Science.gov

Sample records for high-energy proton accelerator

  1. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  2. Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    2016-12-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.

  3. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  4. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  5. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons.

  6. Possible production of high-energy gamma rays from proton acceleration in the extragalactic radio source markarian 501

    PubMed

    Mannheim

    1998-01-30

    The active galaxy Markarian 501 was discovered with air-Cerenkov telescopes at photon energies of 10 tera-electron volts. Such high energies may indicate that the gamma rays from Markarian 501 are due to the acceleration of protons rather than electrons. Furthermore, the observed absence of gamma ray attenuation due to electron-positron pair production in collisions with cosmic infrared photons implies a limit of 2 to 4 nanowatts per square meter per steradian for the energy flux of an extragalactic infrared radiation background at a wavelength of 25 micrometers. This limit provides important clues about the epoch of galaxy formation.

  7. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  8. Effects of nanosecond-scale prepulse on generation of high-energy protons in target normal sheath acceleration

    SciTech Connect

    Wang, W. P.; Shen, B. F.; Zhang, H.; Xu, Y.; Li, Y. Y.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Shi, Y.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z.; Lu, J. X.; Wang, N. Y.

    2013-06-03

    A pulse cleaner based on noncollinear optical-parametric amplification and second-harmonic generation processes is used to improve the contrast of a laser of peak intensity {approx}2 Multiplication-Sign 10{sup 19} W/cm{sup 2} to {approx}10{sup 11} at 100 ps before the peak of the main pulse. A 7 MeV proton beam is observed when a 2.5 {mu}m-thick Al foil is irradiated by this high-contrast laser. The maximum proton energy decreases to 2.9 MeV when a low-contrast ({approx}10{sup 8}) laser is used. Two-dimensional particle-in-cell simulations combined with MULTI simulations show that the maximum proton energy sensitively relies on the detecting direction. The ns-time-scale prepulse can bend a thin target before the main pulse arrives, which reduces maximum proton energy in the target normal sheath acceleration.

  9. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory.

    SciTech Connect

    Paris, E.

    2004-04-05

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather more broadly--at certain points--with the explicit ''struggle for the hearts and minds of

  10. On the retention of high-energy protons and nuclei with charges Z or equal to 2 in large solar flares after the process of their acceleration

    NASA Technical Reports Server (NTRS)

    Volodichev, N. N.; Kuzhevsky, B. M.; Nechaev, O. Y.; Savenko, I. A.

    1985-01-01

    Data which suggest that the protons with energies of up to several GeV should be retained on the Sun after the process of their acceleration are presented. The protons are on the average retained for 15 min, irrespectively of the solar flare heliolatitude and of the accelerated particle energy ranging from 100 MeV to several GeV. It is suggested that the particles are retained in a magnetic trap formed in a solar active region. No Z or = 2 nuclei of solar origin during large solar flares. The absence of the 500 MeV/nucleon nuclei with Z or = 2 may be due to their retention in the magnetic trap which also retains the high-energy protons. During the trapping time the approx. 500 MeV/nucleon nuclei with Z or = 2 may escape due to nuclear interactions and ionization loss.

  11. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  12. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  13. High-energy proton radiation belt.

    NASA Technical Reports Server (NTRS)

    White, R. S.

    1973-01-01

    The experiments and theories to explain the high-energy protons trapped in the earth's radiation belt are reviewed. The theory of cosmic ray albedo neutron decay injection of protons into the radiation belt is discussed. Radial diffusion and change in the earth's dipole moment are considered along with losses of protons by ionization and nuclear collision. It is found that the measured albedo neutron escape current is sufficient to supply trapped protons above 30 MeV. The theoretical calculations of the trapped protons are in agreement with the measurements for L less than or equal to 1.7 both on and off the equator. For L greater than or equal to 1.7, additional trapped proton differential energy measurements should be made before the theory can be adequately tested. It appears that an additional loss mechanism such as pitch angle scattering may be required.

  14. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  15. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  16. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  17. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  18. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  19. The practical Pomeron for high energy proton collimation

    NASA Astrophysics Data System (ADS)

    Appleby, R. B.; Barlow, R. J.; Molson, J. G.; Serluca, M.; Toader, A.

    2016-10-01

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

  20. Designing high energy accelerators under DOE's New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    SciTech Connect

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example.

  1. Induced radioactivity in and around high-energy particle accelerators.

    PubMed

    Vincke, Helmut; Theis, Chris; Roesler, Stefan

    2011-07-01

    Particle accelerators and their surroundings are locations of residual radioactivity production that is induced by the interaction of high-energy particles with matter. This paper gives an overview of the principles of activation caused at proton accelerators, which are the main machines operated at Conseil Européen pour la Recherche Nucléaire. It describes the parameters defining radio-nuclide production caused by beam losses. The second part of the paper concentrates on the analytic calculation of activation and the Monte Carlo approach as it is implemented in the FLUKA code. Techniques used to obtain, on the one hand, estimates of radioactivity in Becquerel and, on the other hand, residual dose rates caused by the activated material are discussed. The last part of the paper focuses on experiments that allow for benchmarking FLUKA activation calculations and on simulations used to predict activation in and around high-energy proton machines. In that respect, the paper addresses the residual dose rate that will be induced by proton-proton collisions at an energy of two times 7 TeV in and around the Compact Muon Solenoid (CMS) detector. Besides activation of solid materials, the air activation expected in the CMS cavern caused by this beam operation is also discussed.

  2. Electron-Proton and High Energy Telescopes for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrinivasrao R.; Grunau, Jan; Boden, Sebastian; Steinhagen, Jan; Martin, Cesar; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Rodríguez-Pacheco, Javier; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wetzel, Moritz; Ravanbakhsh, Ali

    2013-04-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEIN, SIS, EPT, LET and HET). The University of Kiel in Germany is responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEIN and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will cover the gap between STEIN and LET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level (ground-level events). These measurement capabilities are reached by a combination of solid-state detectors and a scintillator calorimeter which allows use of the dE/dx vs. total E technique for particle identification and energy measurement. The upper limits on energy listed above refer to particles (ions) stopping in the scintillator and careful modeling of HET properties will allow discrimination of forward/backward penetrating particles in a wider energy range. Here we present the current development status of EPT-HET units focusing on the test and calibration results obtained with the demonstration

  3. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  4. Sources of high-energy protons in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Simpson, J. A.

    1980-01-01

    The passage of Pioneer 11 through Saturn's magnetosphere revealed an especially intense region of high-energy particle fluxes that places unique constraints on models for sources of high-energy protons in the innermost radiation zones. Of special interest is the flux of protons with energies above 35 MeV which was measured with a fission cell in the innermost magnetosphere between the A ring and the orbit of Mimas. The negative phase space density gradients derived from the proton and electron observations in this region imply that steady-state inward diffusion from the outer magnetosphere is not an adequate source for these high-energy protons. In the present paper, the nature of the Crand source at Saturn is examined, and its significance for injection of high-energy protons into the region inside L = 4 is estimated.

  5. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  6. Two-stage acceleration of interstellar ions driven by high-energy lepton plasma flows

    NASA Astrophysics Data System (ADS)

    Cui, YunQian; Sheng, ZhengMing; Lu, QuanMing; Li, YuTong; Zhang, Jie

    2015-10-01

    We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage process. In the first stage, protons are significantly accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200 MeV under the simulation parameters. The presented scenario of ion acceleration may be relevant to cosmic-ray generation in some astrophysical environments.

  7. Single event effects in high-energy accelerators

    NASA Astrophysics Data System (ADS)

    García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz

    2017-03-01

    The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.

  8. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  9. Revealing proton shape fluctuations with incoherent diffraction at high energy

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strongmore » geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.« less

  10. Revealing proton shape fluctuations with incoherent diffraction at high energy

    SciTech Connect

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strong geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.

  11. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  12. Fission foil detector calibrations with high energy protons

    SciTech Connect

    Benton, E.V.; Frank, A.L.

    1995-03-01

    Fission foil detectors (FFD`s) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD`s, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  13. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  14. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  15. High-energy monoenergetic proton bunch from laser interaction with a complex target

    SciTech Connect

    Wang Fengchao; Shen Baifei; Zhang Xiaomei; Jin Zhangying; Wen Meng; Ji Liangliang; Wang Wenpeng; Xu Jiancai; Yu, M. Y.; Cary, J.

    2009-09-15

    Generation of high-energy proton bunch in the interaction of a high-power laser pulse with a complex target consisting of a front horizontal slice adjoining a conventional heavy ion and proton double-layer slab is investigated using two-dimensional particle-in-cell simulation. The laser pulse propagates along both sides of the slice. A large number of hot electrons are generated and accelerated by the surface ponderomotive force, and transported through the double layer, forming a backside sheath field which is considerably stronger and more localized than that produced by the electrons from a simple double layer. As a result, the protons in the proton layer can be accelerated to energies more than three times, and the energy spread halved, that from the simple double layer.

  16. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  17. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  18. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2016-10-19

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  19. Accelerator Science: Proton vs. Electron

    SciTech Connect

    Lincoln, Don

    2016-10-11

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  20. Si film separation obtained by high energy proton implantation

    SciTech Connect

    Braley, C.; Mazen, F.; Papon, A.-M.; Rieutord, F.; Charvet, A.-M.; Ntsoenzok, E.

    2012-11-06

    High energy protons implantation in the 1-1.5 MeV range can be used to detach free-standing thin silicon films with thickness between 15 and 30 {mu}m. Recently, we showed that Si orientation has a strong effect on the layer separation threshold fluence and efficiency. While complete delamination of (111)Si films is achieved, (100)Si films separation is more challenging due to blistering phenomena or partial separation of the implanted layer. In this work, we study the fracture mechanism in (100) and (111)Si after high energy implantation in order to understand the origin of such a behavior. We notably point out that fracture precursor defects, i.e. the platelets, preferentially form on (111) planes, as a consequence of the low strain level in the damaged region in our implantation conditions. Fracture therefore propagates easily in (111)Si, while it requires higher fluence to overcome unfavorable precursors orientation and propagate in (100)Si.

  1. RHIC: The World's First High-Energy, Polarized-Proton Collider (423rd Brookhaven Lecture)

    SciTech Connect

    Bai, Mei

    2007-03-28

    The Relativistic Heavy Ion Collider (RHIC) at BNL has been colliding polarized proton at a beam energy of 100 billion electron volts (GeV) since 2001. In addition to reporting upon the progress of RHIC polarized-proton program, this talk will focus upon the mechanisms that cause the beam to depolarize and the strategies developed to overcome this. As the world first polarized-proton collider, RHIC is designed to collide polarized protons up to an energy of 250 GeV, thereby providing an unique opportunity to measure the contribution made by the gluon to a proton's spin and to study the spin structure of proton. Unlike other high-energy proton colliders, however, the challenge for RHIC is to overcome the mechanisms that cause partial or total loss of beam polarization, which is due to the interaction of the spin vector with the magnetic fields. In RHIC, two Siberian snakes have been used to avoid these spin depolarizing resonances, which are driven by vertical closed-orbit distortion and vertical betatron oscillations. As a result, polarized-proton beams have been accelerated to 100 GeV without polarization loss, although depolarization has been observed during acceleration from 100 GeV to 205 GeV.

  2. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2016-07-12

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  3. High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Cowan, T.; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  4. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  5. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  6. A phenomenological cost model for high energy particle accelerators

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.

    2014-07-01

    Accelerator-based facilities have enabled forefront research in high-energy physics for more than half a century. The accelerator technology of colliders has progressed immensely, while beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  7. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground.

  8. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  9. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  10. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  11. Practical aspects of shielding high-energy particle accelerators

    SciTech Connect

    Thomas, R.H. |

    1993-09-01

    The experimental basis of shielding design for high-energy accelerators that has been established over the past thirty years is described. Particular emphasis is given to the design of large accelerators constructed underground. The first data obtained from cosmic-ray physics were supplemented by basic nuclear physics. When these data proved insufficient, experiments were carried out and interpreted by several empirical formulae -- the most successful of which has been the Moyer Model. This empirical model has been used successfully to design the shields of most synchrotrons currently in operation, and is still being used in preliminary design and to check the results of neutron transport calculations. Accurate shield designs are needed to reduce external radiation levels during accelerator operations and to minimize environmental impacts such as {open_quotes}skyshine{close_quotes} and the production of radioactivity in groundwater. Examples of the cost of minimizing such environmental impacts are given.

  12. An introduction to the physics of high energy accelerators

    SciTech Connect

    Edwards, D.A.; Syphers, J.J.

    1993-01-01

    This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledge about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators.

  13. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  14. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; LaBel, K. A.; Marshall, P. W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino J.; Gordon, M. S.

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.

  15. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGES

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; ...

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  16. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W

  17. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  18. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  19. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  20. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-07-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  1. CGC/saturation approach for high energy soft interactions: v2 in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Gotsman, E.; Levin, E.; Maor, U.; Tapia, S.

    2016-04-01

    In this paper we continue our program to construct a model for high energy soft interactions, based on the CGC/saturation approach. We demonstrate that in our model, which describes diffractive physics as well as multiparticle production at high energy, the density variation mechanism leads to the value of v2 , which is about 60%-70% of the measured v2 . Bearing in mind that in the CGC/saturation approach there are two other mechanisms present, Bose enhancement in the wave function and local anisotropy, we believe that the azimuthal long range rapidity correlations in proton-proton collisions stem from the CGC/saturation physics, and not from quark-gluon plasma production.

  2. High energy electron beam processing experiments with induction accelerators

    NASA Astrophysics Data System (ADS)

    Goodman, D. L.; Birx, D. L.; Dave, V. R.

    1995-05-01

    Induction accelerators are capable of producing very high electron beam power for processing at energies of 1-10 MeV. A high energy electron beam (HEEB) material processing system based on all-solid-state induction accelerator technology is in operation at Science Research Laboratory. The system delivers 50 ns 500 A current pulses at 1.5 MeV and is capable of operating at high power (500 kW) and high (˜ 5 kHz) repetition rate. HEEB processing with induction accelerators is useful for a wide variety of applications including the joining of high temperature materials, powder metallurgical fabrication, treatment of organic-contaminated wastewater and the curing of polymer matrix composites. High temperature HEEB experiments at SRL have demonstrated the brazing of carbon-carbon composites to metallic substrates and the melting and sintering of powders for graded-alloy fabrication. Other experiments have demonstrated efficient destruction of low-concentration organic contaminants in water and low temperature free-radical cross-linking of fiber-reinforced composites with acrylated resin matrices.

  3. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  4. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  5. Triple Parton Scatterings in High-Energy Proton-Proton Collisions

    NASA Astrophysics Data System (ADS)

    d'Enterria, David; Snigirev, Alexander M.

    2017-03-01

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (p p ) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS . The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5 ±4.5 mb . Estimates for triple charm (c c ¯) and bottom (b b ¯) production in p p collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single c c ¯ , b b ¯ cross sections. At √{s }≈100 TeV , about 15% of the p p collisions produce three c c ¯ pairs from three different parton-parton scatterings.

  6. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  7. High-energy proton imaging for biomedical applications

    PubMed Central

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; LaTessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  8. High-energy proton imaging for biomedical applications

    DOE PAGES

    Prall, Matthias; Durante, Marco; Berger, Thomas; ...

    2016-06-10

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allowsmore » imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.« less

  9. High-energy proton imaging for biomedical applications

    SciTech Connect

    Prall, Matthias; Durante, Marco; Berger, Thomas; Przybyla, B.; Graeff, C.; Lang, Phillipp M.; LaTessa, Ciara; Shestov, Less; Simoniello, P.; Danly, Christopher R.; Mariam, Fesseha Gebre; Merrill, Frank Edward; Nedrow, Paul; Wilde, Carl Huerstel; Varentsov, Dmitry

    2016-06-10

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  10. Generalized z-scaling in proton-proton collisions at high energies

    NASA Astrophysics Data System (ADS)

    Zborovský, I.; Tokarev, M. V.

    2007-05-01

    New generalization of the z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematic characteristics of the underlying subprocess expressed in terms of the momentum fractions x1 and x2 of the incoming protons. In the generalized approach, x1 and x2 are functions of the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the variable z are established to restore energy, angular, and multiplicity independence of ψ(z). The proposed scheme allows a unique description of data on inclusive cross sections at high energies. Universality of the shape of the scaling function for various types of produced hadrons (π, K, p¯, Λ) is shown. Results of the analysis of experimental data are compared with the next-to-leading order (NLO) QCD calculations in pT and z-presentations. The obtained results suggest that the z-scaling may be used as a tool for searching for new physics phenomena of particle production in high transverse momentum and the high multiplicity region at proton-proton colliders RHIC and LHC.

  11. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  12. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    SciTech Connect

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme E-mail: kotera@iap.fr

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ∼ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ∼ 1 msec and a pulsar magnetic field B{sub *} ∼ 10{sup 13} G, implying a fiducial wind luminosity L{sub p} ∼ 10{sup 45} erg/s and a spin-down time t{sub sd} ∼ 3× 10{sup 7} s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z≥ 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  13. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    PubMed

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  14. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  15. Effect of the orbital debris environment on the high-energy van allen proton belt.

    PubMed

    Konradi, A

    1988-12-02

    Orbital debris in the near-Earth environment has reached a number density sufficient for a significant collisional interaction with some of the long-lived high-energy protons in the radiation belt. As a result of a continuing buildup of a shell of man-made debris, the lifetimes of high-energy protons whose trajectories remain below 1500 kilometers will decrease to the point where in the next decades we can expect a noticeable reduction in their fluxes.

  16. Study of an improved Allyl Di-Glycol carbonate sheet for high energy proton detection.

    PubMed

    Ohguchi, H; Juto, N; Fujisaki, S; Migita, S; Koguchi, Y; Takada, M

    2006-01-01

    An allyl di-glycol carbonate (ADC) sheet which has been utilised as a neutron detector for personal dosimetry has recently been studied for its application as a device for radiation exposure control for astronauts in space, where protons are the dominant radiation. It is known that the fabrication process, modified by adding some kind of antioxidant to improve the sensitivity of ADC to high energy protons, causes a substantial increase in false tracks, which disturb the automatic counting of proton tracks using the auto-image analyser. This made clear the difficulty of fabricating ADC sheets which have sufficient sensitivity to high energy protons, while maintaining a good surface. In this study, we have tried to modify the fabrication process to improve the sensitivity to high energy protons without causing a deterioration of the surface condition of ADC sheets. We have successfully created fairly good products.

  17. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  18. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard

    2016-07-01

    This grant supported basic experimental, theoretical and computer simulation research into developing a compact, high pulse repetition rate laser accelerator using the direct laser acceleration mechanism in plasma-based slow wave structures.

  19. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  20. Effect of the orbital debris environment on the high-energy Van Allen proton belt

    NASA Technical Reports Server (NTRS)

    Konradi, Andrei

    1988-01-01

    The lifetimes of high-energy (greater than 55 MeV) protons in the Van Allen radiation belt are calculated, assuming that in time the protons will collide with and be absorbed by particulate orbiting material. The calculations are based on the NASA/DoD Civil Needs Database for orbital debris (Gaines, 1966) and moderate assumptions of future space traffic. It is found that the lifetimes of high-energy protons below 1500 km will decrease, leading to a noticeable redution in their fluxes.

  1. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  2. “ESPRESSO” ACCELERATION OF ULTRA-HIGH-ENERGY COSMIC RAYS

    SciTech Connect

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 10{sup 18} eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ≲10{sup 17} eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ∼Γ{sup 2} in energy, where Γ is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with Γ ≳ 30 may accelerate UHECRs up to more than 10{sup 20} eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 10{sup 18} eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  3. Orbit error correction on the high energy beam transport line at the KHIMA accelerator system

    NASA Astrophysics Data System (ADS)

    Park, Chawon; Yim, Heejoong; Hahn, Garam; An, Dong Hyun

    2016-09-01

    For the purpose of treatment of various cancers and medical research, a synchrotron based medical machine has been developed under the Korea Heavy Ion Medical Accelerator (KHIMA) project and is scheduled for use to treat patient at the beginning of 2018. The KHIMA synchrotron is designed to accelerate and extract carbon ion (proton) beams with various energies from 110 to 430 MeV/u (60 to 230 MeV). Studies on the lattice design and beam optics for the High Energy Beam Transport (HEBT) line at the KHIMA accelerator system have been carried out using the WinAgile and the MAD-X codes. Because magnetic field errors and misalignments introduce deviations from the design parameters, these error sources should be treated explicitly, and the sensitivity of the machine's lattice to different individual error sources should be considered. Various types of errors, both static and dynamic, have been taken into account and have been consequentially corrected with a dedicated correction algorithm by using the MAD-X program. Based on the error analysis, the optimized correction setup is decided, and the specifications for the correcting magnets of the HEBT lines are determined.

  4. APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS

    DOEpatents

    Heard, H.G.

    1961-10-24

    A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)

  5. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  6. Kerr black holes as particle accelerators to arbitrarily high energy.

    PubMed

    Bañados, Máximo; Silk, Joseph; West, Stephen M

    2009-09-11

    We show that intermediate mass black holes conjectured to be the early precursors of supermassive black holes and surrounded by relic cold dark matter density spikes can act as particle accelerators with collisions, in principle, at arbitrarily high center-of-mass energies in the case of Kerr black holes. While the ejecta from such interactions will be highly redshifted, we may anticipate the possibility of a unique probe of Planck-scale physics.

  7. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  8. Acceleration of Thermal Protons by Generic Phenomenological Mechanisms

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé; Kang, Byungwoo

    2015-11-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was done by Petrosian & East for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton-electron kinetic equation. We numerically solve the coupled Fokker-Planck equations and compute the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high-energy nonthermal tail. We determine the evolution of the nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas, and the intracluster medium of galaxy clusters. We find that the emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence needed for scattering and acceleration is steeper than Kolmogorov and the acceleration parameters, the duration of the acceleration, and/or the initial distributions are significantly fine-tuned. These results severely constrain the feasibility of the nonthermal inverse bremsstrahlung process producing hard X-ray emissions. However, the nonthermal tail may be the seed particles for further re-acceleration to relativistic energies, say by a shock. In the Appendix we present some tests of the integrity of the algorithm used and present a new formula for the energy loss rate due to inelastic proton-proton interactions.

  9. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  10. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    SciTech Connect

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  11. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  12. 90° Neutron emission from high energy protons and lead ions on a thin lead target

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Mitaroff, A.; Silari, M.; Ulrici, L.

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: 208Pb 82+ lead ions at 40 GeV/ c per nucleon and 158 GeV/ c per nucleon, and 40 GeV/ c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90° with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that—for such high energy heavy ion beams—a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0.84.

  13. A Nuclear Interaction Model for Understanding Results of Single Event Testing with High Energy Protons

    NASA Technical Reports Server (NTRS)

    Culpepper, William X.; ONeill, Pat; Nicholson, Leonard L.

    2000-01-01

    An internuclear cascade and evaporation model has been adapted to estimate the LET spectrum generated during testing with 200 MeV protons. The model-generated heavy ion LET spectrum is compared to the heavy ion LET spectrum seen on orbit. This comparison is the basis for predicting single event failure rates from heavy ions using results from a single proton test. Of equal importance, this spectra comparison also establishes an estimate of the risk of encountering a failure mode on orbit that was not detected during proton testing. Verification of the general results of the model is presented based on experiments, individual part test results, and flight data. Acceptance of this model and its estimate of remaining risk opens the hardware verification philosophy to the consideration of radiation testing with high energy protons at the board and box level instead of the more standard method of individual part testing with low energy heavy ions.

  14. Three-dimensional hydrogen microscopy using a high-energy proton probe

    NASA Astrophysics Data System (ADS)

    Dollinger, G.; Reichart, P.; Datzmann, G.; Hauptner, A.; Körner, H.-J.

    2003-01-01

    It is a challenge to measure two-dimensional or three-dimensional (3D) hydrogen profiles on a micrometer scale. Quantitative hydrogen analyses of micrometer resolution are demonstrated utilizing proton-proton scattering at a high-energy proton microprobe. It has more than an-order-of-magnitude better position resolution and in addition higher sensitivity than any other technique for 3D hydrogen analyses. This type of hydrogen imaging opens plenty room to characterize microstructured materials, and semiconductor devices or objects in microbiology. The first hydrogen image obtained with a 10 MeV proton microprobe shows the hydrogen distribution of the microcapillary system being present in the wing of a mayfly and demonstrates the potential of the method.

  15. Results on damage induced by high-energy protons in LYSO calorimeter crystals

    NASA Astrophysics Data System (ADS)

    Dissertori, G.; Luckey, D.; Nessi-Tedaldi, F.; Pauss, F.; Quittnat, M.; Wallny, R.; Glaser, M.

    2014-05-01

    Lutetium-Yttrium Orthosilicate doped with Cerium (LYSO), as a bright scintillating crystal, is a candidate for calorimetry applications in strong ionising-radiation fields and large high-energy hadron fluences are expected at the CERN Large Hadron Collider after the planned High-Luminosity upgrade. There, proton-proton collisions will produce fast hadron fluences up to ~ 5 ×1014cm-2 in the large-rapidity regions of the calorimeters. The performance of LYSO has been investigated, after exposure to different fluences of 24 GeV c-1 protons. Measured changes in optical transmission as a function of proton fluence are presented, and the evolution over time due to spontaneous recovery at room temperature is studied. The activation of materials will also be an issue in the described environment. Studies of the ambient dose induced by LYSO and its evolution with time, in comparison with other scintillating crystals, have also been performed through measurements and FLUKA simulations.

  16. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  17. Neutrino mixing in accelerated proton decays

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Dharam Vir; Labun, Lance; Torrieri, Giorgio

    2016-07-01

    We discuss the inverse β-decay of accelerated protons in the context of neutrino flavor superpositions (mixings) in mass eigenstates. The process p→ n ℓ+ ν_{ℓ} is kinematically allowed because the accelerating field provides the rest energy difference between initial and final states. The rate of p→ n conversions can be evaluated in either the laboratory frame (where the proton is accelerating) or the co-moving frame (where the proton is at rest and interacts with an effective thermal bath of ℓ and ν_{ℓ} due to the Unruh effect). By explicit calculation, we show that the rates in the two frames disagree when taking into account neutrino mixings, because the weak interaction couples to charge eigenstates whereas gravity couples to neutrino mass eigenstates (D.V. Ahluwalia et al., arXiv:1505.04082 [hep-ph]). The contradiction could be resolved experimentally, potentially yielding new information on the origins of neutrino masses.

  18. Workplace characterisation in mixed neutron-gamma fields, specific requirements and available methods at high-energy accelerators.

    PubMed

    Silari, Marco

    2007-01-01

    A good knowledge of the radiation field present outside the shielding of high-energy particle accelerators is very important to be able to select the type of detectors (active and/or passive) to be employed for area monitoring and the type of personal dosemeter required for estimating the doses received by individuals. Around high-energy electron and proton accelerators the radiation field is usually dominated by neutrons and photons, with minor contributions from other charged particles. Under certain circumstances, muon radiation in the forward beam direction may also be present. Neutron dosimetry and spectrometry are of primary importance to characterise the radiation field and thus to correctly evaluate personnel exposure. Starting from the beam parameters important for radiation monitoring, the paper first briefly reviews the stray radiation fields encountered around high-energy accelerators and then addresses the relevant techniques employed for their monitoring. Recent developments to increase the response of neutron measuring devices beyond 10-20 MeV are illustrated. Instruments should be correctly calibrated either in reference monoenergetic radiation fields or in a field similar to the field in which they are used (workplace calibration). The importance of the instrument calibration is discussed and available neutron calibration facilities are briefly reviewed.

  19. High-energy proton emission and Fermi motion in intermediate-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Lin, W.; Liu, X.; Wada, R.; Huang, M.; Ren, P.; Tian, G.; Luo, F.; Sun, Q.; Chen, Z.; Xiao, G. Q.; Han, R.; Shi, F.; Liu, J.; Gou, B.

    2016-12-01

    An antisymmetrized molecular dynamics model (AMD-FM), modified to take into account the Fermi motion explicitly in its nucleon-nucleon collision process, is presented. Calculated high-energy proton spectra are compared with those of 40Ar+51V at 44 MeV/nucleon from Coniglione et al. [Phys. Lett. B 471, 339 (2000), 10.1016/S0370-2693(99)01383-0] and those of 36Ar+181Ta at 94 MeV/nucleon from Germain et al. [Nucl. Phys. A 620, 81 (1997), 10.1016/S0375-9474(97)00146-2]. Both of the experimental data are reasonably well reproduced by the newly added Fermi boost in the nucleon-nucleon collision process without additional processes, such as a three-body collision or a short-range correlation. The production mechanism of high-energy protons in intermediate-energy heavy-ion collisions is discussed.

  20. ACCELERATION OF THERMAL PROTONS BY GENERIC PHENOMENOLOGICAL MECHANISMS

    SciTech Connect

    Petrosian, Vahé; Kang, Byungwoo E-mail: redcrux8@stanford.edu

    2015-11-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was done by Petrosian and East for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton–electron kinetic equation. We numerically solve the coupled Fokker–Planck equations and compute the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high-energy nonthermal tail. We determine the evolution of the nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas, and the intracluster medium of galaxy clusters. We find that the emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence needed for scattering and acceleration is steeper than Kolmogorov and the acceleration parameters, the duration of the acceleration, and/or the initial distributions are significantly fine-tuned. These results severely constrain the feasibility of the nonthermal inverse bremsstrahlung process producing hard X-ray emissions. However, the nonthermal tail may be the seed particles for further re-acceleration to relativistic energies, say by a shock. In the Appendix we present some tests of the integrity of the algorithm used and present a new formula for the energy loss rate due to inelastic proton–proton interactions.

  1. Polarized Proton Acceleration in AGS and RHIC

    SciTech Connect

    Roser, Thomas

    2008-02-06

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  2. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  3. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  4. Shielding design for a laser-accelerated proton therapy system

    NASA Astrophysics Data System (ADS)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  5. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  6. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  7. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  8. State of particle accelerators and high energy physics (Fermilab Summer School, 1981). Part 2

    SciTech Connect

    Carrigan, R.A. Jr.; Huson, F.R.; Month, M.

    1982-01-01

    The material gathered in this volume covers the seminars given at the Summer School on High Energy Particle Accelerators, sponsored by the United States Department of Energy (DOE) and the National Science Foundation, held at Fermilab in Batavia, Illinois, July 13 to 24, 1981. The school was organized as a response to a recent appeal by a subpanel of the DOE High Energy Physics Advisory Panel (HEPAP) for more scientists and more students to work in the field of high energy particle accelerators. The committee set a number of objectives for the school: (1) to present in a thorough and up-to-date manner the entire spectrum of knowledge relating to accelerators; (2) to disseminate that knowledge to audiences that can best make use of it; (3) to encourage, by providing text materials and training to potential instructors, the development of accelerator physics education as part of university programs in high-energy physics; and (4) to foster a more extensive dialogue between particle and accelerator physicists. Separate entries were prepared for the data base for the papers included. (WHK)

  9. Rf cavity primer for cyclic proton accelerators

    SciTech Connect

    Griffin, J.E.

    1988-04-01

    The purpose of this note is to describe the electrical and mechanical properites of particle accelerator rf cavities in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion will be limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common pratice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  10. Innermost Van Allen Radiation Belt for High Energy Protons at Saturn

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2008-01-01

    The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.

  11. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  12. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    SciTech Connect

    Not Available

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables. (RWR)

  13. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  14. Proton acceleration from magnetized overdense plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-01-01

    Proton acceleration by an ultraintense short pulse circularly polarized laser from an overdense three dimensional (3D) particle-in-cell (PIC) 3D-PIC simulations. The axial magnetic field modifies the dielectric constant of the plasma, which causes a difference in the behaviour of ponderomotive force in case of left and right circularly polarized laser pulse. When the laser is right circularly polarized, the ponderomotive force gets enhanced due to cyclotron effects generating high energetic electrons, which, on reaching the target rear side accelerates the protons via target normal sheath acceleration process. On the other hand, in case of left circular polarization, the effects get reversed causing a suppression of the ponderomotive force at a short distance and lead towards a rise in the radiation pressure, which results in the effective formation of laser piston. Thus, the axial magnetic field enhances the effect of radiation pressure in case of left circularly polarized laser resulting in the generation of high energetic protons at the target front side. The transverse motion of protons get reduced as they gyrate around the axial magnetic field which increases the beam collimation to some extent. The optimum thickness of the overdense plasma target is found to be increased in the presence of an axial magnetic field.

  15. The Quest for Spinning Glue in High-Energy Polarized Proton-Proton Collisions at RHIC

    SciTech Connect

    Surrow, Bernd

    2007-10-26

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at {radical}(s) = 200-500 GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, A{sub LL}, for various processes. Recent results will be shown on the measurement of A{sub LL} for inclusive jet production, neutral pion production and charged pion production at {radical}(s) = 200 GeV.

  16. Shielding for High-Energy Electron Accelerator Installations. National Bureau of Standards Handbook 97.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…

  17. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    SciTech Connect

    Not Available

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle. (LSP)

  18. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    NASA Astrophysics Data System (ADS)

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-01

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith (~30 g/cm2) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed (~150 g/cm2) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv).

  19. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    SciTech Connect

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-21

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith ({approx}30 g/cm{sup 2}) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed ({approx}150 g/cm{sup 2}) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv)

  20. Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams

    SciTech Connect

    Schumaker, W. Vargas, M.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.; Sarri, G.; Dromey, B.; Zepf, M.

    2014-05-15

    Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

  1. Experimental investigation of picosecond dynamics following interactions between laser accelerated protons and water

    NASA Astrophysics Data System (ADS)

    Senje, L.; Coughlan, M.; Jung, D.; Taylor, M.; Nersisyan, G.; Riley, D.; Lewis, C. L. S.; Lundh, O.; Wahlström, C.-G.; Zepf, M.; Dromey, B.

    2017-03-01

    We report direct experimental measurements with picosecond time resolution of how high energy protons interact with water at extreme dose levels (kGy), delivered in a single pulse with the duration of less than 80 ps. The unique synchronisation possibilities of laser accelerated protons with an optical probe pulse were utilized to investigate the energy deposition of fast protons in water on a time scale down to only a few picoseconds. This was measured using absorbance changes in the water, induced by a population of solvated electrons created in the tracks of the high energy protons. Our results indicate that for sufficiently high doses delivered in short pulses, intertrack effects will affect the yield of solvated electrons. The experimental scheme allows for investigation of the ultrafast mechanisms occurring in proton water radiolysis, an area of physics especially important due to its relevance in biology and for proton therapy.

  2. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  3. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  4. Upsets in Erased Floating Gate Cells With High-Energy Protons

    SciTech Connect

    Gerardin, S.; Bagatin, M.; Paccagnella, A.; Visconti, A.; Bonanomi, M.; Calabrese, M.; Chiavarone, L.; Ferlet-Cavrois, V.; Schwank, J. R.; Shaneyfelt, M. R.; Dodds, N.; Trinczek, M.; Blackmore, E.

    2017-01-01

    We discuss upsets in erased floating gate cells, due to large threshold voltage shifts, using statistical distributions collected on a large number of memory cells. The spread in the neutral threshold voltage appears to be too low to quantitatively explain the experimental observations in terms of simple charge loss, at least in SLC devices. The possibility that memories exposed to high energy protons and heavy ions exhibit negative charge transfer between programmed and erased cells is investigated, although the analysis does not provide conclusive support to this hypothesis.

  5. Upsets in Erased Floating Gate Cells with High-Energy Protons

    DOE PAGES

    Gerardin, Simone; Bagatin, Marta; Paccagnella, Alessandro; ...

    2016-12-09

    We discuss upsets in erased floating gate cells, due to large threshold voltage shifts, using statistical distributions collected on a large number of memory cells. The spread in the neutral threshold voltage appears to be too low to quantitatively explain the experimental observations in terms of simple charge loss, at least in SLC devices. The possibility that memories exposed to high energy protons and heavy ions exhibit negative charge transfer between programmed and erased cells is investigated, although the analysis does not provide conclusive support to this hypothesis.

  6. Optimized treatment planning using intensity and energy modulated proton and very-high energy electron beams

    NASA Astrophysics Data System (ADS)

    Yeboah, Collins

    2002-09-01

    Intensity and energy modulated radiotherapy dose planning with protons and very-high energy (50--250 MeV) electron beams has been investigated. A general-purpose inverse treatment planning (ITP) system that can be applied to any combination of proton, electron and photon radiation modalities in therapy has been developed. The new ITP program uses a very fast proton dose calculation engine and employs one of the most efficient optimization algorithms currently available. First, the ITP program was employed to investigate intensity-modulated proton therapy (IMPT) dose optimization for prostate cancer. The second application was to evaluate the potential of intensity-modulated very-high energy electron therapy (VHEET) for dose conformation. For an active proton beam delivery system the required energy resolution to reasonably implement energy modulation was found to be a function of the incident beams' energy spread and became coarser with increasing energy spread. For passive proton beam delivery systems the selection of the required depth resolution for inverse planning may not be critical as long as the depth resolution chosen is at least equal to FWHM/2 of the primary beam Bragg peak. In the study of the number of beam ports selected for IMPT treatment of the prostate, it was found that a maximum of three to four beams is required. Using proton beams for inverse planning of the prostate instead of photon beams gave the same or better target coverage while reducing the sensitive structure dose and normal tissue integral dose by up to 30% and 28% of the prescribed target dose, respectively. In evaluating the potential of VHEET beams for dose conformation, it was found that electron energies greater than 100 MeV are preferable for VHEET treatment of the prostate and that implementation of energy modulation in addition to intensity modulation has only a modest effect on the final dose distribution. VHEET treatment employing approximately nine beams was sufficient to

  7. Development of an abort gap monitor for high-energy proton rings

    SciTech Connect

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  8. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  9. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  10. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  11. Study of the effects of high-energy proton beams on escherichia coli

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  12. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.

    PubMed

    Manzi, Nicholas J; Chitnis, Parag V; Holt, R Glynn; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark

    2010-04-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 muC will be reported on. Cavitation was initially detected for a beam charge of 0.082 muC by the presence of an acoustic emission approximately 250 mus after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 muC and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber ( approximately 300 mus), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  13. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  14. Acceleration and collision of ultra-high energy particles using crystal channels

    SciTech Connect

    Chen, P.; Noble, R.J.

    1997-04-01

    We assume that, independent of any near-term discoveries, the continuing goal of experimental high-energy physics (HEP) will be to achieve ultra-high center-of-mass energies early in the next century. To progress to these energies in such a brief span of time will require a radical change in accelerator and collider technology. We review some of our recent theoretical work on high-gradient acceleration of charged particles along crystal channels and the possibility of colliding them in these same strong-focusing atomic channels. An improved understanding of energy and emittance limitations in natural crystal accelerators leads to the suggestion that specially manufactured nano-accelerators may someday enable us to accelerate particles beyond 10{sup 8} eV with emittances limited only by the uncertainty principle of quantum mechanics.

  15. Direct Versus Diffusive Access of High-Energy Solar Protons Into the High-Latitude Atmosphere

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Alexei; Knudsen, David; Spanswick, Emma; Donovan, Eric

    During solar proton events (SPEs), large fluxes of energetic protons spreading throughout the interplanetary medium (IPM)have access to the upper polar atmosphere where they play important roles in physical and chemical processes. We examine the relation between SPEs as detected through ionospheric absorption measured by the NORSTAR riometer network on one hand, and the proton fluxes measured outside the magnetosphere by the SOHO satellite on the other. We find a high correlation between SOHO fluxes and absorptions in some type of events (those having insignificant electron precipitation and background radio noise) and at given time intervals (within tens of hours following times of maximum flux ) but not others. By using a numerical simulation of high-energy proton propagation through the earth's magnetosphere we show that the flux of SPE particles reaching the upper atmosphere depends strongly on the angular distribution of the source population outside of the magnetosphere. Early in SP events, protons follow solar magnetic field lines and their distributions tend to be highly anisotropic(1), and the strong angular dependence decreases the correlation between IPM fluxes and polar cap absorption. As individual events evolve, flux angular distributions of IPM protons tend to be more isotropic(1) due to encounters with randomly distributed fields of magnetic clouds in the interplanetary medium (obtained closed solution of non-steady-state diffusion equation in P1-approximation allows us to estimate the dynamics of angular modulation). It is only when this diffusive isotropization occurs that we see strong correlations (correlation coefficients of up to 0.98) between IPM fluxes observed at SOHO and the polar cap absorptions observed by the NORSTAR riometers. We aim to use these observations to construct and validate a realistic transport model that will map proton fluxes originating outside the magnetosphere to those incident on the upper atmosphere, and vice versa

  16. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  17. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  18. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  19. Neutron dose per fluence and weighting factors for use at high energy accelerators.

    PubMed

    Cossairt, J Donald; Vaziri, Kamran

    2009-06-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection regulation Title 10, Code of Federal Regulations Part 835, as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab) in the context of the amended regulation and contemporary guidance of the International Commission on Radiological Protection (ICRP). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. Also, a set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision and of recent ICRP publications are found to be of moderate significance.

  20. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  1. High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch

    NASA Astrophysics Data System (ADS)

    Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.

    2016-10-01

    The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Neutron dose measurements with the GSI ball at high-energy accelerators.

    PubMed

    Fehrenbacher, G; Gutermuth, F; Kozlova, E; Radon, T; Schuetz, R

    2007-01-01

    A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.

  3. Ultra-High-Energy Cosmic-Ray Acceleration by Magnetic Reconnection in Newborn Accretion-induced Collapse Pulsars.

    PubMed

    de Gouveia Dal Pino EM; Lazarian

    2000-06-10

    We here investigate the possibility that the ultra-high-energy cosmic-ray (UHECR) events observed above the Greisen-Zatsepin-Kuzmin (GZK) limit are mostly protons accelerated in reconnection sites just above the magnetosphere of newborn millisecond pulsars that are originated by accretion-induced collapse (AIC). We formulate the requirements for the acceleration mechanism and show that AIC pulsars with surface magnetic fields 1012 Gaccelerate particles to energies >/=10(20) eV. Because the expected rate of AIC sources in our Galaxy is very small ( approximately 10(-5) yr(-1)), the corresponding contribution to the flux of UHECRs is negligible and the total flux is given by the integrated contribution from AIC sources produced by the distribution of galaxies located within the distance that is unaffected by the GZK cutoff ( approximately 50 Mpc). We find that reconnection should convert a fraction xi greater, similar0.1 of magnetic energy into UHECRs in order to reproduce the observed flux.

  4. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    SciTech Connect

    Joshi, Chan; Mori, W.

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasks listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.

  5. Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2012-09-01

    We use a Monte Carlo approach to study hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider energies at midrapidity. We build a hadron event generator that incorporates the production of 2→2 and 2→3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the quark-gluon plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, because their interaction with the medium may lead to showers of low-momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.

  6. Controlled high-energy ion acceleration with intense chirped standing waves

    NASA Astrophysics Data System (ADS)

    Mackenroth, Felix; Gonoskov, Arkady; Marklund, Mattias

    2016-10-01

    We present the latest results of the recently proposed ion acceleration mechanism ``chirped standing wave acceleration''. This mechanism is based on locking the electrons of a thin plasma layer to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the thin layer. The resulting longitudinal charge separation field between the displaced electrons and the residual ions then accelerates the latter. Since the plasma layer is stabilized by the standing wave, the formation of plasma instabilities is suppressed. Furthermore, the experimentally accessible laser chirp provides a versatile tool for manipulating the resulting ion beam in terms of maximum particle energy, particle number and spectral distribution. Through this scheme, proton beams, with energy spectra peaked around 100 MeV, were shown to be feasible for pulse energies at the level of 10 J. Wallenberg Foundation within the Grant ''Plasma based compact ion sources'' (PLIONA).

  7. A Stable High-Energy Electron Source from Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhao, Baozhen; Liu, Cheng; Yan, Wenchao; Golovin, Grigory; Banerjee, Sudeep; Chen, Shouyuan; Haden, Daniel; Fruhling, Colton; Umstadter, Donald

    2016-10-01

    The stability of the electron source from laser wake-field acceleration (LWFA) is essential for applications, such as novel x-ray sources and fundamental experiments in high field physics. To obtain such a stable source, we used an optimal laser pulse and a novel gas nozzle. The high-power laser pulse on target was focused to a diffraction-limited spot by the use of adaptive wavefront correction and the pulse duration was transform limited by the use of spectral feedback control. An innovative design for the nozzle led to a stable, flat-top profile with diameters of 4 mm and 8 mm with a high Mach-number ( 6). In experiments to generate high-energy electron beams by LWFA, we were able to obtain reproducible results with beam energy of 800 MeV and charge >10 pC. Higher charge but broader energy spectrum resulted when the plasma density was increased. These developments have resulted in a laser-driven wakefield accelerator that is stable and robust. With this device, we show that narrowband high-energy x-rays beams can be generated by the inverse-Compton scattering process. This accelerator has also been used in recent experiments to study nonlinear effects in the interaction of high-energy electron beams with ultraintense laser pulses. This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  8. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  9. High energy focused ion beam technology and applications at the Louisiana Accelerator Center

    NASA Astrophysics Data System (ADS)

    Glass, G. A.; Dymnikov, A. D.; Rout, B.; Zachry, D. P.

    2007-07-01

    The high energy focused ion beam (HEFIB) system at the Louisiana Accelerator Center (LAC) of the University of Louisiana at Lafayette, Lafayette, USA, is constructed on one of the beamlines of a National Electrostatics Corporation 1.7 MV 5SDH-2 tandem accelerator. The HEFIB system has several components, including a versatile magnetic quadrupole sextuplet lens focusing system defined as the Russian magnetic sextuplet (RMS) system having the same demagnifications, the same focal lengths and the same positions of the focal points in xz and yz planes as the Russian quadruplet and a one-piece concrete supporting base and integrated endstation with air isolation. A review of recent microlithography and HEFIB system developments at LAC are presented, as well as new results using heavy ion (HI) beam lithography on crystalline silicon.

  10. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  11. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  12. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller

  13. The Ability of American Football Helmets to Manage Linear Acceleration With Repeated High-Energy Impacts

    PubMed Central

    Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine

    2016-01-01

    Context:  Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. Objective:  To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Design:  Descriptive laboratory study. Setting:  Laboratory. Main Outcome Measure(s):  We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Results:  Linear acceleration was greater after multiple impacts (91−100) than after the first few impacts (11−20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. Conclusions:  American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season. PMID:26967549

  14. Production of ACTINIUM-225 via High Energy Proton Induced Spallation of THORIUM-232

    NASA Astrophysics Data System (ADS)

    Harvey, James; Nolen, Jerry A.; Kroc, Thomas; Gomes, Itacil; Horwitz, E. Philip.; McAlister, Daniel R.

    2010-06-01

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). The object of this effort is to refine the simulations for producing actinium-225 at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 GeV protons available at Fermi National Accelerator Laboratory. Targets will be processed at Argonne National Laboratory to separate and purify the actinium-225 that will subsequently be transferred to NorthStar laboratory facilities for product quality testing and comparison to the product quality of ORNL produced actinium-225, which is currently the industry standard. The test irradiations at FNAL will produce 1-20 mCi per day which is more than sufficient for quantitative evaluation of the proposed production process.

  15. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    PubMed Central

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651

  16. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  17. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  18. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  19. Developing high energy, stable laser wakefield accelerators: particle simulations and experiments

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron

    2006-10-01

    Laser driven wakefield accelerators produce accelerating fields thousands of times those achievable in conventional radiofrequency accelerators, and recent experiments have produced high energy electron bunches with low emittance and energy spread. Challenges now include control and reproducibility of the electron beam, further improvements in energy spread, and scaling to higher energies. We present large-scale particle in cell simulations together with recent experiments towards these goals. In LBNL experiments the relativistically intense drive pulse was guided over more than 10 diffraction ranges by plasma channels. Guiding beyond the diffraction range improved efficiency by allowing use of a smaller laser spot size (and hence higher intensities) over long propagation distances. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200pC charge above 80 MeV with normalized emittance estimated at < 2 π-mm-mrad were produced. Energies have now been scaled to 1 GeV using 40 TW of laser power. Particle simulations and data showed that the high quality bunch in recent experiments was formed when beam loading turned off injection after initial self trapping, creating a bunch of electrons isolated in phase space. A narrow energy spread beam was then obtained by extracting the bunch as it outran the accelerating phase of the wake. Large scale simulations coupled with experiments are now under way to better understand the optimization of such accelerators including production of reproducible electron beams and scaling to energies beyond a GeV. Numerical resolution and two and three dimensional effects are discussed as well as diagnostics for application of the simulations to experiments. Effects including injection and beam dynamics as well as pump laser depletion and reshaping will be described, with application to design of future experiments. Supported by DOE grant DE-AC02-05CH11231 and by an INCITE

  20. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  1. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  2. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  3. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  4. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities.

  5. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  6. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  7. Understanding nature's particle accelerators using high energy gamma-ray survey instruments

    NASA Astrophysics Data System (ADS)

    Abeysekara, Anushka Udara

    Nature's particle accelerators, such as Pulsars, Pulsar Wind Nebulae, Active Galactic Nuclei and Supernova Remnants accelerate charged particles to very high energies that then produce high energy photons. The particle acceleration mechanisms and the high energy photon emission mechanisms are poorly understood phenomena. These mechanisms can be understood either by studying individual sources in detail or, alternatively, using the collective properties of a sample of sources. Recent development of GeV survey instruments, such as Fermi-LAT, and TeV survey instruments, such as Milagro, provides a large sample of high energy gamma-ray flux measurements from galactic and extra-galactic sources. In this thesis I provide constraints on GeV and TeV radiation mechanisms using the X-ray-TeV correlations and GeV-TeV correlations. My data sample was obtained from three targeted searches for extragalactic sources and two targeted search for galactic sources, using the existing Milagro sky maps. The first extragalactic candidate list consists of Fermi-LAT GeV extragalactic sources, and the second extragalactic candidate list consists of TeVCat extragalactic sources that have been detected by Imaging Atmospheric Cerenkov Telescopes (IACTs). In both extragalactic candidate lists Markarian 421 was the only source detected by Milagro. A comparison between the Markarian 421 time-averaged flux, measured by Milagro, and the flux measurements of transient states, measured by IACTs, is discussed. The third extragalactic candidate list is a list of potential TeV emitting BL Lac candidates that was synthesized using X-ray observations of BL Lac objects and a Synchrotron Self-Compton model. Milagro's sensitivity was not sufficient to detect any of those candidates. However, the 95% confidence flux upper limits of those sources were above the predicted flux. Therefore, these results provide evidence to conclude that the Synchrotron Self-Compton model for BL Lac objects is still a viable

  8. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    SciTech Connect

    Miles, Leslie H.

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  9. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    NASA Astrophysics Data System (ADS)

    Di Vece, Marcel; Giannakoudakis, Giorgos; Bjørkøy, Astrid; Tang, Wingjohn

    2015-12-01

    The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  10. Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets

    SciTech Connect

    Gaillard, S. A.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Lockard, T.; Sentoku, Y.; Geissel, M.; Schollmeier, M.

    2011-05-15

    We present experimental results showing a laser-accelerated proton beam maximum energy cutoff of 67.5 MeV, with more than 5 x 10{sup 6} protons per MeV at that energy, using flat-top hollow microcone targets. This result was obtained with a modest laser energy of {approx}80 J, on the high-contrast Trident laser at Los Alamos National Laboratory. From 2D particle-in-cell simulations, we attribute the source of these enhanced proton energies to direct laser-light-pressure acceleration of electrons along the inner cone wall surface, where the laser light wave accelerates electrons just outside the surface critical density, in a potential well created by a shift of the electrostatic field maximum with respect to that of the magnetic field maximum. Simulations show that for an increasing acceleration length, the continuous loading of electrons into the accelerating phase of the laser field yields an increase in high-energy electrons.

  11. Niobium cavity development for the high-energy linac of the rare isotope accelerator

    SciTech Connect

    D. Barni; C. Pagani; P. Pierini; C. Compton; T. Grimm; W. Hartung; H. Podlech; R. York; G. Ciovati; P. Kneisel

    2001-08-01

    The Rare Isotope Accelerator (RIA) is being designed to supply an intense beam of exotic isotopes for nuclear physics research [1]. Superconducting cavities are to be used to accelerate the CW beam of heavy ions to 400 MeV per nucleon, with a beam power of up to 400 kW. Because of the varying velocity of the ion beam along the linac, a number of different types of superconducting structures are needed. The RIA linac will accelerate heavy ions over the same velocity range as the proton linac for the Spallation Neutron Source (SNS). It was decided to use the 6-cell axisymmetric 805 MHz cavities and cryostats of SNS for the downstream portion of the RIA linac, thereby saving the non-recurring development and engineering costs. For additional cost saving, it was decided to extend the SNS multi-cell axisymmetric cavity design to lower velocity, {beta} = v/c = 0.4, using the same cryostats and RF systems. Axisymmetric cavities will thus constitute about three-quarters of RIA's total accelerating voltage, and most of that voltage will be provided by cavities already developed for SNS. The axisymmetric cavities will accelerate the RIA beam from {beta} = 0.4 to {beta} = 0.72. This velocity range can be efficiently covered with two different types of 6-cell cavities, one with a geometric {beta}, {beta}{sub g}, of 0.47, and the other with a {beta}{sub g} of 0.61. The {beta}{sub g} = 0.61 cavity will be of the existing SNS design; some {beta}{sub g} = 0.81 SNS cavities may also be desired at the end of the RIA linac for acceleration of light ions above 400 MeV per nucleon. Prototypes for both {beta}{sub g} = 0.61 and {beta}{sub g} = 0.81 have been fabricated and tested [2]. The {beta}{sub g} = 0.47 cavity is the focus of the present work. The reduction in {beta}{sub g} to 0.47 results in less favourable electromagnetic and mechanical properties, and opens up the possibility of multipacting, but several groups have already designed and prototyped cavities in this range. These

  12. High Energy Electron Acceleration from Underdense Plasma Channeling Using the OMEGA EP Laser

    NASA Astrophysics Data System (ADS)

    Batson, Thomas; Raymond, Anthony; Hussein, Amina; Krushelnick, Karl; Willingale, Louise; Nilson, Phil; Froula, Dustin; Harberberger, Dan; Davies, Andrew; Theobald, Wolfgang; Williams, Jackson; Chen, Hui; Arefiev, Alexey

    2016-10-01

    For intense, ps scale lasers, propagation through underdense plasmas results in forces which expel electrons from along the laser axis, resulting in the formation of channels. Electrons can then be injected from the channel walls into the laser path, which results in the direct laser acceleration (DLA) of these electrons and the occurrence of an electron beam of 100's of MeV. Experiments performed at the OMEGA EP laser studied the formation of a laser channel in an underdense CH plasma, as well as the spatial properties and energy of an electron beam created via DLA mechanisms. The 4 omega optical probe diagnostic was used to characterize the density of the plasma plume, while proton radiography was used to observe the electromagnetic fields of the channel formation. These electric fields as well as the spectra of the accelerated electrons have been studied across different plasma density profiles. The channel behavior and electron spectra are compared to 2D particle-in-cell simulations.

  13. Using high-energy proton fluence to improve risk prediction for consequences of solar particle events

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.

    2009-12-01

    The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV ( Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 ( Φ60) and above 100 MeV ( Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit ("BFO dose risk"), one must also take into account the distribution of the predictor ( Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied

  14. Possible parameters of proton acceleration using backward traveling wave harmonic

    NASA Astrophysics Data System (ADS)

    Paramonov, V. V.

    2016-12-01

    Analysis shows that, when accelerating protons of intermediate energy range using the field of backward harmonic of the traveling wave, a range of practically accessible parameters of accelerating structure exists, where it is possible to provide simultaneously the stability of longitudinal and transverse particle motion and high rates of acceleration. The focusing effect is provided by the field of slow fundamental harmonic. The calculated characteristics of accelerating structure and the assessment of parameters of the proton linac are obtained in a range of 15-230 MeV.

  15. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  16. POLARIZED PROTON ACCELERATION AT THE BROOKHAVEN AGS - AN UPDATE.

    SciTech Connect

    HUANG,H.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE-WANG,J.; BROWN,K.A.; GLENN,W.; LUCCIO,A.U.; MACKAY,W.W.; MONTAG,C.; PTITSYN,V.; ROSER,T.; TSOUPAS,N.; ZELENSKI,A.; ZENO,K.; CADMAN,B.; SPINKA,H.; UNDERWOOD,D.; RANJBAR,V.

    2002-06-02

    The RHIC spin design goal assumes 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, polarized protons have been accelerated at the AGS for years to increase the polarization transmission efficiency. Several novel techniques have been applied in the AGS to overcome the intrinsic and imperfection resonances. The present level of accelerator performance is discussed. Progress on understanding the beam polarization behavior is presented. The outlook and future plan are also discussed.

  17. Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Shao, X.; Liu, T. C.; Su, J. J.; He, M. Q.; Eliasson, B.; Tripathi, V. K.; Dudnikova, G.; Sagdeev, R. Z.; Wilks, S.; Chen, C. D.; Sheng, Z. M.

    Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh-Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh-Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50-250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.

  18. Radiotherapy using a laser proton accelerator

    SciTech Connect

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-24

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities.

  19. Proton acceleration with a table-top TW laser

    NASA Astrophysics Data System (ADS)

    Seimetz, M.; Bellido, P.; Lera, R.; Ruiz-de la Cruz, A.; Mur, P.; Sánchez, I.; Galán, M.; Sánchez, F.; Roso, L.; Benlloch, J. M.

    2016-11-01

    We report on the recent demonstration of proton acceleration from a purpose-made Ti:Sapphire laser system. In the first successful series of autumn 2015, running at 2 TW peak power and 100 Hz diode pump rate, protons up to 0.7 MeV have been spectrally characterised. Subsequently, at increased laser pulse energy and improved contrast, we have obtained maximum particle energies around 1.7 MeV. These results, achieved in single-shot mode with a variety of thin foil targets, are an important step towards our aim of a stable, compact proton accelerator with high rate capacity.

  20. Remarkable new results for high-energy protons and electrons in the inner Van Allen belt regions

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-04-01

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location.. Recent Van Allen Probes observations have revealed an unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than several megaelectronvolts). The data show an exceedingly sharp inner boundary for the ultrarelativistic electrons right at L=2.8. Additional, concurrently measured data reveal that this barrier to inward electron radial transport is likely due to scattering by powerful human electromagnetic transmitter (VLF) wave fields. We show that weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere due to manmade signals can act to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate. Inside of this distance, the Van Allen Probes data show that high energy (20 -100 MeV) protons have a double belt structure with a stable peak of flux at L~1.5 and a much more variable belt peaking at L~2.3.

  1. Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C

    DTIC Science & Technology

    2010-01-01

    when photopion processes are important, which will require IceCube neutrino detections [40] to establish. In GRB 080916C, where multi-GeV radiation...energy neutrinos from gamma ray bursts. Phys Rev Lett 2003; 91: 071102. [26] Asano K, Guiriec S, Mészáros P. Hadronic models for the extra spectral...of gamma-ray burst high-energy lags. Astrophys J 2009; 707: 404-16. [37] Murase K, Ioka K, Nagataki S, Nakamura T. High-Energy neutrinos and cosmic

  2. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Netrakanti, P. K.; Luo, X. F.; Mishra, D. K.; Mohanty, B.; Mohanty, A.; Xu, N.

    2016-03-01

    We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5% central Au + Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kinds of possible baseline measures. These baseline measures correspond to an assumption that the proton and anti-proton distributions follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data for the center of mass energies (√{sNN}) of 19.6 and 27 GeV are observed to deviate from most of the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies point to the need of either more detailed baseline models for the experimental measurements or a description via QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.

  3. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  4. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  5. Water corrosion measurements on tungsten irradiated with high energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart A.; Scott Lillard, R.; Sommer, Walter F.; Butt, Darryl P.; Gac, Frank D.; Willcutt, Gordon J.; Louthan, McIntyre R.

    2012-12-01

    A detailed analysis was performed on the degradation of a tungsten target under water cooling while being exposed to a 761 MeV proton beam at an average current of 0.867 mA to a maximum fluence of 1.3 × 1021 protons/cm2. The target consisted of 3 mm diameter tungsten rods arranged in bundles and cooled with deionized water flowing over their length. Degradation of the tungsten was measured through analyzing water resistivity, tungsten concentration in water samples that were taken during irradiation and through dimensional measurements on the rods after irradiation. Chemical analysis of irradiated water samples showed W concentrations up to 35 μg/ml. Gamma analysis showed increases in concentrations of many isotopes including W-178, Lu-171, Tm-167, Tm-166, Yb-169 and Hf-175. Dimensional measurements performed after irradiation on the W rods revealed a decrease in diameter as a function of position that followed closely the Gaussian proton beam profile along the rod length and indicated a definite beam-effect. A general decrease in diameter, especially on the coolant-water entrance point where turbulent flow was likely, also suggests a chemically and mechanically-driven corrosion effect. A method to estimate the apparent corrosion rate based on proton fluence is presented and application of this method estimates the material loss rate at about 1.9 W atoms/incident proton. From this result, the corrosion rate of tungsten in a 761 MeV, 0.867 mA proton beam was calculated to be 0.073 cm/full power year. of irradiation.

  6. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  7. Fermilab's Proton Accelerator Complex : World Record Performance and Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  8. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  9. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  10. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    SciTech Connect

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.

  11. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  12. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.

  13. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Toncian, Toma; Arefiev, Alexey; Fiksel, Gennady

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characteristics of laser-driven proton beams would be critical for a number of applications. The work was supported by U.S. Department of Energy - National Nuclear Security Administration Cooperative Agreement No. DE-NA0002008. HPC resources were provided by the Texas Advanced Computing Center at The University of Texas.

  14. The time-like electromagnetic form factors of proton and charged kaon at high energies

    NASA Astrophysics Data System (ADS)

    Anulli, Fabio

    2016-05-01

    The Initial State Radiation method in the BABAR experiment has been used to measure the time-like electromagnetic form factors at the momentum transfer from 9 to 42 (GeV/c)2 for proton and from 7 to 56 (GeV/c)2 for charged kaon. The obtained data show the tendency to approach the QCD asymptotic prediction for kaons and space-like form factor values for proton. The BABAR data have been used together with data from other experiments, to perform a model-independent determination of the relative phases between the single-photon and the three-gluon amplitudes in ψ → KK ¯ decays. The values of the branching fractions measured in the reaction e+e- → K+ K- are shifted due to interference of resonant and nonresonant amplitudes. We have determined the absolute values of the shifts to be 5% for J/ψ and 15% for ψ(2S) decays.

  15. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    SciTech Connect

    Chechenin, N. G. Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  16. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams

    SciTech Connect

    Mandapaka, A. K.; Ghebremedhin, A.; Patyal, B.; Marinelli, Marco; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2013-12-15

    Purpose: To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams.Methods: The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up/stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated.Results: A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy/min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters.Conclusions: The observed dosimetric properties of the synthetic single

  17. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  18. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  19. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    NASA Astrophysics Data System (ADS)

    Korovin, Yu. A.; Konobeyev, A. Yu.; Pereslavtsev, P. E.

    1995-09-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclider transmutation. All calculations have been performed using the SNT code [1].

  20. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    SciTech Connect

    Korovin, Yu. A.; Konobeyev, A. Yu.; Pereslavtsev, P. E.

    1995-09-15

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclider transmutation. All calculations have been performed using the SNT code.

  1. Simulation on buildup of electron cloud in a proton circular accelerator

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wei; Liu, Yu-Dong

    2015-10-01

    Electron cloud interaction with high energy positive beams are believed responsible for various undesirable effects such as vacuum degradation, collective beam instability and even beam loss in high power proton circular accelerators. An important uncertainty in predicting electron cloud instability lies in the detailed processes of the generation and accumulation of the electron cloud. The simulation on the build-up of electron cloud is necessary to further studies on beam instability caused by electron clouds. The China Spallation Neutron Source (CSNS) is an intense proton accelerator facility now being built, whose accelerator complex includes two main parts: an H-linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV with a repetition rate of 25 Hz. During beam injection with lower energy, the emerging electron cloud may cause serious instability and beam loss on the vacuum pipe. A simulation code has been developed to simulate the build-up, distribution and density of electron cloud in CSNS/RCS. Supported by National Natural Science Foundation of China (11275221, 11175193)

  2. The effect of irradiation with high-energy protons on 4H-SiC detectors

    SciTech Connect

    Kazukauskas, V. Jasiulionis, R.; Kalendra, V.; Vaitkus, J.-V.

    2007-03-15

    The effect of irradiation of 4H-SiC ionizing-radiation detectors with various doses (as high as 10{sup 16} cm{sup -2}) of 24-GeV protons is studied. Isotopes of B, Be, Li, He, and H were produced in the nuclear spallation reactions of protons with carbon. Isotopes of Al, Mg, Na, Ne, F, O, and N were produced in the reactions of protons with silicon. The total amount of the produced stable isotopes varied in proportion with the radiation dose from 1.2 x 10{sup 11} to 5.9 x 10{sup 13} cm{sup -2}. It is shown that, at high radiation doses, the contact characteristics of the detectors change appreciably. The potential-barrier height increased from the initial value of 0.7-0.75 eV to 0.85 eV; the rectifying characteristics of the Schottky contacts deteriorated appreciably. These effects are attributed to the formation of a disordered structure of the material as a result of irradiation.

  3. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  4. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  5. Polarized proton acceleration program at the AGS and RHIC

    SciTech Connect

    Lee, Y.Y.

    1995-06-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC.

  6. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  7. Evaluation of ‘OpenCL for FPGA’ for Data Acquisition and Acceleration in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Sridharan, Srikanth

    2015-12-01

    The increase in the data acquisition and processing needs of High Energy Physics experiments has made it more essential to use FPGAs to meet those needs. However harnessing the capabilities of the FPGAs has been hard for anyone but expert FPGA developers. The arrival of OpenCL with the two major FPGA vendors supporting it, offers an easy software-based approach to taking advantage of FPGAs in applications such as High Energy Physics. OpenCL is a language for using heterogeneous architectures in order to accelerate applications. However, FPGAs are capable of far more than acceleration, hence it is interesting to explore if OpenCL can be used to take advantage of FPGAs for more generic applications. To answer these questions, especially in the context of High Energy Physics, two applications, a DAQ module and an acceleration workload, were tested for implementation with OpenCL on FPGAs2. The challenges on using OpenCL for a DAQ application and their solutions, together with the performance of the OpenCL based acceleration are discussed. Many of the design elements needed to realize a DAQ system in OpenCL already exists, mostly as FPGA vendor extensions, but a small number of elements were found to be missing. For acceleration of OpenCL applications, using FPGAs has become as easy as using GPUs. OpenCL has the potential for a massive gain in productivity and ease of use enabling non FPGA experts to design, debug and maintain the code. Also, FPGA power consumption is much lower than other implementations. This paper describes one of the first attempts to explore the use of OpenCL for applications outside the acceleration workloads.

  8. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  9. Energetic negative ion and neutral atom beam generation at passage of laser accelerated high energy positive ions through a liquid spray

    NASA Astrophysics Data System (ADS)

    Abicht, F.; Prasad, R.; Priebe, G.; Braenzel, J.; Ehrentraut, L.; Andreev, A.; Nickles, P. V.; Schnürer, M.; Tikhonchuk, V.; Ter-Avetisyan, Sargis

    2013-05-01

    Beams of energetic negative ions and neutral atoms are obtained from water and ethanol spray targets irradiated by high intensity (5×1019 W/cm2) and ultrashort (50 fs) laser pulses. The resulting spectra were measured with the Thomson parabola spectrometer, which enabled absolute measurements of both: positive and negative ions. The generation of a beam of energetic neutral hydrogen atoms was confirmed with CR-39 track detectors and their spectral characteristics have been measured using time of flight technique. Generation is ascribed to electron-capture and -loss processes in the collisions of laser-accelerated high-energy protons with spray of droplets. The same method can be applied to generate energetic negative ions and neutral atoms of different species.

  10. High energy proton radiation damage to (AlGa)As-G aAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Goldhammer, L.; Kamath, S.; Knechtli, R. C.

    1979-01-01

    Twelve 2 + 2 sq cm (AlGa)As-GaAs solar cells were fabricated and were subjected to 15.4 and 40 MeV of proton irradiation. The results showed that the GaAs cells degrade considerably less than do conventional and developmental K7 silicon cells. The detailed characteristics of the GaAs and silicon cells, both before and after irradiation, are described. Further optimization of the GaAs cells seems feasible, and areas for future work are suggested.

  11. CLUST - EVAP Monte Carlo Simulation Applications for Determining Effective Energy Deposition in Silicon by High Energy Protons

    NASA Technical Reports Server (NTRS)

    ONeill, Pat M.

    2000-01-01

    The CLUST-EVAP is a Monte Carlo simulation of the interaction of high energy (25 - 400 MeV) protons with silicon nuclei. The initial nuclear cascade stage is modeled using the CLUST model developed by Indiana University over 30 years ago. The second stage, in which the excited nucleus evaporates particles in random directions, is modeled according to the evaporation algorithm provided by H. H. K. Tang of IBM. Using the CLUST-EVAP code to model fragment produ6tion and the Vavilov-Landau theory to model fluctuations in direct ionization in thin silicon layers, we have predicted energy deposition in silicon components for various geometrical configurations. We have compared actual measurements with model predictions for geometry's such as single, thin silicon particle detectors, telescopic particle detectors flown in space to measure the environment, and thin sensitive volumes of modern micro-electronic components. We have recently compared the model predictions with actual measurements made by the DOSTEL spectrometer flown in the Shuttle payload bay on STS-84. The model faithfully reproduces the features and aids in interpretation of flight results of this instrument. We have also applied the CLUST-EVAP model to determine energy deposition in the thin sensitive volumes of modern micro-electronic components. We have accessed the ability of high energy (200 MeV) protons to induce latch-up in certain devices that are known to latch up in heavy ion environments. However, some devices are not nearly as susceptible to proton induced latch-up as expected according to their measured heavy ion latch-up cross sections. The discrepancy is believed to be caused by the limited range of the proton-silicon interaction fragments. The CLUST-EV AP model was used to determine a distribution of these fragments and their range and this is compared to knowledge of the ranges required based on the known device structure. This information is especially useful in accessing the risk to on

  12. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  13. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  14. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  15. Generation of high energy electron accelerated by using a tapered capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Nam, Inhyuk; Lee, Taehee; Lee, Seungwoo; Suk, Hyyong

    2014-10-01

    The tapered plasma density in a gas-filled capillary waveguide can suppress the dephasing problem in laser wakefield acceleration (LWFA). As a result, the acceleration distance and the gained electron energy are expected to be increased. For this purpose, we developed a tapered capillary waveguide, which can produce a plasma density of ~ 1018 cm-3. Using this capillary discharge plasma, we performed the acceleration experiments with the high power laser system (20 TW/40 fs) constructed at GIST. In this presentation, the detailed electron acceleration experiments will be reported.

  16. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.

    PubMed

    Yoo, Seung Hoon; Cho, Ilsung; Cho, Sungho; Song, Yongkeun; Jung, Won-Gyun; Kim, Dae-Hyun; Shin, Dongho; Lee, Se Byeong; Pae, Ki-Hong; Park, Sung Yong

    2014-12-01

    Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm.

  17. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  18. The influence of the Earth's magnetosphere on the high-energy solar protons

    NASA Technical Reports Server (NTRS)

    Bazilevskaya, G. A.; Makhmutov, V. S.; Charakhchyan, T. N.

    1985-01-01

    In the Earth's polar regions the intensity of the solar protons with the energy above the critical energy of geomagnetic cutoff is the same as in the interplanetary space. The penumbra in the polar regions is small and the East-West effect is also small. However the geomagnetic cutoff rigidity R sub c in polar regions is difficult to calculate because it is not sufficient to include only the internal sources of the geomagnetic field. During the magneto-quiescent periods the real value of R sub c can be less by 0.1 GV than the calculated value because of the external sources. During the geomagnetic storms the real value of R sub c is still lower.

  19. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    SciTech Connect

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs.

  20. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  1. Shock-Wave Acceleration of Protons on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2016-10-01

    The creation of an electrostatic shock wave and ensuing ion acceleration is studied on the OMEGA EP Laser System at the Laboratory for Laser Energetics. Previous work using a 10- μm CO2 laser in a H2 gas jet shows promising results for obtaining narrow spectral features in the accelerated proton spectra. Scaling the shock-wave acceleration mechanism to the 1- μm-wavelength drive laser makes it possible to use petawatt-scale laser systems such as OMEGA-EP, but involves tailoring of the plasma profile. To accomplish the necessitated sharp rise to near-critical plasma density and a long exponential fall, an 1- μm-thick CH foil is illuminated on the back side by thermal x rays produced from an irradiated gold foil. The plasma density is measured using the fourth-harmonic probe system, the accelerating fields are probed using an orthogonal proton source, and the accelerated protons and ions are detected with a Thomson parabola. These results will be presented and compared with particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and LLNL's Laboratory Directed Research and Development program under project 15-LW-095.

  2. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    SciTech Connect

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  3. High energy accelerator and colliding beam user group: Progress report, March 1, 1987-February 29, 1988

    SciTech Connect

    Not Available

    1987-09-01

    Progress is reported on the OPAL experiment at LEP, including construction and assembly of the hadron calorimeter and development of OPAL software. Progress on the JADE experiment, which examines e/sup +/e/sup -/ interactions at PETRA, and of the PLUTO collaboration are also discussed. Experiments at Fermilab are reported, including deep inelastic muon scattering at TeV II, the D0 experiment at TeV I, and hadron jet physics. Neutrino-electron elastic scattering and a search for point-sources of ultra-high energy cosmic rays are reported. Other activities discussed include polarization in electron storage rings, participation in studies for the SSC and LEP 200, neutron-antineutron oscillations, and the work of the electronics support group. High energy physics computer experience is also discussed. 158 refs. (LEW)

  4. High energy density proton exchange membrane fuel cell with dry reactant gases

    SciTech Connect

    Srinivasan, S.; Gamburzev, S.; Velev, O.A.

    1996-12-31

    Proton exchange membrane fuel cells (PEMFC) require careful control of humidity levels in the cell stack to achieve a high and stable level of performance. External humidification of the reactant gases, as in the state-of-the-art PEMFCs, increases the complexity, the weight, and the volume of the fuel cell power plant. A method for the operation of PEMFCs without external humidification (i.e., self-humidified PEMFCs) was first developed and tested by Dhar at BCS Technology. A project is underway in our Center to develop a PEMFC cell stack, which can work without external humidification and attain a performance level of a current density of 0.7 A/cm{sup 2} at a cell potential of 0.7 V, with hydrogen/air as reactants at 1 atm pressure. In this paper, the results of our efforts to design and develop a PEMFC stack requiring no external humidification will be presented. This paper focuses on determining the effects of type of electrodes, the methods of their preparation, as well as that of the membrane and electrode assembly (MEA), platinum loading and types of electrocatalyst on the performance of the PEMFC will be illustrated.

  5. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  6. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage.

    PubMed

    Barberio, M; Veltri, S; Scisciò, M; Antici, P

    2017-03-07

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  7. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-03-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  8. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    PubMed Central

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-01-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient. PMID:28266496

  9. Acceleration of polarized protons at Saturne: First results

    SciTech Connect

    Arvieu, J.

    1982-03-20

    The accelertor SATURNE is a synchrotron which accelerates particles up to P/Z = 3.8 GeV/c. Thus the maximum energy for protons T/sub p/ is about 3 GeV, and for deuterons T/sub d/ is about 2.3 GeV. It is equipped with a polarized ion source (HYPERION, the name of a satellite of the Saturne planet) of the ''atomic beam'' type producing either protons or deuterons with either vector or tensor polarization. A heavy-ion source (CREYBIS) for production of ions up to mass 40 is now being tested.

  10. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

    NASA Astrophysics Data System (ADS)

    Wang, W. T.; Li, W. T.; Liu, J. S.; Zhang, Z. J.; Qi, R.; Yu, C. H.; Liu, J. Q.; Fang, M.; Qin, Z. Y.; Wang, C.; Xu, Y.; Wu, F. X.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2016-09-01

    By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ˜0.2 mrad rms divergence. The maximum six-dimensional brightness B6 D ,n is estimated as ˜6.5 ×1 015 A /m2/0.1 % , which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.

  11. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  12. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    SciTech Connect

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.

  13. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    SciTech Connect

    Chang, Feng-Yin; Chen, Pisin; Lin, Guey-Lin; Noble, Robert; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  14. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk

    NASA Technical Reports Server (NTRS)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.

    1992-01-01

    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  15. Electron acceleration to high energies at quasi-parallel shock waves in the solar corona

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.

  16. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams.

    PubMed

    Lourenço, A; Shipley, D; Wellock, N; Thomas, R; Bouchard, H; Kacperek, A; Fracchiolla, F; Lorentini, S; Schwarz, M; MacDougall, N; Royle, G; Palmans, H

    2017-03-20

    The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, [Formula: see text]. Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, [Formula: see text], between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, [Formula: see text] and [Formula: see text] factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental [Formula: see text] values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, [Formula: see text] correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest [Formula: see text] values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, [Formula: see text] factors were deviating more from unity than [Formula: see text] factors

  17. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  18. Acceleration tests of a 3 GHz proton linear accelerator (LIBO) for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Martinis, C.; Giove, D.; Amaldi, U.; Berra, P.; Crandall, K.; Mauri, M.; Weiss, M.; Zennaro, R.; Rosso, E.; Szeless, B.; Vretenar, M.; Masullo, M. R.; Vaccaro, V.; Calabretta, L.; Rovelli, A.

    2012-07-01

    This paper describes the acceleration tests performed at the Catania LNS Laboratory on a 3 GHz linac module of the side coupled type, which boosts the proton energy of a beam extracted from a cyclotron from 62 to 72 MeV. The output proton energy was measured with two devices: a NaI(Tl) crystal and a bending magnet. The experimental spectra are in good agreement with the calculated ones. From their shape it is obtained that (18±3.0)% of the transmitted protons fall in a ±2 MeV interval centered around 72 MeV. This result is in good agreement with the 20% value derived from the simulation of the acceleration process. The measured energy of the accelerated protons was used to check that the shunt impedance of the structure is equal to the computed one within 3%. This was the first time that a 3 GHz structure has been used to accelerate protons, and the results of the tests have demonstrated that a high frequency linac can be used as a cyclotron booster.

  19. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  20. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-07-20

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  1. High-energy x-ray imaging diagnostics of nanosecond pulse accelerators

    NASA Astrophysics Data System (ADS)

    Smith, Graham W.; Hohlfelder, Robert J.; Tribe, Alun J.; Beutler, David E.; Gallegos, Roque R.; Seymour, Calvin L. G.; Thompson, Jon A.

    2007-01-01

    X-ray imaging has been undertaken on Sandia National Laboratories' radiation effects x-ray simulators. These simulators typically yield a single very short (<20ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad (Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.5 to 1.8MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and an evaluation of the capability of the spectrometer are presented.

  2. New estimation method of neutron skyshine for a high-energy particle accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Jung, Nam-Suk; Lee, Hee-Seock; Ko, Seung-Kook

    2016-09-01

    A skyshine is the dominant component of the prompt radiation at off-site. Several experimental studies have been done to estimate the neutron skyshine at a few accelerator facilities. In this work, the neutron transports from a source place to off-site location were simulated using the Monte Carlo codes, FLUKA and PHITS. The transport paths were classified as skyshine, direct (transport), groundshine and multiple-shine to understand the contribution of each path and to develop a general evaluation method. The effect of each path was estimated in the view of the dose at far locations. The neutron dose was calculated using the neutron energy spectra obtained from each detector placed up to a maximum of 1 km from the accelerator. The highest altitude of the sky region in this simulation was set as 2 km from the floor of the accelerator facility. The initial model of this study was the 10 GeV electron accelerator, PAL-XFEL. Different compositions and densities of air, soil and ordinary concrete were applied in this calculation, and their dependences were reviewed. The estimation method used in this study was compared with the well-known methods suggested by Rindi, Stevenson and Stepleton, and also with the simple code, SHINE3. The results obtained using this method agreed well with those using Rindi's formula.

  3. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  4. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  5. Novel x-ray imaging diagnostics of high-energy nanosecond pulse accelerators

    NASA Astrophysics Data System (ADS)

    Smith, Graham W.; Beutler, David E.; Bell, John D.; Seymour, Calvin L. G.; Hohlfelder, Robert J.; Gallegos, Roque R.; Dudley, John

    2005-03-01

    Pioneering x-ray imaging has been undertaken on a number of AWE"s and Sandia National Laboratories" radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  6. Radiation protection aspects of a new high-energy linear accelerator.

    PubMed

    O'Brien, P; Michaels, H B; Gillies, B; Aldrich, J E; Andrew, J W

    1985-01-01

    The Therac-25 is a new 25-MeV linear accelerator manufactured by Atomic Energy of Canada, Ltd. The first two units have recently been installed in Toronto, Ontario and Halifax, Nova Scotia. Calculations and measurements of primary and secondary radiation levels were made. Neutron dose-equivalent rates were measured inside and outside the room. The maximum leakage rate at 1 m from the accelerator target was 0.4% Sv per peak photon Gy. The tenth value layer for neutrons from the Therac-25, at the entrance to a one-legged maze was found to be 5.5 cm of polyethylene. Measurements were done to estimate daily technologist exposure due to induced activity in the treatment room.

  7. Radiation protection aspects of a new high-energy linear accelerator

    SciTech Connect

    O'Brien, P.; Michaels, H.B.; Gillies, B.; Aldrich, J.E.; Andrew, J.W.

    1985-01-01

    The Therac-25 is a new 25-MeV linear accelerator manufactured by Atomic Energy of Canada, Ltd. The first two units have recently been installed in Toronto, Ontario and Halifax, Nova Scotia. Calculations and measurements of primary and secondary radiation levels were made. Neutron dose-equivalent rates were measured inside and outside the room. The maximum leakage rate at 1 m from the accelerator target was 0.4% Sv per peak photon Gy. The tenth value layer for neutrons from the Therac-25, at the entrance to a one-legged maze was found to be 5.5 cm of polyethylene. Measurements were done to estimate daily technologist exposure due to induced activity in the treatment room.

  8. Can low-energy electrons affect high-energy physics accelerators?

    SciTech Connect

    Cimino, R.; Collins, I.R.; Furman, M.A.; Pivi, M.; Ruggiero, F.; Rumolo, G.; Zimmermann, F.

    2004-02-09

    Present and future accelerators performances may be limited by the electron cloud (EC) effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber.We present measurements of the total secondary electron yield (SEY) and the related energy distribution curves of the secondary electrons as a function of incident-electron energy. Particular attention has been paid to the emission process due to very low-energy primary electrons (<20 eV). It is shown that the SEY approaches unity and the reflected electron component is predominant in the limit of zero primary incident electron energy. Motivated by these measurements, we have used state-of-the-art EC simulation codes to predict how these results may impact the production of the electron cloud in the Large Hadron Collider, under construction at CERN, and the related surface heat load.

  9. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  10. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  11. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  12. Identifying nearby accelerators of ultrahigh energy cosmic rays using ultrahigh energy (and very high energy) photons.

    PubMed

    Taylor, A M; Hinton, J A; Blasi, P; Ave, M

    2009-07-31

    Ultrahigh energy photons (UHE, E>10(19) eV) are inevitably produced during the propagation of approximately 10(20) eV protons in extragalactic space. Their short interaction lengths (<20 Mpc) at these energies, combined with the impressive sensitivity of the Pierre Auger Observatory detector to these particles, makes them an ideal probe of nearby ultrahigh energy cosmic ray (UHECR) sources. We here discuss the particular case of photons from a single nearby (within 30 Mpc) source in light of the possibility that such an object might be responsible for several of the UHECR events published by the Auger collaboration. We demonstrate that the photon signal accompanying a cluster of a few >6 x 10(19) eV UHECRs from such a source should be detectable by Auger in the near future. The detection of these photons would also be a signature of a light composition of the UHECRs from the nearby source.

  13. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  14. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  15. Modeling particle acceleration and transport during high-energy solar gamma-ray events: Results from the HESPERIA project

    NASA Astrophysics Data System (ADS)

    Afanasiev, Alexandr; Battarbee, Markus; Vainio, Rami; Rouillard, Alexis; Aran, Angels; Sipola, Robert; Pomoell, Jens

    2016-04-01

    The EU/H2020 project "High Energy Solar Particle Events foRecastIng and Analysis" (HESPERIA) has an objective to gain improved understanding of solar energetic particle (SEP) acceleration, release and transport related to long-duration gamma-ray emissions recently observed by Fermi/LAT. We have performed simulation studies for particle acceleration and transport for the 17 May 2012 event, which is also a Ground Level Enhancement (GLE) of solar cosmic rays. The particle event is modeled assuming that it is accelerated by the shock wave driven by the erupting coronal mass ejection (CME). We first analyze the 3-dimensional propagation of the shock through the corona using imaging observations from SDO, SOHO and STEREO spacecraft. The derived kinematics of the shock is combined with magnetohydrodynamic and potential field modeling of the ambient corona to derive the evolution of the shock parameters on a large set of field lines. We then employ the self-consistent Coronal Shock Acceleration (CSA) simulation model of the University of Turku to study the acceleration process on selected field lines and combine it with a new model of downstream particle transport to assess the energy spectrum and time profile of accelerated particles precipitating in the dense surface regions below the corona. We also employ the Shock and Particle (SaP) simulation model of the University of Barcelona to analyze the interplanetary counterpart of the Fermi event. In this paper, we will present the observations of the event, our approach to the modeling and the first results of the analysis. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).

  16. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  17. ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24

    SciTech Connect

    Li, C.; Sun, L. P.; Firoz, Kazi A.; Miroshnichenko, L. I.

    2013-06-10

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 {+-} 0.05 AU) and solar particle release time (01:29 {+-} 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released {approx}10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of {approx}1.12 GeV, are probably accelerated by the CME-driven shock when it travels to {approx}3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

  18. QUASI-OPTICAL 3-dB HYBRID FOR FUTURE HIGH-ENERGY ACCELERATORS

    SciTech Connect

    Jay L. Hirshfield

    2005-12-15

    Phase-controlled wave combiners-commutators and isolators for protecting rf sources against reflection from the accelerating structure can be built using a 3-dB hybrid built around a metallic grating used in a ''magic-Y'' configuration. Models of the magic-Y were designed and tested, both at 34.272 GHz using the Omega-P Ka-band magnicon, and at 11.424 GHz using the Omega-P/NRL X-band magnicon. All elements of the magic-Y were optimized analytically and numerically. A non-vacuum 34 GHz model of the magic Y was built and tested experimentally at a low power. An engineering design for the high power (vacuum) compressor was configured. Similar steps were taken for the 11-GHz version.

  19. Prospects of target nanostructuring for laser proton acceleration

    NASA Astrophysics Data System (ADS)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  20. Prospects of target nanostructuring for laser proton acceleration

    PubMed Central

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-01-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479

  1. First acceleration of a proton beam in a side coupled drift tube linac

    NASA Astrophysics Data System (ADS)

    Ronsivalle, C.; Picardi, L.; Ampollini, A.; Bazzano, G.; Marracino, F.; Nenzi, P.; Snels, C.; Surrenti, V.; Vadrucci, M.; Ambrosini, F.

    2015-07-01

    We report the first experiment aimed at the demonstration of low-energy protons acceleration by a high-efficiency S-band RF linear accelerator. The proton beam has been accelerated from 7 to 11.6 MeV by a 1 meter long SCDTL (Side Coupled Drift Tube Linac) module powered with 1.3 MW. The experiment has been done in the framework of the Italian TOP-IMPLART (Oncological Therapy with Protons-Intensity Modulated Proton Therapy Linear Accelerator for Radio-Therapy) project devoted to the realization of a proton therapy centre based on a proton linear accelerator for intensity modulated cancer treatments to be installed at IRE-IFO, the largest oncological hospital in Rome. It is the first proton therapy facility employing a full linear accelerator scheme based on high-frequency technology.

  2. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  3. Solar Flares as Natural Particle Accelerators: A High-energy View from X-ray Observations and Theoretical Models

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2008-07-01

    Solar flares, which have significant space weather consequences, are natural particle accelerators and one of the most spectacular phenomena of solar activity. RHESSI is the most advanced solar X-ray and gamma-ray mission ever flown and has opened a new era in solar flare research following its launch in 2002. This book offers a glimpse of this active research area from a high-energy perspective and contains a comprehensive guideline for RHESSI data analysis. Its main theme is the investigation of particle acceleration and transport in solar flares. The strength of this book lies in its well-balanced account of the latest X-ray observations and theoretical models. The observational focus is on the morphology and spectra of imaged X-ray sources produced by nonthermal electrons or hot plasma. The modeling takes the novel approach of combining the Fokker-Planck treatment of the accelerated particles with the hydrodynamic treatment of the heated atmosphere. Applications of this modeling technique reach beyond the Sun to other exotic environments in the universe, such as extrasolar planetary auroras, stellar flares, and flares on accretion disks around neutron stars and black holes.

  4. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    SciTech Connect

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk; Valishev, A.

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  5. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  6. Emittance growth mechanisms for laser-accelerated proton beams.

    PubMed

    Kemp, Andreas J; Fuchs, J; Sentoku, Y; Sotnikov, V; Bakeman, M; Antici, P; Cowan, T E

    2007-05-01

    In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be < 0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan, Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics.

  7. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    NASA Astrophysics Data System (ADS)

    Simos, N.; Zhong, Z.; Ghose, S.; Kirk, H. G.; Trung, L.-P.; McDonald, K. T.; Kotsina, Z.; Nocera, P.; Assmann, R.; Redaelli, S.; Bertarelli, A.; Quaranta, E.; Rossi, A.; Zwaska, R.; Ammigan, K.; Hurh, P.; Mokhov, N.

    2016-11-01

    A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5 ×1020 p /cm2 . The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF) selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (˜5 ×1018 p cm-2 ). In addition, the

  8. Effect of high energy proton implantation on the device characteristics of InAlGaAs-capped InGaAs/GaAs quantum dot based infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Upadhyay, S.; Mandal, A.; Ghadi, H.; Pal, D.; Subrahmanyam, N. B. V.; Singh, P.; Chakrabarti, S.

    2015-05-01

    Self-assembled In(Ga)As/GaAs quantum dot infrared photodetectors (QDIPs) have promising applications in the midwavelength infrared and long-wavelength infrared regions for various defense and space application purposes. It has been demonstrated that the performance of QDIPs has improved significantly by using architectures such as dots-in-awell, different combinational capping or post growth treatment with high energy hydrogen ions. In this work, we enhanced the electrical properties InGaAs/GaAs using high energy proton implantation. Irradiation with proton resulted suppression in field assisted tunnelling of dark current by three orders for implanted devices. Photoluminescence (PL) enhancement was observed up to certain dose of protons due to eradication of as-grown defects and non radiative recombination centers. In addition, peak detectivity (D*) increased up to two orders of magnitude from 6.1 x108 to 1.0 × 1010 cm-Hz1/2/W for all implanted devices.

  9. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.

    PubMed

    Hashemi, Seyed Mehdi; Hashemi-Malayeri, Bijan; Raisali, Gholamreza; Shokrani, Parvaneh; Sharafi, Ali Akbar; Jafarizadeh, Mansour

    2008-01-01

    High-energy linear accelerators (linacs) have several advantages, including low skin doses and high dose rates at deep-seated tumours. But, at energies more than 8 MeV, photonuclear reactions produce neutron contamination around the therapeutic beam, which may induce secondary malignancies. In spite of improvements achieved in medical linac designs, many countries still use conventional (non-intensity-modulated radiotherapy) linacs. Hence, in these conventional machines, fitting the beam over the treatment volume may require using blocks. Therefore, the effect of these devices on neutron production of linacs needs to be studied. The aim of this study was to investigate the effect of field shaping blocks on photoneutron dose in the treatment plane for two high-energy medical linacs. Two medical linacs, a Saturn 43 (25 MeV) and an Elekta SL 75/25 (18 MeV), were studied. Polycarbonate (PC) films were used to measure the fluence of photoneutrons produced by these linacs. After electrochemical etching of the PC films, the neutron dose equivalent was calculated at the isocentre and 50 cm away from the isocentre. It was noted that by increasing the distance from the centre of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both the open and blocked fields. Increasing the energy of the photons causes an increase in the amount of photoneutron dose equivalent. At 25 MeV photon energy, the lead blocks cause a meaningful increase in the dose equivalent of photoneutrons. In this research, a 30% increase was seen in neutron dose contribution to central axis dose at the isocentre of a 25 MeV irregular field shaped by lead blocks. It is concluded that lead blocks must be considered as a source of photoneutron production when treating irregular fields with high-energy photons.

  10. High power solid state rf amplifier for proton accelerator.

    PubMed

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  11. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    NASA Astrophysics Data System (ADS)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  12. Technical assessment of the Loma Linda University proton therapy accelerator

    SciTech Connect

    Not Available

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ.

  13. Proton and Ion Acceleration on the Contrast Upgraded Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Roycroft, Rebecca; Jiao, Xuejing; Kupfer, Rotem; Tiwari, Ganesh; Wagner, Craig; Yandow, Andrew; Franke, Philip; Dyer, Gilliss; Gaul, Erhard; Toncian, Toma; Ditmire, Todd; Hegelich, Bjorn; CenterHigh Energy Density Science Team

    2016-10-01

    Recent upgrades to the Texas Petawatt (TPW) laser system have eliminated pre-pulses and reduced the laser pedestal, resulting in improved laser contrast. Previously unwanted pre-pulses and amplified spontaneous emission (ASE) would ionize targets thinner than 1 micron, leaving an under-dense plasma which was not capable of accelerating ions to high energies. After the upgrade the contrast was drastically improved allowing us to successfully shoot targets as thin as 20 nm without plasma mirrors. We have also observed evidence of relativistic transparency and Break-Out Afterburner (BOA) ion acceleration when shooting ultra-thin, nanometer scale targets. Data taken with a wide angle ion spectrometer (IWASP) showed the characteristic asymmetry of BOA in the plane orthogonal to the laser polarization on thin targets but not on micron scale targets. Thick micron scale targets saw improvement as well; shots on 2 μm thick gold targets saw ions with energies up to 100 MeV, which broke the former record proton energy on the TPW. Switching the focusing optic from an f/3 parabolic mirror to an f/40 spherical mirror showed improvement in the number of low energy protons created, and provided a source for hundreds of picosecond heating of aluminum foils for warm dense matter measurements.

  14. Proton Acceleration Driven by a Nanosecond Laser from a Cryogenic Thin Solid-Hydrogen Ribbon

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Velyhan, A.; Dostal, J.; Ullschmied, J.; Perin, J. P.; Chatain, D.; Garcia, S.; Bonnay, P.; Pisarczyk, T.; Dudzak, R.; Rosinski, M.; Krasa, J.; Giuffrida, L.; Prokupek, J.; Scuderi, V.; Psikal, J.; Kucharik, M.; De Marco, M.; Cikhardt, J.; Krousky, E.; Kalinowska, Z.; Chodukowski, T.; Cirrone, G. A. P.; Korn, G.

    2016-10-01

    A high-power pulsed laser is focused onto a solid-hydrogen target to accelerate forward a collimated stream of protons in the range 0.1-1 MeV, carrying a very high energy of about 30 J (˜5 % laser-ion conversion efficiency) and extremely large charge of about ˜0.1 mC per laser pulse. This result is achieved for the first time through the combination of a sophisticated target system (H2 thin ribbon) operating at cryogenic temperature (˜10 K ) and a very hot H plasma (˜300 keV "hot electron" temperature) generated by a subnanosecond laser with an intensity of ˜3 ×1016 W /cm2 . Both the H plasma and the accelerated proton beam are fully characterized by in situ and ex situ diagnostics. Results obtained using the ELISE (experiments on laser interaction with solid hydrogen) H2 target delivery system at PALS (Prague) kJ-class laser facility are presented and discussed along with potential multidisciplinary applications.

  15. Acceleration of petaelectronvolt protons in the Galactic Centre.

    PubMed

    2016-03-24

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 10(15) electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators--not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays--has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  16. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  17. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  18. Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams.

    PubMed

    Schell, S; Wilkens, J J

    2009-10-07

    Currently, energy spectra of laser accelerated proton beams are far from being monoenergetic. For their application in radiation therapy, energy selection systems using magnetic fields have been proposed to single out particles with the desired energy. These systems allow the choice of protons between a lowest and a highest energy. In this work, we present a slight modification that allows us to influence the relative number of particles per energy bin. In fact, the transmitted spectrum can be shaped in such a way that it corresponds to a full spread out Bragg peak delivered simultaneously. This change of the spectrum can be achieved by inserting suitably formed scattering material at the central plane of the energy selection system where the particles are separated in space depending on their energy. With the help of Monte Carlo simulations we analysed both simple wedge geometries and various stacks of lead slices. We found that these configurations can provide energy spectra that naturally produce spread out Bragg peaks within one laser shot. This increases the particle efficiency of the whole system and makes laser accelerated protons more suitable for radiation therapy.

  19. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  20. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  1. Cosmic-Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.

    2001-09-01

    We investigate the production of cosmic-ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large-scale structure formation that include directly the acceleration, transport, and energy losses of the high-energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the CR protons accounts for losses owing to adiabatic expansion/compression, Coulomb collisions, and inelastic p-p scattering. Our results suggest that CR protons produced at shocks formed in association with the process of large-scale structure formation could amount to a substantial fraction of the total pressure in the intracluster medium. Their presence should be easily revealed by GLAST (Gamma-Ray Large-Area Space Telescope) through detection of γ-ray flux from the decay of π0 produced in inelastic p-p collisions of such CR protons with nuclei of the intracluster gas. This measurement will allow a direct determination of the CR pressure contribution in the intracluster medium. We also find that the spatial distribution of CR is typically more irregular than that of the thermal gas because it is more influenced by the underlying distribution of shocks. This feature is reflected in the appearance of our γ-ray synthetic images. Finally, the average CR pressure distribution appears statistically slightly more extended than the thermal pressure.

  2. Two-stage acceleration of protons from relativistic laser-solid interaction

    SciTech Connect

    Liu Jinlu; Sheng, Z. M.; Zheng, J.; Wang, W. M.; Yu, M. Y.; Liu, C. S.; Zhang, J.

    2012-12-21

    A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are accelerated and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.

  3. Effect of high energy proton irradiation on InAs/GaAs quantum dots: Enhancement of photoluminescence efficiency (up to {approx}7 times) with minimum spectral signature shift

    SciTech Connect

    Sreekumar, R.; Mandal, A.; Gupta, S.K.; Chakrabarti, S.

    2011-11-15

    Graphical abstract: Authors demonstrate enhancement in photoluminescence efficiency (7 times) in single layer InAs/GaAs quantum dots using proton irradiation without any post-annealing treatment via either varying proton energy (a) or fluence (b). The increase in PL efficiency is explained by a proposed model before (c) and after irradiation (d). Highlights: {yields} Proton irradiation improved PL efficiency in InAs/GaAs quantum dots (QDs). {yields} Proton irradiation favoured defect and strain annihilation in InAs/GaAs QDs. {yields} Reduction in defects/non-radiative recombination improved PL efficiency. {yields} Protons could be used to improve PL efficiency without spectral shift. {yields} QD based devices will be benefited by this technique to improve device performance. -- Abstract: We demonstrate 7-fold increase of photoluminescence efficiency in GaAs/(InAs/GaAs) quantum dot hetero-structure, employing high energy proton irradiation, without any post-annealing treatment. Protons of energy 3-5 MeV with fluence in the range (1.2-7.04) x 10{sup 12} ions/cm{sup 2} were used for irradiation. X-ray diffraction analysis revealed crystalline quality of the GaAs cap layer improves on proton irradiation. Photoluminescence study conducted at low temperature and low laser excitation density proved the presence of non-radiative recombination centers in the system which gets eliminated on proton irradiation. Shift in photoluminescence emission towards higher wavelength upon irradiation substantiated the reduction in strain field existed between GaAs cap layer and InAs/GaAs quantum dots. The enhancement in PL efficiency is thus attributed to the annihilation of defects/non-radiative recombination centers present in GaAs cap layer as well as in InAs/GaAs quantum dots induced by proton irradiation.

  4. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  5. Lepton Acceleration in the Vicinity of the Event Horizon: High-energy and Very-high-energy Emissions from Rotating Black Holes with Various Masses

    NASA Astrophysics Data System (ADS)

    Hirotani, Kouichi; Pu, Hung-Yi; Chun-Che Lin, Lupin; Chang, Hsiang-Kuang; Inoue, Makoto; Kong, Albert K. H.; Matsushita, Satoki; Tam, Pak-Hin T.

    2016-12-01

    We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi/LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.

  6. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; ...

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less

  7. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  8. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    SciTech Connect

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-11-10

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  9. Electrons and protons acceleration during the first GLE event of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Firoz, Kazi, A.; Sun, Lingpeng; Miroshnichenko, Leonty, I.

    2013-04-01

    High-energy particles were recorded by the near-Earth spacecraft particle detectors and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first Ground Level Enhancement (GLE) of solar cycle 24. In present study, we try to identify the acceleration source of solar energetic particles (SEPs) by combining in-situ particle measurements from WIND/3DP, ACE/EPAM, GOES, and solar cosmic rays (SCRs) registered by several NMs, as well as the remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the path length (1.25 ± 0.05 AU) of SEPs in the interplanetary magnetic field (IMF) and solar particle release (SPR) time (01:29 ± 1 UT) of the first arriving electrons by using their velocity dispersion and taking into account the contamination effects. It is found that the electrons impulsive injection phase, indicated by the dramatic change of spectral index, is consistent with the flare non-thermal emission and type III radio bursts. The potential field source surface (PFSS) modeled open-field lines rooted in the active region (AR) provide escaping channels for flare accelerated electrons. Meanwhile, relativistic protons are found to be released ~10 min later than the electrons, assuming their scatter-free travel along the same IMF path length. Combing multi-wavelength imaging data on the prominence eruption and coronal mass ejection (CME), we obtain some evidence of that GLE protons, with estimated kinetic energy of ~1.12 GeV, are probably accelerated by the CME-driven shock when it travels to ~3.07 solar radii.

  10. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  11. The high-energy proton fluxes in the SAA observed with REM aboard the MIR orbital station

    NASA Technical Reports Server (NTRS)

    Buhler, P.; Zehnder, A.; Kruglanski, M.; Daly, E.; Adams, L.

    2002-01-01

    During two years, from November 1994 to 1996, the particle detector REM measured the highly energetic electron and proton environment at the outside of the MIR orbital station. Using mission averaged data we investigate various aspects of the proton fluxes in the SAA. Comparison with the radiation belt model AP8 reveal important differences. c2002 Elsevier Science Ltd. All rights reserved.

  12. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy.

  13. Autosomal mutations in mouse kidney epithelial cells exposed to high-energy protons in vivo or in culture.

    PubMed

    Turker, Mitchell S; Grygoryev, Dmytro; Dan, Cristian; Eckelmann, Bradley; Lasarev, Michael; Gauny, Stacey; Kwoh, Ely; Kronenberg, Amy

    2013-05-01

    Proton exposure induces mutations and cancer, which are presumably linked. Because protons are abundant in the space environment and significant uncertainties exist for the effects of space travel on human health, the purpose of this study was to identify the types of mutations induced by exposure of mammalian cells to 4-5 Gy of 1 GeV protons. We used an assay that selects for mutations affecting the chromosome 8-encoded Aprt locus in mouse kidney cells and selected mutants after proton exposure both in vivo and in cell culture. A loss of heterozygosity (LOH) assay for DNA preparations from the in vivo-derived kidney mutants revealed that protons readily induced large mutational events. Fluorescent in situ hybridization painting for chromosome 8 showed that >70% of proton-induced LOH patterns resembling mitotic recombination were in fact the result of nonreciprocal chromosome translocations, thereby demonstrating an important role for DNA double-strand breaks in proton mutagenesis. Large interstitial deletions, which also require the formation and resolution of double-strand breaks, were significantly induced in the cell culture environment (14% of all mutants), but to a lesser extend in vivo (2% of all mutants) suggesting that the resolution of proton-induced double-strand breaks can differ between the intact tissue and cell culture microenvironments. In total, the results demonstrate that double-strand break formation is a primary determinant for proton mutagenesis in epithelial cell types and suggest that resultant LOH for significant genomic regions play a critical role in proton-induced cancers.

  14. Induction of Cell Death Through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    2012-07-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  15. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Lung Epithelial Cells Exposed to High Energy Protons*

    PubMed Central

    Baluchamy, Sudhakar; Ravichandran, Prabakaran; Periyakaruppan, Adaikkappan; Ramesh, Vani; Hall, Joseph C.; Zhang, Ye; Jejelowo, Olufisayo; Gridley, Daila S.; Wu, Honglu; Ramesh, Govindarajan T.

    2010-01-01

    Radiation affects several cellular and molecular processes, including double strand breakage and modifications of sugar moieties and bases. In outer space, protons are the primary radiation source that poses a range of potential health risks to astronauts. On the other hand, the use of proton irradiation for tumor radiation therapy is increasing, as it largely spares healthy tissues while killing tumor tissues. Although radiation-related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton irradiation remain poorly understood. Therefore, in this study, we irradiated rat lung epithelial cells with different doses of protons and investigated their effects on cell proliferation and death. Our data show an inhibition of cell proliferation in proton-irradiated cells with a significant dose-dependent activation and repression of reactive oxygen species and antioxidants glutathione and superoxide dismutase, respectively, compared with control cells. In addition, the activities of apoptosis-related genes such as caspase-3 and -8 were induced in a dose-dependent manner with corresponding increased levels of DNA fragmentation in proton-irradiated cells compared with control cells. Together, our results show that proton irradiation alters oxidant and antioxidant levels in cells to activate the apoptotic pathway for cell death. PMID:20538614

  16. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    NASA Technical Reports Server (NTRS)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  17. Probabilistic Forecast of Solar Particle Fluence for Mission Durations and Exposure Assessment in Consideration of Integral Proton Fluence at High Energies

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Tylka, A. J.; Dietrich, W. F.; Cucinotta, F. A.

    2012-12-01

    The occasional occurrence of solar particle events (SPEs) with large amounts of energy is non-predictable, while the expected frequency is strongly influenced by solar cycle activity. The potential for exposure to large SPEs with high energy levels is the major concern during extra-vehicular activities (EVAs) on the Moon, near Earth object, and Mars surface for future long duration space missions. We estimated the propensity for SPE occurrence with large proton fluence as a function of time within a typical future solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Φ30. The database includes a comprehensive collection of historical data set for the past 5 solar cycles. Using all the recorded proton fluence of SPEs, total fluence distributions of Φ30, Φ60, and Φ100 were simulated ranging from its 5th to 95th percentile for each mission durations. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the radiation cancer risk associated with energetic particles for large events. For radiation exposure assessments of major SPEs, we used the spectral functional form of a double power law in rigidity (the so-called Band function), which have provided a satisfactory representation of the combined satellite and neutron monitor data from ~10 MeV to ~10 GeV. The dependencies of exposure risk were evaluated as a function of proton fluence at a given energy threshold of 30, 60, and 100 MeV, and overall risk prediction was improved as the energy level threshold increases from 30 to 60 to 100 MeV. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  18. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy ( 15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  19. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  20. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  1. Scaling of cross sections for K-electron capture by high-energy protons and alpha-particles from the multielectron atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1979-01-01

    Electron capture by protons from H, He, and the K shell of Ar, and electron capture by alpha particles from He are considered. Using the experimental data, a function of the capture cross section is formed. It is shown that when this function is plotted versus the inverse of the collision energies, at high energies a straight line is obtained. At lower energies the line is concave up or down, depending on the charge of the projectile and/or the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High-energy scaling formulas for K-electron capture by low-charge projectiles are given.

  2. Scaling of cross sections for K-electron capture by high-energy protons and alpha-particles from the multielectron atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1976-01-01

    Electron capture by protons from H, He, and the K-shell of Ar, and alpha particles from He are considered. It is shown that when a certain function of the experimental cross sections is plotted versus the inverse of the collision energy, at high energies the function falls on a straight line. At lower energies the function concaves up or down, depending on the charge of the projectile, the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High energy scaling formulas for K-electron capture by low-charge projectiles are given.

  3. Optimization of the combined proton acceleration regime with a target composition scheme

    SciTech Connect

    Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.

    2016-01-15

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  4. High-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed-Symmetry 2{sup +} States in {sup 94}Mo

    SciTech Connect

    Burda, O.; Kuhar, M.; Lenhardt, A.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Holt, J. D.; Pietralla, N.; Scholten, O.

    2007-08-31

    High-energy-resolution inelastic electron scattering (at the S-DALINAC) and proton scattering (at iThemba LABS) experiments permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2{sup +} states of the nucleus {sup 94}Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic nuclear model calculations. The purity of two-phonon 2{sup +} states is extracted.

  5. Determination of the proton-to-helium ratio in cosmic rays at ultra-high energies from the tail of the Xmax distribution

    NASA Astrophysics Data System (ADS)

    Yushkov, A.; Risse, M.; Werner, M.; Krieg, J.

    2016-12-01

    We present a method to determine the proton-to-helium ratio in cosmic rays at ultra-high energies. It makes use of the exponential slope, Λ, of the tail of the Xmax distribution measured by an air shower experiment. The method is quite robust with respect to uncertainties from modeling hadronic interactions and to systematic errors on Xmax and energy, and to the possible presence of primary nuclei heavier than helium. Obtaining the proton-to-helium ratio with air shower experiments would be a remarkable achievement. To quantify the applicability of a particular mass-sensitive variable for mass composition analysis despite hadronic uncertainties we introduce as a metric the 'analysis indicator' and find an improved performance of the Λ method compared to other variables currently used in the literature. The fraction of events in the tail of the Xmax distribution can provide additional information on the presence of nuclei heavier than helium in the primary beam.

  6. The quantification of wound healing as a method to assess late radiation damage in primate skin exposed to high-energy protons

    NASA Astrophysics Data System (ADS)

    Cox, A. B.; Lett, J. T.

    In an experiment examining the effects of space radiations on primates, different groups of rhesus monkeys (Macaca mulatta) were exposed to single whole-body doses of 32- or 55-MeV protons. Survivors of those exposures, together with age-matched controls, have been monitored continuously since 1964 and 1965. Late effects of nominal proton doses ranging from 2-6 Gray have been measured in vitro using skin fibroblasts from the animals. A logical extension of that study is reported here, and it involves observations of wound healing after 3-mm diameter dermal punches were removed from the ears (pinnae) of control and irradiated monkeys. Tendencies in the reduction of competence to repair cutaneous wound have been revealed by the initial examinations of animals that received doses greater than 2 Gy more than 2 decades earlier. These trends indicate that this method of assessing radiation damage to skin exposed to high-energy radiations warrants further study.

  7. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    NASA Astrophysics Data System (ADS)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  8. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  9. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  10. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  11. Histologic effects of high energy electron and proton irradiation of rat brain detected with a silver-degeneration stain

    NASA Astrophysics Data System (ADS)

    Switzer, R. C.; Bogo, V.; Mickley, G. A.

    1994-10-01

    Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-101Gy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of `degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, `beta astrocytes`.

  12. SU-E-T-748: Theoretical Investigation On Using High Energy Proton Beam for Total-Body-Irradiation

    SciTech Connect

    Zhang, M; Zou, J; Chen, T; Yue, N

    2015-06-15

    Purpose: The broad-slow-rising entrance dose region proximal to the Bragg peak made by a mono-energetic proton beam could potentially be used for total body irradiation (TBI). Due to the quasi-uniform dose deposition, customized thickness compensation may not be required to deliver a uniform dose to patients with varied thickness. We investigated the possibility, efficacy, and hardware requirement to use such proton beam for TBI. Methods: A wedge shaped water phantom with thickness varying from 2 cm to 40 cm was designed to mimic a patient. Geant4 based Monte Carlo code was used to simulate broad mono-energetic proton beams with energy ranging from 250 MeV to 300 MeV radiating the phantom. A 6 MV photon with 1 cm water equivalent build-up used for conventional TBI was also calculated. A paired-opposing beam arrangement with no thickness compensation was used to generate TBI plans for all beam energies. Dose from all particles were scored on a grid size of 2 mm{sup 3}. Dose uniformity across the phantom was calculated to evaluate the plan. The field size limit and the dose uniformity of Mevion S250 proton system was examined by using radiochromic films placed at extended treatment distance with the open large applicator and 90° gantry angle. Results: To achieve a maximum ± 7.5% dose variation, the largest patient thickness variation allowed for 250 MeV, 275 MeV, and 300 MeV proton beams were 27.0 cm, 34.9 cm and 36.7 cm. The value for 6 MV photon beam was only 8.0 cm to achieve the same dose variation. With open gantry, Mevion S250 system allows 5 m source-to-surface distance producing an expected 70 cm{sup 2} field size. Conclusion: Energetic proton beam can potentially be used to deliver TBI. Treatment planning and delivery would be much simple since no thickness compensation is required to achieve a uniform dose distribution.

  13. Accelerated prompt gamma estimation for clinical proton therapy simulations

    NASA Astrophysics Data System (ADS)

    Huisman, Brent F. B.; Létang, J. M.; Testa, É.; Sarrut, D.

    2016-11-01

    There is interest in the particle therapy community in using prompt gammas (PGs), a natural byproduct of particle treatment, for range verification and eventually dose control. However, PG production is a rare process and therefore estimation of PGs exiting a patient during a proton treatment plan executed by a Monte Carlo (MC) simulation converges slowly. Recently, different approaches to accelerating the estimation of PG yield have been presented. Sterpin et al (2015 Phys. Med. Biol. 60 4915-46) described a fast analytic method, which is still sensitive to heterogeneities. El Kanawati et al (2015 Phys. Med. Biol. 60 8067-86) described a variance reduction method (pgTLE) that accelerates the PG estimation by precomputing PG production probabilities as a function of energy and target materials, but has as a drawback that the proposed method is limited to analytical phantoms. We present a two-stage variance reduction method, named voxelized pgTLE (vpgTLE), that extends pgTLE to voxelized volumes. As a preliminary step, PG production probabilities are precomputed once and stored in a database. In stage 1, we simulate the interactions between the treatment plan and the patient CT with low statistic MC to obtain the spatial and spectral distribution of the PGs. As primary particles are propagated throughout the patient CT, the PG yields are computed in each voxel from the initial database, as a function of the current energy of the primary, the material in the voxel and the step length. The result is a voxelized image of PG yield, normalized to a single primary. The second stage uses this intermediate PG image as a source to generate and propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device, corresponding to the number of primaries desired. We achieved a gain of around 103 for both a geometrical heterogeneous phantom and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2% relative

  14. Response of Cs2LiYCl6:Ce (CLYC) to High Energy Protons

    SciTech Connect

    Coupland, Daniel David Schechtman; Stonehill, Laura Catherine; Goett III, John Jerome

    2015-11-23

    Cs2LiYCl6:Ce (CLYC) is a promising new inorganic scintillator for gamma and neutron detection. As a gamma-ray detector, it exhibits bright light output and better resolution and proportionality of response than traditional gamma-ray scintillators such as NaI. It is also highly sensitive to thermal neutrons through capture on 6Li, and recent experiments have demonstrated sensitivity to fast neutrons through interactions with 35Cl. The response of CLYC to other forms of radiation has not been reported. We have performed the first measurements of the response of CLYC to several-hundred MeV protons. We have collected digitized waveforms from proton events, and compare to those produced by gammas and thermal neutrons. Finally, we discuss the potential for pulse shape discrimination between them.

  15. The First Transverse Single Spin Measurement in High Energy Polarized Proton-Nucleus Collision at the PHENIX experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Nakagawa, I.

    2016-08-01

    Large single spin asymmetries in very forward neutron production seen using the PHENIX zero-degree calorimeters are a long established feature of transversely polarized proton-proton collisions at RHIC. Neutron production near zero degrees is well described by the one-pion exchange framework. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However, the amplitude predicted by the OPE is too small to explain the large observed asymmetries. A model introducing interference of pion and a 1-Reggeon exchanges has been successful in reproducing the experimental data. During the RHIC experiment in year 2015, RHIC delivered polarized proton collisions with Au and Al nuclei for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. The observed asymmetries showed surprisingly strong A-dependence in the inclusive forward neutron production, while the existing framework which was successfull in p+p only predicts moderate A- dependence. Thus the observed data are absolutely unexpected and unpredicted. In this report, experimental and theoretical efforts are discussed to disentangle the observed A-dependence using somewhat semi-inclusive type measurements and Monte-Carlo study, respectively.

  16. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (∼100–1000 m)

  17. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    PubMed

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  18. Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery

    SciTech Connect

    Loznikov, V. M. Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A.

    2013-10-15

    The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of accelerated particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained

  19. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  20. Laser acceleration of protons with an optically shaped, near-critical hydrogen gas target

    NASA Astrophysics Data System (ADS)

    Chen, Yu-hsin; Helle, Michael; Ting, Antonio; Gordon, Daniel; Dover, Nicholas; Ettlinger, Oliver; Najmudin, Zulfikar; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus

    2017-03-01

    We report our recent experimental results on CO2 laser acceleration of protons, with a near-critical hydrogen gas target tailored by a Nd:YAG laser-produced blast wave. Monoenergetic protons with energies up to 2.5 MeV were observed.

  1. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    NASA Astrophysics Data System (ADS)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  2. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  3. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    SciTech Connect

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-15

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  4. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-01

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  5. Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN

    SciTech Connect

    Zhang, Z.; Farzana, E.; Sun, W. Y.; Arehart, A. R.; Ringel, S. A.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.

    2015-10-21

    The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200–250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at E{sub C} − 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for N{sub I} and V{sub Ga} diffusion, irradiation-induced traps at E{sub C} − 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at E{sub C} − 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at E{sub C} − 1.25 and E{sub C} − 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.

  6. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    NASA Astrophysics Data System (ADS)

    Ting, A.; Gordon, D.; Helle, M.; Kaganovich, D.; Sprangle, P.; Hafizi, B.

    2010-11-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ˜1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called "bucket jumping" where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  7. Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks.

    PubMed

    Park, Jaehong; Caprioli, Damiano; Spitkovsky, Anatoly

    2015-02-27

    We study diffusive shock acceleration (DSA) of protons and electrons at nonrelativistic, high Mach number, quasiparallel, collisionless shocks by means of self-consistent 1D particle-in-cell simulations. For the first time, both species are found to develop power-law distributions with the universal spectral index -4 in momentum space, in agreement with the prediction of DSA. We find that scattering of both protons and electrons is mediated by right-handed circularly polarized waves excited by the current of energetic protons via nonresonant hybrid (Bell) instability. Protons are injected into DSA after a few gyrocycles of shock drift acceleration (SDA), while electrons are first preheated via SDA, then energized via a hybrid acceleration process that involves both SDA and Fermi-like acceleration mediated by Bell waves, before eventual injection into DSA. Using the simulations we can measure the electron-proton ratio in accelerated particles, which is of paramount importance for explaining the cosmic ray fluxes measured on Earth and the multiwavelength emission of astrophysical objects such as supernova remnants, radio supernovae, and galaxy clusters. We find the normalization of the electron power law is ≲10^{-2} of the protons for strong nonrelativistic shocks.

  8. Control of target-normal-sheath-accelerated protons from a guiding cone

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Yu, T. P.; Shao, F. Q.; Pukhov, A.

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  9. Optimizing proton therapy at the LBL medical accelerator. Final report

    SciTech Connect

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  10. Optimizing proton therapy at the LBL medical accelerator

    SciTech Connect

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  11. Pulsars as cosmic ray particle accelerators: Proton orbits

    NASA Technical Reports Server (NTRS)

    Thielheim, K. O.

    1985-01-01

    Proton orbits are calculated in the electromagnetic vacuum field of a magnetic point dipole rotating with its angular velocity omega perpendicular to its dipole moment mu by numerical integration of the Lorentz-Dirac equation. Trajectories are shown and discussed for various initial conditions. A critical surface is shown separating initial positions of protons which finally hit the pulsar in the polar region from those which finally recede to infinity.

  12. Challenge of ultra-high energies: ultimate limits, possible directions of technology, an approach to collective acceleration

    SciTech Connect

    Keefe, D.

    1982-11-01

    At the request of Panel Chairman Amaldi, the oral version of this rpeort was largely devoted to a recapitulation and critique of the various methods of collective acceleration, including plasma-laser methods, which had been presented at the meeting.

  13. First test of a partial Siberian snake for acceleration of polarized protons

    NASA Astrophysics Data System (ADS)

    Caussyn, D. D.; Baiod, R.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Ellison, T. J. P.; Kaufman, W. A.; Krisch, A. D.; Lee, S. Y.; Minty, M. G.; Nurushev, T. S.; Ohmori, C.; Phelps, R. A.; Raczkowski, D. B.; Ratner, L. G.; Schwandt, P.; Stephenson, E. J.; Sperisen, F.; Przewoski, B. von; Wienands, U.; Wong, V. K.

    1995-09-01

    We recently studied the first acceleration of a spin-polarized proton beam through a depolarizing resonance using a partial Siberian snake. We accelerated polarized protons from 95 to 140 MeV with a constant 10% partial Siberian snake obtained using rampable solenoids. The 10% partial snake suppressed all observable depolarization during acceleration due to the Gγ=2 imperfection depolarizing resonance which occurred near 108 MeV. However, 20% and 30% partial Siberian snakes apparently moved an intrinsic depolarizing resonance, normally near 177 MeV, into our energy range; this caused some interesting, although not-yet-fully understood, depolarization.

  14. Capture and Control of Laser-Accelerated Proton Beams: Experiment and Simulation

    SciTech Connect

    Nurnberg, F; Alber, I; Harres, K; Schollmeier, M; Roth, M; Barth, W; Eickhoff, H; Hofmann, I; Friedman, A; Grote, D; Logan, B G

    2009-05-13

    This paper summarizes the ongoing studies on the possibilities for transport and RF capture of laser-accelerated proton beams in conventional accelerator structures. First results on the capture of laser-accelerated proton beams are presented, supported by Trace3D, CST particle studio and Warp simulations. Based on these results, the development of the pulsed high-field solenoid is guided by our desire to optimize the output particle number for this highly divergent beam with an exponential energy spectrum. A future experimental test stand is proposed to do studies concerning the application as a new particle source.

  15. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang; Shi, Yi-Jin; Zhang, Shan

    2013-02-01

    A new laser-proton acceleration scheme consisting of two relativistic electron layers, a suprathermal electron layer and a thermal electron cloud is proposed for a0 ≳ 80σ0, where a0 is the normalized laser field and σ0 is the normalized plasma surface density. This is essentially different from target normal sheath acceleration and radiation pressure acceleration. The persistent opaqueness of the first relativistic electron layer for the incident circular-polarization laser pulse and electron recirculation are key points in forming the new acceleration scheme. A proton beam with a uniform energy distribution in the energy range 1-2 GeV and a monoenergetic proton beam with hundreds of MeV have been predicted for a0 = 39.5.

  16. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

  17. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  18. Development of methods for calculating basic features of the nuclear contribution to single event upsets under the effect of protons of moderately high energy

    SciTech Connect

    Chechenin, N. G. Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-10-15

    As a continuation and a development of previous studies of our group that were devoted to the investigation of nuclear reactions induced by protons of moderately high energy (between 10 and 400 MeV) in silicon, aluminum, and tungsten atoms, the results obtained by exploring nuclear reactions on atoms of copper, which is among the most important components in materials for contact pads and pathways in modern and future ultralarge-scale integration circuits, especially in three-dimensional topology, are reported in the present article. The nuclear reactions in question lead to the formation of the mass and charge spectra of recoil nuclei ranging fromheavy target nuclei down to helium and hydrogen. The kineticenergy spectra of reaction products are calculated. The results of the calculations based on the procedure developed by our group are compared with the results of calculations and experiments performed by other authors.

  19. The relation between the fundamental scale controlling high-energy interactions of quarks and the proton mass

    SciTech Connect

    Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.

    2015-04-06

    Quantum Chromodynamics (QCD) provides a fundamental description of the physics binding quarks into protons, neutrons, and other hadrons. QCD is well understood at short distances where perturbative calculations are feasible. Establishing an explicit relation between this regime and the large-distance physics of quark confinement has been a long-sought goal. A major challenge is to relate the parameter Λs, which controls the predictions of perturbative QCD (pQCD) at short distances, to the masses of hadrons. Here we show how new theoretical insights into QCD's behavior at large and small distances lead to an analytical relation between hadronic masses and Λs. The resulting prediction, Λs = 0.341 ± 0.024 GeV agrees well with the experimental value 0.339 ± 0.016 GeV. Conversely, the experimental value of Λs can be used to predict the masses of hadrons, a task which had so far only been accomplished through intensive numerical lattice calculations, requiring several phenomenological input parameters.

  20. Cross sections for proton induced high energy γ -ray emission (PIGE) in reaction 19 F(p, αγ)16 O at incident proton energies between 1.5 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Cabanelas, P.; Cruz, J.; Fonseca, M.; Henriques, A.; Lourenço, F.; Luís, H.; Machado, J.; Pires Ribeiro, J.; Sánchez-Benítez, A. M.; Teubig, P.; Velho, P.; Zarza-Moreno, M.; Galaviz, D.; Jesus, A. P.

    2016-08-01

    We have studied the high energy gamma-rays produced in the reaction 19 F(p, αγ)16 O for incident proton energies from 1.5 to 4.0 MeV over NaF/Ag and CaF2/Ag thin targets in two different sets of data. Gamma-rays were detected with a High Purity Ge detector with an angle of 130° with respect to the beam axis. The cross-sections for the high energy gamma-rays of 6.129, 6.915 and 7.115 MeV have been measured for the whole group between 5 and 7.2 MeV with accuracy better than 10%. A new energy range was covered and more points are included in the cross-sections data base expanding the existing set of data. Results are in agreement with previous measurements in similar conditions.

  1. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  2. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  3. Measurement of K+ production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Mariani, C.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H. B.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2011-07-01

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure (d2σ)/(dpdΩ)=(5.34±0.76)mb/(GeV/c×sr) for p+Be→K++X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  4. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE PAGES

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  5. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    SciTech Connect

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  6. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  7. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  8. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.

  9. Highly efficient generation of ultraintense high-energy ion beams using laser-induced cavity pressure acceleration

    SciTech Connect

    Badziak, J.; Jablonski, S.; Raczka, P.

    2012-08-20

    Results of particle-in-cell (PIC) simulations of fast ion generation in the recently proposed laser-induced cavity pressure acceleration (LICPA) scheme in which a picosecond circularly polarized laser pulse of intensity {approx}10{sup 21} W/cm{sup 2} irradiates a carbon target placed in a cavity are presented. It is shown that due to circulation of the laser pulse in the cavity, the laser-ions energy conversion efficiency in the LICPA scheme is more than twice as high as that for the conventional (without a cavity) radiation pressure acceleration scheme and a quasi-monoenergetic carbon ion beam of the mean ion energy {approx}0.5 GeV and the energy fluence {approx}0.5 GJ/cm{sup 2} is produced with the efficiency {approx}40%. The results of PIC simulations are found to be in fairly good agreement with the predictions of the generalized light-sail model.

  10. Systematical study on superconducting radio frequency elliptic cavity shapes applicable to future high energy accelerators and energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Shemelin, Valery; Zadeh, Shahnam Gorgi; Heller, Johann; van Rienen, Ursula

    2016-10-01

    Elliptic cavities at medium- and high-β range are receiving broader use in the particle accelerator applications. Optimizing the shape of these cavities is a complex and demanding process. In this paper we propose an optimization approach to minimize the ratio of peak magnetic field to the acceleration field Hpk/Eacc while keeping the ratio of peak surface electric field to the accelerating field Epk/Eacc, aperture radius and wall slope angle α at some permitted values. We show that it is possible to substantially vary the cavity geometry without violating the constraints or deteriorating the objective of the optimization. This gives us freedom in designing the geometry to overcome problems such as multipactor while maintaining the minimal Hpk/Eacc . The optimization is then performed to find a set of optimized geometries with minimum Hpk/Eacc for different β 's ranging from 0.4 to 1, different peak surface electric fields, wall slope angles and aperture radii. These data could be generally used as a suitable starting point in designing elliptic cavities.

  11. Efficient laser-proton acceleration from an insulating foil with an attached small metal disk

    SciTech Connect

    Otani, Kazuto; Tokita, Shigeki; Nishoji, Toshihiko; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2011-10-17

    Efficient proton acceleration by the interaction of an intense femtosecond laser pulse with a solid foil has been demonstrated. An aluminum coating (thickness: 0.2 {mu}m) on a polyethylene (PE) foil was irradiated at 2 x 10{sup 18} W/cm{sup 2} intensity. The protons from the aluminum-disk (diameter: 150 {mu}m to 15 mm) foil were accelerated to much higher energy in comparison with conventional targets such as PE and aluminum-coated PE foils. The fast electron signal along the foil surface was significantly higher from the aluminum-coated PE foil. The laser-proton acceleration appeared to be affected to the size of surrounding conductive material.

  12. Mass Limited Target Effects on Proton Acceleration with Femtosecond Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, Calvin; Raymond, A.; McKelvey, A.; Willingale, L.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.

    2014-10-01

    Experiments at the HERCULES laser facility have been performed to measure the effect of reduced mass targets on proton acceleration through the use of foil, grid, and wire targets in femtosecond laser plasma interactions. The target thickness was held approximately constant at 12 . 5 μm, while the lateral extent of the target was varied. The electron current density was measured with an imaging Cu Kα crystal. Higher current densities were observed as the target mass was reduced which corresponded to an increase in the temperature of the accelerated proton beam. Additionally, a line focusing feature was observed in the spatial distribution of protons accelerated to from the wire target, believed to be a result of azimuthal magnetic fields generated by electron currents in the wire. Particle-in-cell and Vlasov-Fokker-Plank simulations were performed in order to investigate the focusing magnetic field as well as the complex sheath formation dynamics on the mesh target.

  13. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    SciTech Connect

    Liu, Chuan S.; Shao Xi; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt

    2011-01-04

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  14. Enhancement of proton energy by polarization switch in laser acceleration of multi-ion foils

    SciTech Connect

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2013-10-15

    We present a scheme to significantly increase the energy of quasi-monoenergetic protons accelerated by a laser beam without increasing the input power. This improvement is accomplished by first irradiating the foil several wave periods with circular polarization and then switching the laser to linear polarization. The polarization switch increases the electron temperature and thereby moves more electrons ahead of the proton layer, resulting in a space charge electric field pushing the protons forwards. The scaling of the proton energy evolution with respect to the switching time is studied, and an optimal switching time is obtained. The proton energy for the case with optimal switching time can reach about 80 MeV with an input laser power of 70 TW, an improvement of more than 30% compared to the case without polarization switch.

  15. Laser accelerated protons captured and transported by a pulse power solenoid

    NASA Astrophysics Data System (ADS)

    Burris-Mog, T.; Harres, K.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.

    2011-12-01

    Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.

  16. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  17. SOLAR INTERACTING PROTONS VERSUS INTERPLANETARY PROTONS IN THE CORE PLUS HALO MODEL OF DIFFUSIVE SHOCK ACCELERATION AND STOCHASTIC RE-ACCELERATION

    SciTech Connect

    Kocharov, L.; Laitinen, T.; Vainio, R.; Afanasiev, A.; Mursula, K.; Ryan, J. M.

    2015-06-10

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.

  18. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  19. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  20. Final Report for "Non-Accelerator Physics – Research in High Energy Physics: Dark Energy Research on DES"

    SciTech Connect

    Ritz, Steve; Jeltema, Tesla

    2016-12-01

    One of the greatest mysteries in modern cosmology is the fact that the expansion of the universe is observed to be accelerating. This acceleration may stem from dark energy, an additional energy component of the universe, or may indicate that the theory of general relativity is incomplete on cosmological scales. The growth rate of large-scale structure in the universe and particularly the largest collapsed structures, clusters of galaxies, is highly sensitive to the underlying cosmology. Clusters will provide one of the single most precise methods of constraining dark energy with the ongoing Dark Energy Survey (DES). The accuracy of the cosmological constraints derived from DES clusters necessarily depends on having an optimized and well-calibrated algorithm for selecting clusters as well as an optical richness estimator whose mean relation and scatter compared to cluster mass are precisely known. Calibrating the galaxy cluster richness-mass relation and its scatter was the focus of the funded work. Specifically, we employ X-ray observations and optical spectroscopy with the Keck telescopes of optically-selected clusters to calibrate the relationship between optical richness (the number of galaxies in a cluster) and underlying mass. This work also probes aspects of cluster selection like the accuracy of cluster centering which are critical to weak lensing cluster studies.

  1. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  2. A proton medical accelerator by the SBIR route: An example of technology transfer

    SciTech Connect

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig.

  3. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    NASA Astrophysics Data System (ADS)

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-08-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential.

  4. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    PubMed Central

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  5. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  6. Irradiation damage from low-dose high-energy protons on mechanical properties and positron annihilation lifetimes of Fe-9Cr alloy

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Fukumoto, K.; Ishi, Y.; Kuriyama, Y.; Uesugi, T.; Sato, K.; Mori, Y.; Yoshiie, T.

    2016-01-01

    Nuclear reactions in accelerator-driven systems (ADS) result in the generation of helium within the ADS materials. The amount of helium produced in this way is approximately one order of magnitude higher than that generated by nuclear fusion. As helium is well-known to induce degradation in the mechanical properties of metals, its effect on ADS materials is an important factor to assess. The results obtained in this study show that low-dose proton irradiation (11 MeV at 573 K to 9.0 × 10-4 dpa and 150 MeV at room temperature to 2.6 × 10-6 dpa) leads to a decrease in yield stress and ultimate tensile strength in a Fe-9Cr alloy. Moreover, interstitial helium and hydrogen atoms, as well as the annihilation of dislocation jogs, were identified as key factors that determine the observed softening of the alloy.

  7. Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.

    2017-03-01

    The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.

  8. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  9. Physics of Double Pulse Irradiation of Targets For Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M.; Masud, R.; Manzoor, L.; Tiedje, H.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2016-10-01

    Experiments have been carried out on double-pulse irradiation of um-scale foil targets with varying preplasma conditions. Our experiment at the Titan Laser facility utilized two 700 fs, 1054 nm pulses, separated by 1 to 5 ps with a total energy of 100 J, and with 5-20% of the total energy contained within the first pulse. The proton spectra were measured with radiochromic film stacks and magnetic spectrometers. The prepulse energy was on the order of 10 mJ, which appears to have a moderating effect on the double pulse enhancement of proton beam. We have performed LSP PIC simulations to understand the double pulse enhancement mechanism, as well as the role of preplasma in modifying the interaction. A 1D parameter study was done to isolate various aspects of the interaction, while 2D simulations provide more detailed physical insight and a better comparison with experimental data. Work by the Univ. of Alberta was supported by the Natural Sciences and Engineering Research Council of Canada. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  10. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    NASA Astrophysics Data System (ADS)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  11. Refractive index variation in a free-standing diamond thin film induced by irradiation with fully transmitted high-energy protons.

    PubMed

    Lagomarsino, S; Calusi, S; Massi, M; Gelli, N; Sciortino, S; Taccetti, F; Giuntini, L; Sordini, A; Vannoni, M; Bosia, F; Monticone, D Gatto; Olivero, P; Fairchild, B A; Kashyap, P; Alves, A D C; Strack, M A; Prawer, S; Greentree, A D

    2017-03-24

    Ion irradiation is a widely employed tool to fabricate diamond micro- and nano-structures for applications in integrated photonics and quantum optics. In this context, it is essential to accurately assess the effect of ion-induced damage on the variation of the refractive index of the material, both to control the side effects in the fabrication process and possibly finely tune such variations. Several partially contradictory accounts have been provided on the effect of the ion irradiation on the refractive index of single crystal diamond. These discrepancies may be attributable to the fact that in all cases the ions are implanted in the bulk of the material, thus inducing a series of concurrent effects (volume expansion, stress, doping, etc.). Here we report the systematic characterization of the refractive index variations occurring in a 38 µm thin artificial diamond sample upon irradiation with high-energy (3 MeV and 5 MeV) protons. In this configuration the ions are fully transmitted through the sample, while inducing an almost uniform damage profile with depth. Therefore, our findings conclusively identify and accurately quantify the change in the material polarizability as a function of ion beam damage as the primary cause for the modification of its refractive index.

  12. Proton Events at >~ 25 MeV in 2009 -2012 Observed by the STEREO High Energy Telescopes and/or near Earth

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, T. T.; Richardson, I. G.; Cane, H. V.; Christian, E. R.; Cummings, A. C.; Cohen, C. M.; Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Wiedenbeck, M. E.; Stone, E.

    2012-12-01

    About 130 individual solar energetic particle events that include protons with kinetic energies >~ 25 MeVhave been detected by the High Energy Telescopes on the STEREO Ahead and Behind spacecraft and/or near-Earth spacecraft (SoHO and ACE) since December, 2009. During this time the STEREO spacecraft have been 60 degrees or more ahead of or behind the Earth. Of these events, ~ 30% were detected at only one spacecraft, ~ 30% at only two spacecraft, and ~15% at all three spacecraft. In other cases, it is unclear whether events were observed at multiple spacecraft or not due to high particle intensities from prior events or due to data gaps. The events range from small events typically with a rapid rise and slower decay lasting around a day and observed by the best magnetically connected spacecraft, to large, extended events observed at multiple spacecraft. In some cases, they show rather prompt onsets at all spacecraft. Relatively small events, however, are sometimes seen at all three spacecraft. We summarize the properties of these events and the associated solar activity as determined by imaging and radio observations from the STEREO and near-Earth spacecraft.

  13. Physics with a high-intensity proton accelerator below 30 GeV

    SciTech Connect

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop.

  14. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  15. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  16. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    NASA Astrophysics Data System (ADS)

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Ptitsyn, V.; Roser, T.; Takano, J.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.

    2007-06-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  17. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Luccio, A. U.; MacKay, W. W.; Ptitsyn, V.; Roser, T.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.; Lin, F.; Okamura, M.

    2007-06-13

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  18. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG, H.; AHRENS, L.A.; BAI, M.; BRAVAR, A.; BROWN, K.; COURANT, E.D.; GARDNER, C.; GLENN, J.W.; LUCCIO, A.U.; MACKAY, W.W.; PTITSYN, V.; ROSER, T.; TEPIKIAN, S.; TSOUPAS, N.; WOOD, J.; YIP, K.; ZELENSKI, A.; ZENO, K.

    2006-06-26

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  19. Beam Transport in a Compact Dielectric Wall Accelerator for Proton Therapy

    SciTech Connect

    Chen, Y; Caporaso, G; Blackfield, D; Nelson, S D; Poole, B

    2011-03-16

    To attain the highest accelerating gradient in the compact dielectric wall (DWA) accelerator, the DWA will be operated in the 'virtual' traveling mode with potentially non-uniform and time-dependent axial accelerating field profiles, especially near the DWA entrance and exit, which makes beam transport challenging. We have established a baseline transport case without using any external lenses. Results of simulations using the 3-D, EM PIC code, LSP indicate that the DWA transport performance meets the medical specifications for proton treatment. Sensitivity of the transport performance to Blumlein block failure will be presented.

  20. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect

    Floquet, V.; Martin, Ph.; Ceccotti, T.; Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L.; Velyhan, A.; Macchi, A.; Sgattoni, A.; Vassura, L.; Labate, L.; Baffigi, F.; Gizzi, L. A.

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10∘). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  1. Collimated proton acceleration in light sail regime with a tailored pinhole target

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2014-06-01

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  2. Collimated proton acceleration in light sail regime with a tailored pinhole target

    SciTech Connect

    Wang, H. Y.; Zepf, M.; Yan, X. Q.

    2014-06-15

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  3. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  4. INVESTIGATION OF THE EXTENDED RANGE REM-COUNTER SMARTREM-LINUS IN REFERENCE AND WORKPLACE FIELDS EXPECTED AROUND HIGH-ENERGY ACCELERATORS.

    PubMed

    Hohmann, Eike; Trovati, S; Strauch, U; Mayer, S

    2016-09-01

    Radiation survey instrumentation is adequate for the use around high-energy accelerators if capable to measure the dose arising from neutrons with energies ranging from thermal up to a few gigaelectronvolts. The SmartREM-LINUS is a commercial extended range rem-counter, consisting of a central (3)He-proportional counter surrounded by a spherical moderator made of borated polyethylene with an internal shield made of lead. The dose rate indicated by the SmartREM-LINUS was investigated for two different irradiation conditions. The linearity and the angular dependence of the indicated dose rate were investigated using reference neutron fields produced by (241)AmBe and (252)Cf. Additional measurements were performed in two different workplace fields with a component of neutrons with energies >20 MeV, namely the CERN-EU high-energy reference field and near the beam dump of the SwissFEL injector test facility. The measured dose rates were compared to a commercial rem-counter (WENDI2) and the results of Monte Carlo simulations.

  5. Intercomparison of high energy neutron personnel dosimeters

    SciTech Connect

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the {sup 9}Be(p,n){sup 9}B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work.

  6. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  7. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  8. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Yan, X. Q.; Mourou, G.; Wheeler, J. A.; Bin, J. H.; Schreiber, J.; Tajima, T.

    2016-04-01

    Prompted by the possibility to produce high energy, single-cycle laser pulses with tens of Petawatt (PW) power, we have investigated laser-matter interactions in the few optical cycle and ultra relativistic intensity regimes. A particularly interesting instability-free regime for ion production was revealed leading to the efficient coherent generation of short (femtosecond; 10 - 15 s ) monoenergetic ion bunches with a peak energy greater than GeV. Of paramount importance, the interaction is absent of the Rayleigh Taylor Instabilities and hole boring that plague techniques such as target normal sheath acceleration and radiation pressure acceleration.

  9. Detection of the high energy solar protons by the particle detectors of Aragats Space- Environmental Center at 20 January 2005; Estimation of the significance of the peaks in the time-series.

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.

    2007-12-01

    On January 20, 2005, 7:02-7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold 5 GeV). The enhancement, lasting for three minutes, has statistical significance of ~4σ and is related to the X7.1 flare seen by the GOES, and very fast (2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) N 69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies above 5 GeV are corresponding to solar proton primaries with energies 20-30 GeV we conclude that in the episode of the particle acceleration at 7:02 - 7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV. To prove that detected peaks in the time-series are not only background flux (Galactic Cosmic Rays) fluctuations, but signal candidate (Solar Cosmic Rays), we perform additional investigations of the detectors count rates at 20 January. When calculated the chance probability we have to take into account the experimental procedures we use to reveal the signal. We made 3-minute time series from the 1 minute ones. The re-binning of time series is ordinary operation used by the all groups running the particle solar monitors. However, it has to be taken into account in calculating of the chance probability. Different attempts to obtain "best signal" considering different re- binning cannot be treated by standard Gaussian distribution, but can be considered by implementing Chapman statistics. To check this assumption and demonstrate the influence of the re-binning procedure we perform simulations with simple model of time series. Our numerical modeling confirm that when testing different data

  10. From Particle Physics to Astroparticle Physics: Proton Decay and the Rise of Non-accelerator Physics

    NASA Astrophysics Data System (ADS)

    Meyer, Hinrich

    The search for proton decay was motivated by simple questions about the content of the observable universe. Why is matter so stable and why do we not see antimatter of primordial origin? The symmetry of the standard model of particle physics would have required that matter and antimatter annihilated in the early universe. In 1968, Sacharov showed that the matter-antimatter asymmetry could have formed in a state of thermal non-equilibrium of the universe, as given in big bang cosmology, together with the well-confirmed C and CP violations, and proton decay. The latter phenomenon could be only investigated in large none-accelerator experiments. The SU(5) extension of the standard model implied a proton lifetime of about 1029 years. With detectors consisting of 1 000 tons of matter and located deep under the Earth surface, such as the French-German Fréjus iron-calorimeter, in the mid 1980s one expected to detect several proton decays per year. Here, we report on the way leading from accelerator laboratories to underground physics, which paradoxically enough turned out to studying cosmic rays. There has not been any evidence for the instability of protons, and lifetime limits of more than 1034 years have been obtained. However, great progress in particle physics and in the physics of cosmic rays could be achieved with neutrinos.

  11. Warp simulations for capture and control of laser-accelerated proton beams

    SciTech Connect

    Nurnberg, F; Friedman, A; Grote, D P; Harres, K; Logan, B G; Schollmeier, M; Roth, M

    2009-10-22

    The capture of laser-accelerated proton beams accompanied by co-moving electrons via a solenoid field has been studied with particle-in-cell simulations. The main advantages of the Warp simulation suite that was used, relative to envelope or tracking codes, are the possibility of including all source parameters energy resolved, adding electrons as second species and considering the non-negligible space-charge forces and electrostatic self-fields. It was observed that the influence of the electrons is of vital importance. The magnetic effect on the electrons out balances the space-charge force. Hence, the electrons are forced onto the beam axis and attract protons. Besides the energy dependent proton density increase on axis, the change in the particle spectrum is also important for future applications. Protons are accelerated/decelerated slightly, electrons highly. 2/3 of all electrons get lost directly at the source and 27% of all protons hit the inner wall of the solenoid.

  12. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  13. Stochastic Re-Acceleration of Protons in the Downstream Region of a Coronal Shock

    NASA Astrophysics Data System (ADS)

    Afanasiev, A. N.; Kocharov, L. G.; Vainio, R. O.

    2011-12-01

    Recent SDO/AIA observations of CME in the low corona have finally confirmed the formation of coronal shock waves in the low corona. This supports the viability of shock acceleration as the mechanism for the genesis of large gradual SEP events. However, a careful analysis of observational data of the early phases of large SEP events indicates that it might be hard to understand some of the spectral characteristics at deca-MeV energies in detail relying on a model of diffusive shock acceleration alone. We have recently presented a test-particle model where coronal shock acceleration and stochastic re-acceleration in the shock downstream region can account for the hard spectral features in the deca-MeV range. The problem of a test-particle calculation in the case of stochastic acceleration is, however, that a time-stationary wave field acts as an infinite energy reservoir for the particles being accelerated by turbulence. To account for this problem, we employ our self-consistent wave-particle interaction simulation code to compute the evolution of the wave frequency and proton energy spectra in the downstream region of a coronal shock. Parameter space allowed by different types of turbulence generation models is explored and regions favorable to explaining the proton energy spectra in large gradual events are identified.

  14. Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard

    2016-10-01

    We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.

  15. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  16. N-Terminal Derivatization with Structures Having High Proton Affinity for Discrimination between Leu and Ile Residues in Peptides by High-Energy Collision-Induced Dissociation.

    PubMed

    Kitanaka, Atsushi; Miyashita, Masahiro; Kubo, Ayumi; Satoh, Takaya; Toyoda, Michisato; Miyagawa, Hisashi

    2016-01-01

    De novo sequencing is still essential in the identification of peptides and proteins from unexplored organisms whose sequence information is not available. One of the remaining problems in de novo sequencing is discrimination between Leu and Ile residues. The discrimination is possible based on differences in side chain fragmentation between Leu and Ile under high-energy collision-induced dissociation (HE-CID) conditions. However, this is observed only when basic residues, such as Arg and Lys, are present near the N- or C-terminal end. It has been shown that the charge derivatization at the N-terminal end by a quarternary ammonium or phosphonium moiety facilitates the side chain fragmentation by HE-CID. However, the effective backbone fragmentation by low-energy CID (LE-CID) is often hampered in those derivatives with a fixed charge. Previously, we demonstrated that the N-terminal charge derivatization with the structures having high proton affinity induced the preferential formation of b-ions under LE-CID conditions, allowing straightforward interpretation of product ion spectra. In the present study, we further investigated whether the same derivatization approach is also effective for discrimination between Leu and Ile under HE-CID conditions. Consequently, the side chain fragmentation of Leu and Ile residues was most effectively enhanced by the N-terminal derivatization with 4-(guanidinomethyl)benzoic acid among the tested structures. This derivatization approach, which is compatible with both HE- and LE-CID analysis, offers a straightforward and unambiguous de novo peptide sequencing method.

  17. N-Terminal Derivatization with Structures Having High Proton Affinity for Discrimination between Leu and Ile Residues in Peptides by High-Energy Collision-Induced Dissociation

    PubMed Central

    Kitanaka, Atsushi; Miyashita, Masahiro; Kubo, Ayumi; Satoh, Takaya; Toyoda, Michisato; Miyagawa, Hisashi

    2016-01-01

    De novo sequencing is still essential in the identification of peptides and proteins from unexplored organisms whose sequence information is not available. One of the remaining problems in de novo sequencing is discrimination between Leu and Ile residues. The discrimination is possible based on differences in side chain fragmentation between Leu and Ile under high-energy collision-induced dissociation (HE-CID) conditions. However, this is observed only when basic residues, such as Arg and Lys, are present near the N- or C-terminal end. It has been shown that the charge derivatization at the N-terminal end by a quarternary ammonium or phosphonium moiety facilitates the side chain fragmentation by HE-CID. However, the effective backbone fragmentation by low-energy CID (LE-CID) is often hampered in those derivatives with a fixed charge. Previously, we demonstrated that the N-terminal charge derivatization with the structures having high proton affinity induced the preferential formation of b-ions under LE-CID conditions, allowing straightforward interpretation of product ion spectra. In the present study, we further investigated whether the same derivatization approach is also effective for discrimination between Leu and Ile under HE-CID conditions. Consequently, the side chain fragmentation of Leu and Ile residues was most effectively enhanced by the N-terminal derivatization with 4-(guanidinomethyl)benzoic acid among the tested structures. This derivatization approach, which is compatible with both HE- and LE-CID analysis, offers a straightforward and unambiguous de novo peptide sequencing method. PMID:27900234

  18. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior.

  19. Nonlinear surface plasma wave induced target normal sheath acceleration of protons

    SciTech Connect

    Liu, C. S.; Tripathi, V. K. Shao, Xi; Liu, T. C.

    2015-02-15

    The mode structure of a large amplitude surface plasma wave (SPW) over a vacuum–plasma interface, including relativistic and ponderomotive nonlinearities, is deduced. It is shown that the SPW excited by a p-polarized laser on a rippled thin foil target can have larger amplitude than the transmitted laser amplitude and cause stronger target normal sheath acceleration of protons as reported in a recent experiment. Substantial enhancement in proton number also occurs due to the larger surface area covered by the SPW.

  20. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  1. Field-Guided Proton Acceleration at Reconnecting x-Points in Flares

    NASA Astrophysics Data System (ADS)

    Hamilton, B.; McCLEMENTS, K. G.; Fletcher, L.; Thyagaraja, A.

    2003-06-01

    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to γ-ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.

  2. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  3. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams.

    PubMed

    Luo, W; Li, J; Fourkal, E; Fan, J; Xu, X; Chen, Z; Jin, L; Price, R; Ma, C-M

    2008-12-21

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying deltaE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has

  4. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  5. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  6. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  7. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  8. Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator

    SciTech Connect

    Pukhov, A.; Kumar, N.; Tueckmantel, T.; Upadhyay, A.; Lotov, K.; Muggli, P.; Khudik, V.; Siemon, C.; Shvets, G.

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  9. Protons acceleration in thin CH foils by ultra-intense femtosecond laser pulses

    SciTech Connect

    Kosarev, I. N.

    2015-03-15

    Interaction of femtosecond laser pulses with the intensities 10{sup 21}, 10{sup 22 }W/cm{sup 2} with CH plastic foils is studied in the framework of kinetic theory of laser plasma based on the construction of propagators (in classical limit) for electron and ion distribution functions in plasmas. The calculations have been performed for real densities and charges of plasma ions. Protons are accelerated both in the direction of laser pulse (up to 1 GeV) and in the opposite direction (more than 5 GeV). The mechanisms of forward acceleration are different for various intensities.

  10. Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator.

    PubMed

    Pukhov, A; Kumar, N; Tückmantel, T; Upadhyay, A; Lotov, K; Muggli, P; Khudik, V; Siemon, C; Shvets, G

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  11. Calculations of neutron shielding data for 10-100 MeV proton accelerators.

    PubMed

    Chen, C C; Sheu, R J; Jian, S H

    2005-01-01

    The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles.

  12. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    SciTech Connect

    Lecz, Zs.; Andreev, A.

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  13. The short-lived (<2 minutes) acceleration of protons to >13 GeV in association with solar flares.

    NASA Astrophysics Data System (ADS)

    McCracken, Ken; Shea, Margaret Ann; Smart, Don

    2016-04-01

    release) mechanism must then decrease greatly in efficiency abruptly ~3 minutes after it started. We note that this is not a unique example; the >10GeV particle pulse in the GLE of 20 January 2005 persisted for only 3 minutes; and a >4.5 GeV pulse at the commencement of the GLE of 7 December, 1982, only lasted one minute. We conclude with a comparison between these observations and the predictions of several proposed acceleration models. We conclude that these short-lived bursts of highly relativistic cosmic rays have been accelerated in the reconnection regions associated with large solar flares. In the greater majority of cases, the short-lived, high energy cosmic ray pulse at the commencement of a GLE is followed by a slowly rising component accelerated in the CME generated shock.

  14. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    PubMed Central

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; Maclellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  15. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; MacLellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-09-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

  16. Fast fingerprinting of arson accelerants by proton transfer reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whyte, Christopher; Wyche, Kevin P.; Kholia, Mitesh; Ellis, Andrew M.; Monks, Paul S.

    2007-06-01

    Current techniques for the forensic analysis of fire debris as a means to detect the presence of arson accelerants normally use off-line sampling with the collection of accelerant vapours on activated charcoal strips and further pre-chemistry prior to analysis. An alternative method for the direct detection of arson accelerants that requires no sample pre-treatment is described here. The analysis uses proton transfer reaction mass spectrometry (PTR-MS), incorporating a time-of-flight mass spectrometer for rapid multichannel compound detection. It is demonstrated that using PTR-MS volatile organic compound (VOC) fingerprints of a given fire accelerant can be collected by simple head space analysis of accelerant burned materials. Using a set of the four most common arson accelerants and four common household building materials, characteristic VOC fingerprints are shown to provide successful identification of the accelerant used to burn each material. There is the potential to develop this methodology for the rapid screening of large numbers of samples.

  17. How to produce a reactor neutron spectrum using a proton accelerator

    SciTech Connect

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; Schmitt, Bruce E.; Asner, David M.

    2015-01-01

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  18. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  19. Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy

    NASA Astrophysics Data System (ADS)

    Peach, K. J.; Aslaninejad, M.; Barlow, R. J.; Beard, C. D.; Bliss, N.; Cobb, J. H.; Easton, M. J.; Edgecock, T. R.; Fenning, R.; Gardner, I. S. K.; Hill, M. A.; Owen, H. L.; Johnstone, C. J.; Jones, B.; Jones, T.; Kelliher, D. J.; Khan, A.; Machida, S.; McIntosh, P. A.; Pattalwar, S.; Pasternak, J.; Pozimski, J.; Prior, C. R.; Rochford, J.; Rogers, C. T.; Seviour, R.; Sheehy, S. L.; Smith, S. L.; Strachan, J.; Tygier, S.; Vojnovic, B.; Wilson, P.; Witte, H.; Yokoi, T.

    2013-03-01

    The conceptual design for a nonscaling fixed field alternating gradient accelerator suitable for charged particle therapy (the use of protons and other light ions to treat some forms of cancer) is described.

  20. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    SciTech Connect

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-15

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  1. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  2. Fabrication of nanostructured targets for improved laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Scisciò, M.; Veltri, S.; Antici, P.

    2016-07-01

    In this work, we present a novel realization of nanostructured targets suitable for improving laser-driven proton acceleration experiments, in particular with regard to the Target-Normal-Sheath Acceleration (TNSA) acceleration mechanism. The nanostructured targets, produced as films, are realized by a simpler and cheaper method than using conventional lithographic techniques. The growth process includes a two step approach for the production of the gold nanoparticle layers: 1) Laser Ablation in Solution and 2) spray-dry technique using a colloidal solution on target surfaces (Aluminum, Mylar and Multi Walled Carbon Nanotube). The obtained nanostructured films appear, at morphological and chemical analysis, uniformly nanostructured and the nanostructure distributed on the target surfaces without presence of oxides or external contaminants. The obtained targets show a broad optical absorption in all the visible region and a surface roughness that is two times greater than non-nanostructured targets, enabling a greater laser energy absorption during the laser-matter interaction experiments producing the laser-driven proton acceleration.

  3. Proton and Helium Injection Into First Order Fermi Acceleration at Shocks: Hybrid Simulation and Analysis

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Malkov, Mikhail; Sagdeev, Roald; Liseykina, Tatjana; Hanusch, Adrian

    2016-10-01

    Elemental composition of galactic cosmic rays (CR) probably holds the key to their origin. Most likely, they are accelerated at collisionless shocks in supernova remnants, but the acceleration mechanism is not entirely understood. One complicated problem is ``injection'', a process whereby the shock selects a tiny fraction of particles to keep on crossing its front and gain more energy. Comparing the injection rates of particles with different mass to charge ratio is a powerful tool for studying this process. Recent advances in measurements of CR He/p ratio have provided particularly important new clues. We performed a series of hybrid simulations and analyzed a joint injection of protons and Helium, in conjunction with upstream waves they generate. The emphasis of this work is on the bootstrap aspects of injection manifested in particle confinement to the shock and, therefore, their continuing acceleration by the self-driven waves. The waves are initially generated by He and protons in separate spectral regions, and their interaction plays a crucial role in particle acceleration. The work is ongoing and new results will be reported along with their analysis and comparison with the latest data from the AMS-02 space-based spectrometer. Work supported Grant RFBR 16-01-00209, NASA ATP-program under Award NNX14AH36G, and by the US Department of Energy under Award No. DE-FG02-04ER54738.

  4. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    SciTech Connect

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-06-15

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches.

  5. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  6. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    SciTech Connect

    Liu, Chuan S.; Shao, Xi

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  7. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  8. Materials irradiation facilities at the high-power Swiss proton accelerator complex

    NASA Astrophysics Data System (ADS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Aebersold, Hans-Ulrich

    2007-04-01

    Within the Swiss proton accelerator complex at the Paul-Scherrer-Institute (PSI), several irradiation facilities are operated for investigation of materials behavior under high-dose irradiation conditions as well as for neutron activation analysis and isotope production. In LiSoR (liquid solid reaction), a liquid metal loop connected to the 72 MeV proton accelerator Injector 1, steel samples are irradiated while being in contact with flowing lead-bismuth-eutectic (LBE) at elevated temperatures and under tensile stress. In the spallation neutron source SINQ, the STIP program (SINQ Target Irradiation Program) allows materials irradiation under realistic spallation conditions, i.e. in a mixed spectrum of 570 MeV protons and spallation neutrons. Hundreds of samples, mainly austenitic and ferritic-martensitic steels such as 316L, T91 or F82H, were irradiated to doses up to 20 dpa as part of STIP. These also included steel samples in contact with liquid Hg and liquid LBE. MEGAPIE (MEGAwatt PIlot Experiment), a liquid metal target employing LBE, operated in SINQ during the second half of 2006, can be taken as a materials irradiation facility on its own. Adjacent to the target position, SINQ houses a neutron irradiation rabbit system serving activation analysis and isotope production.

  9. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    SciTech Connect

    Lotov, K. V.; Sosedkin, A. P.; Petrenko, A. V.; Amorim, L. D.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Gschwendtner, E.; Muggli, P.

    2014-12-15

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  10. High-energy high-luminosity µ+ µ- collider design

    SciTech Connect

    Palmer, Robert B.; Fernow, Richard; Gallardo, Juan C.; Lee, Y. Y.; Torun, Yagmur; Neuffer, David; Winn, David

    1996-01-01

    We discuss the design of a high luminosity (1035 cm-2 s-1), high energy (2 + 2 TeV) µ+µ- collider, starting from the proton accelerator needed to generate the muon beams and proceeding through the muon storage ring.

  11. INJECTION ACCELERATION AND EXTRACTION OF HIGH INTENSITY PROTON BEAM FOR THE NEUTRINO FACILITY PROJECT AT BNL.

    SciTech Connect

    Tsoupas, N; Barton, D; Ganetis, G; Jain, A; Lee, Y; Marneris, I; Meng, W; Raparia, D; Roser, T; Ruggiero, A; Tuozzolo, J; Wanderer, P; Weng, W

    2003-05-12

    The proposed ''neutrino-production'' project [1.2] to be built at the Brookhaven National Laboratory (BNL) requires that the neutrino-production target be bombarded by a high intensity proton beam-pulse of {approx} 90 x 10{sup 12} protons of 28 GeV in energy and at a rate of 2.5 Hz, resulting in a 1 MW power of proton beam deposited on the target for the production of the neutrinos. In this paper we investigate the possibility of producing this high intensity proton beam, using as the main accelerator the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL). The following aspects of the project are reported in this paper: (a) The beam injection into the AGS synchrotron of 1.2 GeV H{sup -} beam produced by a super-conducting LINAC[3]; (b) The effect of the eddy currents induced on the vacuum chamber of the circulating beam during the ''ramping'' of the main magnets of the AGS; (c) The method of the beam extraction from the AGS and the optics of the 28 GeV beam extracted from the AGS.

  12. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO{sub 2} laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO{sub 2} laser. This development will enable an advance to the laser-driven proton cancer therapy.

  13. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams.

    PubMed

    Schollmeier, M; Geissel, M; Sefkow, A B; Flippo, K A

    2014-04-01

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  14. SU-E-T-47: A Monte Carlo Model of a Spot Scanning Proton Beam Based On a Synchrotron Proton Therapy Accelerator

    SciTech Connect

    Xie, C; Lin, H; Jing, J; Chen, C; Cao, R; Pei, X

    2015-06-15

    Purpose: To build the model of a spot scanning proton beam for the dose calculation of a synchrotron proton therapy accelerator, which is capable of accelerating protons from 50 up to 221 MeV. Methods: The spot scanning beam nozzle is modeled using TOPAS code, a simulation tool based on Geant4.9.6. The model contained a beam pipe vacuum window, a beam profile monitor, a drift chamber, two plane-parallel ionization chambers, and a spot-position monitor consisted of a multiwire ionization chamber. A water phantom is located with its upstream surface at the isocenter plane. The initial proton beam energy and anglar deflection are modeled using a Gaussian distribution with FWHM (Full Widths at Half Maximum) deponding on its beam energy. The phase space file (PSF) on a virtual surface located at the center between the two magnets is recorded. PSF is used to analyze the pencil beam features and offset the pencil beam position. The source model parameters are verificated by fitting the simulated Result to the measurement. Results: The simulated percentage depth dose (PDD) and lateral profiles of scanning pencil beams of various incident proton energies are verificated to the measurement. Generally the distance to agreement (DTA) of Bragg peaks is less than 0.2cm. The FWHM of Gaussian anglar distribution was adjusted to fit the lateral profile difference between the simulation and the measurement to less than 2∼3cm. Conclusion: A Monte Carlo model of a spot scanning proton beam was bullt based on a synchrotron proton therapy accelerator. This scanning pencil beam model will be as a block to build the broad proton beam as a proton TPS dose verification tool.

  15. Source terms and attenuation lengths for estimating shielding requirements or dose analyses of proton therapy accelerators.

    PubMed

    Sheu, Rong-Jiun; Lai, Bo-Lun; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2013-08-01

    Proton therapy accelerators in the energy range of 100-300 MeV could potentially produce intense secondary radiation, which must be carefully evaluated and shielded for the purpose of radiation safety in a densely populated hospital. Monte Carlo simulations are generally the most accurate method for accelerator shielding design. However, simplified approaches such as the commonly used point-source line-of-sight model are usually preferable on many practical occasions, especially for scoping shielding design or quick sensitivity studies. This work provides a set of reliable shielding data with reasonable coverage of common target and shielding materials for 100-300 MeV proton accelerators. The shielding data, including source terms and attenuation lengths, were derived from a consistent curve fitting process of a number of depth-dose distributions within the shield, which were systematically calculated by using MCNPX for various beam-target shield configurations. The general characteristics and qualities of this data set are presented. Possible applications in cases of single- and double-layer shielding are considered and demonstrated.

  16. Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Kraft, S. D.; Sauerbrey, R.; Schmidt, B.; Zier, M.; Schramm, U.

    2014-08-01

    This paper reports on a systematic investigation of the ultrashort pulse laser driven acceleration of protons from thin targets of finite size, so-called reduced mass targets (RMTs). Reproducible series of targets, manufactured with lithographic techniques, and varying in size, thickness, and mounting geometry, were irradiated with ultrashort (30 fs) laser pulses of intensities of about 8 × 1020 W cm-2. A robust maximum energy enhancement of almost a factor of two was found when comparing gold RMTs to reference irradiations of plain gold foils of the same thickness. Furthermore, a change of the thickness of these targets has less influence on the measured maximum proton energy when compared to standard foils, which, based on detailed particle-in-cell simulations, can be explained by the influence of the RMT geometry on the electron sheath. The performance gain was, however, restricted to lateral target sizes of greater than 50 µm, which can be attributed to edge and mounting structure influences.

  17. Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and cyber-knife.

    PubMed

    Arakia, Fujio; Moribe, Nobuyuki; Shimonobou, Toshiaki; Yamashita, Yasuyuki

    2004-07-01

    A fully automatic radiophotoluminescent glass rod dosimeter (GRD) system has recently become commercially available. This article discusses the dosimetric properties of the GRD including uniformity and reproducibility of signal, dose linearity, and energy and directional dependence in high-energy photon beams. In addition, energy response is measured in electron beams. The uniformity and reproducibility of the signal from 50 GRDs using a 60Co beam are both +/- 1.1% (one standard deviation). Good dose linearity of the GRD is maintained for doses ranging from 0.5 to 30 Gy, the lower and upper limits of this study, respectively. The GRD response is found to show little energy dependence in photon energies of a 60Co beam, 4 MV (TPR20(10)=0.617) and 10 MV (TPR(20)10=0.744) x-ray beams. However, the GRD responses for 9 MeV (mean energy, Ez = 3.6 MeV) and 16 MeV (Ez = 10.4 MeV) electron beams are 4%-5% lower than that for a 60Co beam in the beam quality dependence. The measured angular dependence of GRD, ranging from 0 degrees (along the long axis of GRD) to 120 degrees is within 1.5% for a 4 MV x-ray beam. As applications, a linear accelerator-based radiosurgery system and Cyber-Knife output factors are measured by a GRD and compared with those from various detectors including a p-type silicon diode detector, a diamond detector, and an ion chamber. It is found that the GRD is a very useful detector for small field dosimetry, in particular, below 10 mm circular fields.

  18. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  19. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG,H.; AHRENS,L.; BAI,M.; ET AL.

    2005-05-16

    The RHIC spin program requires 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is no space for a full snake to overcome numerous depolarizing resonances. An ac dipole and a partial snake have been used to preserve beam polarization in the past few years. Two helical snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the setup and preliminary results.

  20. On the non-thermal electron-to-proton ratio at cosmic ray acceleration sites

    NASA Astrophysics Data System (ADS)

    Merten, Lukas; Becker Tjus, Julia; Eichmann, Björn; Dettmar, Ralf-Jürgen

    2017-04-01

    The luminosity ratio of electrons to protons as it is produced in stochastic acceleration processes in cosmic ray sources is an important quantity relevant for several aspects of the modeling of the sources themselves. It is usually assumed to be around 1: 100 in the case of Galactic sources, while a value of 1: 10 is typically assumed when describing extragalactic sources. It is supported by observations that the average ratios should be close to these values. At this point, however, there is no possibility to investigate how each individual source behaves. When looking at the physics aspects, a 1: 100 ratio is well supported in theory when making the following assumptions: (1) the total number of electrons and protons that is accelerated are the same; (2) the spectral index of both populations after acceleration is αe =αp ≈ 2.2 . In this paper, we reinvestigate these assumptions. In particular, assumption (2) is not supported by observational data of the sources and PIC simulation yield different spectral indices as well. We present the detailed calculation of the electron-to-proton ratio, dropping the assumption of equal spectral indices. We distinguish between the ratio of luminosities and the ratio of the differential spectral behavior, which becomes necessary for cases where the spectral indices of the two particle populations are not the same. We discuss the possible range of values when allowing for different spectral indices concerning the spectral behavior of electrons and protons. Additionally, it is shown that the minimum energy of the accelerated population can have a large influence on the results. We find, in the case of the classical minimum energy of T0 , e =T0 , p = 10 keV, that when allowing for a difference in the spectral indices of up to 0.1 with absolute spectral indices varying between 2.0 < α < 2.3, the luminosity ratio varies between 0.008 < Kep < 0.12. The differential particle number ratio is in the range 0.008

  1. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    SciTech Connect

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  2. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/ω{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  3. Multiphysics Analysis of Frequency Detuning in Superconducting RF Cavities for Proton Particle Accelerators

    SciTech Connect

    Awida, M. H.; Gonin, I.; Passarelli, D.; Sukanov, A.; Khabiboulline, T.; Yakovlev, V.

    2016-01-22

    Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics and Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.

  4. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  5. Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil

    NASA Astrophysics Data System (ADS)

    Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald; Shukla, Padma K.; Dudnikova, Galina; Liu, T. C.

    2009-11-01

    Theoretical and numerical studies are presented of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The ponderomotive force of the laser light pushes the electrons forward, and the induced space charge electric field pulls the ions and makes the thin foil accelerate as a whole. A stable double layer is formed, in which the ions are trapped by the combined electric field and inertial force in the accelerated frame, together with the electrons that are trapped in the well of the ponderomotive and ion electric field. The trapped ions reach monoenergetic energies up to 100 MeV and beyond, making them suitable for cancer treatment. We present an analytic theory for the laser-accelerated ion energy as a function of the laser intensity, foil thickness and the plasma number density. The underlying physics of the trapped and untrapped ions and of the stabilization of the Rayleigh-Taylor instability are discussed.

  6. A New Method for the Reconstruction of Very-High-Energy Gamma-Ray Spectra and Application to Galactic Cosmic-Ray Accelerators

    NASA Astrophysics Data System (ADS)

    Fernandes, Milton Virgílio

    2014-06-01

    In this thesis, high-energy (HE; E > 0.1 GeV) and very-high-energy (VHE; E > 0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESS J1646-458 (2.2° in size) towards the SC Westerlund 1 (Wd 1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESS J1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of

  7. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  8. Spill-to-spill and daily proton energy consistency with a new accelerator control system.

    PubMed

    Moyers, M F; Ghebremedhin, A

    2008-05-01

    The Loma Linda University proton accelerator has had several upgrades installed including synchrotron dipole power supplies and a system for monitoring the beam energy. The consistency of the energy from spill-to-spill has been tested by measuring the depth ionization at the distal edge as a function of time. These measurements were made with a minimally equipped beamline to reduce interference from confounding factors. The consistency of the energy over several months was measured in a treatment room beamline using an ionization chamber based daily quality assurance device. The results showed that the energy of protons delivered from the accelerator (in terms of water equivalent range) was consistent from spill-to-spill to better than +/-0.03 mm at 70, 155, and 250 MeV and that the energy check performed each day in the treatment room over a several month period was within +/-0.11 mm (+/-0.06 MeV) at 149 MeV. These results are within the tolerances required for the energy stacking technique.

  9. Proton and heavy ion acceleration by stochastic fluctuations in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Catapano, Filomena; Zimbardo, Gaetano; Perri, Silvia; Greco, Antonella; Artemyev, Anton V.

    2016-10-01

    Spacecraft observations show that energetic ions are found in the Earth's magnetotail, with energies ranging from tens of keV to a few hundreds of keV. In this paper we carry out test particle simulations in which protons and other ion species are injected in the Vlasov magnetic field configurations obtained by Catapano et al. (2015). These configurations represent solutions of a generalized Harris model, which well describes the observed profiles in the magnetotail. In addition, three-dimensional time-dependent stochastic electromagnetic perturbations are included in the simulation box, so that the ion acceleration process is studied while varying the equilibrium magnetic field profile and the ion species. We find that proton energies of the order of 100 keV are reached with simulation parameters typical of the Earth's magnetotail. By changing the ion mass and charge, we can study the acceleration of heavy ions such as He+ + and O+, and it is found that energies of the order of 100-200 keV are reached in a few seconds for He+ + , and about 100 keV for O+.

  10. Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy

    NASA Astrophysics Data System (ADS)

    Garland, J. M.; Appleby, R. B.; Owen, H.; Tygier, S.

    2015-09-01

    In this paper we present a new lattice design for a 30-350 MeV scaling fixed-field alternating gradient accelerator for proton therapy and tomography—NORMA (NOrmal-conducting Racetrack Medical Accelerator). The energy range allows the realization of proton computed tomography and utilizes normal conducting magnets in both a conventional circular ring option and a novel racetrack configuration, both designed using advanced optimization algorithms we have developed in pyzgoubi. Both configurations consist of ten focusing-defocusing-focusing triplet cells and operate in the second stability region of Hills equation. The ring configuration has a circumference of 60 m, a peak magnetic field seen by the beam of <1.6 T , a maximum horizontal orbit excursion of 44 cm and a dynamic aperture of 68 mm mrad—determined using a novel dynamic aperture (DA) calculation technique. The racetrack alternative is realized by adding magnet-free drift space in between cells at two opposing points in the ring, to facilitate injection and extraction. Our racetrack design has a total magnet-free straight lengths of 4.9 m, a circumference of 71 m, a peak magnetic field seen by the beam of <1.74 T , a maximum horizontal orbit excursion of 50 cm and a DA of 58 mm mrad. A transverse magnet misalignment model is also presented for the ring and racetrack configurations where the DA remains above 40 mm mrad for randomly misaligned error distributions with a standard deviation up to 100 μ m .

  11. A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator.

    PubMed

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y-J; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2008-06-01

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  12. A Compact Linac for Proton Therapy Based on a Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y -; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2007-10-29

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  13. Beyond the CMSSM without an accelerator: proton decay and direct dark matter detection.

    PubMed

    Ellis, John; Evans, Jason L; Luo, Feng; Nagata, Natsumi; Olive, Keith A; Sandick, Pearl

    We consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale [Formula: see text]below the grand unification (GUT) scale [Formula: see text], a scenario referred to as 'sub-GUT'. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if [Formula: see text] is close to [Formula: see text], but it may lie within its reach if [Formula: see text] GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.

  14. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  15. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  16. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    SciTech Connect

    Xiao, K. D.; Huang, T. W.; Zhou, C. T.; Qiao, B.; Wu, S. Z.; Ruan, S. C.; He, X. T.

    2016-01-15

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.

  17. High Energy Neutrinos from the Fermi Bubbles

    SciTech Connect

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20–50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  18. High energy neutrinos from the Fermi bubbles.

    PubMed

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  19. The Large Hadron Collider: Redefining High Energy

    SciTech Connect

    Demers, Sarah

    2007-06-19

    Particle physicists have a description of the forces of nature known as the Standard Model that has successfully withstood decades of testing at laboratories around the world. Though the Standard Model is powerful, it is not complete. Important details like the masses of particles are not explained well, and realities as fundamental as gravity, dark matter, and dark energy are left out altogether. I will discuss gaps in the model and why there is hope that some puzzles will be solved by probing high energies with the Large Hadron Collider. Beginning next year, this machine will accelerate protons to record energies, hurling them around a 27 kilometer ring before colliding them 40 million times per second. Detectors the size of five-story buildings will record the debris of these collisions. The new energy frontier made accessible by the Large Hadron Collider will allow thousands of physicists to explore nature's fundamental forces and particles from a fantastic vantage point.

  20. Acceleration of protons in plasma produced from a thin plastic or aluminum target by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Rosinski, M.; Badziak, J.; Parys, P.; Zaras-Szydlowska, A.; Ryc, L.; Torrisi, L.; Szydlowski, A.; Malinowska, A.; Kaczmarczyk, B.; Makowski, J.; Torrisi, A.

    2016-05-01

    The acceleration of protons in plasma produced from thin mylar (3.5 μ m) and aluminum (2 μm) targets by a 45-fs laser pulses with the energy of 400 mJ and the intensity of up to 1019 W/cm2 was investigated. Characteristics of forward-accelerated protons were measured by the time-of-flight method. In the measurements, special attention was paid to the dependence of proton beam parameters on the laser focus position (FP) in relation to the target surface which resulted in the intensity change within a factor of ~ 10. It was observed that in the case of using the Mylar target, the dependence of both the maximum (Epmax) and the mean (langleEprangle) proton energy on |Δx| is clearly non-symmetric with regard to the point where FP = 0 (the focal plane on the target surface) and highest proton energies are achieved when the focal plane is situated in front of the target. In particular, for the target with the thickness of 3.5 μ m Epmax reached 2.2 MeV for FP = +50 μm while for FP = 0 and FP = -100 μm the maximum proton energies reached only 1.6 MeV and 1.3 MeV, respectively. For the aluminum target of 2 μm thickness Ep changed only within ~ 40% and the highest proton energies reached 2.4 MeV.

  1. High-energy and low-energy collision-induced dissociation of protonated flavonoids generated by MALDI and by electrospray ionization

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Li, Hongxia; Belgacem, Omar; Papanastasiou, Dimitris

    2007-04-01

    Product ion mass spectra of a series of nine protonated flavonoids have been observed by electrospray ionization combined with quadrupole/time-of-flight (ESI QTOF), and matrix-assisted laser desorption ionization combined either with quadrupole ion trap (MALDI QIT) tandem mass spectrometry or time-of-flight tandem mass spectrometry (MALDI TOF ReTOF). The compounds examined are 3,6-, 3,2'-, and 3,3'-dihydoxyflavone, apigenin (5,7,4'-trihydroxyflavone), luteolin (5,7,3',4'-tetrahydroxyflavone), apigenin-7-O-glucoside, hesperidin (5,7,3'-trihydroxy-4'-methoxyflavanone), daidzen (7,4'-dihydroxyisoflavone), and rutin (quercitin-3-O-rutinoside) where quercitin is 3,5,7,3',4'-pentahydroxyflavone; sodiated rutin was examined also. The center-of-mass energies in ESI QTOF and MALDI QIT are similar (1-4 eV) and their product ion mass spectra are virtually identical. In the MALDI TOF ReTOF instrument, center-of-mass energies range from 126-309 eV for sodiated rutin to protonated dihydroxyflavones, respectively. Due to the high center-of-mass energies available with the MALDI TOF ReTOF instrument, some useful structural information may be obtained; however, with increasing precursor mass/charge ratio, product ion mass spectra become simplified so as to be of limited structural value. Electronic excitation of the protonated (and sodiated) species examined here offers an explanation for the very simple product ion mass spectra observed particularly for glycosylated flavonoids.

  2. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Technical Reports Server (NTRS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  3. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    SciTech Connect

    Zhang, W; Sandberg, J; Parson, W M; Walstrom, P; Murray, M M; Cook, E; Hartouni, E

    2001-06-12

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  4. Energetics and energy scaling of quasi-monoenergetic protons in laser radiation pressure acceleration

    SciTech Connect

    Liu Tungchang; Shao Xi; Liu Chuansheng; Su Jaojang; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt; Tripathi, Vipin

    2011-12-15

    Theoretical and computational studies of the ion energy scaling of the radiation pressure acceleration of an ultra-thin foil by short pulse intense laser irradiation are presented. To obtain a quasi-monoenergetic ion beam with an energy spread of less than 20%, two-dimensional particle-in-cell simulations show that the maximum energy of the quasi-monoenergetic ion beam is limited by self-induced transparency at the density minima caused by the Rayleigh-Taylor instability. For foils of optimal thickness, the time over which Rayleigh-Taylor instability fully develops and transparency occurs is almost independent of the laser amplitude. With a laser power of about one petawatt, quasi-monogenetic protons with 200 MeV and carbon ions with 100 MeV per nucleon can be obtained, suitable for particle therapy applications.

  5. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  6. Clinical aspects and potential clinical applications of laser accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Spatola, C.; Privitera, G.

    2013-07-01

    Proton beam radiation therapy (PBRT), as well as the other forms of hadrontherapy, is in use in the treatment of neoplastic diseases, to realize a high selective irradiation with maximum sparing of surrounding organs. The main characteristic of such a particles is to have an increased radiobiological effectiveness compared to conventional photons (about 10% more) and the advantage to deposit the energy in a defined space through the tissues (Bragg peak phenomenon). The goal of ELIMED Project is the realization of a laser accelerated proton beam line to prove its potential use for clinical application in the field of hadrontherapy. To date, there are several potential clinical applications of PBRT, some of which have become the treatment of choice for a specific tumour, for others it is under investigation as a therapeutic alternative to conventional X-ray radiotherapy, to increase the dose to the tumour and reduce the side effects. For almost half of cancers, an increased local tumour control is the mainstay for increased cancer curability.

  7. Acceleration of protons to above 6 MeV using H{sub 2}O 'snow' nanowire targets

    SciTech Connect

    Pomerantz, I.; Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Gordon, D.; Sprangel, P.; Zigler, A.

    2012-07-09

    A scheme is presented for using H{sub 2}O 'snow' nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.

  8. The AWAKE Proton-driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2012-10-01

    We are planning an experiment at CERN to accelerate externally injected electrons e^- on the wake driven by a long, self-modulated proton p^+ bunch. In the plan the 12cm-long bunch from the SPS with 10^11 p^+ experiences a two-stream transverse instability that modulates the bunch radius at the plasma wake period. The bunch is focused to 200μm into a plasma with density in the 10^14-10^15cm-3 range. The modulation instability is seeded by co-propagating with the p^+ bunch a short laser pulse that ionizes a gas or vapor. The modulation resonantly drives wakefields to large amplitude. The low energy e^- ( 5-20MeV) produced by a rf-photoinjector gun are injected after the instability has saturated, 3-5m into the plasma and is accelerated to the GeV energy range. The e^- energy spectrum is measured by a large energy acceptance magnetic spectrometer. Bunch modulation diagnostics such as time resolved OTR and electro-optic measurements are also included. The general plans for the experiment as well as the latest developments will be presented.

  9. Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams

    SciTech Connect

    Schell, Stefan; Wilkens, Jan J.

    2010-10-15

    Purpose: Laser plasma acceleration can potentially replace large and expensive cyclotrons or synchrotrons for radiotherapy with protons and ions. On the way toward a clinical implementation, various challenges such as the maximum obtainable energy still remain to be solved. In any case, laser accelerated particles exhibit differences compared to particles from conventional accelerators. They typically have a wide energy spread and the beam is extremely pulsed (i.e., quantized) due to the pulsed nature of the employed lasers. The energy spread leads to depth dose curves that do not show a pristine Bragg peak but a wide high dose area, making precise radiotherapy impossible without an additional energy selection system. Problems with the beam quantization include the limited repetition rate and the number of accelerated particles per laser shot. This number might be too low, which requires a high repetition rate, or it might be too high, which requires an additional fluence selection system to reduce the number of particles. Trying to use laser accelerated particles in a conventional way such as spot scanning leads to long treatment times and a high amount of secondary radiation produced when blocking unwanted particles. Methods: The authors present methods of beam delivery and treatment planning that are specifically adapted to laser accelerated particles. In general, it is not necessary to fully utilize the energy selection system to create monoenergetic beams for the whole treatment plan. Instead, within wide parts of the target volume, beams with broader energy spectra can be used to simultaneously cover multiple axially adjacent spots of a conventional dose delivery grid as applied in intensity modulated particle therapy. If one laser shot produces too many particles, they can be distributed over a wider area with the help of a scattering foil and a multileaf collimator to cover multiple lateral spot positions at the same time. These methods are called axial and

  10. Radio Frequency Quadrupole and Alternating Phase Focusing Methods Used in Proton Linear Accelerator Technology in the USSR.

    DTIC Science & Technology

    1985-01-01

    percent (see Fig. 12). 16 mrad +0~--~--~~--~~-1----+ ---~ -O,G -0,¥ -0,2 0 0,2 0,¥ CH Abscissa- particle displacement from the accelarator axis...ARPA." 1. Proton accelerators. 2. Ion bombardment-Research -Soviet Union. 3. Linear accelerators. 4. Particle beams-Technique. I. United States...present author on the sub- ject of generating and accelerating intense ion and neutral particle beams. The first report was The Development of High

  11. Possible Contribution of Nuclear Fragmentation Induced by High Energy Cosmic Protons to Single Effects Transients in Modern 3D Technology On-Board Devices

    NASA Astrophysics Data System (ADS)

    Chechenin, Nikolay; Chumanov, Vladimir; Kadmenskii, Anatolii

    There is a tendency in modern integrated circuits manufacturing technology that in line with the growth of the density of transistors, the volume occupied by isolated conductive metallic layers on-chip also increases with copper and tungsten more frequently used instead of aluminum. Spallation reaction of 10 MeV to 1 GeV and above protons with tungsten and copper nuclei leads to formation of a large number of isotopes of elements from O to Ta. Experimental data on the cross sections of nuclear spallation reactions and average speed of residual nuclear fragments in inverse kinematics have been published in the last decade. In our report, we analyze the published data and evaluate ionization effects of the fragments from the reaction W (p, X) in the sensitive areas of transistors in microcircuit made by 3DIC technology with interlayer coupling by tungsten conductive pins (or vias), and metallic in-layer interconnection paths.

  12. Study of proton radiation effects on analog IC designed for high energy physics in a BICMOS-JFET radhard SOI technology

    SciTech Connect

    Blanquart, L.; Delpierre, P.; Habrard, M.C.

    1994-12-01

    The authors present experimental results from a fast charge amplifier and a wideband analog buffer processed in the DMILL BiCMOS-JFET radhard SOI technology and irradiated up to 4.5 {times} 10{sup 14} protons/cm{sup 2}. In parallel, they have irradiated elementary transistors. These components were biased and electrical measurements were done 30 min after beam stop. By evaluating variations of main SPICE parameters, i.e., threshold voltage shift for CMOS and current gain variation for bipolar transistors, they have simulated the wideband analog buffer at different doses. These SPICE simulations are in good agreement with measured circuit degradations. The behavior of the charge amplifier is consistent with extraction of transconductance and pinch-off voltage shift of the PJFET.

  13. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T.; Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D.

    2013-01-15

    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  14. High-energy antiprotons from old supernova remnants.

    PubMed

    Blasi, Pasquale; Serpico, Pasquale D

    2009-08-21

    A recently proposed model explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the antiproton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (such as pulsars). We briefly discuss important implications for dark matter searches via antimatter.

  15. High-energy neutrinos from photomeson processes in blazars.

    PubMed

    Atoyan, A; Dermer, C D

    2001-11-26

    An important radiation field for photomeson neutrino production in blazars is shown to be the radiation field external to the jet. Assuming that protons are accelerated with the same power as electrons and injected with a -2 number spectrum, we predict that km(2) neutrino telescopes will > or similar to 1 neutrinos per year from flat spectrum radio quasars such as 3C 279. The escaping high-energy neutron and photon beams transport inner jet energy far from the black-hole engine, and could power synchrotron x-ray jets and FR II hot spots and lobes.

  16. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    PubMed

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-04

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.

  17. High-energy particles associated with solar flares

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Klimas, A. J.

    1974-01-01

    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.

  18. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    PubMed

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  19. SU-E-T-528: Robustness Evaluation for Fiducial-Based Accelerated Partial Breast Proton Therapy

    SciTech Connect

    Zhao, L; Rana, S; Zheng, Y

    2014-06-01

    Purpose: To investigate the robustness of the proton treatment plans in the presence of rotational setup error when patient is aligned with implanted fiducials. Methods: Five Stage I invasive breast cancer patients treated with the APBP protocol (PCG BRE007-12) were studied. The rotational setup errors were simulated by rotating the original CT images around the body center clockwise and counterclockwise 5 degrees (5CW and 5CCW). Manual translational registration was then performed to match the implanted fiducials on the rotated images to the original dataset. Patient contours were copied to the newly created CT set. The original treatment plan was applied to the new CT dataset with the beam isocenter placed at the geometrical center of PTV. The dose distribution was recalculated for dosimetric parameters comparison. Results: CTV and PTV (D95 and V95) coverages were not significantly different between the two simulated plans (5CW and 5CCW) and the original plan. PTV D95 and CTV D95 absolute difference among the three plans were relatively small, with maximum changes of 0.28 CGE and 0.15 CGE, respectively. PTV V95 and CTV V95 absolute differences were 0.79% and 0.48%. The dosage to the thyroid, heart, contralateral breast and lung remained zero for all three plans. The Dmax and Dmean to the volume of ipsilateral breast excluding CTV were compared, with maximum difference values of 1.02 CGE for Dmax and 3.56 CGE for Dmean. Ipsilateral lung Dmean maintained no significant changes through the three plan comparison, with the largest value 0.32 CGE. Ipsilateral lung Dmax was the most sensitive parameter to this simulation study, with a maximum difference at 20.2 CGE. Conclusion: Our study suggests that fiducial-based Accelerated Partial Breast Proton Therapy is robust with respect to +/− 5 degree patient setup rotational errors, as long as the internal fiducial markers are used for patient alignment.

  20. Guiding and collimation of laser-accelerated proton beams using thin foils followed with a hollow plasma channel

    SciTech Connect

    Xiao, K. D.; Zhou, C. T.; Qiao, B.; He, X. T.

    2015-09-15

    It is proposed that guided and collimated proton acceleration by intense lasers can be achieved using an advanced target—a thin foil followed by a hollow plasma channel. For the advanced target, the laser-accelerated hot electrons can be confined in the hollow channel at the foil rear side, which leads to the formation of transversely localized, Gaussian-distributed sheath electric field and resultantly guiding of proton acceleration. Further, due to the hot electron flow along the channel wall, a strong focusing transverse electric field is induced, taking the place of the original defocusing one driven by hot electron pressure in the case of a purely thin foil target, which results in collimation of proton beams. Two-dimensional particle-in-cell simulations show that collimated proton beams with energy about 20 MeV and nearly half-reduced divergence of 26° are produced at laser intensities 10{sup 20 }W/cm{sup 2} by using the advanced target.

  1. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  2. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  3. High Energy Gamma Ray Lines from Solar Flares

    NASA Technical Reports Server (NTRS)

    Crannell, Carol Jo

    2000-01-01

    A number of nuclear states have been identified as possible candidates for producing high-energy gamma-ray line emission in solar flares. For one high-energy line, resulting from the decay of C-12 (15.11 MeV), the excitation cross sections and branching radios have been studied extensively. In a solar flare, the ratio of the flux of 15. 11 -MeV gamma rays to the flux of 4.44-MeV gamma rays depends critically on the spectral index of the flare-accelerated protons. Prospects for being able to determine that spectral index using results from HESSI observations together with the analytic results of Crannell, Crannell, and Ramaty (1979) will be presented.

  4. Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study

    NASA Astrophysics Data System (ADS)

    Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C. H.; Kieser, J.; Krivolutsky, A.; López-Puertas, M.; Marsh, D. R.; Reddmann, T.; Rozanov, E.; Salmi, S.-M.; Sinnhuber, M.; Stiller, G. P.; Verronen, P. T.; Versick, S.; von Clarmann, T.; Vyushkova, T. Y.; Wieters, N.; Wissing, J. M.

    2011-09-01

    We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in late October 2003 at 25-0.01 hPa in the Northern Hemisphere (40-90° N) and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM) and Bremen 3-D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5 % with the observations. Simulated NOy enhancements around 1 hPa, however, are typically 30 % higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models'atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models

  5. Composition changes after the "Halloween" solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study

    NASA Astrophysics Data System (ADS)

    Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C. H.; Kieser, J.; Krivolutsky, A.; López-Puertas, M.; Marsh, D. R.; Reddmann, T.; Rozanov, E.; Salmi, S.-M.; Sinnhuber, M.; Stiller, G. P.; Verronen, P. T.; Versick, S.; von Clarmann, T.; Vyushkova, T. Y.; Wieters, N.; Wissing, J. M.

    2011-03-01

    We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in October/November 2003 at 25-0.01 hPa in the Northern Hemisphere (40-90° N) and simulations performed by the following atmospheric models: the Bremen 2d Model (B2dM) and Bremen 3d Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications on the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated noy enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which can be partly attributed to an overestimation of simulated electron-induced ionization. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The analysis

  6. Composition Changes After the "Halloween" Solar Proton Event: The High-Energy Particle Precipitation in the Atmosphere (HEPPA) Model Versus MIPAS Data Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C. H.; Kieser, J.; Krivolutsky, A.; Lopez-Puertas, M.; Marsh. D. R.; Reddmann, T.; Rozanov, E.; Salmi, S.-M.; Sinnhuber, M.; Stiller, G. P.; Verronen, P. T.; Versick, S.; vonClarmann, T.; Vyushkova, T. Y.; Wieters, N.; Wissing, J. M.

    2010-01-01

    We have compared composition changes of NO, NO2, H2O2,O3, N2O, HNO3 , N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in October/November 2003 at 25-0.01 hPa in the Northern hemisphere (40-90 N) and simulations performed by the following atmospheric models: the Bremen 2D model (B2dM) and Bremen 3D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSY Atmospheric Chemistry (EMAC) model, the modeling tool for SO1ar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOS, and ozone changes. We have further assessed the meteorological conditions and their implications on the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated NO(y) enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which can be partly attributed to an overestimation of simulated electron-induced ionization. The analysis of the observed and modeled NO(y) partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The

  7. Applications of particle accelerators in medicine.

    PubMed

    Silari, Marco

    2011-07-01

    There are nearly 20,000 particle accelerators in operation worldwide, about half of them employed for biomedical uses. This paper focuses on some recent advances in the two main medical domains where accelerators find their use, radionuclide production and radiation therapy. The paper first discusses the use of high-energy electron and proton accelerators for the potential, future production of (99)Mo, which is presently provided by fission reactors. Next, it reviews the rationale for the use of protons and carbon ions in cancer therapy, discussing the requirements imposed on accelerator technology and looking at some recent developments.

  8. Laser-plasma generated very high energy electrons in radiation therapy of the prostate

    NASA Astrophysics Data System (ADS)

    DesRosiers, Colleen; Moskvin, Vadim; Cao, Minsong; Joshi, Chandrashekhar J.; Langer, Mark

    2008-02-01

    Monte Carlo simulation experiments have shown that very high energy electrons (VHEE), 150-250 MeV, have potential advantages in prostate cancer treatment over currently available electrons, photon and proton beam treatment. Small diameter VHEE beamlets can be scanned, thereby producing a finer resolution intensity modulated treatment than photon beams. VHEE beams may be delivered with greater precision and accelerators may be constructed at significantly lower cost than proton beams. A VHEE accelerator may be optimally designed using laser-plasma technology. If the accelerator is constructed to additionally produce low energy photon beams along with VHEE, real time imaging, bioprobing, and dose enhancement may be performed simultaneously. This paper describes a Monte Carlo experiment, using the parameters of the electron beam from the UCLA laser-plasma wakefield accelerator, whereby dose distributions on a human prostate are generated. The resulting dose distributions of the very high energy electrons are shown to be comparable to photon beam dose distributions. This simple experiment illustrates that the nature of the dose distribution of electrons is comparable to that of photons. However, the main advantage of electrons over photons and protons lies in the delivery and manipulation of electrons, rather than the nature of the dose distribution. This paper describes the radiation dose delivery of electrons employing technologies currently in exploration and evaluates potential benefits as compared with currently available photon and protons beams in the treatment of prostate and other cancers, commonly treated with radiation.

  9. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  10. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Liejin; Liu, Hongtan

    2015-11-01

    The mechanisms of performance recovery after accelerated stress test (AST) in proton exchange membrane fuel cells (PEMFCs) are systematically studied. Experiments are carried out by incorporating a well-designed performance recovery procedure right after the AST protocol. The experiment results show that the cell performance recovers significantly from the degraded state after the AST procedure. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements further show that the performance recovery can be divided into kinetic and mass transport recoveries. It is further determined that the kinetic recovery, i.e. the recovery of electrochemical active area (ECA), is due to two distinct mechanisms: the reduction of platinum oxide and the re-attachment of detached platinum nanoparticles onto the carbon surface. The mass transport resistance is probably due to reduction of hydrophilic oxide groups on the carbon surface and the microstructure change that alleviates flooding. Performance comparisons show that the recovery procedure is highly effective, indicating the results of AST significantly over-estimate the true degradation in a PEM fuel cell. Therefore, a recovery procedure is highly recommended when an AST protocol is used to evaluate cell degradations to avoid over-estimating true performance degradations in PEMFCs.

  11. Numerical simulations of recent proton acceleration experiments with sub-100 TW laser systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano

    2016-09-01

    Recent experiments carried out at the Italian National Research Center, National Optics Institute Department in Pisa, are showing interesting results regarding maximum proton energies achievable with sub-100 TW laser systems. While laser systems are being continuously upgraded in laboratories around the world, at the same time a new trend on stabilizing and making ion acceleration results reproducible is growing in importance. Almost all applications require a beam with fixed performance, so that the energy spectrum and the total charge exhibit moderate shot to shot variations. This result is surely far from being achieved, but many paths are being explored in order to reach it. Some of the reasons for this variability come from fluctuations in laser intensity and focusing, due to optics instability. Other variation sources come from small differences in the target structure. The target structure can vary substantially, when it is impacted by the main pulse, due to the prepulse duration and intensity, the shape of the main pulse and the total energy deposited. In order to qualitatively describe the prepulse effect, we will present a two dimensional parametric scan of its relevant parameters. A single case is also analyzed with a full three dimensional simulation, obtaining reasonable agreement between the numerical and the experimental energy spectrum.

  12. A version of the Trasco Intense Proton Source optimized for accelerator driven system purposes

    NASA Astrophysics Data System (ADS)

    Ciavola, G.; Celona, L.; Gammino, S.; Presti, M.; Andò, L.; Passarello, S.; Zhang, XZh.; Consoli, F.; Chines, F.; Percolla, C.; Calzona, V.; Winkler, M.

    2004-05-01

    A full set of measurements of the magnetic field has been carried out to define a different design of the TRASCO Intense Proton Source (TRIPS) magnetic system, based on permanent magnets, in order to increase the reliability of the source. The two coils of the source generate a maximum field of 150 mT and the optimum field was determined around 95 mT. The OPERA-3D package was used to simulate the magnetic field and a new magnetic system was designed as a combination of three rings of NdFeB magnets and soft iron. The high voltage insulation has been completely modified, in order to avoid any electronics at 80 kV voltage. The description of the magnetic measurements and the comparison with the simulations are presented, along with the mechanical design of the new version permanent magnet TRIPS (PM-TRIPS) and the new design of the extraction system. Finally the modification of the low energy beam transfer line (LEBT), which now includes a 30° bending magnet, will be outlined, with special regard to the accelerator availability improvement which can be obtained with the installation of two PM-TRIPS sources or more on the LEBT.

  13. High energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays are understood to result from energetic processes in the galaxy, probably from supernova explosions. However, cosmic ray energies extend several orders of magnitude beyond the limit thought possible for supernova blast waves. Over the past decade several ground-based and space-based investigations were initiated to look for evidence of a limit to supernova acceleration in the cosmic-ray chemical composition at high energies. These high-energy measurements are difficult because of the very low particle fluxes in the most interesting regions. The space-based detectors must be large enough to collect adequate statistics, yet stay within the weight limit for space flight. Innovative approaches now promise high quality measurements over an energy range that was not previously possible. The current status of high energy cosmic-ray composition measurements and planned future missions are discussed in this paper.

  14. Magnetic Reconnection-Powered Relativistic Particle Acceleration, High-Energy Gamma-Ray Emission, and Pair Production in Coronae of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    2015-11-01

    Magnetic reconnection is a fundamental plasma process believed to play an important role in energetics of magnetically-dominated coronae of various astrophysical objects including accreting black holes. Building up on recent advances in kinetic simulations of relativistic collisionless reconnection, we investigate nonthermal particle acceleration and its key observational consequences for these systems. We argue that reconnection can efficiently accelerate coronal electrons (as well as ions) up to hundreds of MeV or even GeV energies. In brightest systems, radiation back-reaction due to inverse-Compton (and/or synchrotron) emission becomes important at these energies and limits any further electron acceleration, thereby turning reconnection layers into powerful and efficient radiators of γ-rays. We then evaluate the rate of absorption of the resulting γ-ray photons by the ambient soft (X-ray) photon fields and show that it can be a significant source of pair production, with important implications for the composition of black-hole coronae and jets. Finally, we assess the prospects of laboratory studies of magnetic reconnection in the physical regimes relevant to black-hole accretion flows using modern and future laser-plasma facilities. This work is supported by DOE, NSF, and NASA.

  15. The ANSTO high energy heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  16. Harvard University High Energy Physics progress report

    SciTech Connect

    Not Available

    1992-10-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard`s High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops.

  17. Harvard University High Energy Physics progress report

    SciTech Connect

    Not Available

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops.

  18. On the acceleration of ions by interplanetary shock waves. 3: High time resolution observations of CIR proton events

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Vanallen, J. A.; Tsurutani, B. T.; Smith, E. J.

    1981-01-01

    Observations within + or - 3 hours of corotating interaction region (CIR) shock waves of proton intensities, pitch angle distribution and crude differential energy spectra of the range of 0.6 E sub p 3.4 MeV are presented. The principle result is the evidence for the persistent flow of particles away from the shock. The observations are found to be in good agreement with the hypothesis of local interplanetary shock acceleration by the shock drift and compression mechanisms. The same set of observations strongly suggest that transit time damping does not play an important role in the acceleration of protons to 1 MeV in the immediate vicinity of CIR shocks.

  19. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    NASA Astrophysics Data System (ADS)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  20. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    SciTech Connect

    Wu, Q. Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.