, Andrew; Guatelli, Susanna; Metcalfe, Peter; Schulte, Reinhard; Rosenfeld, Anatoly

    2009-12-15

    Purpose: Previous Monte Carlo and experimental studies involving secondary neutrons in proton therapy have employed a number of phantom materials that are designed to represent human tissue. In this study, the authors determined the suitability of common phantom materials for dosimetry of secondary neutrons, specifically for pediatric and intracranial proton therapy treatments. Methods: This was achieved through comparison of the absorbed dose and dose equivalent from neutrons generated within the phantom materials and various ICRP tissues. The phantom materials chosen for comparison were Lucite, liquid water, solid water, and A150 tissue equivalent plastic. These phantom materials were compared to brain, muscle, and adipose tissues. Results: The magnitude of the doses observed were smaller than those reported in previous experimental and Monte Carlo studies, which incorporated neutrons generated in the treatment head. The results show that for both neutron absorbed dose and dose equivalent, no single phantom material gives agreement with tissue within 5% at all the points considered. Solid water gave the smallest mean variation with the tissues out of field where neutrons are the primary contributor to the total dose. Conclusions: Of the phantom materials considered, solid water shows best agreement with tissues out of field.

  13. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valdés-Galicia, Jose Francisco; González, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  14. Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy.

    PubMed

    Tachikawa, Shoji; Miyoshi, Tatsuro; Koganei, Hayato; El-Zaria, Mohamed E; Viñas, Clara; Suzuki, Minoru; Ono, Koji; Nakamura, Hiroyuki

    2014-10-21

    closo-Dodecaborate-encapsulating liposomes were developed as boron delivery vehicles for neutron capture therapy. The use of spermidinium as a counter cation of closo-dodecaborates was essential not only for the preparation of high boron content liposome solutions but also for efficient boron delivery to tumors.

  15. The European experience in neutron therapy at the end of 1981

    SciTech Connect

    Wambersie, A.

    1982-12-01

    A survey is presented of the European neutron therapy facilities. For head and neck tumors, the excellent results reported from Hammersmith were not confirmed by a EORTC combined trial (Amsterdam, Edinburgh and Essen). For salivary glands, high percentages (75%) of local control were obtained in Hammersmith and in Amsterdam, as well as in other centers. Following the promising results reported from Hammersmith, neutron therapy of soft tissue sarcomas was started in several centers. For patients with no clinical evidence of residual tumor after surgery, a local control rate ranging between 70% and 90% was achieved (Essen, Hamburg, Heidelberg, Louvain-la-Neuve). For patients with ''gross'' residual tumor, or with inoperable tumors, the percentages of local control vary within large limits (20-75%) from center to center, probably according to differences in histology, tumor localization, tumor size or extention, and perhaps fractionation (Hammersmith, Edinburg, Amsterdam, Essen, Hamburg, Heidelberg, Louvain-la-Neuve). A study on bronchus carcinoma, performed in Heidelberg, did not show any benefit with neutron therapy. Patients with locally extended cervix and prostate carcinoma were treated in Louvain-la-Neuve according to the RTOG protocol; an excellent early tolerance was noticed. However, for both sites, it is too early to derive valid long term conclusions. For prostatic tumors, a complete regression is usually achieved. For bladder carcinoma, the results from Manchester did not indicate a significant difference between neutron and photon therapy, both in initial assessment of results and complications. The Amsterdam group came to similar conclusions.

  16. The European experience in neutron therapy at the end of 1981

    SciTech Connect

    Wambersie, A.

    1982-12-01

    A survey is presented of the European neutron therapy facilities. For head and neck tumors, the excellent results reported from Hammersmith were not confirmed by an EORTC combined trial (Amsterdam, Edinburgh and Essen). For salivary glands, high percentages (75%) of local control were obtained in Hammersmith and in Amsterdam, as well as in other centers. Following the promising results reported from Hammersmith, neutron therapy of soft tissue sarcomas was started in several centers. For patients with no clinical evidence of residual tumor after surgery, a local control rate ranging between 70% and 90% was achieved (Essen, Hamburg, Heidelberg, Louvain-la-Neuve). For patients with ''gross'' residual tumor, or with inoperable tumors, the percentages of local control vary within large limits (20-75%) from center to center, probably according to differences in histology, tumor localization, tumor size or extention, and perhaps fractionation (Hammersmith, Edinburg, Amsterdam, Essen, Hamburg, Heidelberg, Louvain-la-Neuve). A study on bronchus carcinoma, performed in Heidelberg, did not show any benefit with neutron therapy. Patients with locally extended cervix and prostate carcinoma were treated in Louvain-la-Neuve according to the RTOG protocol; an excellent early tolerance was noticed. However, for both sites, it is too early to derive valid long term conclusions. For prostatic tumors, a complete regression is usually achieved. For bladder carcinoma, the results from Manchester did not indicate a significant difference between neutron and photon therapy, both in initial assessment of results and complications. The Amsterdam group came to similar conclusions.

  17. Interstitial /sup 252/Cf neutron therapy for glioblastoma multiforme

    SciTech Connect

    Maruyama, Y.; Chin, H.W.; Young, A.B.; Bean, J.; Tibbs, P.; Beach, J.L.

    1982-12-01

    /sup 252/Cf brachytherapy has been combined with whole brain photon beam therapy to 6000 rads in 5-7 weeks. In early phase I studies, all patients selected for study tolerated the procedure and the subsequent photon beam therapy. All showed improvement in performance status and decreased tumor size by CT scan evaluation, but it became clear that these tumors are of large size and bulk, produce marked adjacent brain edema, and require individualized implant therapy as well as high-dose external beam irradiation if response is to occur.

  18. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.

    PubMed

    Zamenhof, R G; Clement, S D; Harling, O K; Brenner, J F; Wazer, D E; Madoc-Jones, H; Yanch, J C

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces (with RBE weighting) a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction. With parallel-opposed lateral irradiation, the planar advantage depth contour for this beam

  19. Life-shortening and disease incidence in C57Bl mice after single and fractionated gamma and high-energy neutron exposure

    SciTech Connect

    Maisin, J.R.; Wambersie, A.; Gerber, G.B.; Mattelin, G.; Lambiet-Collier, M.; De Coster, B.; Gueulette, J.

    1988-02-01

    C57Bl Cnb mice were exposed to single or fractionated d(50)+Be neutrons or /sup 137/Cs gamma-ray exposure at 12 weeks of age and were followed for life-shortening and disease incidence. The data were analyzed by the Kaplan-Meier procedure using as criteria cause of death and possible cause of death. Individual groups were compared by a modified Wilcoxon test according to Hoel and Walburg, and entire sets of different doses from one radiation schedule were evaluated by the procedure of Peto and by the Cox proportional hazard model. No significant difference was found in life-shortening of C57Bl mice between a single gamma and neutron exposure. Gamma fractionation was clearly less effective in reducing survival time than a single exposure. On the contrary, fractionation of neutrons was slightly although not significantly more effective in reducing life span than a single exposure. Life-shortening appeared to be a linear function of dose in all groups studied. The data on causes of death show that malignant tumors, particularly leukemias including thymic lymphoma, and noncancerous late degenerative changes in lung were the principal cause of life-shortening after a high single gamma exposure. Exposure delivered in 8 fractions 3 h apart was more effective in causing leukemias and all carcinomas and sarcomas than one delivered in 10 fractions 24 h apart or in a single session. Following a single neutron exposure, leukemias and all carcinomas and sarcomas appeared to increase somewhat more rapidly with dose than after gamma irradiation. No significant difference in the incidence of leukemias and all carcinomas and sarcomas was noted between a single and a fractionated neutron exposure.

  20. Microdosimetric measurements for neutron-absorbed dose determination during proton therapy

    PubMed Central

    Pérez-Andújar, Angélica; DeLuca, Paul M.; Thornton, Allan F.; Fitzek, Markus; Hecksel, Draik; Farr, Jonathan

    2012-01-01

    This work presents microdosimetric measurements performed at the Midwest Proton Radiotherapy Institute in Bloomington, Indiana, USA. The measurements were done simulating clinical setups with a water phantom and for a variety of stopping targets. The water phantom was irradiated by a proton spread out Bragg peak (SOBP) and by a proton pencil beam. Stopping target measurements were performed only for the pencil beam. The targets used were made of polyethylene, brass and lead. The objective of this work was to determine the neutron-absorbed dose for a passive and active proton therapy delivery, and for the interactions of the proton beam with materials typically in the beam line of a proton therapy treatment nozzle. Neutron doses were found to be higher at 45° and 90° from the beam direction for the SOBP configuration by a factor of 1.1 and 1.3, respectively, compared with the pencil beam. Meanwhile, the pencil beam configuration produced neutron-absorbed doses 2.2 times higher at 0° than the SOBP. For stopping targets, lead was found to dominate the neutron-absorbed dose for most angles due to a large production of low-energy neutrons emitted isotropically. PMID:22334761

  1. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor.

    PubMed

    Endo, S; Onizuka, Y; Ishikawa, M; Takada, M; Sakurai, Y; Kobayashi, T; Tanaka, K; Hoshi, M; Shizuma, K

    2004-01-01

    Microdosimetric single event spectrum in a human body simulated by an acrylic phantom has been measured for the clinical BNCT field at the Kyoto University Reactor (KUR). The recoil particles resulting from the initial reaction and subsequent interactions, namely protons, electrons, alpha particles and carbon nuclei are identified in the microdosimetric spectrum. The relative contributions to the neutron dose from proton, alpha particles and carbon are estimated to be about 0.9, 0.07 and 0.3, respectively, four depths between 5 and 41 mm. We estimate that the dose averaged lineal energy, yD decreased with depth from 64 to 46 keV microm(-1). Relative biological effectiveness (RBE) of this neutron field using a response function for the microdosimetric spectrum was estimated to decrease from 3.6 to 2.9 with increasing depth. PMID:15353723

  2. Reference Dosimetry for Fast Neutron and Proton Therapy

    SciTech Connect

    Jones, D.T.L.

    2005-05-24

    Fast neutrons and protons undergo fundamentally different interactions in tissue. The former interact with nuclei, while the latter, as in the case of photons, interact mainly with atomic electrons. Protons do, however, also undergo some nuclear interactions, the probability of which increases with energy. For both modalities the practical instruments for determining the reference absorbed dose in a patient are ionization chambers. These provide indirect determination of absorbed dose because calibration factors measured in standard radiation fields, as well as conversion factors that require knowledge of various physical data, have to be applied. All dosimetry protocols recommend that reference absorbed dose measurements in the clinical situation be made with ionization chambers having 60Co calibration factors traceable to standards laboratories. Neutron doses determined with the current internationally accepted protocol (ICRU Report 45 [1989]) have a relative uncertainty of {+-}4.3% (1{sigma}), while proton doses determined with the two protocols (ICRU Report 59 [1998] and IAEA Report TRS 398 [2000]) presently in use have relative uncertainties (1{sigma}) of {+-}2.6 % and {+-}2.0%, respectively.

  3. Production and segregation of transmutation elements Ca, Ti, Sc in the F82H steel under mixed spectrum irradiation of high energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Kuksenko, Viacheslav; Pareige, Cristelle; Pareige, Philippe; Dai, Yong

    2014-04-01

    Ferritic/martensitic steel F82H was irradiated at 345 °C in a mixed proton-neutron spectrum in the Swiss spallation neutron source up to 20.3 dpa. Nanoscale investigations using the atom probe tomography (APT) technique were performed in order to study the atomic scale evolution of the microstructure of the F82H steel under irradiation. Spallation products Ca, Ti and Sc have been detected. The irradiation led to the production of about 370 appm of Ca, 90 appm of Sc and 800 appm of Ti. APT experiments revealed that regardless their low bulk concentrations, the spallation products extensively participate in the evolution of the microstructure: formation of radiation-induced clusters, segregation at the dislocation loops and alteration of the microchemistry of carbides. In this paper, a quantitative description of the observed features is presented and results are compared with TEM data of the literature obtained on the same steel and under similar irradiation conditions.

  4. Sublethal and potentially lethal damage repair on thermal neutron capture therapy

    SciTech Connect

    Utsumi, H.; Ichihashi, M.; Kobayashi, T.; Elkind, M.M. )

    1989-07-01

    Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.

  5. Feasibility study on pinhole camera system for online dosimetry in boron neutron capture therapy.

    PubMed

    Katabuchi, Tatsuya; Hales, Brian; Hayashizaki, Noriyosu; Igashira, Masayuki; Khan, Zareen; Kobayashi, Tooru; Matsuhashi, Taihei; Miyazaki, Koichi; Ogawa, Koichi; Terada, Kazushi

    2014-06-01

    The feasibility of a pinhole camera system for online dosimetry in boron neutron capture therapy (BNCT) was studied. A prototype system was designed and built. Prompt γ-rays from the (10)B(n,α)(7)Li reaction from a phantom irradiated with neutrons were detected with the prototype system. An image was reconstructed from the experimental data. The reconstructed image showed a good separation of the two borated regions in the phantom. The counting rates and signal-to-noise ratio when using the system in actual BNCT applications are also discussed.

  6. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  7. Design study of a medical proton linac for neutron therapy

    SciTech Connect

    Machida, S.; Raparia, D.

    1988-08-26

    This paper describes a design study which establishes the physical parameters of the low energy beam transport, radiofrequency quadrupole, and linac, using computer programs available at Fermilab. Beam dynamics studies verify that the desired beam parameters can be achieved. The machine described here meets the aforementioned requirements and can be built using existing technology. Also discussed are other technically feasible options which could be attractive to clinicians, though they would complicate the design of the machine and increase construction costs. One of these options would allow the machine to deliver 2.3 MeV protons to produce epithermal neutrons for treating brain tumors. A second option would provide 15 MeV protons for isotope production. 21 refs., 33 figs.

  8. Gadolinium as an element for neutron capture therapy

    SciTech Connect

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  9. Gadolinium as an element for neutron capture therapy

    SciTech Connect

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-12-31

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  10. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    NASA Astrophysics Data System (ADS)

    Musabaeva, L. I.; Startseva, Zh. A.; Gribova, O. V.; Velikaya, V. V.; Lisin, V. A.

    2016-08-01

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  11. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  12. Multipolarity analysis for {sup 14}C high-energy resonance populated by ({sup 18}O,{sup 16}O) two-neutron transfer reaction

    SciTech Connect

    Carbone, D. Cavallaro, M.; Bondì, M.; Agodi, C.; Cunsolo, A.; Cappuzzello, F.; Azaiez, F.; Franchoo, S.; Khan, E.; Bonaccorso, A.; Fortunato, L.; Foti, A.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.

    2015-10-15

    The {sup 12}C({sup 18}O,{sup 16}O){sup 14}C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition.

  13. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  14. SU-D-BRE-07: Neutron Shielding Assessment for a Compact Proton Therapy Vault

    SciTech Connect

    Prusator, M; Ahmad, S; Chen, Y

    2014-06-01

    Purpose: To perform a neutron shielding assessment of a commercially available compact proton therapy system. Methods: TOPAS (TOol for PArticle Simulation) beta release was used to model beam line components for Mevion S250 proton treatment system the design of which is that the cyclotron is present in the treatment room. Three neutron production sources were taken into account in the simulation. These are the cyclotron, the treatment nozzle and the patient itself, respectively. The cyclotron was modeled as a cylindrical iron target (r =5 cm, length = 8 cm). A water phantom (10 cm ×10 cm ×60 cm) was used to model the patient and various structures (scattering foils, range modulator wheel, applicator and compensator) defaulted in TOPAS were used to model the passive scattering treatment nozzle. Neutron fluences and energy spectra were counted in a spherical scoring geometry per incident proton in 18 angular bins (10 degree each). Fluence to dose conversion factors from ICRU publication 74 were used to acquire neutron ambient dose equivalent H*(10). A point source line of sight model was then used to calculate neutron dose at eight locations beyond shielding barriers. Results: The neutron ambient dose equivalent was calculated at the 8 points of interest around the proton treatment vault. The highest dose was found to be less than 0.781 mSv/year outside south barrier wall. However, the dose is less than 0.05 mSv/year at the control room area of the proton vault. Conclusion: All Points of interest were well under annual dose limits. This suggests that the shielding design of this compact proton therapy system is sufficient for radiation protection purpose. However, it is important to note that the workload and the occupancy factors are direct multipliers for dose calculations beyond the barrier and must be accurately estimated for validation of our results.

  15. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations.

    PubMed

    Farah, J; Martinetti, F; Sayah, R; Lacoste, V; Donadille, L; Trompier, F; Nauraye, C; De Marzi, L; Vabre, I; Delacroix, S; Hérault, J; Clairand, I

    2014-06-01

    Monte Carlo calculations are increasingly used to assess stray radiation dose to healthy organs of proton therapy patients and estimate the risk of secondary cancer. Among the secondary particles, neutrons are of primary concern due to their high relative biological effectiveness. The validation of Monte Carlo simulations for out-of-field neutron doses remains however a major challenge to the community. Therefore this work focused on developing a global experimental approach to test the reliability of the MCNPX models of two proton therapy installations operating at 75 and 178 MeV for ocular and intracranial tumor treatments, respectively. The method consists of comparing Monte Carlo calculations against experimental measurements of: (a) neutron spectrometry inside the treatment room, (b) neutron ambient dose equivalent at several points within the treatment room, (c) secondary organ-specific neutron doses inside the Rando-Alderson anthropomorphic phantom. Results have proven that Monte Carlo models correctly reproduce secondary neutrons within the two proton therapy treatment rooms. Sensitive differences between experimental measurements and simulations were nonetheless observed especially with the highest beam energy. The study demonstrated the need for improved measurement tools, especially at the high neutron energy range, and more accurate physical models and cross sections within the Monte Carlo code to correctly assess secondary neutron doses in proton therapy applications.

  16. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  17. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  18. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  19. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  20. Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer

    SciTech Connect

    Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc.; Longhino, Juan; Perona, Marina; Calzetta, Osvaldo; Blaumann, Herman; Rebagliati, Raul Jimenez; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2007-11-15

    Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60 mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.

  1. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    SciTech Connect

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  2. Case numbers for a randomized clinical trial of boron neutron capture therapy for Glioblastoma multiforme.

    PubMed

    Sander, Anja; Wosniok, Werner; Gabel, Detlef

    2014-06-01

    Boron neutron capture therapy (BNCT) with Na2B12H11SH (BSH) or p-dihydroxyborylphenylalanine (BPA), and with a combination of both, was compared to radiotherapy with temozolomide, and the number of patients required to show statistically significant differences between the treatments was calculated. Whereas arms using BPA require excessive number of patients in each arm, a two-armed clinical trial with BSH and radiotherapy plus temozolomide is feasible. PMID:24373823

  3. Boron neutron capture therapy as new treatment for clear cell sarcoma: trial on different animal model.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki

    2014-06-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS.

  4. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  5. Proliferative characteristics of intestinal stem cells. Response and protection to high-energy or fission spectrum neutrons or photons. Technical report, 1 December 1983-1 December 1985

    SciTech Connect

    Hanson, W.R.

    1986-04-30

    Cytosine Arabinoside (Ara/C) is an S-phase cytoxic agent. Since nearly half the proliferating cells in the murine crypt are in the S phase, Ara/c treatment, the clonogenic cells (the cells responsible for tissue regeneration) in the crypt are considerably less sensitive to photon radiation than colonogenic cells of control animals. Evidence suggests that the reason for this radioprotection by a toxic agent is the Ara/c-induced alteration in the cell age distribution of the clonogenic cells. Normally, the clonogenic cells are in a G/sub 1/ or G/sub 0/ stage of the cell cycle and are unaffected directly by Ara/c; however, following Ara/c treatment of an animal, the clonogenic cells enter the cell cycle. By 12 hours, the clonogenic cells proceed in a partially synchronized fashion to a mid toi late S phase of the cell cycle where they are less sensitive. WR-2721 appears to protect cells from radiation throughout the cell cycle and most likely acts through a mechanism different from Ara/c. Results of this contrast showed that the combination of Ara/c and WR-2721 protected the gut from photon injury to a greater extent than each agent alone. The protection from Fermilab neutrons by the combination was slightly better than each agent and there was no additional protection of Ara/c combined with WR-2721 for injury by JANUS fission spectrum neutrons. These treatments did not alter the animal response at doses in the bone marrow lethal range.

  6. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  7. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  8. Technical aspects of boron neutron capture therapy at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Rorer, D.C.; Patti, F.J.; Liu, H.B.; Reciniello, R.; Chanana, A.D.

    1997-07-01

    The Brookhaven Medical Research Reactor, BMRR, is a 3 MW heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies. Early BNL work in Boron Neutron Capture Therapy (BNCT) used a beam of thermal neutrons for experimental treatment of brain tumors. Research elsewhere and at BNL indicated that higher energy neutrons would be required to treat deep seated brain tumors. Epithermal neutrons would be thermalized as they penetrated the brain and peak thermal neutron flux densities would occur at the depth of brain tumors. One of the two BMRR thermal port shutters was modified in 1988 to include plates of aluminum and aluminum oxide to provide an epithermal port. Lithium carbonate in polyethylene was added in 1991 around the bismuth port to reduce the neutron flux density coming from outside the port. To enhance the epithermal neutron flux density, the two vertical thimbles A-3 (core edge) and E-3 (in core) were replaced with fuel elements. There are now four fuel elements of 190 grams each and 28 fuel elements of 140 grams each for a total of 4.68 kg of {sup 235}U in the core. The authors have proposed replacing the epithermal shutter with a fission converter plate shutter. It is estimated that the new shutter would increase the epithermal neutron flux density by a factor of seven and the epithermal/fast neutron ratio by a factor of two. The modifications made to the BMRR in the past few years permit BNCT for brain tumors without the need to reflect scalp and bone flaps. Radiation workers are monitored via a TLD badge and a self-reading dosimeter during each experiment. An early concern was raised about whether workers would be subject to a significant dose rate from working with patients who have been irradiated. The gamma ray doses for the representative key personnel involved in the care of the first 12 patients receiving BNCT are listed. These workers did not receive unusually high exposures.

  9. CR-39 detector based thermal neutron flux measurements, in the photo neutron project

    NASA Astrophysics Data System (ADS)

    Mameli, A.; Greco, F.; Fidanzio, A.; Fusco, V.; Cilla, S.; D'Onofrio, G.; Grimaldi, L.; Augelli, B. G.; Giannini, G.; Bevilacqua, R.; Totaro, P.; Tommasino, L.; Azario, L.; Piermattei, A.

    2008-08-01

    PhoNeS (photo neutron source) is a project aimed at the production and moderation of neutrons by exploiting high energy linear accelerators, currently used in radiotherapy. A feasibility study has been carried out with the scope in mind to use the high energy photon beams from these accelerators for the production of neutrons suitable for boron neutron capture therapy (BNCT). Within these investigations, it was necessary to carry out preliminary measurements of the thermal neutron component of neutron spectra, produced by the photo-conversion of X-ray radiotherapy beams supplied by three LinAcs: 15 MV, 18 MV and 23 MV. To this end, a simple passive thermal neutron detector has been used which consists of a CR-39 track detector facing a new type of boron-loaded radiator. Once calibrated, this passive detector has been used for the measurement of both the thermal neutron component and the cadmium ratio of different neutron spectra. In addition, bubble detectors with a response highly sensitive to thermal neutrons have also been used. Both thermal neutron detectors are simple to use, very compact and totally insensitive to low-ionizing radiation such as electrons and X-rays. The resultant thermal neutron flux was above 10 6 n/cm 2s and the cadmium ratio was no greater than 15 for the first attempt of photo-conversion of X-ray radiotherapy beams.

  10. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electromechanical design and validation.

    PubMed

    Farr, J B; Maughan, R L; Yudelev, M; Blosser, E; Brandon, J; Horste, T; Forman, J D

    2006-09-01

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30 x 30 cm2. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 degrees and 60 degrees automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area. PMID:17022226

  11. D-T neutron generator development for cancer therapy. 1980 annual progress report

    SciTech Connect

    Bacon, F.M.; Walko, R.J.; Bickes, R.W. Jr.; Cowgill, D.F.; Riedel, A.A.; O'Hagan, J.B.

    1980-05-01

    This report summarizes the work completed during the first year of a two-year grant by NCI/HEW to investigate the feasibility of developing a D-T neutron generator for use in cancer therapy. Experiments have continued on the Target Test Facility (TTF) developed during a previous grant to investigate high-temperature metal hydrides for use as target materials. The high voltage reliability of the TTF has been improved so that 200 kV, 200 mA operation is now routine. In recent target tests, the D-D neutron production rate was measured to be > 1 x 10/sup 11//s, a rate that corresponds to a D-T neutron production rate of > 1 x 10/sup 13//s - the desired rate for use in cancer therapy. Deuterium concentration depth profiles in the target, measured during intense ion beam bombardment, show that deuterium is depleted near the surface of the target due to impurities implanted by the ion beam. Recent modifications of the duopigatron ion source to reduce secondary electron damage to the electrodes also improved the ion source efficiency by about 40%. An ultra high vacuum version of the TTF is now being constructed to determine if improved vacuum conditions will reduce ion source impurities to a sufficiently low level that the deuterium near the surface of the target is not depleted. Testing will begin in June 1980.

  12. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  13. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.

    PubMed

    Matsumoto, Shinnosuke; Koba, Yusuke; Kohno, Ryosuke; Lee, Choonsik; Bolch, Wesley E; Kai, Michiaki

    2016-04-01

    Proton therapy has the physical advantage of a Bragg peak that can provide a better dose distribution than conventional x-ray therapy. However, radiation exposure of normal tissues cannot be ignored because it is likely to increase the risk of secondary cancer. Evaluating secondary neutrons generated by the interaction of the proton beam with the treatment beam-line structure is necessary; thus, performing the optimization of radiation protection in proton therapy is required. In this research, the organ dose and energy spectrum were calculated from secondary neutrons using Monte Carlo simulations. The Monte Carlo code known as the Particle and Heavy Ion Transport code System (PHITS) was used to simulate the transport proton and its interaction with the treatment beam-line structure that modeled the double scattering body of the treatment nozzle at the National Cancer Center Hospital East. The doses of the organs in a hybrid computational phantom simulating a 5-y-old boy were calculated. In general, secondary neutron doses were found to decrease with increasing distance to the treatment field. Secondary neutron energy spectra were characterized by incident neutrons with three energy peaks: 1×10, 1, and 100 MeV. A block collimator and a patient collimator contributed significantly to organ doses. In particular, the secondary neutrons from the patient collimator were 30 times higher than those from the first scatter. These results suggested that proactive protection will be required in the design of the treatment beam-line structures and that organ doses from secondary neutrons may be able to be reduced. PMID:26910030

  14. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.

    PubMed

    Matsumoto, Shinnosuke; Koba, Yusuke; Kohno, Ryosuke; Lee, Choonsik; Bolch, Wesley E; Kai, Michiaki

    2016-04-01

    Proton therapy has the physical advantage of a Bragg peak that can provide a better dose distribution than conventional x-ray therapy. However, radiation exposure of normal tissues cannot be ignored because it is likely to increase the risk of secondary cancer. Evaluating secondary neutrons generated by the interaction of the proton beam with the treatment beam-line structure is necessary; thus, performing the optimization of radiation protection in proton therapy is required. In this research, the organ dose and energy spectrum were calculated from secondary neutrons using Monte Carlo simulations. The Monte Carlo code known as the Particle and Heavy Ion Transport code System (PHITS) was used to simulate the transport proton and its interaction with the treatment beam-line structure that modeled the double scattering body of the treatment nozzle at the National Cancer Center Hospital East. The doses of the organs in a hybrid computational phantom simulating a 5-y-old boy were calculated. In general, secondary neutron doses were found to decrease with increasing distance to the treatment field. Secondary neutron energy spectra were characterized by incident neutrons with three energy peaks: 1×10, 1, and 100 MeV. A block collimator and a patient collimator contributed significantly to organ doses. In particular, the secondary neutrons from the patient collimator were 30 times higher than those from the first scatter. These results suggested that proactive protection will be required in the design of the treatment beam-line structures and that organ doses from secondary neutrons may be able to be reduced.

  15. {sup 33}S for Neutron Capture Therapy: Nuclear Data for Monte Carlo Calculations

    SciTech Connect

    Porras, I.; Sabaté-Gilarte, M.; Praena, J.; Quesada, J.M.; Esquinas, P.L.

    2014-06-15

    A study of the nuclear data required for the Monte Carlo simulation of boron neutron capture therapy including the {sup 33}S isotope as an enhancer of the dose at small depths has been performed. In particular, the controversy on the available data for the {sup 33}S(n, α) cross section will be shown, which motivates new measurements. In addition to this, kerma factors for the main components of tissue are calculated with the use of fitting functions. Finally, we have applied these data to a potential neutron capture treatment with boron and sulfur addition to tissue in which part of the hydrogen atoms are replaced by deuterium, which improves the procedure.

  16. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  17. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    SciTech Connect

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.

  18. Radiation transport requirements for clinical applications of neutron capture therapy: The rtt-MC Monte Carlo module

    SciTech Connect

    Wheeler, F.J.; Wessol, D.E.

    1995-12-31

    The rtt-MC dose calculation module of the BNCT-Rtpe treatment planning system has been developed specifically for boron neutron cancer therapy. Due to the complicated nature of combined gamma, fast-, epithermal- and thermal-energy neutron transport in tissue, all approaches to treatment planning to date for this treatment modality rely on Monte Carlo or three-dimensional discrete ordinates methods. Simple, fast and accurate methods for this modality have simply not been developed. In this paper the authors discuss some of the unique attributes of this therapy and the approaches they have used to begin to merge into clinical applications. As this paper is under draft, the modern implementation of boron neutron cancer therapy in the US is being realized. Research of skin and tumor effect for superficial melanoma of the extremities has been initiated at the Massachusetts Institute of Technology and brain cancer therapy (using this planning system) has begun at Brookhaven National Laboratory.

  19. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma.

    PubMed

    Kageji, T; Nagahiro, S; Mizobuchi, Y; Toi, H; Nakagawa, Y; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  20. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy

    NASA Astrophysics Data System (ADS)

    Athar, Basit S.; Paganetti, Harald

    2009-08-01

    In this work we have simulated the absorbed equivalent doses to various organs distant to the field edge assuming proton therapy treatments of brain or spine lesions. We have used computational whole-body (gender-specific and age-dependent) voxel phantoms and considered six treatment fields with varying treatment volumes and depths. The maximum neutron equivalent dose to organs near the field edge was found to be approximately 8 mSv Gy-1. We were able to clearly demonstrate that organ-specific neutron equivalent doses are age (stature) dependent. For example, assuming an 8-year-old patient, the dose to brain from the spinal fields ranged from 0.04 to 0.10 mSv Gy-1, whereas the dose to the brain assuming a 9-month-old patient ranged from 0.5 to 1.0 mSv Gy-1. Further, as the field aperture opening increases, the secondary neutron equivalent dose caused by the treatment head decreases, while the secondary neutron equivalent dose caused by the patient itself increases. To interpret the dosimetric data, we analyzed second cancer incidence risks for various organs as a function of patient age and field size based on two risk models. The results show that, for example, in an 8-year-old female patient treated with a spinal proton therapy field, breasts, lungs and rectum have the highest radiation-induced lifetime cancer incidence risks. These are estimated to be 0.71%, 1.05% and 0.60%, respectively. For an 11-year-old male patient treated with a spinal field, bronchi and rectum show the highest risks of 0.32% and 0.43%, respectively. Risks for male and female patients increase as their age at treatment time decreases.

  1. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    SciTech Connect

    Pérez-Andújar, Angélica; Zhang, Rui; Newhauser, Wayne

    2013-12-15

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.

  2. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    PubMed

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT.

  3. Boron neutron capture therapy for glioblastoma: improvement of boron biodistribution by hyaluronidase.

    PubMed

    Haselsberger, K; Radner, H; Pendl, G

    1998-09-11

    Boron neutron capture therapy (BNCT) represents a highly promising therapeutic alternative for the treatment of the most common malignant brain tumor, glioblastoma multiforme. Both the efficacy and safety of BNCT are greatly dependent on the pattern of 10B biodistribution. The present study investigates the influence of systemic hyaluronidase applied in combination with Na2B12H11SH (BSH), a boron carrier used in current clinical trials. The application of hyaluronidase was associated with a statistically significant improvement in the tumor/blood boron concentration ratio which suggests that hyaluronidase is capable of enhancing the therapeutic potential of BSH.

  4. Drug delivery system design and development for boron neutron capture therapy on cancer treatment.

    PubMed

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-06-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,l-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. PMID:24447933

  5. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key

    2014-02-24

    Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.

  6. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  7. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  8. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  9. Neutron capture autoradiographic determination of 10B distributions and concentrations in biological samples for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Yanagie, Hironobu; Ogura, Koichi; Matsumoto, Toshio; Eriguchi, Masazumi; Kobayashi, Hisao

    1999-11-01

    It is necessary for effective boron neutron capture therapy (BNCT) to accumulate 10B atoms in the tumor cells. We prepared a cationic liposome entrapped 10B compound for the delivery system and examined the delivery capacity of 10B atoms to pancreatic cancer cell, AsPC-1, in vivo. It is required to achieve an accurate measurement of 10B distributions and concentrations in biological samples with a sensitivity in the ppm range for BNCT. We applied CR-39 (polyallyldiglycol carbonate) plastic track detectors to α-autoradiographic measurements of the 10B biodistribution in sliced whole-body samples of mice. To selectively desensitize undesirable proton tracks, we applied PEW (KOH+C 2H 5OH+H 2O) solution to the etching of CR-39 detector. The subsequent use of an alpha-track radiographic image analysis system enabled a discrimination between alpha tracks and recoiled proton tracks by the track size selection method. This enabled us to estimate quantitatively the distributions of 10B concentrations within the tissue sections by comparing with suitable standards.

  10. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  11. Monte Carlo simulation of depth dose distribution in several organic models for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-09-01

    Monte Carlo simulations are performed to evaluate depth-dose distributions for possible treatment of cancers by boron neutron capture therapy (BNCT). The ICRU computational model of ADAM & EVA was used as a phantom to simulate tumors at a depth of 5 cm in central regions of the lungs, liver and pancreas. Tumors of the prostate and osteosarcoma were also centered at the depth of 4.5 and 2.5 cm in the phantom models. The epithermal neutron beam from a research reactor was the primary neutron source for the MCNP calculation of the depth-dose distributions in those cancer models. For brain tumor irradiations, the whole-body dose was also evaluated. The MCNP simulations suggested that a lethal dose of 50 Gy to the tumors can be achieved without reaching the tolerance dose of 25 Gy to normal tissue. The whole-body phantom calculations also showed that the BNCT could be applied for brain tumors without significant damage to whole-body organs.

  12. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    SciTech Connect

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  13. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    PubMed Central

    2013-01-01

    Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213

  14. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy

    SciTech Connect

    Wang, Xudong; Charlton, Michael A.; Esquivel, Carlos; Eng, Tony Y.; Li, Ying; Papanikolaou, Nikos

    2013-09-15

    Purpose: To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (H{sub n,D} and H{sub G}), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied.Methods: A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The H{sub n,D} and H{sub G} were measured using an Andersson–Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO{sup ®} phantom.Results: Within the measurement uncertainty, there is no significant difference between the H{sub n,D} and H{sub G} with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (±0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (±1.6) min and 15.3 (±4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test.Conclusions: This work indicates that there is no significant change of the H{sub n,D} and H{sub G} in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam

  15. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy.

    PubMed

    Le, Uyen M; Cui, Zhengrong

    2006-04-01

    Gadolinium neutron capture therapy (Gd-NCT) is a promising cancer therapy modality. One of the key factors for a successful Gd-NCT is to deliver and maintain a sufficient amount of Gd in tumor tissues during neutron irradiation. We proposed to prepare a Gd delivery system by complexing a Gd-containing compound, diethylenetriaminepentaacetic acid (Gd-DTPA), with a polycationic peptide, poly-L-lysine (pLL), and then encapsulate the complexed Gd-DTPA into PEGylated liposomes. Complexation of Gd-DTPA with pLL not only enhanced the encapsulation efficiency of Gd-DTPA in liposomes, but also significantly limited the release of Gd-DTPA from the liposomes. A Gd-DTPA-encapsulated liposome formulation that contained 6.8+/-0.3 mg/mL of pure encapsulated Gd was prepared. The blood half-life of the Gd encapsulated into the liposome formulation was estimated to be about 24 h in healthy tumor-free mice. About 12 h after the Gd-encapsulated liposomes were intravenously injected into mice with pre-established model tumors, the Gd content in the tumors reached an average of 159 microg/g of wet tumor tissue. This Gd-DTPA encapsulated liposome may be used to deliver Gd into solid tumors for NCT and tumor imaging. PMID:16457973

  16. Homogeneous immunoconjugates for boron neutron-capture therapy: design, synthesis, and preliminary characterization.

    PubMed

    Guan, L; Wims, L A; Kane, R R; Smuckler, M B; Morrison, S L; Hawthorne, M F

    1998-10-27

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 10(3) boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here.

  17. Homogeneous immunoconjugates for boron neutron-capture therapy: Design, synthesis, and preliminary characterization

    PubMed Central

    Guan, Lufeng; Wims, Letitia A.; Kane, Robert R.; Smuckler, Mark B.; Morrison, Sherie L.; Hawthorne, M. Frederick

    1998-01-01

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 103 boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here. PMID:9789066

  18. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    PubMed

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  19. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    PubMed

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data

  20. Fast neutron relative biological effects and implications for charged particle therapy

    PubMed Central

    Jones, B; Underwood, T S A; Carabe-Fernandez, A; Timlin, C; Dale, R G

    2011-01-01

    In two fast neutron data sets, comprising in vitro and in vivo experiments, an inverse relationship is found between the low-linear energy transfer (LET) α/β ratio and the maximum value of relative biological effect (RBEmax), while the minimum relative biological effect (RBEmin) is linearly related to the square root of the low-LET α/β ratio. RBEmax is the RBE at near zero dose and can be represented by the ratio of the α parameters at high- and low-LET radiation exposures. RBEmin is the RBE at very high dose and can be represented by the ratio of the square roots of the β parameters at high- and low-LET radiation exposures. In principle, it may be possible to use the low-LET α/β ratio to predict RBEmax and RBEmin, providing that other LET-related parameters, which reflect intercept and slopes of these relationships, are used. These two limits of RBE determine the intermediate values of RBE at any dose per fraction; therefore, it is possible to find the RBE at any dose per fraction. Although these results are obtained from fast neutron experiments, there are implications for charged particle therapy using protons (when RBE is scaled downwards) and for heavier ion beams (where the magnitude of RBE is similar to that for fast neutrons). In the case of fast neutrons, late reacting normal tissue systems and very slow growing tumours, which have the smallest values of the low-LET α/β ratio, are predicted to have the highest RBE values at low fractional doses, but the lowest values of RBE at higher doses when they are compared with early reacting tissues and fast growing tumour systems that have the largest low-LET α/β ratios. PMID:22374547

  1. Radiobiology of boron neutron capture therapy: Problems with the concept of relative biological effectiveness

    SciTech Connect

    Coderre, J.A.; Makar, M.S.

    1990-01-01

    The radiation dose delivered to cells in vitro or vivo during boron neutron capture therapy (BNCT) is a mixture of photons, fast neutrons and heavy charged particles from the interaction of neutrons with nitrogen and born. The concept of relative biological effectiveness (RBE) had been developed to allow comparison of the effects of these radiations with the effects of standard photon treatments such as 250 kVp x-rays or {sup 60}Co gamma rays. The RBE value for all of these high linear energy transfer radiations can vary considerably depending upon the experimental conditions and endpoint utilized. The short range of the particles from the {sup 10}B(n,{alpha}) {sup 7}Li reaction make the precise subcellular location of the {sup 10}B atom of critical importance. The microscopic distribution of the {sup 10}B has a decided effect on the dosimetry. Monte Carlo simulations have shown that, at the cellular level, there is a profound difference in the probability of cell kill depending on the location of the {sup 10}B relative to the nucleus. Different boron-delivery agents will almost certainly have different distribution patterns at the subcellular level. The effect of BNCT with the amino acid p-boronophenylalanine (BPA) was compared with the effect of 250 kVp x-rays on a pigmented B16 melanoma subclone, both in vitro and in vivo. Generally accepted RBE values were applied to the relevant components of the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam, however, there were still discrepancies when the resulting dose response curves were compared with the response to 250 kVp x-rays.

  2. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams.

    PubMed

    Riley, K J; Binns, P J; Ali, S J; Harling, O K

    2004-05-21

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm(-3) of boron carbide or 210 mg cm(-3) of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 +/- 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  3. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators.

    PubMed

    Martín, Guido; Abrahantes, Arian

    2004-05-01

    A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is produced, optimized and verified. In order to perform these calculations the general-purpose MCNP code is used. Irradiation time and therapeutic gain are utilized as beam assessment parameters. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation. In the present beam-shaping assembly proposal, the therapeutic gain is improved by 23% and the accelerator current required for a fixed irradiation period is reduced by six times compared to previous proposals based on the same D-T reaction.

  4. Performance of a New Composite Single-Crystal Filtered Thermal Neutron Beam for Neutron Capture Therapy Research at the University of Missouri

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne; Charles McKibben

    2008-11-01

    The University of Missouri (MU) Institute for Nano and Molecular Medicine, the Idaho National Laboratory (INL) and the University of Missouri Research Reactor (MURR) have undertaken a new collaborative research initiative to further the development of improved boron delivery agents for BNCT. The first step of this effort has involved the design and construction of a new thermal neutron beam irradiation facility for cell and small-animal radiobological research at the MURR. In this paper we present the beamline design with the results of pertinent neutronic design calculations. Results of neutronic performance measurements, initiated in February 2008, will also be available for inclusion in the final paper. The new beam will be located in an existing 152.4 mm (6’) diameter MURR beam tube extending from the core to the right in Figure 1. The neutron beam that emanates from the berylium reflector around the reactor is filtered with single-crystal silicon and single-crystal bismuth segments to remove high energy, fission spectrum neutrons and reactor gamma ray contamination. The irradiation chamber is downstream of the bismuth filter section, and approximately 3.95 m from the central axis of the reactor. There is sufficient neutron flux available from the MURR at its rated power of 10 MW to avoid the need for cryogenic cooling of the crystals. The MURR operates on average 150 hours per week, 52 weeks a year. In order to take advantage of 7800 hours of operation time per year the small animal BNCT facility will incorparate a shutter constucuted of boral, lead, steel and polyethylene that will allow experimenters to access the irradiation chamber a few minutes after irradiation. Independent deterministic and stochastic models of the coupled reactor core and beamline were developed using the DORT two-dimensional radiation transport code and the MCNP-5 Monte Carlo code, respectively. The BUGLE-80 47-neutron, 20-gamma group cross section library was employed for the DORT

  5. Relative biological effectiveness (RBE) of thermal neutron capture therapy of cultured B-16 melanoma cells preincubated with 10B-paraboronophenylalanine.

    PubMed

    Ichihashi, M; Sasase, A; Hiramoto, T; Funasaka, Y; Hatta, S; Mishima, Y; Kobayashi, T; Fukuda, H; Yoshino, K

    1989-01-01

    An experimental study of the relative biological effectiveness (RBE) of thermal neutron capture therapy (TNCT) for melanoma cell inactivation using 10B1-paraboronophenylalanine (10B1-BPA) was carried out to demonstrate a high therapeutic effect of TNCT, compared with that of fast neutron. Cells preincubated with or without 10B1-BPA at a concentration of 50 micrograms/ml for 20 h were irradiated with 60Co gamma-ray, fast neutron or thermal neutron. The absorbed dose of the cells from thermal neutron was calculated by Kobayashi's model. The D0 value of fast neutron was 1.07 Gy, and the D0S of thermal neutron radiation with or without preincubation of the cells with 10B1-BPA were 0.46 Gy or 0.67 Gy, respectively. The RBEs of fast neutron, thermal neutron beams, and neutron capture therapy relative to 60Co gamma-ray were calculated as 2.78, 4.18, and 6.15 at 0.1 surviving fraction, respectively. These results indicate radiologically that thermal neutron capture therapy using 10B1-BPA is an excellent radiation therapy for malignant melanoma.

  6. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS)

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory B.; Stewart, Robert D.; Sandison, George A.; Goorley, John T.; Argento, David C.; Jevremovic, Tatjana

    2016-01-01

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm  ×  40 cm  ×  40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10  ×  10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm  ×  2.8 cm, 10.4 cm  ×  10.3 cm, and 28.8 cm  ×  28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾10% of central axis dose) pass rates of 89.7% (2.8 cm  ×  2.8 cm), 89.6% (10.4 cm  ×  10.3 cm), and 100.0% (28.8 cm  ×  28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.

  7. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).

    PubMed

    Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana

    2016-01-21

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy. PMID:26738533

  8. Risk of Developing Second Cancer From Neutron Dose in Proton Therapy as Function of Field Characteristics, Organ, and Patient Age

    SciTech Connect

    Zacharatou Jarlskog, Christina; Paganetti, Harald

    2008-09-01

    Purpose: To estimate the risk of a second malignancy after treatment of a primary brain cancer using passive scattered proton beam therapy. The focus was on the cancer risk caused by neutrons outside the treatment volume and the dependency on the patient's age. Methods and Materials: Organ-specific neutron-equivalent doses previously calculated for eight different proton therapy brain fields were considered. Organ-specific models were applied to assess the risk of developing solid cancers and leukemia. Results: The main contributors (>80%) to the neutron-induced risk are neutrons generated in the treatment head. Treatment volume can influence the risk by up to a factor of {approx}2. Young patients are subject to significantly greater risks than are adult patients because of the geometric differences and age dependency of the risk models. Breast cancer should be the main concern for females. For males, the risks of lung cancer, leukemia, and thyroid cancer were significant for pediatric patients. In contrast, leukemia was the leading risk for an adult. Most lifetime risks were <1% (70-Gy treatment). The only exceptions were breast, thyroid, and lung cancer for females. For female thyroid cancer, the treatment risk can exceed the baseline risk. Conclusion: The risk of developing a second malignancy from neutrons from proton beam therapy of a brain lesion is small (i.e., presumably outweighed by the therapeutic benefit) but not negligible (i.e., potentially greater than the baseline risk). The patient's age at treatment plays a major role.

  9. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  10. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.

    PubMed

    De Smet, V; Stichelbaut, F; Vanaudenhove, T; Mathot, G; De Lentdecker, G; Dubus, A; Pauly, N; Gerardy, I

    2014-10-01

    Inside an IBA proton therapy centre, secondary neutrons are produced due to nuclear interactions of the proton beam with matter mainly inside the cyclotron, the beam line, the treatment nozzle and the patient. Accurate measurements of the neutron ambient dose equivalent H*(10) in such a facility require the use of a detector that has a good sensitivity for neutrons ranging from thermal energies up to 230 MeV, such as for instance the WENDI-2 detector. WENDI-2 measurements have been performed at the Westdeutsches Protonentherapiezentrum Essen, at several positions around the cyclotron room and around a gantry treatment room operated in two different beam delivery modes: Pencil Beam Scanning and Double Scattering. These measurements are compared with Monte Carlo simulation results for the neutron H*(10) obtained with MCNPX 2.5.0 and GEANT4 9.6. PMID:24255173

  11. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  12. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound.

    PubMed

    Mishima, Y; Ichihashi, M; Tsuji, M; Hatta, S; Ueda, M; Honda, C; Suzuki, T

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  13. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  14. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Tsuji, M.; Hatta, S.; Ueda, M.; Honda, C.; Suzuki, T.

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  15. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    SciTech Connect

    Geng, C; Schuemann, J; Moteabbed, M; Paganetti, H

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  16. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  17. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT. PMID:27548011

  18. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy

    PubMed Central

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-01-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825

  19. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT.

  20. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  1. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  2. Iodine neutron capture therapy: A new generation of radiotherapy for the thyroid

    SciTech Connect

    Ahmed, K.F.; Stephens, A.G.; Spall, R.D.; Brey, R.R.; Bennion, J.S.

    1997-12-01

    An innovative technique is being pursued that takes advantage of noninvasive, in situ neutron capture therapy concepts for treating hyperthyroidism and thyroid carcinoma. Present treatment techniques include surgical removal of the thyroid or, more frequently, the oral administration of {sup 131}I. Therapeutic applications of {sup 131}I are complicated by the unavoidable and undesirable exposure of ancillary body organs, protracted treatment times due to long effective half-life, and less than ideal radiation emission characteristics, i.e., low-effective energy available for deposition in the target organ. These problems are mitigated through the use of {sup 128}I. Table I provides pertinent radiological characteristics for a comparison of {sup 131}I with {sup 128}I.

  3. Effect of boron neutron capture therapy for recurrent anaplastic meningioma: an autopsy case report.

    PubMed

    Kawaji, Hiroshi; Miyatake, Shin-Ichi; Shinmura, Kazuya; Kawabata, Shinji; Tokuyama, Tsutomu; Namba, Hiroki

    2015-01-01

    A 70-year-old woman died of systemic metastasis from anaplastic meningioma and underwent autopsy. The patient underwent twice total removal of the right sphenoid ridge meningioma 2 years ago. The tumor recurred 3 times, and then stereotactic radiotherapy was employed. Boron neutron capture therapy (BNCT) was performed for the fourth local recurrence and an additional new lesion. Proliferative activity of the newly developed meningioma, which had been treated with BNCT only, was significantly lower than that of untreated metastatic liver tumor, as well as that of the meningioma specimen obtained at the second surgery. Our pathological findings demonstrated, for the first time, the therapeutic effect of BNCT on anaplastic meningioma at an early stage (2.5 months).

  4. LaBr3(Ce) gamma-ray detector for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Smirnova, M.; Shmanin, E.; Galavanov, A.; Shustov, A.; Ulin, S.; Vlasik, K.; Dmitrenko, V.; Novikov, A.; Orlov, A.; Petrenko, D.; Shmurak, S.; Uteshev, Z.

    2016-02-01

    Results of developing of a gamma-ray detector based on LaBr3(Ce) scintillation crystal for neutron capture therapy are presented. An energy resolution of the detector measured by photomultiplier tube Hamamatsu R6233-100 is showed. It was 2.93% for gamma line 662 keV from a source 137Cs. For radiative capture gamma line of isotope 10B (478 keV) and annihilation line (511 keV) the values were 3.33 and 3.24% respectively. Data analysis of gamma spectra for an estimation of energy resolution threshold required for visual identification gamma lines 478 and 511 keV was made.

  5. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    SciTech Connect

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay; Kumar, Manjeet; Thakur, Anup

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  6. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    SciTech Connect

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S. ); Packer, S. . Div. of Ophthalmology)

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of {sup 10}B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab.

  7. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  8. Radiation effects of boron neutron capture therapy on brain, skin, and eye of rats

    SciTech Connect

    Matalka, K.Z.; Barth, R.F.; Bailey, M.Q.; Wilkie, D.A.; Koestner, A. ); Hopewell, J.W. )

    1994-03-30

    The present study was carried out to evaluate the radiation effects of boron neutron capture therapy (BNCT) on the brain, skin, and eyes of nude rats following systemic administration of boronophenylalanine (BPA) and neutron irradiation to the head. A solution containing 120 mg of [sup 10]B-enriched-L-BPA complexed with fructose was administered IP to nude rats. Boron concentrations were [approximately] 8.4, 9.4, 10.0, and 11.0 [mu]g/g in the brain, blood, skin, and eyes, respectively, at 6 h when the animals were irradiated at the Brookhaven Medical Research Reactor to cause tumor regression in nude rats carrying intracerebral implants of the human melanoma cell line MRA 27. Mild to moderate increases in loose fibrous tissue were observed in the choroid plexus at estimated physical doses to the brain and blood that ranged from 4.3-7.1 Gy and 4.6-7.7 Gy, respectively, and these appeared to be dose and time dependent. Other changes in the choroid plexus included occasional infiltrates of macrophages and polymorphonuclear leukocytes and vacuolation of epithelial cells. Dose-dependent moist desquamation of the skin was observed in all rats, but this had healed by 28 days following irradiation. Cataracts and keratitis developed in the eyes of most animals, and these were dose dependent. The minimal histopathological changes seen in the brain at doses that were sufficient to eradicate intracerebral melanoma indicates that BNCT has the potential to cure a tumor-bearing host without producing the normal brain injury usually associated with conventional external beam radiation therapy. Studies in canines, which currently are in progress, should further define the dose-effect relationships of BNCT on critical neuroanatomic structures within the brain. 42 refs., 4 figs., 3 tabs.

  9. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy.

    PubMed

    Oyewumi, Moses O; Mumper, Russell J

    2002-01-01

    Microemulsions (oil-in-water) have been employed as templates to engineer nanoparticles containing high concentrations of gadolinium for potential application in neutron capture therapy of tumors. Gadolinium hexanedione (GdH), synthesized by complexation of Gd(3+) with 2,4-hexanedione, was used as the nanoparticle matrix alone or in combination with either emulsifying wax or PEG-400 monostearate. Solid nanoparticles (<125 nm size) were obtained by simple cooling of the microemulsions prepared at 60 degrees C to room temperature in one vessel. The feasibility of tumor targeting via folate receptors was studied. A folate ligand was synthesized by chemically linking folic acid to distearoylphosphatidylethanolamine (DSPE) via a poly(ethylene glycol) (PEG; MW 3350) spacer. To obtain folate-coated nanoparticles, the folate ligand (0.75% w/w to 15% w/w) was added to either the microemulsion templates at 60 degrees C or nanoparticle suspensions at 25 degrees C. Efficiencies of folate ligand attachment/adsorption to nanoparticle formulations were monitored by gel permeation chromatography. Cell uptake studies were carried out in KB cells (human nasopharyngeal epidermal carcinoma cell line), known to overexpress folate receptors. The uptake of folate-coated nanoparticles was about 10-fold higher than uncoated nanoparticles after 30 min at 37 degrees C. The uptake of folate-coated nanoparticles at 4 degrees C was 20-fold lower than the uptake at 37 degrees C and comparable to the uptake of uncoated nanoparticles at 37 degrees C. Folate-mediated endocytosis was further verified by the inhibition of folate-coated nanoparticles uptake by free folic acid. It was observed that folate-coated nanoparticles uptake decreased to approximately 2% of its initial value with the coincubation of 0.001 mM of free folic acid. The results suggested that these tumor-targeted nanoparticles containing high concentrations of Gd may have potential for neutron capture therapy. PMID:12440870

  10. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy.

    PubMed

    Oyewumi, Moses O; Mumper, Russell J

    2002-01-01

    Microemulsions (oil-in-water) have been employed as templates to engineer nanoparticles containing high concentrations of gadolinium for potential application in neutron capture therapy of tumors. Gadolinium hexanedione (GdH), synthesized by complexation of Gd(3+) with 2,4-hexanedione, was used as the nanoparticle matrix alone or in combination with either emulsifying wax or PEG-400 monostearate. Solid nanoparticles (<125 nm size) were obtained by simple cooling of the microemulsions prepared at 60 degrees C to room temperature in one vessel. The feasibility of tumor targeting via folate receptors was studied. A folate ligand was synthesized by chemically linking folic acid to distearoylphosphatidylethanolamine (DSPE) via a poly(ethylene glycol) (PEG; MW 3350) spacer. To obtain folate-coated nanoparticles, the folate ligand (0.75% w/w to 15% w/w) was added to either the microemulsion templates at 60 degrees C or nanoparticle suspensions at 25 degrees C. Efficiencies of folate ligand attachment/adsorption to nanoparticle formulations were monitored by gel permeation chromatography. Cell uptake studies were carried out in KB cells (human nasopharyngeal epidermal carcinoma cell line), known to overexpress folate receptors. The uptake of folate-coated nanoparticles was about 10-fold higher than uncoated nanoparticles after 30 min at 37 degrees C. The uptake of folate-coated nanoparticles at 4 degrees C was 20-fold lower than the uptake at 37 degrees C and comparable to the uptake of uncoated nanoparticles at 37 degrees C. Folate-mediated endocytosis was further verified by the inhibition of folate-coated nanoparticles uptake by free folic acid. It was observed that folate-coated nanoparticles uptake decreased to approximately 2% of its initial value with the coincubation of 0.001 mM of free folic acid. The results suggested that these tumor-targeted nanoparticles containing high concentrations of Gd may have potential for neutron capture therapy.

  11. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head and Neck Cancer

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Saarilahti, Kauko; Atula, Timo; Collan, Juhani; Salli, Eero; Kortesniemi, Mika; Uusi-Simola, Jouni; Maekitie, Antti; Seppaenen, Marko; Minn, Heikki; Kotiluoto, Petri; Auterinen, Iiro; Savolainen, Sauli; Kouri, Mauri; Joensuu, Heikki

    2007-10-01

    Purpose: Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. Methods and Materials: Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were treated with BNCT in a prospective, single-center Phase I-II study. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 56-74 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed using the RECIST (Response Evaluation Criteria in Solid Tumors) criteria and adverse effects using the National Cancer Institute common toxicity grading v3.0. Intravenously administered boronophenylalanine-fructose (BPA-F, 400 mg/kg) was used as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Ten patients received BNCT twice; 2 were treated once. Ten (83%) patients responded to BNCT, and 2 (17%) had tumor growth stabilization for 5.5 and 7.6 months. The median duration of response was 12.1 months; six responses were ongoing at the time of analysis or death (range, 4.9-19.2 months). Four (33%) patients were alive without recurrence with a median follow-up of 14.0 months (range, 12.8-19.2 months). The most common acute adverse effects were mucositis, fatigue, and local pain; 2 patients had a severe (Grade 3) late adverse effect (xerostomia, 1; dysphagia, 1). Conclusions: Boron neutron capture therapy is effective and safe in the treatment of inoperable, locally advanced head and neck carcinomas that recur at previously irradiated sites.

  12. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future.

  13. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. PMID:26260448

  14. Spatial variation of radiation quality during moving beam therapy with 14 MeV [d(0.25)+T] neutrons.

    PubMed

    Herskind, C; Loncol, Th; Höver, K H

    2002-01-01

    In conformal moving beam therapy with fast neutrons, the contributions to dose from the direct beam, scattered radiation and the gamma component vary with the position in the phantom. To determine this variation in radiation quality, microdosimetric measurements of energy deposition spectra were performed at different position in a therapy phantom. Fixed beam irradiation at different incidence angles showed strong changes in the lineal energy spectrum. An increase of slow protons (20 < y < 110 keV.micron-1) and a decrease of fast protons (2 < y < 20 keV.micron-1) was seen for irradiation outside the direct beam. During moving beam irradiation, different positions on the same isodose curves (55% or 35%) showed differences in YD of up to 5%. Variations in the quality parameter, R, determined by applying an empirical biological weighting function, were of similar magnitude. Thus, spatial variations in radiation quality should be taken into account in biological dose planning for moving beam neutron therapy.

  15. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  16. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    PubMed

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.

  17. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma.

    PubMed

    Hsu, C F; Lin, S Y; Peir, J J; Liao, J W; Lin, Y C; Chou, F I

    2011-12-01

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg (10)B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg (10)B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  18. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  19. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  20. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  1. Therapy and treatment with a high-energy laser in case of a periodontal disease treatment instead of physiotherapy or low-level laser treatment

    NASA Astrophysics Data System (ADS)

    Buerger, Friedhelm R.

    1996-12-01

    Since intensive efforts ofprophylaxis including fluoridisation, better oral hygiene, eating ofless sugar containing foods, reduced the risk ofcaries and the problems ofcaries lesions significantly. But, especially beginning at the age of3O years more than 80 % ofthe population in almost every nation shows signs of periodontal defects. This you can call an epidemic disease. Because people get older and expect a lot concerning their outlook, their esthetic, their phonetic, they have great expectations towards their natural dentition and keep their own teeth. This is a great challenge to periodontal prophylaxis and periodontal therapy. According to the progress ofthe disease different therapies are indicated. Starting with oral hygiene instructions to establish better oral hygiene with all the modem technologies ofmicrobiological investigations, pharmaceutical therapy, physiotherapy, low level laser treatment, periodontal-surgery, like curettage, deepscaling and rootplaning but also more sophisticated teatmentplans with gingivoplasty, gingivectomy, flap-procedures and mucogingival surgeiy including bone fillings, regenerativ technics the whole spectrum oftreatment options has widely expanded during the last years.

  2. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  3. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  4. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  5. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    SciTech Connect

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G. )

    1990-09-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity.

  6. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    PubMed Central

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  7. Effect of boron neutron capture therapy for melanotic and amelanotic melanoma transplanted into mouse brain.

    PubMed

    Iwakura, Masaki; Kondoh, Hirofumi; Hiratsuka, Junichi; Ehara, Kazumasa; Tamaki, Norihiko; Mishima, Yutaka

    2002-02-01

    In order to develop a protocol to treat brain metastatic melanoma using our 10B-p-boronophenylalanine (BPA) boron neutron capture therapy (BNCT), we initiated the following studies (i), Comparative analyses of boron biodistribution between melanoma proliferating in the brain and skin among melanotic and amelanotic types, and (ii) Therapeutic evaluation of BPA-BNCT for brain melanoma models of both types, using survival times. Our present data have revealed that boron concentration in melanoma proliferating in the brain, the major prerequisite for successful BNCT, showed a positive correlation to melanin synthesizing activity in the same way as melanoma proliferating in skin. Further, the boron concentration ratio of melanoma to normal surrounding tissue for brain melanoma models was considerably higher than that for subcutaneous (s.c.) ones because of the existence of the blood-brain barrier (BBB). Additionally, from analyses of median and mean survival times following BNCT using low, middle, and high neutron doses, the therapeutic effect of BNCT for the amelanotic A1059 melanoma appeared at first glance to be higher than that for the highly BPA attracting and highly relative biological effect equivalent dose obtaining B15b melanoma. As the survival time was dependent on both regression and regrowth curves, and because the brain melanoma model in small animals made it difficult to evaluate these curves separately, we further examined the in vivo growth curve of both types of melanomas following implantation in s.c. tissue. The melanotic B15b melanoma was indeed found to possess much higher growth rate as compared with that of the amelanotic A1059 melanoma. The significance of boron biodistribution studies and BNCT survival curve analyses in forming an effective clinical protocol for individual human cases of melanoma brain metastasis is discussed.

  8. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  9. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy

    SciTech Connect

    Moran, J.M.; Nigg, D.W.; Wheeler, F.J.; Bauer, W.F. )

    1992-05-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%--20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  10. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    PubMed Central

    2010-01-01

    Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E

  11. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report 1988

    SciTech Connect

    Zamenhof, R.G.

    1988-12-31

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  12. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  13. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    PubMed

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  14. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  15. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. PMID:26272165

  16. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation.

  17. Effect of Boron Neutron Capture Therapy (BNCT) on Normal Liver Regeneration: Towards a Novel Therapy for Liver Metastases

    SciTech Connect

    Jorge E. Cardoso; Elisa M. Heber; David W. Nigg; Osvaldo Calzetta; Herman Blaumann; Juan Longhino; Maria E. Itoiz; Eduardo Bumaschny; Emiliano Pozzi; Amanda E.Schwint; Verónica A. Trivillin

    2007-10-01

    The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis is that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.

  18. A Bystander Effect Observed in Boron Neutron Capture Therapy: A Study of the Induction of Mutations in the HPRT Locus

    SciTech Connect

    Kinashi, Yuko . E-mail: kinashi@rri.kyoto-u.ac.jp; Masunaga, Shinichiro; Nagata, Kenji; Suzuki, Minoru; Takahashi, Sentaro; Ono, Koji

    2007-06-01

    Purpose: To investigate bystander mutagenic effects induced by {alpha}-particles during boron neutron capture therapy, we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, and cells that did not contain the boron compound. The BSH-containing cells were irradiated with {alpha}-particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were affected only by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. Methods and Materials: The lethality and mutagenicity measured by the frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase locus were examined in Chinese hamster ovary cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the resulting cell population. The molecular structures of the mutations were determined using multiplex polymerase chain reactions. Results: Because of the bystander effect, the frequency of mutations increased in the cells located nearby the BSH-containing cells compared with control cells. Molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were less than those induced by the original neutron irradiation. Conclusion: These results suggested that in boron neutron capture therapy, the mutations caused by the bystander effect and those caused by the original neutron irradiation are induced by different mechanisms.

  19. Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers.

    PubMed

    Koganei, Hayato; Ueno, Manabu; Tachikawa, Shoji; Tasaki, Lisa; Ban, Hyun Seung; Suzuki, Minoru; Shiraishi, Kouichi; Kawano, Kumi; Yokoyama, Masayuki; Maitani, Yoshie; Ono, Koji; Nakamura, Hiroyuki

    2013-01-16

    Mercaptoundecahydrododecaborate (BSH)-encapsulating 10% distearoyl boron lipid (DSBL) liposomes were developed as a boron delivery vehicle for neutron capture therapy. The current approach is unique because the liposome shell itself possesses cytocidal potential in addition to its encapsulated agents. BSH-encapsulating 10% DSBL liposomes have high boron content (B/P ratio: 2.6) that enables us to prepare liposome solution with 5000 ppm boron concentration. BSH-encapsulating 10% DSBL liposomes displayed excellent boron delivery efficacy to tumor: boron concentrations reached 174, 93, and 32 ppm at doses of 50, 30, and 15 mg B/kg, respectively. Magnescope was also encapsulated in the 10% DSBL liposomes and the real-time biodistribution of the Magnescope-encapsulating DSBL liposomes was measured in a living body using MRI. Significant antitumor effect was observed in mice injected with BSH-encapsulating 10% DSBL liposomes even at the dose of 15 mg B/kg; the tumor completely disappeared three weeks after thermal neutron irradiation ((1.5-1.8) × 10(12) neutrons/cm(2)). The current results enabled us to reduce the total dose of liposomes to less than one-fifth compared with that of the BSH-encapsulating liposomes without reducing the efficacy of boron neutron capture therapy (BNCT).

  20. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  1. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  2. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  3. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  4. Clinical trials of boron neutron capture therapy [in humans] [at Beth Israel Deaconess Medical Center][at Brookhaven National Laboratory

    SciTech Connect

    Wallace, Christine

    2001-05-29

    Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected from subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports.

  5. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.

  6. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor.

    PubMed

    Kobayashi, T; Kanda, K; Ujeno, Y; Ishida, M R

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described.

  7. Combination of the vascular targeting agent ZD6126 with boron neutron capture therapy

    SciTech Connect

    Masunaga, Shin-ichiro . E-mail: smasuna@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Suzuki, Minoru; Nagata, Kenji; Maruhashi, Akira; Kinash, Yuko; Ono, Koji

    2004-11-01

    Purpose: The aim of this study was to evaluate the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) in the rodent squamous cell carcinoma (SCC) VII carcinoma model, in combination with boron neutron capture therapy (BNCT). Methods and materials: Sodium borocaptate-{sup 10}B (BSH, 125 mg/kg, i.p.) or l-p-boronophenylalanine-{sup 10}B (BPA, 250 mg/kg, i.p.) was injected into SCC VII tumor-bearing mice, and 15 min later, ZD6126 (100 mg/kg, i.p.) was administered. Then, the {sup 10}B concentrations in tumors and normal tissues were measured by prompt {gamma}-ray spectrometry. On the other hand, for the thermal neutron beam exposure experiment, SCC VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, followed by treatment with a {sup 10}B-carrier and ZD6126 in the same manner as the above-mentioned {sup 10}B pharmacokinetics analyses. To obtain almost similar intratumor {sup 10}B concentrations during neutron exposure, thermal neutron beam irradiation was started from the time point of 30 min after injection of BSH only, 90 min after BSH injection for combination with ZD6126, 120 min after the injection of BPA only, and 180 min after BPA injection for combination with ZD6126. Right after irradiation, the tumors were excised, minced, and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU labeling (quiescent [Q] cells) was determined using immunofluorescence staining for BrdU. Meanwhile, the MN frequency in total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU. The clonogenic cell survival assay was also performed in mice given no BrdU. Results: Pharmacokinetics analyses showed that combination with ZD6126 greatly increased the {sup 10}B concentrations in tumors after 60 min after BSH injection and

  8. A Novel Method of Boron Delivery Using Sodium Iodide Symporter for Boron Neutron Capture Therapy

    PubMed Central

    KUMAR, Sanath; FREYTAG, Svend O.; BARTON, Kenneth N.; BURMEISTER, Jay; JOINER, Michael C.; SEDGHI, Bijan; MOVSAS, Benjamin; BINNS, Peter J.; KIM, Jae Ho; BROWN, Stephen L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) effectiveness depends on the preferential sequestration of boron in cancer cells relative to normal tissue cells. We present a novel strategy for sequestering boron using an adenovirus expressing the sodium iodide symporter (NIS). Human glioma grown subcutaneously in athymic mice and orthotopic rat brain tumors were transfected with NIS using a direct tumor injection of adenovirus. Boron bound as sodium tetrafluoroborate (NaBF4) was administered systemically several days after transfection. Tumors were excised hours later and assessed for boron concentration using inductively coupled plasma atomic emission spectroscopy. In the human glioma transfected with NIS, boron concentration was more than 10 fold higher with 100 mg/kg of NaBF4, compared to tumor not transfected. In the orthotopic tumor model, the presence of NIS conferred almost 4 times the boron concentration in rat tumors transfected with human virus compared with contralateral normal brain not transfected. We conclude that adenovirus expressing NIS has the potential to be used as a novel boron delivery agent and should be explored for future clinical applications. PMID:20921830

  9. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas

    PubMed Central

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-01-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  10. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  11. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    PubMed Central

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-01-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052

  12. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection. PMID:17045253

  13. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  14. Selective ablation of rat brain tumors by boron neutron capture therapy

    SciTech Connect

    Coderre, J.; Joel, D. ); Rubin, P.; Freedman, A.; Hansen, J.; Wooding, T.S. Jr.; Gash, D. )

    1994-03-30

    Damage to the surrounding normal brain tissue limits the amount of radiation that can be delivered to intracranial tumors. Boron neutron capture therapy (BNCT) is a binary treatment that allows selective tumor irradiation. This study evaluates the damage imparted to the normal brain during BNCT or x-irradiation. The brains of rats with implanted 9L gliosarcomas were examined 1 year after tumor-curative doses of either 250 kV X-rays or BNCT. Histopathologic techniques included hematoxylin and eosin staining, horseradish peroxidase perfusion, and electron microscopy. Longterm X-ray survivors showed extensive cortical atrophy, loss of neurons, and widespread leakage of the blood-brain barrier (BBB), particularly around the tumor scar. In contrast, the brains and the BBB of longterm BNCT survivors appeared relatively normal under both light- and electron-microscopic examination. Intact blood vessels were observed running directly through the avascular, collagenous tumor scar. The selective therapeutic effect of BNCT is evident in comparison to x-irradiation. Both groups of animals showed no evidence of residual tumor at 1 year. However, with x-irradiation there is no therapeutic ratio and tumor eradication severely injuries the remaining brain parenchyma. These observations indicate a substantial therapeutic gain for BNCT. 50 refs., 8 figs., 1 tab.

  15. Boronated monoclonal antibody 225. 28S for potential use in neutron capture therapy of malignant melanoma

    SciTech Connect

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P. )

    1989-07-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC.

  16. Advantage and limitations of weighting factors and weighted dose quantities and their units in boron neutron capture therapy.

    PubMed

    Rassow, J; Sauerwein, W; Wittig, A; Bourhis-Martin, E; Hideghéty, K; Moss, R

    2004-05-01

    Defining the parameters influencing the biological reaction due to absorbed dose is a continuous topic of research. The main goal of radiobiological research is to translate the measurable dose of ionizing radiation to a quantitative expression of biological effect. Mathematical models based on different biological approaches (e.g., skin reaction, cell culture) provide some estimations that are often misleading and, to some extent, dangerous. Conventional radiotherapy is the simplest case because the primary radiation and secondary radiation are both low linear energy transfer (LET) radiation and have about the same relative biological effectiveness (RBE). Nevertheless, for this one-dose-component case, the dose-effect curves are not linear. In fact, the total absorbed dose and the absorbed dose per fraction as well as the time schedule of the fractionation scheme influence the biological effects. Mathematical models such as the linear-quadratic model can only approximate biological effects. With regard to biological effects, fast neutron therapy is more complex than conventional radiotherapy. Fast neutron beams are always contaminated by gamma rays. As a consequence, biological effects are due to two components, a high-LET component (neutrons) and a low-LET component (photons). A straight transfer of knowledge from conventional radiotherapy to fast neutron therapy is, therefore, not possible: RBE depends on the delivered dose and several other parameters. For dose reporting, the European protocol for fast neutron dosimetry recommends that the total absorbed dose with gamma-ray absorbed dose in brackets is stated. However, boron neutron capture therapy (BNCT) is an even more complex case, because the total absorbed dose is due to four dose components with different LET and RBE. In addition, the terminology and units used by the different BNCT groups is confusing: absorbed dose and weighted dose are both to be stated in grays and are never "photon equivalent." The

  17. SU-D-BRF-02: In Situ Verification of Radiation Therapy Dose Distributions From High-Energy X-Rays Using PET Imaging

    SciTech Connect

    Zhang, Q; Kai, L; Wang, X; Hua, B; Chui, L; Wang, Q; Ma, C

    2014-06-01

    Purpose: To study the possibility of in situ verification of radiation therapy dose distributions using PET imaging based on the activity distribution of 11C and 15O produced via photonuclear reactions in patient irradiated by 45MV x-rays. Methods: The method is based on the photonuclear reactions in the most elemental composition {sup 12}C and {sup 16}O in body tissues irradiated by bremsstrahlung photons with energies up to 45 MeV, resulting primarily in {sup 11}C and {sup 15}O, which are positron-emitting nuclei. The induced positron activity distributions were obtained with a PET scanner in the same room of a LA45 accelerator (Top Grade Medical, Beijing, China). The experiments were performed with a brain phantom using realistic treatment plans. The phantom was scanned at 20min and 2-5min after irradiation for {sup 11}C and {sup 15}, respectively. The interval between the two scans was 20 minutes. The activity distributions of {sup 11}C and {sup 15}O within the irradiated volume can be separated from each other because the half-life is 20min and 2min for {sup 11}C and {sup 15}O, respectively. Three x-ray energies were used including 10MV, 25MV and 45MV. The radiation dose ranged from 1.0Gy to 10.0Gy per treatment. Results: It was confirmed that no activity was detected at 10 MV beam energy, which was far below the energy threshold for photonuclear reactions. At 25 MV x-ray activity distribution images were observed on PET, which needed much higher radiation dose in order to obtain good quality. For 45 MV photon beams, good quality activation images were obtained with 2-3Gy radiation dose, which is the typical daily dose for radiation therapy. Conclusion: The activity distribution of {sup 15}O and {sup 11}C could be used to derive the dose distribution of 45MV x-rays at the regular daily dose level. This method can potentially be used to verify in situ dose distributions of patients treated on the LA45 accelerator.

  18. Introduction to High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  19. High-energy transients.

    PubMed

    Gehrels, Neil; Cannizzo, John K

    2013-06-13

    We present an overview of high-energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of γ-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies. PMID:23630376

  20. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  1. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  2. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  3. First Evaluation of the Biologic Effectiveness Factors of Boron Neutron Capture Therapy (BNCT) in a Human Colon Carcinoma Cell Line

    SciTech Connect

    Dagrosa, Maria Alejandra; Crivello, Martin; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gamma rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a

  4. Paving the Road for Modern Particle Therapy - What Can We Learn from the Experience Gained with Fast Neutron Therapy in Munich?

    PubMed

    Specht, Hanno M; Neff, Teresa; Reuschel, Waltraud; Wagner, Franz M; Kampfer, Severin; Wilkens, Jan J; Petry, Winfried; Combs, Stephanie E

    2015-01-01

    While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies. PMID:26640777

  5. Paving the Road for Modern Particle Therapy – What Can We Learn from the Experience Gained with Fast Neutron Therapy in Munich?

    PubMed Central

    Specht, Hanno M.; Neff, Teresa; Reuschel, Waltraud; Wagner, Franz M.; Kampfer, Severin; Wilkens, Jan J.; Petry, Winfried; Combs, Stephanie E.

    2015-01-01

    While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies. PMID:26640777

  6. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine.

    PubMed

    Ye, S J

    1999-11-01

    Previous dosimetry studies for boron neutron capture therapy have often neglected the thermal neutron self-shielding effects caused by the 10B accumulation in the brain and the tumor. The neglect of thermal neutron flux depression, therefore, results in an overestimation of the actual dose delivery. The relevant errors are expected to be more pronounced when boronophenylalanine is used in conjunction with an epithermal neutron beam. In this paper, the boron self-shielding effects are calculated in terms of the thermal neutron flux depression across the brain and the dose delivered to the tumors. The degree of boron self-shielding is indicated by the difference between the thermal neutron fluxes calculated with and without considering a 10B concentration as part of the head phantom composition. The boron self-shielding effect is found to increase with increasing 10B concentrations and penetration depths from the skin. The calculated differences for 10B concentrations of 7.5-30 ppm are 2.3%-8.3% at 2.3 cm depth (depth of the maximum brain dose) and 4.6%-17% at 7.3 cm depth (the center of the brain). The additional self-shielding effects by the 10B concentration in a bulky tumor are investigated for a 3-cm-diam spherical tumor located either near the surface (3.3 cm depth) or at the center of the brain (7.3 cm depth) along the beam centerline. For 45 ppm of 10B in the tumor and 15 ppm of 10B in the brain, the dose delivered to the tumors is approximately 10% lower at 3.3 cm depth and 20% lower at the center of the brain, compared to the dose neglecting the boron self-shielding in transport calculations.

  7. Synthesis, characterization and biological evaluation of carboranylmethylbenzo[b]acridones as novel agents for boron neutron capture therapy.

    PubMed

    da Silva, A Filipa F; Seixas, Raquel S G R; Silva, Artur M S; Coimbra, Joana; Fernandes, Ana C; Santos, Joana P; Matos, António; Rino, José; Santos, Isabel; Marques, Fernanda

    2014-07-28

    Herein we present the synthesis and characterization of benzo[b]acridin-12(7H)-ones bearing carboranyl moieties and test their biological effectiveness as boron neutron capture therapy (BNCT) agents in cancer treatment. The cellular uptake of these novel compounds into the U87 human glioblastoma cells was evaluated by boron analysis (ICP-MS) and by fluorescence imaging (confocal microscopy). The compounds enter the U87 cells exhibiting a similar profile, i.e., preferential accumulation in the cytoskeleton and membranes and a low cytotoxic activity (IC50 values higher than 200 μM). The cytotoxic activity and cellular morphological alterations after neutron irradiation in the Portuguese Research Reactor (6.6 × 10(7) neutrons cm(-2) s(-1), 1 MW) were evaluated by the MTT assay and by electron microscopy (TEM). Post-neutron irradiation revealed that BNCT has a higher cytotoxic effect on the cells. Accumulation of membranous whorls in the cytoplasm of cells treated with one of the compounds correlates well with the cytotoxic effect induced by radiation. Results provide a strong rationale for considering one of these compounds as a lead candidate for a new generation of BNCT agents.

  8. First application of dynamic infrared imaging in boron neutron capture therapy for cutaneous malignant melanoma

    SciTech Connect

    Santa Cruz, G. A.; Gonzalez, S. J.; Bertotti, J.; Marin, J.

    2009-10-15

    Purpose: The purpose of this study is to assess the potential of dynamic infrared imaging (DIRI) as a functional, noninvasive technique for evaluating the skin acute toxicity and tumor control within the framework of the Argentine boron neutron capture therapy (BNCT) program for cutaneous malignant melanoma. Methods: Two patients enrolled in the Argentine phase I/II BNCT clinical trial for cutaneous malignant melanoma were studied with DIRI. An uncooled infrared camera, providing a video output signal, was employed to register the temperature evolution of the normal skin and tumor regions in patients subjected to a mild local cooling (cold stimulus). In order to study the spatial correlation between dose and acute skin reactions, three-dimensional representations of the superficial dose delivered to skin were constructed and cameralike projections of the dose distribution were coregistered with visible and infrared images. Results: The main erythematous reaction was observed clinically between the second and fifth week post-BNCT. Concurrently, with its clinical onset, a reactive increase above the basal skin temperature was observed with DIRI in the third week post-BNCT within regions that received therapeutic doses. Melanoma nodules appeared as highly localized hyperthermic regions. 2 min after stimulus, these regions reached a temperature plateau and increased in size. Temperature differences with respect to normal skin up to 10 deg. C were observed in the larger nodules. Conclusions: Preliminary results suggest that DIRI, enhanced by the application of cold stimuli, may provide useful functional information associated with the metabolism and vasculature of tumors and inflammatory processes related to radiation-induced changes in the skin as well. These capabilities are aimed at complementing the clinical observations and standard imaging techniques, such as CT and Doppler ultrasound.

  9. The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors.

    PubMed

    Ono, K; Kinashi, Y; Suzuki, M; Takagaki, M; Masunaga, S I

    2000-08-01

    10 B-Enriched borocaptate (BSH) was administered intraperitoneally to SCCVII tumor-bearing C3H / He mice. Electroporation (EP) was conducted by using a tweezers-type electrode. The (10) B contents in tumors were measured by prompt gamma-ray spectrometry. The colony formation assay was applied to investigate the antitumor effects of boron neutron capture therapy (BNCT) and thereby to estimate the intratumor localization of BSH. The (10) B concentrations in tumors decreased with time following BSH administration, falling to 5.4(0. 1) ppm at 3 h, whereas EP treatment (3 repetitions) 15 min after BSH injection delayed the clearance of BSH from tumors, and the (10) B level remained at 19.4(0.9) ppm at 3 h. The effect of BNCT increased with the (10) B concentration in tumors, and the combination with EP showed a remarkably large cell killing effect even at 3 h after BSH injection. The effect of BNCT, i.e., slope coefficient of the cell survival curve of tumors, without EP was proportional to tumor (10) B level (r = 0.982), and that of BSH-BNCT combined with EP lay close to the same correlation line. However, tumors subjected to EP after BSH injection did not show high radiosensitivity when irradiated after conversion to a single cell suspension by enzymatic digestion. This indicates that the increase of the BNCT effect by EP was a consequence of enclosure of BSH in the interstitial space of tumor tissue and not within tumor cells. This is different from a previous in vitro study. The combination of EP and BNCT may be clinically useful, if a procedure to limit EP to the tumor region becomes available or if an alternative similar method is employed. PMID:10965028

  10. Use of nude mice in experimental neutron capture therapy with 10B-BPA

    SciTech Connect

    Tamaoki, N.; Ueda, M.; Tamauchi, S.; Yamamoto, K.; Mishima, Y. )

    1989-07-01

    Mouse B16 melanoma allografts in nude mice were successfully treated by thermal neutron irradiation after IP injection of 10B-paraboronophenylalanine hydrochloride. The tumor growth was significantly suppressed for 4 weeks after irradiation, compared with animals given neutron irradiation alone. Tumor-bearing nude mice were shown to be useful for evaluating the treatment for melanoma.

  11. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  12. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  13. Optical polarizing neutron devices designed for pulsed neutron sources

    SciTech Connect

    Takeda, M.; Kurahashi, K.; Endoh, Y.; Itoh, S.

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  14. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    SciTech Connect

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  15. A rat model for the treatment of melanoma metastatic to the brain by means of neutron capture therapy

    SciTech Connect

    Matalka, K.Z.; Bailey, M.Q.; Barth, R.F.; Staubus, A.E.; Adams, D.M.; Soloway, A.H.; James, S.M.; Goodman, J.H. ); Coderre, J.A.; Fairchild, R.G. ); Rofstad, E.K. )

    1991-01-01

    Melanoma metastatic to the brain is a serious clinical problem for which there currently is no satisfactory treatment. Boron neutron capture therapy (BNCT) has been shown by Mishima et al. to be clinically effective in the treatment of cutaneous melanoma using {sup 10}B-enriched boronophenylalaine (BPA) as the capture agent. In the present pilot study we have observed a significant prolongation in survival time of nude rats bearing intracerebral implants of the human melanoma cell line MRA 27 following administration of BPA and neutron irradiation. These findings suggest therapeutic efficacy, but unequivocal proof depends upon confirmation in a more definitive experiment using large numbers of animals with both solitary and multiple implants of melanoma. If our preliminary results are confirmed, then this will lay the groundwork for a clinical study of BNCT for the treatment of melanoma metastatic to the brain. 7 refs., 2 figs., 2 tabs.

  16. New challenges in high-energy particle radiobiology

    PubMed Central

    2014-01-01

    Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space. PMID:24198199

  17. Delivery of (10)boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy.

    PubMed

    Obayashi, Shigeki; Kato, Itsuro; Ono, Koji; Masunaga, Shin-Ichiro; Suzuki, Minoru; Nagata, Kenji; Sakurai, Yoshinori; Yura, Yoshiaki

    2004-05-01

    Boron neutron capture therapy (BNCT) is a unique radiation therapy in which boron compounds are trapped into tumor cells. To determine the biodistribution of boronophenylalanine (BPA) in nude mice carrying oral squamous cell carcinoma (SCC), BPA was administered at a dose of 250 mg/kg body weight intraperitoneally. Two hours later, (10)B concentration in the tumor was 15.96 ppm and tumor/blood, tumor/tongue, tumor/skin and tumor/bone (10)B concentration ratios were 6.44, 4.19, 4.68 and 4.56, respectively. Two hours after the administration of borocaptate sodium (BSH) at a dose of 75 mg/kg body weight, (10)B concentration in the tumor was 3.61 ppm, and tumor/blood, tumor/tongue, tumor/skin and tumor/bone (10)B concentration ratios were 0.77, 1.05, 0.60 and 0.59, respectively. When cultured oral SCC cells were incubated with BPA or BSH for 2 h and then exposed to thermal neutrons, the proportion of survival cells that were capable of forming cell colonies decreased exponentially, depending on (10)B concentration. BPA-mediated BNCT was more efficient than BSH-mediated BNCT. Addition of boron compounds in the cell suspension during neutron irradiation enhanced the cell-killing effect of the neutrons. These results indicate that BPA is more selectively incorporated into human oral SCC as compared with normal oral tissues, and that both extra- and intra-cellular BPA contribute to the cell-killing effect of BNCT. BPA may be a useful boron carrier for BNCT in the treatment of advanced oral SCC.

  18. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    SciTech Connect

    Cho, S; Shin, E H; Kim, J; Ahn, S H; Chung, K; Kim, D-H; Han, Y; Choi, D H

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using the production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.

  19. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  20. Experimental evaluation of boron neutron capture therapy of human breast carcinoma implanted on nude mice

    NASA Astrophysics Data System (ADS)

    Bose, Satya Ranjan

    2000-06-01

    An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large

  1. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  2. Measurements of radiation fields around high-energy proton accelerators.

    PubMed

    Agosteo, Stefano; Silari, Marco

    2005-01-01

    Monitoring of ionising radiation around high-energy particle accelerators is a difficult task due to the complexity of the radiation field, which is made up of neutrons, charged hadrons, muons, photons and electrons, with energy spectra extending over a wide energy range. The dose-equivalent outside a thick shield is mainly owing to neutrons, with some contribution from photons and, to a minor extent, the other particles. Neutron dosimetry and spectrometry are thus of primary importance to correctly evaluate the exposure of personnel. This paper reviews the relevant techniques and instrumentation employed for monitoring radiation fields around high-energy proton accelerators, with particular emphasis on the recent development to increase the response of neutron measuring devices > 20 MeV. Rem-counters, pressurised ionisation chambers, superheated emulsions, tissue-equivalent proportional counters and Bonner sphere spectrometers are discussed. PMID:16604662

  3. 10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy.

    PubMed

    Capuani, Silvia; Porcari, Paola; Fasano, Fabrizio; Campanella, Renzo; Maraviglia, Bruno

    2008-09-01

    Boron neutron capture therapy (BNCT) is a binary radiation therapy used to treat malignant brain tumours. It is based on the nuclear reaction (10B + n th --> [11B*] --> alpha + 7Li + 2.79 MeV) that occurs when 10B captures a thermal neutron to yield alpha particles and recoiling 7Li nuclei, both responsible of tumour cells destruction by short range and high ionization energy release. The clinical success of the therapy depends on the selective accumulation of the 10B carriers in the tumour and on the high thermal neutron capture cross-section of 10B. Magnetic resonance imaging (MRI) methods provide the possibility of monitoring, through 10B nuclei, the metabolic and physiological processes suitable to optimize the BNCT procedure. In this study, spatial distribution mapping of borocaptate (BSH) and 4-borono-phenylalanine (BPA), the two boron carriers used in clinical trials, has been obtained. The BSH map in excised rat brain and the 19F-BPA image in vivo rat brain, representative of BPA spatial distribution, were reported. The BSH image was obtained by means of double-resonance 10B-editing 1H-detection sequence, named M-Bend, exploiting the J-coupling interaction between 10B and 1H nuclei. Conversely, the BPA map was obtained by 19F-BPA using 19F-MRI. Both images were obtained at 7 T, in C6 glioma-bearing rat brain. Our results demonstrate the powerful of non conventional MRI techniques to optimize the BNCT procedure.

  4. 10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy.

    PubMed

    Capuani, Silvia; Porcari, Paola; Fasano, Fabrizio; Campanella, Renzo; Maraviglia, Bruno

    2008-09-01

    Boron neutron capture therapy (BNCT) is a binary radiation therapy used to treat malignant brain tumours. It is based on the nuclear reaction (10B + n th --> [11B*] --> alpha + 7Li + 2.79 MeV) that occurs when 10B captures a thermal neutron to yield alpha particles and recoiling 7Li nuclei, both responsible of tumour cells destruction by short range and high ionization energy release. The clinical success of the therapy depends on the selective accumulation of the 10B carriers in the tumour and on the high thermal neutron capture cross-section of 10B. Magnetic resonance imaging (MRI) methods provide the possibility of monitoring, through 10B nuclei, the metabolic and physiological processes suitable to optimize the BNCT procedure. In this study, spatial distribution mapping of borocaptate (BSH) and 4-borono-phenylalanine (BPA), the two boron carriers used in clinical trials, has been obtained. The BSH map in excised rat brain and the 19F-BPA image in vivo rat brain, representative of BPA spatial distribution, were reported. The BSH image was obtained by means of double-resonance 10B-editing 1H-detection sequence, named M-Bend, exploiting the J-coupling interaction between 10B and 1H nuclei. Conversely, the BPA map was obtained by 19F-BPA using 19F-MRI. Both images were obtained at 7 T, in C6 glioma-bearing rat brain. Our results demonstrate the powerful of non conventional MRI techniques to optimize the BNCT procedure. PMID:18486394

  5. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    SciTech Connect

    Hawthorne, M. Frederick

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  6. Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer.

    PubMed

    Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro

    2014-03-01

    New boron-containing chlorin derivatives 9 and 13 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized from photoprotoporphyrin IX dimethyl ester (2) and L-4-boronophenylalanine-related compounds. The in vivo biodistribution and clearance of 9 and 13 were investigated in tumor-bearing mice. The time to maximum accumulation of compound 13 in tumor tissue was one-fourth of that of compound 9, and compound 13 showed rapid clearance from normal tissues within 24h after injection. The in vivo therapeutic efficacy of PDT using 13 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3h after injection of 13. Tumor growth was significantly inhibited by PDT using 13. These results suggested that 13 might be a good candidate for both PDT and BNCT of cancer.

  7. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  8. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    SciTech Connect

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-02-15

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 deg. continuous arc proton therapy and for 180 deg. split arc proton therapy (two 90 degree sign arcs) using CT profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  9. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic

  10. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  11. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    SciTech Connect

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  12. Radiowave dielectric investigation of boron compounds distribution in cultured tumour cells: relevance to boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Capuani, S.; Gili, T.; Cametti, C.; Maraviglia, B.; Colasanti, M.; Muolo, M.; Venturini, G.

    2002-07-01

    The distribution of two main Boron neutron capture therapy (BNCT) agents, borocaptate sodium ( BSH) and borono-phenylalanine ( BPA), in C6 rat glioma cells has been investigated by means of radiowave dielectric spectroscopy measurements. Significant differences between cells treated with the two different boron carriers were found in the magnitude of passive electrical cell parameters. This technique offers a new procedure for the measurement of boron compounds interactions with different biological environments at cellular level and is suggested to have the potentiality for becoming an attractive tool for biodistribution studies of BNCT compounds in biological tissues.

  13. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  14. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-09-01

    This monthly bulletin describes activities in the following project areas during this reporting period: supporting technology development, large animal model studies, neutron source and facility preparation, administration and common support, and PBF operations. (FI)

  15. A nude rat model for neutron capture therapy of human intracerebral melanoma

    SciTech Connect

    Barth, R.F.; Matalka, K.Z.; Bailey, M.Q.; Staubus, A.E.; Soloway, A.H.; Moeschberger, M.L. ); Coderre, J.A. ); Rofstad, E.K. )

    1994-03-30

    The present study was carried out to determine the efficacy of Boron Neutron Capture Therapy (BNCT) for intracerebral melanoma using nude rats, the human melanoma cell line MRA 27, and boronophenylalanine as the capture agent. MRA 27 cells (2 [times] 10[sup 5]) were implanted intracerebrally, and 30 days later, 120 mg of [sup 10]B-L-BPA were injected intraperitoneally into nude rats. Thirty days following implantation, tumor bearing rats were irradiated at the Brookhaven Medical Research Reactor. Six hours following administration of BPA, tumor, blood, and normal brain boron-10 levels were 23.7, 9.4, and 8.4 [mu]g/g respectively. Median survival time of untreated rats was 44 days compared to 76 days and 93 days for those receiving physical doses of 2.73 Gy and 3.64 Gy, respectively. Rats that have received both [sup 10]B-BPA and physical doses of 1.82, 2.73, or 3.64 Gy had median survival times of 170, 182, and 262 days, respectively. Forty percent of rats that had received the highest tumor dose (10.1 Gy) survived for > 300 days and in a replicate experiment 21% of the rats were longterm survivors (>220 days). Animals that received 12 Gy in a single dose or 18 Gy fractionated (2 Gy [times] 9) of gamma photons from a [sup 137]Cs source had median survival times of 86 and 79 days, respectively, compared to 47 days for untreated animals. Histopathologic examination of the brains of longterm surviving rats, euthanized at 8 or 16 months following BNCT, showed no residual tumor, but dense accumulations of melanin laden macrophages and minimal gliosis were observed. Significant prolongations in median survival time were noted in nude rats with intracerebral human melanoma that had received BNCT, thereby suggesting therapeutic efficacy. Large animal studies should be carried out to further assess BNCT of intracerebral melanoma before any human trials are contemplated. 49 refs., 7 figs., 2 tabs.

  16. SU-E-T-591: Measurement and Monte Carlo Simulation of Stray Neutrons in Passive Scattering Proton Therapy: Needs and Challenges

    SciTech Connect

    Farah, J; Bonfrate, A; Donadille, L; Dubourg, N; Lacoste, V; Martinetti, F; Sayah, R; Trompier, F; Clairand, I; Caresana, M; Delacroix, S; Nauraye, C; Herault, J; Piau, S; Vabre, I

    2014-06-01

    Purpose: Measure stray radiation inside a passive scattering proton therapy facility, compare values to Monte Carlo (MC) simulations and identify the actual needs and challenges. Methods: Measurements and MC simulations were considered to acknowledge neutron exposure associated with 75 MeV ocular or 180 MeV intracranial passively scattered proton treatments. First, using a specifically-designed high sensitivity Bonner Sphere system, neutron spectra were measured at different positions inside the treatment rooms. Next, measurement-based mapping of neutron ambient dose equivalent was fulfilled using several TEPCs and rem-meters. Finally, photon and neutron organ doses were measured using TLDs, RPLs and PADCs set inside anthropomorphic phantoms (Rando, 1 and 5-years-old CIRS). All measurements were also simulated with MCNPX to investigate the efficiency of MC models in predicting stray neutrons considering different nuclear cross sections and models. Results: Knowledge of the neutron fluence and energy distribution inside a proton therapy room is critical for stray radiation dosimetry. However, as spectrometry unfolding is initiated using a MC guess spectrum and suffers from algorithmic limits a 20% spectrometry uncertainty is expected. H*(10) mapping with TEPCs and rem-meters showed a good agreement between the detectors. Differences within measurement uncertainty (10–15%) were observed and are inherent to the energy, fluence and directional response of each detector. For a typical ocular and intracranial treatment respectively, neutron doses outside the clinical target volume of 0.4 and 11 mGy were measured inside the Rando phantom. Photon doses were 2–10 times lower depending on organs position. High uncertainties (40%) are inherent to TLDs and PADCs measurements due to the need for neutron spectra at detector position. Finally, stray neutrons prediction with MC simulations proved to be extremely dependent on proton beam energy and the used nuclear models and

  17. In vitro and in vivo studies of boron neutron capture therapy: boron uptake/washout and cell death.

    PubMed

    Ferrari, C; Bakeine, J; Ballarini, F; Boninella, A; Bortolussi, S; Bruschi, P; Cansolino, L; Clerici, A M; Coppola, A; Di Liberto, R; Dionigi, P; Protti, N; Stella, S; Zonta, A; Zonta, C; Altieri, S

    2011-04-01

    Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.

  18. Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography.

    PubMed

    Nichols, Trent L; Kabalka, George W; Miller, Laurence F; Khan, Mohammad K; Smith, Gary T

    2002-10-01

    Boron neutron capture therapy (BNCT) is a cancer brachytherapy based upon the thermal neutron reaction: 10B(n,alpha)7Li. The efficacy of the treatment depends primarily upon two conditions being met: (a) the preferential concentration of a boronated compound in the neoplasm and (b) an adequate fluence of thermal neutrons delivered to the neoplasm. The boronated amino acid, para-boronophenylalanine (BPA), is the agent widely used in clinical trials to deliver 10B to the malignancy. Positron emission tomography (PET) can be used to generate in vivo boron distribution maps by labeling BPA with the positron emitting nuclide fluorine-18. The incorporation of the PET-derived boron distribution maps into current treatment planning protocols is shown to provide improved treatment plans. Using previously established protocols, six patients with glioblastoma had 18BPA PET scans. The PET distribution maps obtained were used in the conventional BNCT treatment codes. The isodose curves derived from the PET data are shown to differ both qualitatively and quantitatively from the conventional isodose curves that were derived from calculations based upon the assumption of uniform uptake of the pharmaceutical in tumor and normal brain regions. The clinical course of each of the patients who eventually received BNCT (five of the six patients) was compared using both sets of isodose calculations. The isodose contours based upon PET derived distribution data appear to be more consistent with the patients' clinical course. PMID:12408309

  19. Dosimetry and stability studies of the boron neutron capture therapy agent F-BPA-Fr using PET and MRI

    NASA Astrophysics Data System (ADS)

    Dyke, Jonathan Paul

    The treatment of deep seated brain tumors such as glioblastoma Multiforme has been unsuccessful for many patients. Surgical debulking, chemotherapy and standard radiotherapy have met with limited success. Boron neutron capture therapy offers a binary mode brachytherapy based on the following capture reaction that may provide an innovative alternative to standard forms of treatment:10B + n /to/ 11B /to 7Li + 4He + 2.31 MeVBoron is chemically attached to a tumor binding compound creating a non-toxic neutron absorber. A dose of epithermal neutrons provides the catalyst to produce the lithium and alpha particles which destroy any tissue within a length of one cell diameter from the boron compound. This dissertation uses 19F-MRI and 18F-PET to provide answers to the localization and biodistribution questions that arise in such a treatment modality. Practical patient dosimetry and actual treatment planning using the PET data is also examined. Finally, theoretical work done in the areas of compartmental modelling dealing with pharmacokinetic uptake of the PET radiotracer and dose analysis in microdosimetry is also presented.

  20. In vitro and in vivo studies of boron neutron capture therapy: boron uptake/washout and cell death.

    PubMed

    Ferrari, C; Bakeine, J; Ballarini, F; Boninella, A; Bortolussi, S; Bruschi, P; Cansolino, L; Clerici, A M; Coppola, A; Di Liberto, R; Dionigi, P; Protti, N; Stella, S; Zonta, A; Zonta, C; Altieri, S

    2011-04-01

    Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained. PMID:21133762