Science.gov

Sample records for high-fat meal impairs

  1. Acute Thermotherapy Prevents Impairments in Cutaneous Microvascular Function Induced by a High Fat Meal

    PubMed Central

    Harvey, Jennifer C.; Roseguini, Bruno T.; Goerger, Benjamin M.; Fallon, Elizabeth A.

    2016-01-01

    We tested the hypothesis that a high fat meal (HFM) would impair cutaneous vasodilation, while thermotherapy (TT) would reverse the detrimental effects. Eight participants were instrumented with skin heaters and laser-Doppler (LD) probes and tested in three trials: control, HFM, and HFM + TT. Participants wore a water-perfused suit perfused with 33°C (control and HFM) or 50°C (HFM + TT) water. Participants consumed 1 g fat/kg body weight. Blood samples were taken at baseline and two hours post-HFM. Blood pressure was measured every 5–10 minutes. Microvascular function was assessed via skin local heating from 33°C to 39°C two hours after HFM. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVCmax). HFM had no effect on initial peak (48 ± 4 %CVCmax) compared to control (49 ± 4 %CVCmax) but attenuated the plateau (51 ± 4 %CVCmax) compared to control (63 ± 4 %CVCmax, P < 0.001). Initial peak was augmented in HFM + TT (66 ± 4 %CVCmax) compared to control and HFM (P < 0.05), while plateau (73 ± 3 % CVCmax) was augmented only compared to the HFM trial (P < 0.001). These data suggest that HFM negatively affects cutaneous vasodilation but can be minimized by TT. PMID:27595112

  2. Acute Thermotherapy Prevents Impairments in Cutaneous Microvascular Function Induced by a High Fat Meal.

    PubMed

    Harvey, Jennifer C; Roseguini, Bruno T; Goerger, Benjamin M; Fallon, Elizabeth A; Wong, Brett J

    2016-01-01

    We tested the hypothesis that a high fat meal (HFM) would impair cutaneous vasodilation, while thermotherapy (TT) would reverse the detrimental effects. Eight participants were instrumented with skin heaters and laser-Doppler (LD) probes and tested in three trials: control, HFM, and HFM + TT. Participants wore a water-perfused suit perfused with 33°C (control and HFM) or 50°C (HFM + TT) water. Participants consumed 1 g fat/kg body weight. Blood samples were taken at baseline and two hours post-HFM. Blood pressure was measured every 5-10 minutes. Microvascular function was assessed via skin local heating from 33°C to 39°C two hours after HFM. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVCmax). HFM had no effect on initial peak (48 ± 4 %CVCmax) compared to control (49 ± 4 %CVCmax) but attenuated the plateau (51 ± 4 %CVCmax) compared to control (63 ± 4 %CVCmax, P < 0.001). Initial peak was augmented in HFM + TT (66 ± 4 %CVCmax) compared to control and HFM (P < 0.05), while plateau (73 ± 3 % CVCmax) was augmented only compared to the HFM trial (P < 0.001). These data suggest that HFM negatively affects cutaneous vasodilation but can be minimized by TT. PMID:27595112

  3. Acute Thermotherapy Prevents Impairments in Cutaneous Microvascular Function Induced by a High Fat Meal

    PubMed Central

    Harvey, Jennifer C.; Roseguini, Bruno T.; Goerger, Benjamin M.; Fallon, Elizabeth A.

    2016-01-01

    We tested the hypothesis that a high fat meal (HFM) would impair cutaneous vasodilation, while thermotherapy (TT) would reverse the detrimental effects. Eight participants were instrumented with skin heaters and laser-Doppler (LD) probes and tested in three trials: control, HFM, and HFM + TT. Participants wore a water-perfused suit perfused with 33°C (control and HFM) or 50°C (HFM + TT) water. Participants consumed 1 g fat/kg body weight. Blood samples were taken at baseline and two hours post-HFM. Blood pressure was measured every 5–10 minutes. Microvascular function was assessed via skin local heating from 33°C to 39°C two hours after HFM. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVCmax). HFM had no effect on initial peak (48 ± 4 %CVCmax) compared to control (49 ± 4 %CVCmax) but attenuated the plateau (51 ± 4 %CVCmax) compared to control (63 ± 4 %CVCmax, P < 0.001). Initial peak was augmented in HFM + TT (66 ± 4 %CVCmax) compared to control and HFM (P < 0.05), while plateau (73 ± 3 % CVCmax) was augmented only compared to the HFM trial (P < 0.001). These data suggest that HFM negatively affects cutaneous vasodilation but can be minimized by TT.

  4. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal.

    PubMed

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-08-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal-induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal. PMID:24303126

  5. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal

    PubMed Central

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-01-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal–induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal. PMID:24303126

  6. Taste and smell sensations enhance the satiating effect of both a high-carbohydrate and a high-fat meal in humans.

    PubMed

    Warwick, Z S; Hall, W G; Pappas, T N; Schiffman, S S

    1993-03-01

    The effects of meal sensory properties (tasty vs. bland) and nutrient composition [high-CHO (carbohydrate) vs. high-FAT] on hunger ratings, blood glucose and free fatty acids (FFA), taste perception, and subsequent food intake, were studied in human subjects. Aspartame and vanilla were used to augment meal palatability, yielding four isocaloric liquid meals: bland-FAT, tasty-FAT, bland-CHO, tasty-CHO. Normal-weight, nondieting young adults consumed each of the meals for breakfast on separate days. The main finding was that tasty versions of high-FAT and high-CHO meals were more satiating than nutritionally identical bland meals, as indicated by a greater decrease in hunger ratings following the tasty meals. Changes in blood glucose and FFA were related to meal nutrient composition, but not to meal sensory properties. High-CHO meals tended to be more satiating than high-FAT meals. Consumption of each of the meals produced a similar decrease in pleasantness ratings of food-related tastes. Intake of carbohydrates was significantly higher at a self-selected lunch 5.25 h following a tasty breakfast. These findings indicate that hunger is decreased to a greater extent by meals flavored with aspartame and vanilla relative to nutritionally identical, unflavored meals. The satiety-enhancing effect of oral stimulation was found for both high-FAT and high-CHO meals.

  7. Comparison of hormonal and metabolic markers after a high-fat, Western meal versus a low-fat, high-fiber meal in women with polycystic ovary syndrome

    PubMed Central

    Katcher, Heather I.; Kunselman, Allen R.; Dmitrovic, Romana; Demers, Laurence M.; Gnatuk, Carol L.; Kris-Etherton, Penny M.; Legro, Richard S.

    2009-01-01

    Objective To determine the effect of meal composition on postprandial testosterone levels in women with polycystic ovary syndrome (PCOS). Design Randomized, crossover design. Setting Academic research center. Patients Fifteen women with PCOS. Intervention We evaluated changes in testosterone, sex hormone binding globulin (SHBG), DHEA-S, cortisol, glucose, and insulin for six hours after a high-fat, Western meal (HIFAT) (62% fat, 24% carbohydrate, 1g fiber) and an isocaloric low-fat, high-fiber meal (HIFIB) (6% fat, 81% carbohydrate, 27g fiber). Main outcome measure Change in testosterone. Results Testosterone decreased 27% within two hours after both meals (P<0.001). However, testosterone remained below premeal values for four hours after the HIFIB meal (P<0.004) and six hours after the HIFAT meal (P<0.004). Insulin was two fold higher for two hours after the HIFIB meal compared with the HIFAT meal (P<0.03). Glucose was higher for one hour after the HIFIB meal compared with the HIFAT meal (P<0.003). DHEA-S decreased 8−10% within 2−3 hours after both meals, then increased over the remainder of the study period (P<0.001). Cortisol decreased over the 6-hour period after both meals (P<0.001). Conclusions Diet plays a role in the regulation of testosterone levels in women with PCOS. Further studies are needed to determine the role of diet composition in the treatment of PCOS. (ClinicalTrials.gov Identifier: NCT0455338). PMID:18331737

  8. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat.

    PubMed

    Bake, T; Morgan, D G A; Mercer, J G

    2014-04-10

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague-Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1-2 h and 10-11 h into the dark phase (2×1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2×1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic platform for mechanistic study

  9. The effect of consuming low- versus high-glycemic index meals after exercise on postprandial blood lipid response following a next-day high-fat meal

    PubMed Central

    Kaviani, M; Chilibeck, P D; Yee, P; Zello, G A

    2016-01-01

    Background/Objectives: Exercise performed shortly before (that is, within half a day of) a high-fat meal is beneficial for stimulating fat oxidation after the meal and reducing postprandial triglycerides (TG). This benefit of exercise is unfortunately negated if the after-exercise food choice to replace the calories expended during exercise is one containing high-glycemic index (HGI) carbohydrates. We determined the effect of consuming low-glycemic index (LGI) carbohydrates after an exercise session on fat oxidation and TG after a subsequent high-fat meal. Subjects/Methods: Using a randomized, counterbalanced crossover design, 23 overweight or obese individuals (body mass index ⩾25 kg m−2) performed: walking exercise (90 min) at 1800 h followed by no meal (EX); exercise followed by a meal with LGI carbohydrates (that is, lentils, EX-LGI); exercise followed by a meal with HGI carbohydrates (that is, instant potatoes, white bread, EX-HGI); and a control condition with no exercise or meal. After a 10-h overnight fast, participants were given a standardized high-fat meal. Fat oxidation was estimated before and for 6 h after this meal from respiratory gas measures and TG determined from blood samples. Results: Fat oxidation (mean±s.d.) was higher with EX (6.9±1.7 g h−1) than EX-HGI (6.3±1.6 g h−1; P=0.007) and Control (5.9±1.7 g h−1; P=0.00002), and EX-LGI (6.6±1.7 g h−1) was higher than Control (P=0.002). TG total area under the curve was 18–32% lower with EX and EX-LGI compared with control (P=0.0005 and P=0.0001, respectively) and EX-HGI (P=0.05 and P=0.021, respectively). Conclusions: A meal containing HGI carbohydrates consumed after an evening exercise session cancels the beneficial effect of exercise for stimulating fat oxidation and lowering TG after a subsequent high-fat meal, whereas consuming a post-exercise meal with LGI carbohydrates retains the positive effect of exercise. PMID:27376698

  10. Differing effects of high-fat or high-carbohydrate meals on food hedonics in overweight and obese individuals.

    PubMed

    Hopkins, Mark; Gibbons, Catherine; Caudwell, Phillipa; Blundell, John E; Finlayson, Graham

    2016-05-28

    Although the effects of dietary fat and carbohydrate on satiety are well documented, little is known about the impact of these macronutrients on food hedonics. We examined the effects of ad libitum and isoenergetic meals varying in fat and carbohydrate on satiety, energy intake and food hedonics. In all, sixty-five overweight and obese individuals (BMI=30·9 (sd 3·8) kg/m2) completed two separate test meal days in a randomised order in which they consumed high-fat/low-carbohydrate (HFLC) or low-fat/high-carbohydrate (LFHC) foods. Satiety was measured using subjective appetite ratings to calculate the satiety quotient. Satiation was assessed by intake at ad libitum meals. Hedonic measures of explicit liking (subjective ratings) and implicit wanting (speed of forced choice) for an array of HFLC and LFHC foods were also tested before and after isoenergetic HFLC and LFHC meals. The satiety quotient was greater after ad libitum and isoenergetic meals during the LFHC condition compared with the HFLC condition (P=0·006 and P=0·001, respectively), whereas ad libitum energy intake was lower in the LFHC condition (P<0·001). Importantly, the LFHC meal also reduced explicit liking (P<0·001) and implicit wanting (P=0·011) for HFLC foods compared with the isoenergetic HFLC meal, which failed to suppress the hedonic appeal of subsequent HFLC foods. Therefore, when coupled with increased satiety and lower energy intake, the greater suppression of hedonic appeal for high-fat food seen with LFHC foods provides a further mechanism for why these foods promote better short-term appetite control than HFLC foods.

  11. Metabolic responses to high-fat or low-fat meals and association with sympathetic nervous system activity in healthy young men.

    PubMed

    Nagai, Narumi; Sakane, Naoki; Moritani, Toshio

    2005-10-01

    The present study was designed to investigate the metabolic and sympathetic responses to a high-fat meal in humans. Fourteen young men (age: 23.6 +/- 0.5 y, BMI: 21.3 +/- 0.4 kg/m2) were examined for energy expenditure and fat oxidation measured by indirect calorimetry for 3.5 h after a high-fat (70%, energy from fat) or an isoenergetic low-fat (20% energy from fat) meal served in random order. The sympathetic nervous system (SNS) activity was assessed using power spectral analysis of heart rate variability (HRV). After the high-fat meal, increases in thermoregulatory SNS activity (very low-frequency component of HRV, 0.007-0.035 Hz, 577.4+/-45.9 vs. 432.0+/-49.3 ms2, p<0.05) and fat oxidation (21.0+/-5.3 vs. 13.3+/-4.3 g, p<0.001) were greater than those after the low-fat meal. However, thermic effects of the meal (TEM) were lower after the high-fat meal than after the low-fat meal (27.5+/-11.2 vs. 36.1+/-10.9 kcal, p<0.05). In conclusion, the high-fat meal can stimulate thermoregulatory SNS and lipolysis, but resulted in lower TEM, suggesting that a high proportion of dietary fat intake, even with a normal daily range of calories, may be a potent risk factor for further weight gain.

  12. Second meal effect: modified sham feeding does not provoke the release of stored triacylglycerol from a previous high-fat meal.

    PubMed

    Jackson, K G; Robertson, M D; Fielding, B A; Frayn, K N; Williams, C M

    2001-02-01

    The present study was carried out to determine whether cephalic stimulation, associated with eating a meal, was sufficient stimulus to provoke the release of stored triacylglycerol (TAG) from a previous high-fat meal. Ten subjects were studied on three separate occasions. Following a 12 h overnight fast, subjects were given a standard mixed test meal which contained 56 g fat. Blood samples were taken before the meal and for 5 h after the meal when the subjects were randomly allocated to receive either water (control) or were modified sham fed a low-fat (6 g fat) or moderate-fat (38 g fat) meal. Blood samples were collected for a further 3 h. Compared with the control, modified sham feeding a low- or moderate-fat meal did not provoke an early entry of TAG, analysed in either plasma or TAG-rich lipoprotein (TRL) fraction (density <1.006 kg/l). The TRL-retinyl ester data showed similar findings. A cephalic phase secretion of pancreatic polypeptide, without a significant increase in cholecystokinin levels, was observed on modified sham feeding. Although these data indicate that modified sham feeding was carried out successfully, analysis of the fat content of the expectorant showed that our subjects may have accidentally ingested a small amount of fat (0.7 g for the low-fat meal and 2.4 g for the moderate-fat meal). Nevertheless, an early TAG peak following modified sham feeding was not demonstrated in the present study, suggesting that significant ingestion of food, and not just oro-sensory stimulation, is necessary to provoke the release of any TAG stored from a previous meal.

  13. Does Moderate Intensity Exercise Attenuate the Postprandial Lipemic and Airway Inflammatory Response to a High-Fat Meal?

    PubMed Central

    Kurti, Stephanie P.; Rosenkranz, Sara K.; Levitt, Morton; Cull, Brooke J.; Teeman, Colby S.; Emerson, Sam R.; Harms, Craig A.

    2015-01-01

    We investigated whether an acute bout of moderate intensity exercise in the postprandial period attenuates the triglyceride and airway inflammatory response to a high-fat meal (HFM) compared to remaining inactive in the postprandial period. Seventeen (11 M/6 F) physically active (≥150 min/week of moderate-vigorous physical activity (MVPA)) subjects were randomly assigned to an exercise (EX; 60% VO2peak) or sedentary (CON) condition after a HFM (10 kcal/kg, 63% fat). Blood analytes and airway inflammation via exhaled nitric oxide (eNO) were measured at baseline, and 2 and 4 hours after HFM. Airway inflammation was assessed with induced sputum and cell differentials at baseline and 4 hours after HFM. Triglycerides doubled in the postprandial period (~113 ± 18%, P < 0.05), but the increase did not differ between EX and CON. Percentage of neutrophils was increased 4 hours after HFM (~17%), but the increase did not differ between EX and CON. Exhaled nitric oxide changed nonlinearly from baseline to 2 and 4 hours after HFM (P < 0.05,  η2 = 0.36). Our findings suggest that, in active individuals, an acute bout of moderate intensity exercise does not attenuate the triglyceride or airway inflammatory response to a high-fat meal. PMID:26000301

  14. Does moderate intensity exercise attenuate the postprandial lipemic and airway inflammatory response to a high-fat meal?

    PubMed

    Kurti, Stephanie P; Rosenkranz, Sara K; Levitt, Morton; Cull, Brooke J; Teeman, Colby S; Emerson, Sam R; Harms, Craig A

    2015-01-01

    We investigated whether an acute bout of moderate intensity exercise in the postprandial period attenuates the triglyceride and airway inflammatory response to a high-fat meal (HFM) compared to remaining inactive in the postprandial period. Seventeen (11 M/6 F) physically active (≥ 150 min/week of moderate-vigorous physical activity (MVPA)) subjects were randomly assigned to an exercise (EX; 60% VO 2peak) or sedentary (CON) condition after a HFM (10 kcal/kg, 63% fat). Blood analytes and airway inflammation via exhaled nitric oxide (eNO) were measured at baseline, and 2 and 4 hours after HFM. Airway inflammation was assessed with induced sputum and cell differentials at baseline and 4 hours after HFM. Triglycerides doubled in the postprandial period (~113 ± 18%, P < 0.05), but the increase did not differ between EX and CON. Percentage of neutrophils was increased 4 hours after HFM (~17%), but the increase did not differ between EX and CON. Exhaled nitric oxide changed nonlinearly from baseline to 2 and 4 hours after HFM (P < 0.05, η (2) = 0.36). Our findings suggest that, in active individuals, an acute bout of moderate intensity exercise does not attenuate the triglyceride or airway inflammatory response to a high-fat meal. PMID:26000301

  15. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice*

    PubMed Central

    Bake, T.; Murphy, M.; Morgan, D.G.A.; Mercer, J.G.

    2014-01-01

    Male C57BL/6 mice fed ad libitum on control diet but allowed access to a palatable high fat diet (HFD) for 2 h a day during the mid-dark phase rapidly adapt their feeding behaviour and can consume nearly 80% of their daily caloric intake during this 2 h-scheduled feed. We assessed food intake microstructure and meal pattern, and locomotor activity and rearing as markers of food anticipatory activity (FAA). Schedule fed mice reduced their caloric intake from control diet during the first hours of the dark phase but not during the 3-h period immediately preceding the scheduled feed. Large meal/binge-like eating behaviour during the 2-h scheduled feed was characterised by increases in both meal number and meal size. Rearing was increased during the 2-h period running up to scheduled feeding while locomotor activity started to increase 1 h before, indicating that schedule-fed mice display FAA. Meal number and physical activity changes were sustained when HFD was withheld during the anticipated scheduled feeding period, and mice immediately binged when HFD was represented after a week of this “withdrawal” period. These findings provide important context to our previous studies suggesting that energy balance systems in the hypothalamus are not responsible for driving these large, binge-type meals. Evidence of FAA in HFD dark phase schedule-fed mice implicates anticipatory processes in binge eating that do not involve immediately preceding hypophagia or regulatory homeostatic signalling. PMID:24631639

  16. [Increase in Alkaline Phosphatase Activity after High-Fat Meal Ingestion is Correlated to the Amount of ABH Substances in Saliva].

    PubMed

    Matsushita, Makoto; Otani, Kana; Sakamoto, Yui; Arai, Tomoko; Yukimasa, Nobuyasu; Muramoto, Yoshimi; Komoda, Tsugikazu

    2015-05-01

    Intestinal alkaline phosphatase (IAP) appears in the circulation more frequently in blood group B or O secretors than in blood group A or AB secretors and non-secretors, and serum IAP activity rises following the ingestion of a high-fat meal. In a previous study, the occurrence of two IAP isoforms, with high (HIAP) and normal molecular mass (NIAP), in healthy sera was demonstrated by 6.0% polyacrylamide gel electrophoresis in the presence of 1% Triton X-100. NIAP was present in the fasting serum of only healthy blood group B or O secretors, but was present in all subjects following ingestion of a high-fat meal. We classified 56 healthy subjects into 3 blood groups: B (n = 19), O (n = 17), and A (n = 20), and measured their serum ALP activity in a fasting state and 6 h after a high-fat meal. The amount of ABH substances in the saliva of each subject was determined by the hemagglutination inhibition test. Correlation coefficients between the change in ALP activity after high-fat meal ingestion and the hemagglutination inhibition values in saliva were 0.925 in blood group B, 0.879 in blood group O, and 0.906 in blood group A. These results suggest that increases in ALP activity in the circulation following the ingestion of a high-fat meal are closely related to the amount of ABH substances in saliva. PMID:26524892

  17. Eating meals before wheel-running exercise attenuate high fat diet-driven obesity in mice under two meals per day schedule.

    PubMed

    Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Shibata, Shigenobu

    2015-06-01

    Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a "two meals, two exercise sessions per day" schedule was optimal in terms of maintaining a healthy body weight. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.

  18. Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases

    PubMed Central

    Al-Disi, Dara A.; Al-Daghri, Nasser M.; Khan, Nasiruddin; Alfadda, Assim A.; Sallam, Reem M.; Alsaif, Mohammed; Sabico, Shaun; Tripathi, Gyanendra; McTernan, Philip G.

    2015-01-01

    This study determined the effects of a high-fat meal on circulating endotoxin and cardiometabolic indices in adult Arab women. The cohort consisted of 92 consenting Saudi women (18 non-diabetic (ND)) control subjects; Age 24.4 ± 7.9 year; body mass index (BMI) 22.2 ± 2.2 Kg/m2), 24 overweight/obese (referred to as overweight-plus (overweight+)) subjects (Age 32.0 ± 7.8 year; BMI 28.5 ± 1.5 Kg/m2) and 50 type 2 diabetes mellitus (T2DM) patients (Age 41.5 ± 6.2 year; BMI 35.2 ± 7.7 Kg/m2). All were given a high-fat meal (standardized meal: 75 g fat, 5 g carbohydrate, 6 g protein) after an overnight fast of 12–14 h. Anthropometrics were obtained and fasting blood glucose, lipids, and endotoxin were serially measured for four consecutive postprandial hours. Endotoxin levels were significantly elevated prior to a high-fat meal in the overweight+ and T2DM than the controls (p < 0.05). Furthermore, the postprandial cardiometabolic changes led to a more detrimental risk profile in T2DM subjects than other groups, with serial changes most notable in glucose, triglycerides, high density lipoprotein-cholesterol (HDL-cholesterol), and insulin levels (p-values < 0.05). The same single meal given to subjects with different metabolic states had varying impacts on cardiometabolic health. Endotoxemia is exacerbated by a high-fat meal in Arab subjects with T2DM, accompanied by a parallel increase in cardiometabolic risk profile, suggesting disparity in disease pathogenesis of those with or without T2DM through the altered cardiometabolic risk profile rather than variance in metabolic endotoxinaemia with a high-fat meal. PMID:26247966

  19. Postprandial Effect of a High-Fat Meal on Endotoxemia in Arab Women with and without Insulin-Resistance-Related Diseases.

    PubMed

    Al-Disi, Dara A; Al-Daghri, Nasser M; Khan, Nasiruddin; Alfadda, Assim A; Sallam, Reem M; Alsaif, Mohammed; Sabico, Shaun; Tripathi, Gyanendra; McTernan, Philip G

    2015-08-01

    This study determined the effects of a high-fat meal on circulating endotoxin and cardiometabolic indices in adult Arab women. The cohort consisted of 92 consenting Saudi women (18 non-diabetic (ND)) control subjects; Age 24.4 ± 7.9 year; body mass index (BMI) 22.2 ± 2.2 Kg/m2), 24 overweight/obese (referred to as overweight-plus (overweight+)) subjects (Age 32.0 ± 7.8 year; BMI 28.5 ± 1.5 Kg/m2) and 50 type 2 diabetes mellitus (T2DM) patients (Age 41.5 ± 6.2 year; BMI 35.2 ± 7.7 Kg/m2). All were given a high-fat meal (standardized meal: 75 g fat, 5 g carbohydrate, 6 g protein) after an overnight fast of 12-14 h. Anthropometrics were obtained and fasting blood glucose, lipids, and endotoxin were serially measured for four consecutive postprandial hours. Endotoxin levels were significantly elevated prior to a high-fat meal in the overweight+ and T2DM than the controls (p < 0.05). Furthermore, the postprandial cardiometabolic changes led to a more detrimental risk profile in T2DM subjects than other groups, with serial changes most notable in glucose, triglycerides, high density lipoprotein-cholesterol (HDL-cholesterol), and insulin levels (p-values < 0.05). The same single meal given to subjects with different metabolic states had varying impacts on cardiometabolic health. Endotoxemia is exacerbated by a high-fat meal in Arab subjects with T2DM, accompanied by a parallel increase in cardiometabolic risk profile, suggesting disparity in disease pathogenesis of those with or without T2DM through the altered cardiometabolic risk profile rather than variance in metabolic endotoxinaemia with a high-fat meal.

  20. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high fat feeding

    PubMed Central

    Vogt, Merly C.; Paeger, Lars; Hess, Simon; Steculorum, Sophie M.; Awazawa, Motoharu; Hampel, Brigitte; Neupert, Susanne; Nicholls, Hayley T.; Mauer, Jan; Hausen, A. Christine; Predel, Reinhard; Kloppenburg, Peter; Horvath, Tamas L.; Brüning, Jens C.

    2014-01-01

    Summary Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high fat diet (HFD)-feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin-(POMC) and orexigenic agoui-related peptide (AgRP)-neurons, electrophysiological properties of POMC-neurons and posttranslational processing of POMC remain unaffected in response to maternal HFD-feeding during lactation, the formation of POMC- and AgRP-projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC-neurons of the offspring prevents altered POMC-projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation and impaired glucose-stimulated insulin-secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections and that abnormal insulin signaling contributes to this effect. PMID:24462248

  1. Effect of the fat composition of a single high-fat meal on inflammatory markers in healthy young women.

    PubMed

    Myhrstad, Mari C W; Narverud, Ingunn; Telle-Hansen, Vibeke H; Karhu, Toni; Lund, Daniel Bødtker; Herzig, Karl-Heinz; Makinen, Markus; Halvorsen, Bente; Retterstøl, Kjetil; Kirkhus, Bente; Granlund, Linda; Holven, Kirsten B; Ulven, Stine M

    2011-12-01

    The aim of the present study was to examine the effect of a single high-fat meal with different fat quality on circulating inflammatory markers and gene expression in peripheral blood mononuclear cells (PBMC) to elucidate the role of fat quality on postprandial inflammation. A postprandial study with fourteen healthy females consuming three test meals with different fat quality was performed. Test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analysed. The test meal consisted of three cakes enriched with coconut fat (43 % energy as saturated fat and 1 % energy as α-linolenic acid (ALA)), linseed oil (14 % energy as ALA and 30 % energy as saturated fat) and cod liver oil (5 % energy as EPA and DHA and 5 % energy as ALA in addition to 31 % energy as saturated fat). In addition, ex vivo PBMC experiments were performed in eight healthy subjects investigating the effects of EPA and ALA on release and gene expression of inflammatory markers. The IL-8 mRNA level was significantly increased after intake of the cod liver oil cake at 6 h compared with fasting level, which was significantly different from the effect observed after the intake of linseed cake. In contrast, no effect was seen on circulating level of IL-8. In addition, ALA and EPA were shown to elicit different effects on the release and mRNA expression levels of inflammatory markers in PBMC cultured ex vivo, with EPA having the most prominent pro-inflammatory potential.

  2. Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI genetics of lipid lowering drugs and diet network (GOLDN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variant...

  3. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    PubMed

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-01

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (P<0.001), working memory (P<0.01), and object recognition memory (P<0.01), decreased the dendritic spine density (P<0.001), damaged pyramidal neurons in the CA1 subfield (P<0.001) compared with the CD group. However, lycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (P<0.001). Thus, this study indicated that lycopene helps to protect HFD induced cognitive dysfunction. PMID:27177726

  4. Aerobic exercise training increases circulating IGFBP-1 concentration, but does not attenuate the reduction in circulating IGFBP-1 after a high-fat meal

    PubMed Central

    Prior, Steven J.; Jenkins, Nathan T.; Brandauer, Josef; Weiss, Edward P.; Hagberg, James M.

    2011-01-01

    Rationale Insulin-like growth factor binding protein-1 (IGFBP-1) has metabolic effects throughout the body and its expression is regulated in part by insulin. Circulating IGFBP-1 predicts development of cardiometabolic diseases in longitudinal studies and low IGFBP-1 concentrations are associated with insulin resistance and consumption of a high-fat diet. Because of the favorable metabolic effects of regular aerobic exercise, we hypothesized that aerobic exercise training would increase plasma IGFBP-1 concentrations and attenuate the reduction in IGFBP-1 after a high-fat meal. Methods Ten overweight (BMI=28.7±0.9kg/m2), older (61±2yr) men and women underwent high-fat feeding and oral glucose tolerance tests (OGTT) at baseline and after 6 months of aerobic exercise training. Results In response to aerobic exercise training, subjects increased cardiorespiratory fitness 13% (p<0.05) and insulin sensitivity index 28% (p<0.05). Basal plasma concentrations of IGFBP-1 increased 41% after aerobic exercise training (p<0.05). The insulin response to an OGTT was a significant predictor of fasting plasma IGFBP-1 concentrations at baseline and after exercise training (p=0.02). In response to the high-fat meal at baseline, plasma IGFBP-1 concentrations decreased 58% (p<0.001); a 61% decrease to similar postprandial concentrations was observed after exercise training (p<0.001). Plasma insulin response to the high-fat meal was inversely associated with postprandial IGFBP-1 concentrations at baseline and after exercise training (p=0.06 and p<0.05, respectively). Conclusion While aerobic exercise training did not attenuate the response to a high-fat meal, the increase in IGFBP-1 concentrations after exercise training may be one mechanism by which exercise reduces risk for cardiometabolic diseases in older adults. PMID:21872284

  5. Children who are pressured to eat at home consume fewer high-fat foods in laboratory test meals.

    PubMed

    Lee, Heewon; Keller, Kathleen L

    2012-02-01

    Parents use greater pressure to eat with children who weigh less, but the impact of this practice is unclear. The purpose of this cross-sectional study was to determine the association between parental reports of eating pressure and children's actual intake across four identical ad libitum meals. Sixty-eight ethnically diverse, 4- to 6-year-old children from New York, NY, participated in this study from 2005 to 2007. Eating pressure was measured by the Child Feeding Questionnaire. Height and weight were measured and converted to body mass index z scores. Meals consisted of macaroni and cheese, string beans, carrots, grapes, graham crackers, cheese sticks, milk, pudding, and a sugar-sweetened beverage. Multiple regressions were performed to determine the extent to which pressure to eat predicted food intake after adjusting for BMI z score and child weight concern. Pressure to eat was negatively associated with child BMI z score (r=-0.37; P<0.01), energy intake (β=-.30; P<0.05), and energy density (β=-.28; P<0.05). In addition, pressure was negatively associated with intake of macaroni and cheese (β=-.26; P<0.05), whole milk (β=-.27; P<0.05), and pudding (β=-.33; P<0.01), but positively associated with vegetable intake (β=.43; P<0.01). However, both vegetable and milk consumption were low, so results should be interpreted with caution. These findings suggest that greater pressure to eat is associated with lower intake of some high-fat foods in the laboratory, where no pressure is applied.

  6. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.

    PubMed

    Kaczmarczyk, Melissa M; Machaj, Agnieszka S; Chiu, Gabriel S; Lawson, Marcus A; Gainey, Stephen J; York, Jason M; Meling, Daryl D; Martin, Stephen A; Kwakwa, Kristin A; Newman, Andrew F; Woods, Jeffrey A; Kelley, Keith W; Wang, Yanyan; Miller, Michael J; Freund, Gregory G

    2013-09-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD.

  7. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.

    PubMed

    Kaczmarczyk, Melissa M; Machaj, Agnieszka S; Chiu, Gabriel S; Lawson, Marcus A; Gainey, Stephen J; York, Jason M; Meling, Daryl D; Martin, Stephen A; Kwakwa, Kristin A; Newman, Andrew F; Woods, Jeffrey A; Kelley, Keith W; Wang, Yanyan; Miller, Michael J; Freund, Gregory G

    2013-09-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. PMID:23411461

  8. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice

    PubMed Central

    Kaczmarczyk, Melissa M.; Machaj, Agnieszka S.; Chiu, Gabriel S.; Lawson, Marcus A.; Gainey, Stephen J.; York, Jason M.; Meling, Daryl D.; Martin, Stephen A.; Kwakwa, Kristen A.; Newman, Andrew F.; Woods, Jeffrey A.; Kelley, Keith W.; Wang, Yanyan; Miller, Michael J.; Freund, Gregory G.

    2013-01-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1–3 wks) of a high-fat diet (HFD). After 1 wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. PMID:23411461

  9. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    PubMed

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  10. Influence of meal frequency on diurnal lipid, glucose and insulin levels in normal subjects on a high fat diet; comparison with data obtained on a high carbohydrate diet.

    PubMed

    van Gent, C M; Pagano Mirani-Oostdijk, C; van Reine, P H; Frölich, M; Hessel, L W; Terpstra, J

    1979-12-01

    Diurnal levels of serum triglyceride (TG) were measured in six normal persons consuming a fixed solid 65% fat diet under steady state conditions in a metabolic unit. The food was divided into either three or eight similar portions, differently spaced over the day and night. The diurnal TG-profiles on this diet were practically identical to those found under comparable conditions on a 65% carbohydrate diet [1]. Mean diurnal TG values did not significantly differ with varying meal frequency. Free fatty acid levels, however, were significantly higher on a high fat diet. Post-prandial glucose and insulin reponses did not significantly differ whether a high fat diet or a high carbohydrate diet was consumed. We conclude that the composition of the diet is of little importance in determining diurnal TG patterns when the diet consists of normal food stuffs, but that these patterns are dependent on meal frequency and distribution.

  11. Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet

    PubMed Central

    Koike, Eiko; Win-Shwe, Tin-Tin; Yamamoto, Megumi; Takano, Hirohisa

    2014-01-01

    Background: Hexabromocyclododecane (HBCD) is an additive flame retardant used in the textile industry and in polystyrene foam manufacturing. Because of its lipophilicity and persistency, HBCD accumulates in adipose tissue and thus has the potential of causing metabolic disorders through disruption of lipid and glucose homeostasis. However, the association between HBCD and obesity remains unclear. Objectives: We investigated whether exposure to HBCD contributes to initiation and progression of obesity and related metabolic dysfunction in mice fed a normal diet (ND) or a high-fat diet (HFD). Methods: Male C57BL/6J mice were fed a HFD (62.2 kcal% fat) or a ND and treated orally with HBCD (0, 1.75, 35, or 700 μg/kg body weight) weekly from 6 to 20 weeks of age. We examined body weight, liver weight, blood biochemistry, histopathological changes, and gene expression profiles in the liver and adipose tissue. Results: In HFD-fed mice, body and liver weight were markedly increased in mice treated with the high (700 μg/kg) and medium (35 μg/kg) doses of HBCD compared with vehicle. This effect was more prominent in the high-dose group. These increases were paralleled by increases in random blood glucose and insulin levels and enhancement of microvesicular steatosis and macrophage accumulation in adipose tissue. HBCD-treated HFD-fed mice also had increased mRNA levels of Pparg (peroxisome proliferator-activated receptor-γ) in the liver and decreased mRNA levels of Glut4 (glucose transporter 4) in adipose tissue compared with vehicle-treated HFD-fed mice. Conclusions: Our findings suggest that HBCD may contribute to enhancement of diet-induced body weight gain and metabolic dysfunction through disruption of lipid and glucose homeostasis, resulting in accelerated progression of obesity. Citation: Yanagisawa R, Koike E, Win-Shwe TT, Yamamoto M, Takano H. 2014. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health

  12. The Effect of a High-Fat Meal on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor, in Patients With Advanced Solid Tumors or Lymphoma.

    PubMed

    Gupta, Neeraj; Hanley, Michael J; Venkatakrishnan, Karthik; Wang, Bingxia; Sharma, Sunil; Bessudo, Alberto; Hui, Ai-Min; Nemunaitis, John

    2016-10-01

    Ixazomib is the first oral proteasome inhibitor to be investigated in the clinic. This clinical study assessed whether the pharmacokinetics of ixazomib would be altered if administered after a high-calorie, high-fat meal. In a 2-period, 2-sequence, crossover study design, adult patients with advanced solid tumors or lymphoma received a 4-mg oral dose of ixazomib as immediate-release capsules on day 1 without food (fasted, administered following an overnight fast) or with food (fed, following consumption of a high-calorie, high-fat meal), followed by another dose on day 15 in the alternate food intake condition (fasted to fed or fed to fasted). Twenty-four patients were enrolled; of these, 15 were included in the pharmacokinetic-evaluable population. Administration of ixazomib after a high-fat meal reduced both the rate and extent of absorption of ixazomib. Under fed conditions, the median time to peak plasma concentration (Tmax ) of ixazomib was delayed by approximately 3 hours compared with administration in the fasted state (1.02 hours vs 4.0 hours), and there was a 28% reduction in total systemic exposure (area under the curve, AUC) and a 69% reduction in peak plasma concentration (Cmax ). Together, the results support the administration of ixazomib on an empty stomach, at least 1 hour before or at least 2 hours after food. These recommendations are reflected in the United States Prescribing Information for ixazomib (clinicaltrials.gov identifier NCT01454076).

  13. The Effect of a High-Fat Meal on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor, in Patients With Advanced Solid Tumors or Lymphoma.

    PubMed

    Gupta, Neeraj; Hanley, Michael J; Venkatakrishnan, Karthik; Wang, Bingxia; Sharma, Sunil; Bessudo, Alberto; Hui, Ai-Min; Nemunaitis, John

    2016-10-01

    Ixazomib is the first oral proteasome inhibitor to be investigated in the clinic. This clinical study assessed whether the pharmacokinetics of ixazomib would be altered if administered after a high-calorie, high-fat meal. In a 2-period, 2-sequence, crossover study design, adult patients with advanced solid tumors or lymphoma received a 4-mg oral dose of ixazomib as immediate-release capsules on day 1 without food (fasted, administered following an overnight fast) or with food (fed, following consumption of a high-calorie, high-fat meal), followed by another dose on day 15 in the alternate food intake condition (fasted to fed or fed to fasted). Twenty-four patients were enrolled; of these, 15 were included in the pharmacokinetic-evaluable population. Administration of ixazomib after a high-fat meal reduced both the rate and extent of absorption of ixazomib. Under fed conditions, the median time to peak plasma concentration (Tmax ) of ixazomib was delayed by approximately 3 hours compared with administration in the fasted state (1.02 hours vs 4.0 hours), and there was a 28% reduction in total systemic exposure (area under the curve, AUC) and a 69% reduction in peak plasma concentration (Cmax ). Together, the results support the administration of ixazomib on an empty stomach, at least 1 hour before or at least 2 hours after food. These recommendations are reflected in the United States Prescribing Information for ixazomib (clinicaltrials.gov identifier NCT01454076). PMID:26872892

  14. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    PubMed

    Liu, Zhigang; Patil, Ishan Y; Jiang, Tianyi; Sancheti, Harsh; Walsh, John P; Stiles, Bangyan L; Yin, Fei; Cadenas, Enrique

    2015-01-01

    High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  15. Effects of carnitine supplementation on flow-mediated dilation and vascular inflammatory responses to a high-fat meal in healthy young adults.

    PubMed

    Volek, Jeff S; Judelson, Daniel A; Silvestre, Ricardo; Yamamoto, Linda M; Spiering, Barry A; Hatfield, Disa L; Vingren, Jakob L; Quann, Erin E; Anderson, Jeffrey M; Maresh, Carl M; Kraemer, William J

    2008-11-15

    Because carnitine has been shown to decrease oxidative stress and improve endothelial cell functioning, we examined the effects of carnitine supplementation on postprandial flow-mediated dilation (FMD) and circulating biomarkers of inflammation and oxidative stress after a high-fat meal. A randomized, double-blind, placebo-controlled, crossover study design was used. Thirty men and women (age 30 +/- 8 year, body mass 72.9 +/- 17.1 kg, body fat 13.0 +/- 6.4%) participated in 2 vascular testing days, each preceded by 3 weeks of supplementation with either 2 g/day of L-Carnitine (L-Carnitine L-Tartrate) or placebo with a 3- to 5-week washout period between trials. Brachial artery FMD in response to 5 minutes of upper arm occlusion and circulating markers of oxidative stress and inflammation were measured in the fasting state and after a standardized high-fat meal. After 3 weeks of supplementation, peak FMD in the fasting state was similar between the carnitine and placebo trials, averaging 6.6%. Peak FMD during the postprandial period decreased to 5.8% at 1.5 hours during placebo and increased to 7.7% during the carnitine trial (n = 30: p = 0.043 for supplement by time interaction effect). This improvement in postprandial vascular function was most dramatic in subjects who showed a decrease in peak FMD in response to the meal (n = 15: p = 0.003 for supplement by time interaction effect). There was a significant increase in postprandial lipemia and plasma interleukin-6 but no effect of supplementation. There were no significant postprandial changes or supplement effects for plasma tumor necrosis factor-alpha and malondialdehyde. In conclusion, consistent with other work showing a beneficial effect of carnitine on vascular function, these findings indicate that carnitine supplementation in healthy individuals improves postprandial FMD after a high-fat meal.

  16. High-Fat Feeding Impairs Nutrient Sensing and Gut Brain Integration in the Caudomedial Nucleus of the Solitary Tract in Mice

    PubMed Central

    Cavanaugh, Althea R.; Schwartz, Gary J.; Blouet, Clémence

    2015-01-01

    Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size. PMID:25774780

  17. IRF-1 and miRNA126 modulate inflammatory VCAM-1 expression in response to a high fat meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale: High-fat diets accompanied by hypertriglyceridemia increase an individual’s risk for developing atherosclerosis. An early event in this process is monocyte recruitment through binding to VCAM-1 on inflamed arterial endothelium. Diets high in polyunsaturated fatty acids (PUFAs) may provide...

  18. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    PubMed Central

    Underwood, Erica L.; Thompson, Lucien T.

    2016-01-01

    While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD) on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD) for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms. PMID:26819773

  19. Measuring the short-term substrate utilization response to high-carbohydrate and high-fat meals in the whole-body indirect calorimeter.

    PubMed

    Gribok, Andrei; Leger, Jayme L; Stevens, Michelle; Hoyt, Reed; Buller, Mark; Rumpler, William

    2016-06-01

    The paper demonstrates that minute-to-minute metabolic response to meals with different macronutrient content can be measured and discerned in the whole-body indirect calorimeter. The ability to discriminate between high-carbohydrate and high-fat meals is achieved by applying a modified regularization technique with additional constraints imposed on oxygen consumption rate. These additional constraints reduce the differences in accuracy between the oxygen and carbon dioxide analyzers. The modified technique was applied to 63 calorimeter sessions that were each 24 h long. The data were collected from 16 healthy volunteers (eight males, eight females, aged 22-35 years). Each volunteer performed four 24-h long calorimeter sessions. At each session, they received one of four treatment combinations involving exercise (high or low intensity) and diet (a high-fat or high-carbohydrate shake for lunch). One volunteer did not complete all four assignments, which brought the total number of sessions to 63 instead of 64. During the 24-h stay in the calorimeter, subjects wore a continuous glucose monitoring system, which was used as a benchmark for subject's postprandial glycemic response. The minute-by-minute respiratory exchange ratio (RER) data showed excellent agreement with concurrent subcutaneous glucose concentrations in postprandial state. The averaged minute-to-minute RER response to the high-carbohydrate shake was significantly different from the response to high-fat shake. Also, postprandial RER slopes were significantly different for two dietary treatments. The results show that whole-body respiration calorimeters can be utilized as tools to study short-term kinetics of substrate oxidation in humans.

  20. Measuring the short-term substrate utilization response to high-carbohydrate and high-fat meals in the whole-body indirect calorimeter.

    PubMed

    Gribok, Andrei; Leger, Jayme L; Stevens, Michelle; Hoyt, Reed; Buller, Mark; Rumpler, William

    2016-06-01

    The paper demonstrates that minute-to-minute metabolic response to meals with different macronutrient content can be measured and discerned in the whole-body indirect calorimeter. The ability to discriminate between high-carbohydrate and high-fat meals is achieved by applying a modified regularization technique with additional constraints imposed on oxygen consumption rate. These additional constraints reduce the differences in accuracy between the oxygen and carbon dioxide analyzers. The modified technique was applied to 63 calorimeter sessions that were each 24 h long. The data were collected from 16 healthy volunteers (eight males, eight females, aged 22-35 years). Each volunteer performed four 24-h long calorimeter sessions. At each session, they received one of four treatment combinations involving exercise (high or low intensity) and diet (a high-fat or high-carbohydrate shake for lunch). One volunteer did not complete all four assignments, which brought the total number of sessions to 63 instead of 64. During the 24-h stay in the calorimeter, subjects wore a continuous glucose monitoring system, which was used as a benchmark for subject's postprandial glycemic response. The minute-by-minute respiratory exchange ratio (RER) data showed excellent agreement with concurrent subcutaneous glucose concentrations in postprandial state. The averaged minute-to-minute RER response to the high-carbohydrate shake was significantly different from the response to high-fat shake. Also, postprandial RER slopes were significantly different for two dietary treatments. The results show that whole-body respiration calorimeters can be utilized as tools to study short-term kinetics of substrate oxidation in humans. PMID:27354539

  1. Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice.

    PubMed

    Sasaki, Hiroyuki; Ohtsu, Teiji; Ikeda, Yuko; Tsubosaka, Miku; Shibata, Shigenobu

    2014-11-01

    In mice, obesity has been observed not only in those freely fed a high-fat diet (HFD) but also in those fed while physically inactive. In contrast, a HFD during physically active periods protects against obesity and the impairments in the circadian rhythm induced by free feeding of a HFD. Although exercise is known to be effective for obesity prevention and management, the optimal timing of exercise has not yet been determined. In the present experiments, we aimed to determine the best combination of daily timing of HFD consumption and exercise for the prevention of HFD-induced weight gain in mice. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). Increases in body weight related to free feeding of a HFD was significantly reduced with 4 h of exercise during the late (evening) or middle (noon) active period compared to 4 h of exercise during the early (morning) active period or free access to exercise, which resulted in hours of exercise similar to that of morning exercise. These results suggested that eating in the morning or at noon followed by exercise in the evening could prevent weight gain more effectively than exercise in the morning followed by eating at noon or in the evening. The group fed a HFD for 4 h in the morning had lower body weight than the group fed a HFD for 4 h in the evening without exercise. The last group of experiments tested the hypothesis that there would be an interaction between mealtime and exercise time (i.e. time of day) versus order (i.e. which comes first) effects. We compared groups that exercised for 4 h at noon and were fed either in the morning or evening and groups that were fed for 4 h at noon and either exercised in the morning or evening. We found that the groups that were fed before exercise gained less body and fat weight and more skeletal muscle weight compared to the groups that exercised before eating. Corresponding to the body and fat weight

  2. Impact of aging and beta3-adrenergic-receptor polymorphism on thermic and sympathetic responses to a high-fat meal.

    PubMed

    Nagai, Narumi; Sakane, Naoki; Moritani, Toshio

    2006-10-01

    The present study was designed to investigate the effect of aging and beta3-adrenergic-receptor (beta3-AR) polymorphism on the thermic effect of meal (TEM) and sympathetic nervous system (SNS) response to a high-fat meal in 13 boys, 12 young men, and 11 middle-aged men. SNS activity was assessed via power spectral analysis of heart rate variability. Significantly higher very-low-frequency (VLF) components associated with thermogenic SNS activity and energy expenditure per lean body mass (EE(LBM)) were observed in boys during the pre- and postprandial periods. There were no significant differences in VLF and EE(LBM) in the preprandial period between the young and middle-aged men. After feeding, however, the middle-aged men showed a significantly lower TEM (% test-meal energy) and VLF compared to the young men. A multiple regression analysis revealed that age was the only significant variable contributing to both TEM and VLF, but beta3-AR polymorphism and percentage of body fat were not statistically significant. In conclusion, age likely has a greater influence on TEM and SNS thermoregulation than genetic factors such as beta3-AR polymorphism, suggesting that this age-related decrease in thermogenic response may be involved in the development of obesity among middle-aged men.

  3. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice

    PubMed Central

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-01-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment. PMID:27419109

  4. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice.

    PubMed

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-06-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment. PMID:27419109

  5. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice.

    PubMed

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-06-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment.

  6. Bile sequestration potential of an edible mineral (clinoptilolite) under simulated digestion of a high-fat meal: an in vitro investigation.

    PubMed

    Kristo, Aleksandra S; Tzanidaki, Garyfallia; Lygeros, Andreas; Sikalidis, Angelos K

    2015-12-01

    Bile, important for cholesterol homeostasis, is a potential target of hypercholesterolemia management. Bile sequestration by orally administered resins, while mostly effective in reducing blood cholesterol, presents several side effects and disadvantages. Thus, widely available natural edible minerals such as clinoptilolite with adsorptive properties offer an alternative for bile sequestration. In an experimental setting mimicking the physiological conditions of digestion/absorption (pH, temperature, and retention times) with a series of assessment methods, scanning electron microscopy-energy dispersion X-ray analysis (SEM-EDX), X-ray diffraction (XRD), Fourier transform infrared analysis (FT-IR), thermogravimetric differential thermal analysis (TG-DTA), and molecular docking modeling, the ability of natural unmodified clinoptilolite to retain bile, while mixed with a simulated high-fat meal, was investigated. Our results demonstrate that clinoptilolite sequesters bile via adsorption of macromicelles at 75.4% efficiency, when the former is administered at a reasonable dose of 4% (w/w) of a meal's weight. This work provides the possibility of clinoptilolite utilization as a bile-sequestering/cholesterol-reducing agent.

  7. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    PubMed Central

    Jang, Hyun-Ju; Kim, Hae-Suk; Hwang, Daniel H.; Quon, Michael J.

    2013-01-01

    Obesity is characterized by a chronic proinflammatory state that leads to endothelial dysfunction. Saturated fatty acids (SFA) stimulate Toll-like receptors (TLR) that promote metabolic insulin resistance. However, it is not known whether TLR2 mediates impairment of vascular actions of insulin in response to high-fat diet (HFD) to cause endothelial dysfunction. siRNA knockdown of TLR2 in primary endothelial cells opposed palmitate-stimulated expression of proinflammatory cytokines and splicing of X box protein 1 (XBP-1). Inhibition of unfolding protein response (UPR) reduced SFA-stimulated expression of TNFα. Thus, SFA stimulates UPR and proinflammatory response through activation of TLR2 in endothelial cells. Knockdown of TLR2 also opposed impairment of insulin-stimulated phosphorylation of eNOS and subsequent production of NO. Importantly, insulin-stimulated vasorelaxation of mesenteric arteries from TLR2 knockout mice was preserved even on HFD (in contrast with results from arteries examined in wild-type mice on HFD). We conclude that TLR2 in vascular endothelium mediates HFD-stimulated proinflammatory responses and UPR that accompany impairment of vasodilator actions of insulin, leading to endothelial dysfunction. These results are relevant to understanding the pathophysiology of the cardiovascular complications of diabetes and obesity. PMID:23531618

  8. Brain serotonergic and dopaminergic modulators, perceptual responses and endurance exercise performance following caffeine co-ingested with a high fat meal in trained humans

    PubMed Central

    2010-01-01

    Background The present study examined putative modulators and indices of brain serotonergic and dopaminergic function, perceptual responses, and endurance exercise performance following caffeine co-ingested with a high fat meal. Methods Trained humans (n = 10) performed three constant-load cycling tests at 73% of maximal oxygen uptake (VO2max) until exhaustion at 10°C remove space throughout. Prior to the first test, subjects consumed a 90% carbohydrate meal (Control trial) and for the remaining two tests, a 90% fat meal with (FC trial) and without (F trial) caffeine. Results Time to exhaustion was not different between the F and FC trials (P > 0.05); [Control trial: 116(88-145) min; F trial: 122(96-144) min; FC trial: 127(107-176) min]. However, leg muscular discomfort during exercise was significantly lower on the FC relative to F trial (P < 0.01). There were no significant differences between F and FC trials in key modulators and indices of brain serotonergic (5-HT) and dopaminergic (DA) function [(i.e. plasma free and total tryptophan (Trp), tyrosine (Tyr), large neutral amino acids (LNAA), Trp:LNAA ratio, free-Trp:Tyr ratio, total Trp:Tyr ratio, and plasma prolactin] (P > 0.05) with the exception of plasma free-Trp:LNAA ratio which was higher at 90 min and at exhaustion during the FC trial (P < 0.05). Conclusions Neither brain 5-HT nor DA systems would appear to be implicated in the fatigue process when exercise is performed without significant thermoregulatory stress, thus indicating fatigue development during exercise in relatively cold temperatures to occur predominantly due to glycogen depletion. PMID:20507554

  9. Aerobic exercise training increases circulating insulin-like growth factor binding protein-1 concentration, but does not attenuate the reduction in circulating insulin-like growth factor binding protein-1 after a high-fat meal.

    PubMed

    Prior, Steven J; Jenkins, Nathan T; Brandauer, Josef; Weiss, Edward P; Hagberg, James M

    2012-03-01

    Insulin-like growth factor binding protein-1 (IGFBP-1) has metabolic effects throughout the body, and its expression is regulated in part by insulin. Circulating IGFBP-1 predicts development of cardiometabolic diseases in longitudinal studies, and low IGFBP-1 concentrations are associated with insulin resistance and consumption of a high-fat diet. Because of the favorable metabolic effects of regular aerobic exercise, we hypothesized that aerobic exercise training would increase plasma IGFBP-1 concentrations and attenuate the reduction in IGFBP-1 after a high-fat meal. Ten overweight (body mass index = 28.7 ± 0.9 kg/m(2)), older (61 ± 2 years) men and women underwent high-fat feeding and oral glucose tolerance tests at baseline and after 6 months of aerobic exercise training. In response to aerobic exercise training, subjects increased cardiorespiratory fitness by 13% (P < .05) and insulin sensitivity index by 28% (P < .05). Basal plasma concentrations of IGFBP-1 increased by 41% after aerobic exercise training (P < .05). The insulin response to an oral glucose tolerance test was a significant predictor of fasting plasma IGFBP-1 concentrations at baseline and after exercise training (P = .02). In response to the high-fat meal at baseline, plasma IGFBP-1 concentrations decreased by 58% (P < .001); a 61% decrease to similar postprandial concentrations was observed after exercise training (P < .001). Plasma insulin response to the high-fat meal was inversely associated with postprandial IGFBP-1 concentrations at baseline and after exercise training (P = .06 and P < .05, respectively). Although aerobic exercise training did not attenuate the response to a high-fat meal, the increase in IGFBP-1 concentrations after exercise training may be one mechanism by which exercise reduces risk for cardiometabolic diseases in older adults.

  10. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle.

    PubMed

    Badin, Pierre-Marie; Vila, Isabelle K; Louche, Katie; Mairal, Aline; Marques, Marie-Adeline; Bourlier, Virginie; Tavernier, Geneviève; Langin, Dominique; Moro, Cedric

    2013-04-01

    Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice. PMID:23471217

  11. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice

    PubMed Central

    Liang, Xingwei; Yang, Qiyuan; Zhang, Lupei; Maricelli, Joseph W; Rodgers, Buel D.; Zhu, Mei-Jun; Du, Min

    2016-01-01

    Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring. PMID:27686741

  12. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects

    PubMed Central

    Narverud, Ingunn; Myhrstad, Mari C. W.; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B.; Halvorsen, Bente; Ulven, Stine M.; Holven, Kirsten B.

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions. PMID:27630989

  13. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects.

    PubMed

    Narverud, Ingunn; Myhrstad, Mari C W; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B; Halvorsen, Bente; Ulven, Stine M; Holven, Kirsten B

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  14. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects.

    PubMed

    Narverud, Ingunn; Myhrstad, Mari C W; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B; Halvorsen, Bente; Ulven, Stine M; Holven, Kirsten B

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions. PMID:27630989

  15. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects

    PubMed Central

    Narverud, Ingunn; Myhrstad, Mari C. W.; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B.; Halvorsen, Bente; Ulven, Stine M.; Holven, Kirsten B.

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  16. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1)

    PubMed Central

    Ribnicky, David M.; Roopchand, Diana E.; Oren, Andrew; Grace, Mary; Poulev, Alexander; Lila, Mary Ann; Havenaar, Robert; Raskin, Ilya

    2014-01-01

    The TNO intestinal model (TIM-1) of the human upper gastrointestinal tract was used to compare intestinal absorption/bioaccessibility of blueberry anthocyanins under different digestive conditions. Blueberry polyphenol-rich extract was delivered to TIM-1 in the absence or presence of a high-fat meal. HPLC analysis of seventeen anthocyanins showed that delphinidin-3-glucoside, delphinidin-3-galactoside, delphinidin-3-arabinoside and petunidin-3-arabinoside were twice as bioaccessible in fed state, whilst delphinidin-3-(6″-acetoyl)-glucoside and malvidin-3-arabinoside were twice as bioaccessible under fasted conditions, suggesting lipid-rich matrices selectively effect anthocyanin bioaccessibility. TIM-1 was fed blueberry juice (BBJ) or blueberry polyphenol-enriched defatted soybean flour (BB-DSF) containing equivalent amounts of free or DSF-sorbed anthocyanins, respectively. Anthocyanin bioaccessibility from BB-DSF (36.0 ± 10.4) was numerically, but not significantly, greater than that from BBJ (26.3 ± 10.3). Ileal efflux samples collected after digestion of BB-DSF contained 2.8-fold more anthocyanins than same from BBJ, suggesting that protein-rich DSF protects anthocyanins during transit through upper digestive tract for subsequent colonic delivery/metabolism. PMID:24001852

  17. A Dose-Response Strategy Reveals Differences between Normal-Weight and Obese Men in Their Metabolic and Inflammatory Responses to a High-Fat Meal123

    PubMed Central

    Schwander, Flurina; Kopf-Bolanz, Katrin A.; Buri, Caroline; Portmann, Reto; Egger, Lotti; Chollet, Magali; McTernan, Philip G.; Piya, Milan K.; Gijs, Martin A. M.; Vionnet, Nathalie; Pralong, François; Laederach, Kurt; Vergères, Guy

    2014-01-01

    A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20–25 kg/m2) and 18 obese (BMI: >30 kg/m2) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h; P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h; P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068. PMID:24812072

  18. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    PubMed

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R; Henstridge, Darren C; Febbraio, Mark A; O'Hehir, Robyn E; Rolland, Jennifer M; Hardy, Charles L

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  19. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance

    PubMed Central

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R.; Henstridge, Darren C.; Febbraio, Mark A.; O’Hehir, Robyn E.; Rolland, Jennifer M.; Hardy, Charles L.

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a ‘western’ diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  20. A high-fat diet impairs learning that is dependent on the dorsal hippocampus but spares other forms of learning.

    PubMed

    Stouffer, Eric M; Warninger, Elizabeth E; Michener, Paige N

    2015-12-01

    Two experiments were conducted to evaluate the effects of a high-fat diet (HFD) on two tasks that were either dependent on the dorsal hippocampus (DH) or independent of the DH. A total of 80 adult male Sprague Dawley rats were administered either a lard-based HFD (60% of calories from fat) or a control diet (10% of calories from fat) for 8 weeks, and then were trained and tested on either the latent cue preference (LCP) task or the conditioned cue preference (CCP) task in a 3-compartment box apparatus (2 end-compartments and 1 middle-compartment). The end compartments of the box apparatus contained either a single environmental cue (DH-independent) or multiple environmental cues (DH-dependent). During training trials for the LCP and CCP tasks, on alternating days, rats were given access to water in 1 of the 2 end compartments and no water in the opposite end compartment. Rats were water-replete during LCP training and were water-deprived during CCP training. During testing for both tasks, all rats were water-deprived and given free access to all compartments while the amounts of time spent in each compartment were recorded. Results showed that rats given the HFD demonstrated no compartment preferences during both LCP and CCP testing when the compartments contained multiple cues, while rats fed the control diet demonstrated normal compartment preference behavior. However, when the compartments contained a single environmental cue, rats given either the HFD and control diet demonstrated normal LCP and CCP learning. These results demonstrate that consumption of a HFD disrupted both LCP and CCP learning in a multiple-cue (DH-dependent) environment, but did not impair either type of learning in a single-cue (DH-independent) environment. This may be due to selective impairment of the DH caused by increased oxidative stress, inflammation, and/or disrupted neurotransmission produced by consumption of the HFD.

  1. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies.

    PubMed

    Koziolek, M; Schneider, F; Grimm, M; Modeβ, Chr; Seekamp, A; Roustom, T; Siegmund, W; Weitschies, W

    2015-12-28

    The intraluminal conditions of the fed stomach are critical for drug release from solid oral dosage forms and thus, often associated with the occurrence of food effects on oral bioavailability. In this study, intragastric pH and pressure profiles present after the ingestion of the high-caloric, high-fat (964 kcal) FDA standard breakfast were investigated in 19 healthy human subjects by using the telemetric SmartPill® capsule system (26 × 13 mm). Since the gastric emptying of such large non-digestible objects is typically accomplished by the migrating motor complex phase III activity, the time required for recurrence of fasted state motility determined the gastric emptying time (GET). Following the diet recommendations of the FDA guidance on food effect studies, the mean GET of the telemetric motility capsule was 15.3 ± 4.7 h. Thus, the high caloric value of the standard breakfast impeded gastric emptying before lunch in 18 out of 19 subjects. During its gastric transit, the capsule was exposed to highly dynamic conditions in terms of pH and pressure, which were mainly dependent on further meal and liquid intake, as well as the intragastric capsule deposition behavior. Maximum pH values in the stomach were measured immediately after capsule intake. The median pH value of the 5 min period after capsule ingestion ranged between pH 3.3 and 5.3. Subsequently, the pH decreased relatively constantly and reached minimum values of pH 0-1 after approximately 4 h. The maximum pressure within the stomach amounted to 293 ± 109 mbar and was clearly higher than the maximum pressure measured at the ileocaecal junction (60 ± 35 mbar). The physiological data on the intraluminal conditions within the fed stomach generated in this study will hopefully contribute to a better understanding of food effects on oral drug product performance. PMID:26476174

  2. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies.

    PubMed

    Koziolek, M; Schneider, F; Grimm, M; Modeβ, Chr; Seekamp, A; Roustom, T; Siegmund, W; Weitschies, W

    2015-12-28

    The intraluminal conditions of the fed stomach are critical for drug release from solid oral dosage forms and thus, often associated with the occurrence of food effects on oral bioavailability. In this study, intragastric pH and pressure profiles present after the ingestion of the high-caloric, high-fat (964 kcal) FDA standard breakfast were investigated in 19 healthy human subjects by using the telemetric SmartPill® capsule system (26 × 13 mm). Since the gastric emptying of such large non-digestible objects is typically accomplished by the migrating motor complex phase III activity, the time required for recurrence of fasted state motility determined the gastric emptying time (GET). Following the diet recommendations of the FDA guidance on food effect studies, the mean GET of the telemetric motility capsule was 15.3 ± 4.7 h. Thus, the high caloric value of the standard breakfast impeded gastric emptying before lunch in 18 out of 19 subjects. During its gastric transit, the capsule was exposed to highly dynamic conditions in terms of pH and pressure, which were mainly dependent on further meal and liquid intake, as well as the intragastric capsule deposition behavior. Maximum pH values in the stomach were measured immediately after capsule intake. The median pH value of the 5 min period after capsule ingestion ranged between pH 3.3 and 5.3. Subsequently, the pH decreased relatively constantly and reached minimum values of pH 0-1 after approximately 4 h. The maximum pressure within the stomach amounted to 293 ± 109 mbar and was clearly higher than the maximum pressure measured at the ileocaecal junction (60 ± 35 mbar). The physiological data on the intraluminal conditions within the fed stomach generated in this study will hopefully contribute to a better understanding of food effects on oral drug product performance.

  3. High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats.

    PubMed

    Liu, Jian; Lloyd, Steven G

    2013-04-01

    Obesity is associated with elevated risk of heart disease. A solid understanding of the safety and potential adverse effects of high-fat, low-carbohydrate diet (HFLCD) similar to that used by humans for weight loss on the heart is crucial. High fat intake is known to promote increases in reactive oxygen species and mitochondrial damage. We hypothesized that there would be adverse effects of HFLCD on myocardial ischemia/reperfusion injury through enhancing oxidative stress injury and impairing mitochondrial biogenesis in a nongenetic, diet-induced rat model of obesity. To test the hypothesis, 250-g male Sprague-Dawley rats were fed an obesity-promoting diet for 7 weeks to induce obesity, then switched to HFLCD or a low-fat control diet for 2 weeks. Isolated hearts underwent global low flow ischemia for 60 minutes and reperfusion for 60 minutes. High-fat, low-carbohydrate diet resulted in greater weight gain and lower myocardial glycogen, plasma adiponectin, and insulin. Myocardial antioxidant gene transcript and protein expression of superoxide dismutase and catalase were reduced in HFLCD, along with increased oxidative gene NADPH oxidase-4 transcript and xanthine oxidase activity, and a 37% increase in nitrated protein (nitrotyrosine) in HFLCD hearts. The cardiac expression of key mitochondrial regulatory factors such as nuclear respiratory factor-1 and transcription factor A-mitochondrial were inhibited and myocardial mitochondrial DNA copy number decreased. The cardiac expression of adiponectin and its receptors was down-regulated in HFLCD. High-fat, low-carbohydrate diet impaired recovery of left ventricular rate-pressure product after ischemia/reperfusion and led to 3.5-fold increased injury as measured by lactate dehydrogenase release. In conclusion, HFLCD leads to increased ischemic myocardial injury and impaired recovery of function after reperfusion and was associated with attenuation of mitochondrial biogenesis and enhanced oxidative stress in obese rats

  4. Effects of natural raw meal (NRM) on high-fat diet and dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice

    PubMed Central

    Shin, Sung-Ho; Song, Jia-Le; Park, Myoung-Gyu; Park, Mi-Hyun; Hwang, Sung-Joo

    2015-01-01

    BACKGROUND/OBJECTIVES Colitis is a serious health problem, and chronic obesity is associated with the progression of colitis. The aim of this study was to determine the effects of natural raw meal (NRM) on high-fat diet (HFD, 45%) and dextran sulfate sodium (DSS, 2% w/v)-induced colitis in C57BL/6J mice. MATERIALS/METHODS Body weight, colon length, and colon weight-to-length ratio, were measured directly. Serum levels of obesity-related biomarkers, triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), insulin, leptin, and adiponectin were determined using commercial kits. Serum levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were detected using a commercial ELISA kit. Histological study was performed using a hematoxylin and eosin (H&E) staining assay. Colonic mRNA expressions of TNF-α, IL-1β, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were determined by RT-PCR assay. RESULTS Body weight and obesity-related biomarkers (TG, TC, LDL, HDL, insulin, leptin, and adiponectin) were regulated and obesity was prevented in NRM treated mice. NRM significantly suppressed colon shortening and reduced colon weight-to-length ratio in HFD+DSS induced colitis in C57BL/6J mice (P < 0.05). Histological observations suggested that NRM reduced edema, mucosal damage, and the loss of crypts induced by HFD and DSS. In addition, NRM decreased the serum levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6 and inhibited the mRNA expressions of these cytokines, and iNOS and COX-2 in colon mucosa (P < 0.05). CONCLUSION The results suggest that NRM has an anti-inflammatory effect against HFD and DSS-induced colitis in mice, and that these effects are due to the amelioration of HFD and/or DSS-induced inflammatory reactions. PMID:26634051

  5. Consumption of a high-fat meal containing cheese compared with a vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomised controlled cross-over study.

    PubMed

    Demmer, Elieke; Van Loan, Marta D; Rivera, Nancy; Rogers, Tara S; Gertz, Erik R; German, J Bruce; Zivkovic, Angela M; Smilowitz, Jennifer T

    2016-01-01

    Dietary recommendations suggest decreased consumption of SFA to minimise CVD risk; however, not all foods rich in SFA are equivalent. To evaluate the effects of SFA in a dairy food matrix, as Cheddar cheese, v. SFA from a vegan-alternative test meal on postprandial inflammatory markers, a randomised controlled cross-over trial was conducted in twenty overweight or obese adults with metabolic abnormalities. Individuals consumed two isoenergetic high-fat mixed meals separated by a 1- to 2-week washout period. Serum was collected at baseline, and at 1, 3 and 6 h postprandially and analysed for inflammatory markers (IL-6, IL-8, IL-10, IL-17, IL-18, TNFα, monocyte chemotactic protein-1 (MCP-1)), acute-phase proteins C-reactive protein (CRP) and serum amyloid-A (SAA), cellular adhesion molecules and blood lipids, glucose and insulin. Following both high-fat test meals, postprandial TAG concentrations rose steadily (P < 0·05) without a decrease by 6 h. The incremental AUC (iAUC) for CRP was significantly lower (P < 0·05) in response to the cheese compared with the vegan-alternative test meal. A treatment effect was not observed for any other inflammatory markers; however, for both test meals, multiple markers significantly changed from baseline over the 6 h postprandial period (IL-6, IL-8, IL-18, TNFα, MCP-1, SAA). Saturated fat in the form of a cheese matrix reduced the iAUC for CRP compared with a vegan-alternative test meal during the postprandial 6 h period. The study is registered at clinicaltrials.gov under NCT01803633. PMID:27313852

  6. Consumption of a high-fat meal containing cheese compared with a vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomised controlled cross-over study.

    PubMed

    Demmer, Elieke; Van Loan, Marta D; Rivera, Nancy; Rogers, Tara S; Gertz, Erik R; German, J Bruce; Zivkovic, Angela M; Smilowitz, Jennifer T

    2016-01-01

    Dietary recommendations suggest decreased consumption of SFA to minimise CVD risk; however, not all foods rich in SFA are equivalent. To evaluate the effects of SFA in a dairy food matrix, as Cheddar cheese, v. SFA from a vegan-alternative test meal on postprandial inflammatory markers, a randomised controlled cross-over trial was conducted in twenty overweight or obese adults with metabolic abnormalities. Individuals consumed two isoenergetic high-fat mixed meals separated by a 1- to 2-week washout period. Serum was collected at baseline, and at 1, 3 and 6 h postprandially and analysed for inflammatory markers (IL-6, IL-8, IL-10, IL-17, IL-18, TNFα, monocyte chemotactic protein-1 (MCP-1)), acute-phase proteins C-reactive protein (CRP) and serum amyloid-A (SAA), cellular adhesion molecules and blood lipids, glucose and insulin. Following both high-fat test meals, postprandial TAG concentrations rose steadily (P < 0·05) without a decrease by 6 h. The incremental AUC (iAUC) for CRP was significantly lower (P < 0·05) in response to the cheese compared with the vegan-alternative test meal. A treatment effect was not observed for any other inflammatory markers; however, for both test meals, multiple markers significantly changed from baseline over the 6 h postprandial period (IL-6, IL-8, IL-18, TNFα, MCP-1, SAA). Saturated fat in the form of a cheese matrix reduced the iAUC for CRP compared with a vegan-alternative test meal during the postprandial 6 h period. The study is registered at clinicaltrials.gov under NCT01803633.

  7. Antioxidant enzymes induced by repeated intake of excess energy in the form of high-fat, high-carbohydrate meals are not sufficient to block oxidative stress in healthy lean individuals.

    PubMed

    Lim, Sangbin; Won, Hyeran; Kim, Yeonghwan; Jang, Miran; Jyothi, K R; Kim, Youngseol; Dandona, Paresh; Ha, Joohun; Kim, Sung Soo

    2011-11-01

    It has been reported that high-fat, high-carbohydrate (HFHC) meals increase oxidative stress and inflammation. We examined whether repeated intake of excess energy in the form of HFHC meals alters reactive oxygen species (ROS) generation and the expression levels of antioxidant enzymes and mitochondrial proteins in mononuclear cells, and to determine whether this is associated with insulin resistance. We recruited healthy lean individuals (n 10). The individuals were divided into two groups: one group (n 5) ingested 10878·4 kJ/d (2600 kcal/d; 55-70 % carbohydrate, 9·5-16 % fat, 7-20 % protein) recommended by the Dietary Reference Intake for Koreans for 4 d and the other group (n 5) ingested a HFHC meal containing 14 644 kJ/d (3500 kcal/d). Then, measurements of blood insulin and glucose levels, together with suppressor of cytokine signalling-3 (SOCS-3) expression levels, were performed in both groups. Also, cellular and mitochondrial ROS levels as well as malondialdehyde (MDA) levels were measured. Expression levels of cytosolic and mitochondrial antioxidant enzymes, and mitochondrial complex proteins were analysed. Repeated intake of HFHC meals induced an increase in homeostasis model of assessment-insulin resistance (HOMA-IR), together with an increase in SOCS-3 expression levels. While a single intake of the HFHC meal increased cytosolic and mitochondrial ROS, repeated intake of HFHC meals reduced them and increased the levels of MDA, cytosolic and mitochondrial antioxidant enzymes, and several mitochondrial complex proteins. Repeated intake of HFHC meals induced cellular antioxidant mechanisms, which in turn increased lipid peroxidation (MDA) and SOCS-3 expression levels, induced hyperinsulinaemia and increased HOMA-IR, an index of insulin resistance. In conclusion, excess energy added to a diet can generate detrimental effects in a short period.

  8. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism.

    PubMed

    Madden, Christopher J; Morrison, Shaun F

    2016-08-01

    In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure and thus to weight gain. PMID:27354235

  9. Impaired Transcriptional Response of the Murine Heart to Cigarette Smoke in the Setting of High Fat Diet and Obesity

    SciTech Connect

    Tilton, Susan C.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Mikheev, Vladimir B.; Lee, K. M.; Corley, Richard A.; Pounds, Joel G.; Bigelow, Diana J.

    2013-07-01

    Smoking and obesity are each well-established risk factors for cardiovascular heart disease, which together impose earlier onset and greater severity of disease. To identify early signaling events in the response of the heart to cigarette smoke exposure within the setting of obesity, we exposed normal weight and high fat diet-induced obese (DIO) C57BL/6 mice to repeated inhaled doses of mainstream (MS) or sidestream (SS) cigarette smoke administered over a two week period, monitoring effects on both cardiac and pulmonary transcriptomes. MS smoke (250 μg wet total particulate matter (WTPM)/L, 5 h/day) exposures elicited robust cellular and molecular inflammatory responses in the lung with 1466 differentially expressed pulmonary genes (p < 0.01) in normal weight animals and a much-attenuated response (463 genes) in the hearts of the same animals. In contrast, exposures to SS smoke (85 μg WTPM/L) with a CO concentration equivalent to that of MS smoke (250 CO ppm) induced a weak pulmonary response (328 genes) but an extensive cardiac response (1590 genes). SS smoke and to a lesser extent MS smoke preferentially elicited hypoxia- and stress-responsive genes as well as genes predicting early changes of vascular smooth muscle and endothelium, precursors of cardiovascular disease. The most sensitive smoke-induced cardiac transcriptional changes of normal weight mice were largely absent in DIO mice after smoke exposure, while genes involved in fatty acid utilization were unaffected. At the same time, smoke exposure suppressed multiple proteome maintenance genes induced in the hearts of DIO mice. Together, these results underscore the sensitivity of the heart to SS smoke and reveal adaptive responses in healthy individuals that are absent in the setting of high fat diet and obesity.

  10. Rapeseed protein in a high-fat mixed meal alleviates postprandial systemic and vascular oxidative stress and prevents vascular endothelial dysfunction in healthy rats.

    PubMed

    Magné, Joëlle; Huneau, Jean François; Tsikas, Dimitrios; Delemasure, Stéphanie; Rochette, Luc; Tomé, Daniel; Mariotti, François

    2009-09-01

    High-saturated fat and high-sucrose meals induce vascular endothelial dysfunction, the early hallmark of atherogenesis. The impact of dietary protein on vascular homeostasis remains misunderstood. In this study, we investigated whether rapeseed protein, an emergent arginine- and cysteine-rich protein, can acutely modulate the onset of adverse effects induced by a high-saturated fat meal (HFM). In a series of crossover experiments, healthy rats received 3 HFM (saturated fat: 60%; sucrose: 20%; protein: 20% energy) with the protein source being either total milk protein (MP; control), rapeseed protein (RP), or MP supplemented with cysteine and arginine to the same level as in RP (MP+AA). Endothelium-related vascular reactivity, measured as an acetylcholine-induced transient decrease in blood pressure, and plasma triglycerides, hydroperoxides, cyclic GMP (cGMP), and free 3-nitrotyrosine were measured before and 2, 4, and 6 h after meals. Superoxide anion production, expressed as ethidine fluorescence, was measured in the aorta 6 h after meals. Whereas plasma triglycerides rose similarly in all meals, the decrease in vascular reactivity after MP was attenuated after MP+AA and entirely prevented after RP. The type of meal had no consistent effect on plasma cGMP and free 3-nitrotyrosine over the postprandial period. The postprandial increase in plasma hydroperoxides differed according to the meal, and concentrations were 43% lower 6 h after MP+AA and RP than after MP. Aortic superoxide anion production was 36% lower 6 h after RP than MP. These results show that substituting rapeseed protein for milk protein markedly reduces vascular and oxidative disturbances induced by an HFM and this may be mediated in part by cysteine and arginine.

  11. Rapeseed protein in a high-fat mixed meal alleviates postprandial systemic and vascular oxidative stress and prevents vascular endothelial dysfunction in healthy rats.

    PubMed

    Magné, Joëlle; Huneau, Jean François; Tsikas, Dimitrios; Delemasure, Stéphanie; Rochette, Luc; Tomé, Daniel; Mariotti, François

    2009-09-01

    High-saturated fat and high-sucrose meals induce vascular endothelial dysfunction, the early hallmark of atherogenesis. The impact of dietary protein on vascular homeostasis remains misunderstood. In this study, we investigated whether rapeseed protein, an emergent arginine- and cysteine-rich protein, can acutely modulate the onset of adverse effects induced by a high-saturated fat meal (HFM). In a series of crossover experiments, healthy rats received 3 HFM (saturated fat: 60%; sucrose: 20%; protein: 20% energy) with the protein source being either total milk protein (MP; control), rapeseed protein (RP), or MP supplemented with cysteine and arginine to the same level as in RP (MP+AA). Endothelium-related vascular reactivity, measured as an acetylcholine-induced transient decrease in blood pressure, and plasma triglycerides, hydroperoxides, cyclic GMP (cGMP), and free 3-nitrotyrosine were measured before and 2, 4, and 6 h after meals. Superoxide anion production, expressed as ethidine fluorescence, was measured in the aorta 6 h after meals. Whereas plasma triglycerides rose similarly in all meals, the decrease in vascular reactivity after MP was attenuated after MP+AA and entirely prevented after RP. The type of meal had no consistent effect on plasma cGMP and free 3-nitrotyrosine over the postprandial period. The postprandial increase in plasma hydroperoxides differed according to the meal, and concentrations were 43% lower 6 h after MP+AA and RP than after MP. Aortic superoxide anion production was 36% lower 6 h after RP than MP. These results show that substituting rapeseed protein for milk protein markedly reduces vascular and oxidative disturbances induced by an HFM and this may be mediated in part by cysteine and arginine. PMID:19587122

  12. Osteocalcin attenuates high fat diet-induced impairment of endothelium-dependent relaxation through Akt/eNOS-dependent pathway

    PubMed Central

    2014-01-01

    Background Recent studies have demonstrated a protective effect of osteocalcin (OCN) on glucose homeostasis and metabolic syndrome. However, its role in vascular function remains unknown. This study investigated the contribution of OCN to the pathogenesis of endothelial dysfunction in the thoracic aorta of apolipoprotein E-deficient (ApoE-KO) mice. Methods Eight-week-old ApoE–KO mice were given chow or high fat diet (HFD) for 12 weeks with or without daily intraperitoneal injection of OCN. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT),measurement of serum lipid profiles and blood pressure were carried out. Endothelium-dependent relaxation (EDR) was measured by wire myography. Human umbilical vein endothelial cells (HUVECs) were used to study the role of OCN on eNOS levels in vitro. PI3K inhibitor (LY294002) and Akt inhibitor V were used ex-vivo to determine whether PI3K/Akt/eNOS contributes to the beneficial effect of OCN for the vascular or not. Results Daily injections of OCN can significantly improve lipid metabolism, glucose tolerance and insulin sensitivity in ApoE-KO mice. In ApoE-KO mice fed with HFD, the OCN-treated mice displayed an improved acetylcholine-stimulated EDR compared to the vehicle-treated group. In addition, compared to vehicle-treated HUVECs, OCN-treated HUVECs displayed increased activation of the Akt-eNOS signaling pathway, as evidenced by significantly higher levels of phosphorylated Akt and eNOS. Furthermore, a similar beneficial effect of OCN on thoracic aorta was observed using ex vivo organ culture of isolated mouse aortic segment. However, this effect was attenuated upon co-incubation with PI3K inhibitor or Akt inhibitor V. Conclusions Our study demonstrates that OCN has an endothelial-protective effect in atherosclerosis through mediating the PI3K/Akt/eNOS signaling pathway. PMID:24708830

  13. High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2α concentrations relative to a control high–oleic acid meal: a randomized controlled trial1234

    PubMed Central

    Purcell, Robert; Latham, Sally H; Botham, Kathleen M; Hall, Wendy L; Wheeler-Jones, Caroline PD

    2014-01-01

    Background: Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation has beneficial cardiovascular effects, but postprandial influences of these individual fatty acids are unclear. Objectives: The primary objective was to determine the vascular effects of EPA + DHA compared with DHA only during postprandial lipemia relative to control high–oleic acid meals; the secondary objective was to characterize the effects of linoleic acid–enriched high-fat meals relative to the control meal. Design: We conducted a randomized, controlled, double-blind crossover trial of 4 high-fat (75-g) meals containing 1) high–oleic acid sunflower oil (HOS; control), 2) HOS + fish oil (FO; 5 g EPA and DHA), 3) HOS + algal oil (AO; 5 g DHA), and 4) high–linoleic acid sunflower oil (HLS) in 16 healthy men (aged 35–70 y) with higher than optimal fasting triacylglycerol concentrations (mean ± SD triacylglycerol, 1.9 ± 0.5 mmol/L). Results: Elevations in triacylglycerol concentration relative to baseline were slightly reduced after FO and HLS compared with the HOS control (P < 0.05). The characteristic decrease from baseline in plasma nonesterified fatty acids after a mixed meal was inhibited after AO (Δ 0–3 h, P < 0.05). HLS increased the augmentation index compared with the other test meals (P < 0.05), although the digital volume pulse–reflection index was not significantly different. Plasma 8-isoprostane F2α analysis revealed opposing effects of FO (increased) and AO (reduced) compared with the control (P < 0.05). No differences in nitric oxide metabolites were observed. Conclusions: These data show differential postprandial 8-isoprostane F2α responses to high-fat meals containing EPA + DHA–rich fish oil compared with DHA-rich AO, but these differences were not associated with consistent effects on postprandial vascular function or lipemia. More detailed analyses of polyunsaturated fatty acid–derived lipid mediators are required to determine possible

  14. High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice is independent of changes in amyloid and tau pathology.

    PubMed

    Knight, Elysse M; Martins, Isaura V A; Gümüsgöz, Sarah; Allan, Stuart M; Lawrence, Catherine B

    2014-08-01

    Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Diets high in fat also increase disease neuropathology and/or cognitive deficits in AD mouse models. However, the effect of a high-fat diet on both the neuropathology and memory impairments in the triple-transgenic mouse model of AD (3xTgAD) is unknown. Therefore, groups of 2-month-old male 3xTgAD and control (non-Tg) mice were maintained on a high-fat or control diet and memory was assessed at the age of 3-4, 7-8, 11-12, and 15-16 months using a series of behavioral tests. A comparable increase in body weight was observed in non-Tg and 3xTgAD mice after high-fat feeding at all ages tested but a significantly greater increase in epididymal adipose tissue was observed in 3xTgAD mice at the age of 7-8, 11-12, and 15-16 months. A high-fat diet caused memory impairments in non-Tg control mice as early as the age of 3-4 months. In 3xTgAD mice, high-fat consumption led to a reduction in the age of onset and an increase in the extent of memory impairments. Some of these effects of high-fat diet on cognition in non-Tg and 3xTgAD mice were transient, and the age at which cognitive impairment was detected depended on the behavioral test. The effect of high-fat diet on memory in the 3xTgAD mice was independent of changes in AD neuropathology as no significant differences in (plaques, oligomers) or tau neuropathology were observed. An acute increase in microglial activation was seen in high-fat fed 3xTgAD mice at the age of 3-4 months but in non-Tg control mice microglial activation was not observed until the age of 15-16 months. These data indicate therefore that a high-fat diet has rapid and long-lasting negative effects on memory in both control and AD mice that are associated with neuroinflammation, but independent of changes in beta amyloid and tau neuropathology in the AD mice.

  15. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide.

    PubMed

    Gainey, Stephen J; Kwakwa, Kristin A; Bray, Julie K; Pillote, Melissa M; Tir, Vincent L; Towers, Albert E; Freund, Gregory G

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.

  16. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide

    PubMed Central

    Gainey, Stephen J.; Kwakwa, Kristin A.; Bray, Julie K.; Pillote, Melissa M.; Tir, Vincent L.; Towers, Albert E.; Freund, Gregory G.

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K+ (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288

  17. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide.

    PubMed

    Gainey, Stephen J; Kwakwa, Kristin A; Bray, Julie K; Pillote, Melissa M; Tir, Vincent L; Towers, Albert E; Freund, Gregory G

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288

  18. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    PubMed Central

    Borengasser, Sarah J.; Faske, Jennifer; Kang, Ping; Blackburn, Michael L.; Badger, Thomas M.

    2014-01-01

    The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life. PMID:25336449

  19. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption.

    PubMed

    Sekar, Revathi; Chow, Billy K C

    2014-08-01

    Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; P<0.05) and exhibited lower body fat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed.

  20. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats.

    PubMed

    Kim, Yonwook J; Bi, Sheng

    2016-01-15

    Neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) plays an important role in the regulation of energy balance. While DMH NPY overexpression causes hyperphagia and obesity in rats, knockdown of NPY in the DMH via adeno-associated virus (AAV)-mediated RNAi (AAVshNPY) ameliorates these alterations. Whether this knockdown has a therapeutic effect on obesity and glycemic disorder has yet to be determined. The present study sought to test this potential using a rat model of high-fat diet (HFD)-induced obesity and insulin resistance, mimicking human obesity with impaired glucose homeostasis. Rats had ad libitum access to rodent regular chow (RC) or HFD. Six weeks later, an oral glucose tolerance test (OGTT) was performed for verifying HFD-induced glucose intolerance. After verification, obese rats received bilateral DMH injections of AAVshNPY or the control vector AAVshCTL, and OGTT and insulin tolerance test (ITT) were performed at 16 and 18 wk after viral injection (23 and 25 wk on HFD), respectively. Rats were killed at 26 wk on HFD. We found that AAVshCTL rats on HFD remained hyperphagic, obese, glucose intolerant, and insulin resistant relative to lean control RC-fed rats receiving DMH injection of AAVshCTL, whereas these alterations were reversed in NPY knockdown rats fed a HFD. NPY knockdown rats exhibited normal food intake, body weight, glucose tolerance, and insulin sensitivity, as seen in lean control rats. Together, these results demonstrate a therapeutic action of DMH NPY knockdown against obesity and impaired glucose homeostasis in rats, providing a potential target for the treatment of obesity and diabetes.

  1. Magnolia bioactive constituent 4-O-methylhonokiol prevents the impairment of cardiac insulin signaling and the cardiac pathogenesis in high-fat diet-induced obese mice.

    PubMed

    Zhang, Zhiguo; Chen, Jing; Zhou, Shanshan; Wang, Shudong; Cai, Xiaohong; Conklin, Daniel J; Kim, Ki-Soo; Kim, Ki Ho; Tan, Yi; Zheng, Yang; Kim, Young Heui; Cai, Lu

    2015-01-01

    In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity. PMID:26157343

  2. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  3. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  4. Reproductive impairment and endocrine disruption in goldfish by feeding diets containing soybean meal.

    PubMed

    Bagheri, Tahere; Imanpoor, Mohamad Reza; Jafari, Valiollah; Bennetau-Pelissero, Catherin

    2013-06-01

    A long-term feeding experiment was conducted to investigate the inclusion of soybean meal in diets for goldfish (Carassius auratus) on fish reproduction. In the present study, 20 weeks after hatching, goldfish with an initial average weight of 2±0.03g (mean±SD) were divided into 12 groups (three tanks per dietary treatment) and fed 400gkg(-1) crude protein diets. The four experimental diets were as follows: diet 1, fish meal (FM); diet 2, 35% soybean meal (SBM35%); diet 3, 65% soybean meal (SBM65%); diet 4, 100% soybean meal (SBM100%). After feeding with experimental diets, the impact on reproduction was investigated. In both males and females, the plasma testosterone (T) was significantly decreased, while 17β-estradiol (E2) levels were significantly increased. Levels of 17α, hydroxyprogesterone. (17-OH-P) did not differ as a result of soybean meal feeding in either males or females. The average number of eggs spawned and sperm quality were reduced on feeding with soybean inclusion. Histological examination showed impact on oocyte maturation progress and spermatogenesis process in female and male fish, respectively. In addition, feeding goldfish with soybean meal until maturation caused reduction in fertilization and hatching rates in parallel to increasing soybean meal inclusion. The results demonstrated that inclusion of soybean meal might cause sex hormone biosynthesis disruption and reproductive impairments in fish, ultimately decreased fertilization as well as hatching rates in the offspring.

  5. High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN): an interventional study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postprandial lipemia (PPL) is likely a risk factor for cardiovascular disease but these changes have not been well described and characterized in a large cohort. We assessed acute changes in the size and concentration of total and subclasses of LDL, HDL, and VLDL particles in response to a high-fat ...

  6. Antioxidant vitamins reduce acute meal-induced memory deficits in adults with type 2 diabetes.

    PubMed

    Chui, Michael Herman; Greenwood, Carol E

    2008-07-01

    Memory impairment is observed in adults with type 2 diabetes mellitus (T2DM), with further acute deficits after meal ingestion. This study explored whether postprandial oxidative stress was a contributor to these meal-induced memory deficits. Sixteen adults with T2DM (mean age, 63.5 +/- 2.1 years) who were not regularly taking high-dose antioxidant supplements were fed a high-fat meal, the same test meal with vitamins C (1000 mg) and E (800 IU) tablets, or water on 3 separate occasions. After meal ingestion, a battery of cognitive tests were administered, which included measures of delayed verbal memory, assessed at 60 and 105 minutes after meal ingestion. Relative to water consumption, the high-fat meal resulted in poorer performance at 105 minutes postingestion on measures of delayed verbal recall (word list and paragraph recall) and working memory (Digit-Span Forward). Coconsumption of antioxidant vitamins and high-fat meal prevented this meal-induced deficit such that performance on these tasks was indistinguishable from that after water intake. At the same time point, a small but significant improvement on the word-naming and color-naming components of Stroop was observed after meal ingestion, relative to water, irrespective of whether antioxidants were consumed, demonstrating the specificity of meal-induced impairments to memory function. Executive function, assessed by Trails Parts A and B, was not influenced by meal or antioxidant ingestion. In adults with T2DM, coconsumption of antioxidant vitamins minimizes meal-induced memory impairment, implicating oxidative stress as a potential contributor to these decrements. PMID:19083441

  7. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    EPA Science Inventory

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  8. Impaired accommodation of proximal stomach to a meal in functional dyspepsia.

    PubMed

    Gilja, O H; Hausken, T; Wilhelmsen, I; Berstad, A

    1996-04-01

    In patients with functional dyspepsia, scanning by a novel ultrasonographic method was carried out to investigate postprandial accommodation of the proximal stomach. Twenty patients with functional dyspepsia and 20 controls were scanned fasting in a sitting position after drinking 500 ml meat soup. Images were recorded up to 25 min after the ingestion period using an ultrasound sector scanner with a 3.25-MHz transducer. The area in a sagittal section and the maximal diameter in a oblique frontal section were chosen as the main variables for calculating the emptying fraction of the proximal stomach, defined as: (aV2.5min - aVactual/aV2.5min. All subjects were asked to score total symptoms (1-9) provoked by the meal. From 7.5 to 25 min after the ingestion period the patients exhibited both smaller area in the sagittal section (P < 0.018) and shorter diameter in the frontal section (P < 0.046) compared with the healthy controls, and they suffered more symptoms in response to the meal (P = 0.002). Dyspeptic patients revealed higher emptying fractions (P = 0.0005, ANOVA), and H. pylori status did not influence the emptying fractions. Diagnostic sensitivity of the method at 20 min postprandially was 70% and the specificity was 65%. Patients with functional dyspepsia have impaired accommodation of the proximal stomach to a meal, temporarily related to symptom induction. PMID:8674389

  9. Consumption of high-fat meal containing cheese compared with vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomized controlled cross-over study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary recommendations suggest decreased consumption of SFA to minimize CVD risk; however, not all foods rich in SFA are equivalent. To evaluate the effects of SFA in a dairy food matrix, as Cheddar cheese, v. SFA from a vegan-alternative test meal on postprandial inflammatory markers, a randomized...

  10. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-01

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  11. Association of habitual high-fat intake and desire for protein and sweet food.

    PubMed

    Tatano, Hiroshi; Yamanaka-Okumura, Hisami; Zhou, Bei; Adachi, Chisaki; Kawakami, Yuka; Katayama, Takafumi; Masuda, Masashi; Takeda, Eiji; Taketani, Yutaka

    2016-01-01

    Reducing dietary calorie density (CD) is useful in body weight management. This study investigates the association between dietary habits and preferences for different CDs. We conducted a randomized crossover study of 232 healthy subjects who consumed packed lunch boxes containing a control, high-meat and low-rice, low-vegetable, medium-fat and low-vegetable, high-fat, and high-fat and low-vegetable meals over six sessions. The subjective levels of sensory properties were assessed over time using a visual analog scale and the area under the curve. Subjects were assessed for dietary habits using a brief-type self-administered diet history questionnaire (BDHQ) and were divided into two groups based on a daily fat energy ratio ≥ 25% (high fat [HF], n=116) and < 25% (normal, n=116) that was matched for age, body mass index, and sex ratio. Our findings indicate that the desire for sweetness was higher in the HF group than in the normal group, regardless of the meals consumed. Particularly, among the 500-kcal low-CD meals, a high-protein meal provided greater fullness and satisfaction and lower prospective consumption in the HF group than in the normal group. Therefore, our study demonstrates that postprandial appetite sensation is associated with dietary habits of fat intake. J. Med. Invest. 63: 241-247, August, 2016. PMID:27644566

  12. Exercise Improves Glucose Disposal and Insulin Signaling in Pregnant Mice Fed a High Fat Diet

    PubMed Central

    Carter, Lindsay G; Ngo Tenlep, Sara Y; Woollett, Laura A; Pearson, Kevin J

    2016-01-01

    Objective Physical activity has been suggested as a non-pharmacological intervention that can be used to improve glucose homeostasis in women with gestational diabetes mellitus. The purpose of this study was to determine the effects of voluntary exercise on glucose tolerance and body composition in pregnant high fat diet fed mice. Methods Female mice were put on a standard diet or high fat diet for two weeks. The mice were then split into 4 groups; control standard diet fed, exercise standard diet fed, control high fat diet fed, and exercise high fat diet fed. Exercise mice had voluntary access to a running wheel in their home cage one week prior to mating, during mating, and throughout pregnancy. Glucose tolerance and body composition were measured during pregnancy. Akt levels were quantified in skeletal muscle and adipose tissue isolated from saline or insulin injected pregnant dams as a marker for insulin signaling. Results Consumption of the high fat diet led to significantly increased body weight, fat mass, and impaired glucose tolerance in control mice. However, voluntary running in the high fat diet fed dams significantly reduced weight gain and fat mass and ultimately improved glucose tolerance compared to control high fat diet fed dams. Further, body weight, fat mass, and glucose disposal in exercise high fat diet dams were indistinguishable from control dams fed the standard diet. High fat diet fed exercise dams also had significantly increased insulin stimulated phosphorylated Akt expression in adipose tissue, but not skeletal muscle, compared to control dams on high fat diet. Conclusion The use of voluntary exercise improves glucose homeostasis and body composition in pregnant female mice. Thus, future studies could investigate potential long-term health benefits in offspring born to obese exercising dams. PMID:26966635

  13. Prenatal Exposure to Lipopolysaccharide Combined with Pre- and Postnatal High-Fat Diet Result in Lowered Blood Pressure and Insulin Resistance in Offspring Rats

    PubMed Central

    Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan

    2014-01-01

    Background Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. Methods 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8th, 10th and 12th day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Results Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Conclusion/Significance Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation. PMID:24498431

  14. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    PubMed Central

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    INTRODUCTION Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. METHODS Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. RESULTS The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). CONCLUSIONS A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men. PMID:26508874

  15. High fat diet causes rebound weight gain.

    PubMed

    McNay, David E G; Speakman, John R

    2012-01-01

    Obesity is at epidemic proportions but treatment options remain limited. Treatment of obesity by calorie restriction (CR) despite having initial success often fails due to rebound weight gain. One possibility is that this reflects an increased body weight (BW) set-point. Indeed, high fat diets (HFD) reduce adult neurogenesis altering hypothalamic neuroarchitecture. However, it is uncertain if these changes are associated with weight rebound or if long-term weight management is associated with reversing this. Here we show that obese mice have an increased BW set-point and lowering this set-point is associated with rescuing hypothalamic remodelling. Treating obesity by CR using HFD causes weight loss, but not rescued remodelling resulting in rebound weight gain. However, treating obesity by CR using non-HFD causes weight loss, rescued remodelling and attenuates rebound weight gain. We propose that these phenomena may explain why successful short-term weight loss improves obesity in some people but not in others.

  16. Family Meals

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Family Meals KidsHealth > For Parents > Family Meals Print A ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  17. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.

    PubMed

    Liu, Yi; Fu, Xiaobin; Lan, Nuo; Li, Sai; Zhang, Jingzheng; Wang, Shuaishuai; Li, Cheng; Shang, Yanguo; Huang, Tonghui; Zhang, Ling

    2014-07-01

    The epidemic and experimental studies have confirmed that the obesity can lead to neuroinflammation, neurodegenerative diseases and adversely affect cognition. Despite the numerous elucidations on the impact of obesity on cognition decline, the contributors to the impairments in obesity remain unclear. Male C57BL/6J mice were fed either a control or high-fat diet (HFD) for 16 weeks and then randomized into four groups treated with their respective diets for 4 weeks including control diet (CD); control diet+luteolin (CDL); high-fat diet (HFD), high-fat diet+luteolin (HFDL). The dose of luteolin was 10mg/kg, oral. We showed that adding luteolin in high-fat diet can significantly reduce body weight gain, food intake and plasma cytokines as well as improving glucose metabolism of mice on HFD. Importantly, we showed that luteolin treatment had the effects of alleviating neuroinflammation, oxidative stress and neuronal insulin resistance in the mouse brain, restored blood adipocytokines level to normal. Furthermore, luteolin increased the level of brain-derived neurotrophic factor (BDNF), the action of synapsin I (SYP) and postsynaptic density protein 95 (PSD-95) in the cortex and hippocampus as to that the behavioral performance in Morris water maze (MWM) and step-through task were significantly improved. These results indicate a previously unrecognized potential of luteolin in alleviating obesity-induced cognitive impairment for type-2 diabetes mellitus and Alzheimer disease (AD).

  18. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    PubMed

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet.

  19. Chromium (D-phenylalanine)3 alleviates high fat-induced insulin resistance and lipid abnormalities.

    PubMed

    Kandadi, Machender Reddy; Unnikrishnan, M K; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair

    2011-01-01

    High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (D-phenylalanine)(3) [Cr(D-Phe)(3)] on glucose and insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(D-Phe)(3) (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body-glucose and -insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up-take in the gastrocnemius muscles, assessed as 2-[(3)H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-(32)P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)(3). These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling.

  20. Effects of lifestyle intervention and meal replacement on glycaemic and body-weight control in Chinese subjects with impaired glucose regulation: a 1-year randomised controlled trial.

    PubMed

    Xu, Dan-Feng; Sun, Jian-Qin; Chen, Min; Chen, Yan-Qiu; Xie, Hua; Sun, Wei-Jia; Lin, Yi-Fan; Jiang, Jing-Jing; Sun, Wei; Chen, Ai-Fang; Tang, Qian-Ru

    2013-02-14

    The purpose of the present study was to evaluate the impact of a lifestyle intervention programme, combined with a daily low-glycaemic index meal replacement, on body-weight and glycaemic control in subjects with impaired glucose regulation (IGR). Subjects with IGR were randomly assigned to an intervention group (n 46) and a control group (n 42). Both groups received health counselling at baseline. The intervention group also received a daily meal replacement and intensive lifestyle intervention to promote healthy eating habits during the first 3 months of the study, and follow-up visits performed monthly until the end of the 1-year study. Outcome measurements included changes in plasma glucose, glycated Hb (HbA1c), plasma lipids, body weight, blood pressure and body composition (such as body fat mass and visceral fat area). The results showed that body-weight loss after 1 year was significant in the intervention group compared with the control group (-1·8 (SEM 0·35) v. -0·6 (SEM 0·40) 2·5 kg, P<0·05). The 2 h plasma glucose concentration decreased 1·24 mmol/l in the intervention group and increased 0·85 mmol/l in the control group (P<0·05) compared with their baseline, respectively. A 5 kg body-weight loss at 1 year was associated with a decrease of 1·49 mmol/l in 2 h plasma glucose (P<0·01). The incidence of normal glucose regulation (NGR) in the two groups was significantly different (P=0·001). In conclusion, the combination of regular contact, lifestyle advice and meal replacement is beneficial in promoting IGR to NGR.

  1. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  2. Fat Quality Influences the Obesogenic Effect of High Fat Diets.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Cancelliere, Rosa; di Fabio, Giovanni; Zarrelli, Armando; Liverini, Giovanna; Iossa, Susanna

    2015-11-16

    High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.

  3. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    PubMed Central

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Cancelliere, Rosa; di Fabio, Giovanni; Zarrelli, Armando; Liverini, Giovanna; Iossa, Susanna

    2015-01-01

    High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids. PMID:26580650

  4. Fat Quality Influences the Obesogenic Effect of High Fat Diets.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Cancelliere, Rosa; di Fabio, Giovanni; Zarrelli, Armando; Liverini, Giovanna; Iossa, Susanna

    2015-11-01

    High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids. PMID:26580650

  5. High fat diet exacerbates vascular endothelial dysfunction in rats exposed to continuous hypobaric hypoxia.

    PubMed

    Zhao, Yan-Xia; Tang, Feng; Ga, Qin; Wuren, Tana; Wang, Ya-Ping; Rondina, Matthew T; Ge, Ri-Li

    2015-02-13

    Independently, a high fat diet and hypoxia are associated with vascular endothelial dysfunction (VED) and often occur concurrently in patients. Nevertheless, the effects of a high fat diet on vascular endothelial function combined with hypoxia, a situation occurring with increasing frequency in many parts of the world, remain largely unknown. We investigated the effects of a high fat diet on vascular endothelial function in rats exposed to continuous hypoxia for 4 weeks. Seventy two male Sprague-Dawley rats were randomly divided into 3 groups: a hypoxia group fed regular chow, a combined hypoxia and high fat diet (HFD) group, and for comparison, rats maintained in normoxia, regular chow conditions were set as baseline (BL) group. The experimental data of BL group were obtained at beginning of hypoxia given in the other groups. Continuous hypoxia was induced in a hypobaric chamber maintained at an altitude of 5000 m. Compared to hypoxic conditions alone, hypoxia plus a HFD prevented adaptive changes in plasma nitric oxide (NOx) levels and caused earlier and more severe changes in aortic endothelial structures. Functionally, hypoxia plus a HFD resulted in impaired endothelium-dependent vasorelaxation responses to acetylcholine and altered the bioavailability of the nitric oxide synthase (NOS) substrate L-Arginine. At the molecular level, hypoxia plus a HFD blunted increases in endothelial NOS (eNOS) mRNA and protein in aortic endothelial tissue. Taken together, our findings demonstrate that in the setting of hypoxia, a high fat diet leads to earlier and more severe VED than hypoxia alone. These data have important implications for populations residing at high-altitude, as dietary patterns shift towards increased fat intake. PMID:25603049

  6. Soy protein isolate inhibits high fat diet-induced senescence pathways in osteoblasts to maintain bone acquisition in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic consumption by experimental animals of a typical Western diet high in saturated fats and cholesterol during postnatal life has been demonstrated to impair skeletal development. However, the underlying mechanism by which high fat, energy dense diets affect bone-forming cell phenotypes is poor...

  7. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice

    PubMed Central

    Kentish, Stephen J.; Frisby, Claudine L.; Kritas, Stamatiki; Li, Hui; Hatzinikolas, George; O’Donnell, Tracey A.; Wittert, Gary A.; Page, Amanda J.

    2015-01-01

    Aim Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice. Methods TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined. Results Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet. Conclusion TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity. PMID:26285043

  8. Sugary, High-Fat Western Diet Tied to Denser Breast Tissue

    MedlinePlus

    ... medlineplus.gov/news/fullstory_160302.html Sugary, High-Fat Western Diet Tied to Denser Breast Tissue Previous ... found in a Western-style diet, especially high-fat dairy products (whole milk, high-fat cheeses and ...

  9. High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure.

    PubMed

    Brainard, Robert E; Watson, Lewis J; Demartino, Angelica M; Brittian, Kenneth R; Readnower, Ryan D; Boakye, Adjoa Agyemang; Zhang, Deqing; Hoetker, Joseph David; Bhatnagar, Aruni; Baba, Shahid Pervez; Jones, Steven P

    2013-01-01

    Preclinical studies of animals with risk factors, and how those risk factors contribute to the development of cardiovascular disease and cardiac dysfunction, are clearly needed. One such approach is to feed mice a diet rich in fat (i.e. 60%). Here, we determined whether a high fat diet was sufficient to induce cardiac dysfunction in mice. We subjected mice to two different high fat diets (lard or milk as fat source) and followed them for over six months and found no significant decrement in cardiac function (via echocardiography), despite robust adiposity and impaired glucose disposal. We next determined whether antecedent and concomitant exposure to high fat diet (lard) altered the murine heart's response to infarct-induced heart failure; high fat feeding during, or before and during, heart failure did not significantly exacerbate cardiac dysfunction. Given the lack of a robust effect on cardiac dysfunction with high fat feeding, we then examined a commonly used mouse model of overt diabetes, hyperglycemia, and obesity (db/db mice). db/db mice (or STZ treated wild-type mice) subjected to pressure overload exhibited no significant exacerbation of cardiac dysfunction; however, ischemia-reperfusion injury significantly depressed cardiac function in db/db mice compared to their non-diabetic littermates. Thus, we were able to document a negative influence of a risk factor in a relevant cardiovascular disease model; however, this did not involve exposure to a high fat diet. High fat diet, obesity, or hyperglycemia does not necessarily induce cardiac dysfunction in mice. Although many investigators use such diabetes/obesity models to understand cardiac defects related to risk factors, this study, along with those from several other groups, serves as a cautionary note regarding the use of murine models of diabetes and obesity in the context of heart failure.

  10. Dietary fat and corticosterone levels are contributing factors to meal anticipation.

    PubMed

    Namvar, Sara; Gyte, Amy; Denn, Mark; Leighton, Brendan; Piggins, Hugh D

    2016-04-15

    Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content. PMID:26818054

  11. Dietary fat and corticosterone levels are contributing factors to meal anticipation

    PubMed Central

    Gyte, Amy; Denn, Mark; Leighton, Brendan; Piggins, Hugh D.

    2016-01-01

    Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content. PMID:26818054

  12. Acute effects of meals, noise and nightwork.

    PubMed

    Smith, A; Miles, C

    1986-08-01

    An experimental study of the acute effects of meals, noise and nightwork showed that there was a post-meal impairment in detection of targets in a cognitive vigilance task. This was found both during the day and at night, although certain features of the results suggested that the day and night effects were not equivalent. Noise increased the number of false alarms but reduced the post-meal impairment in hit rate. Subjects with low levels of trait or state anxiety showed the greatest post-lunch impairments in performance, but this effect was reduced when the meal was eaten at night.

  13. Easy Meal

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The woman pictured below is sitting down to a nutritious, easily-prepared meal similar to those consumed by Apollo astronauts. The appetizing dishes shown were created simply by adding water to the contents of a Mountain House* Easy Meal package of freeze dried food. The Easy Meal line is produced by Oregon Freeze Dry Foods, Inc., Albany, Oreaon, a pioneer in freeze drying technology and a company long associated with NASA in developing suitable preparations for use on manned spacecraft. Designed to provide nutritionally balanced, attractive hot meals for senior adults, Easy Meal is an offshoot of a 1975-77 demonstration project managed by Johnson Space Center and called Meal System for the Elderly. The project sought ways to help the estimated 3.5 million elderly Americans who are unable to take advantage of existing meal programs. Such services are provided by federal, state and local agencies, but they are not available to many who live in rural areas, or others who are handicapped, temporarily ill or homebound for other reasons. Oregon Freeze Dry Foods was a participant in that multi-agency cooperative project. With its Easy Meal assortment of convenience foods pictured above left, the company is making commercially available meal packages similar to those distributed in the Meal System for the Elderly program. In the freeze drying process, water is extracted from freshly-cooked foods by dehydration at very low temperatures, as low as 50 I degrees below zero. Flavor is locked in by packaging the dried food in pouches which block out moisture and oxygen, the principal causes of food deterioration; thus the food can be stored for long periods without refrigeration. Meals are reconstituted by adding hot or cold water, depending on the type of food, and they are table ready in five to 10 minutes. Oregon Freeze Dry Foods offers five different meal packages and plans to expand the line.

  14. The acute effects of time-of-day-dependent high fat feeding on whole body metabolic flexibility in mice

    PubMed Central

    Joo, J; Cox, C C; Kindred, E D; Lashinger, L M; Young, M E; Bray, M S

    2016-01-01

    Background: Both circadian disruption and timing of feeding have important roles in the development of metabolic disease. Despite growing acceptance that the timing of food consumption has long-term impact on metabolic homeostasis, little is known regarding the immediate influence on whole body metabolism, or the mechanisms involved. We aimed to examine the acute effects of time-of-day-dependent high fat feeding on whole body substrate metabolism and metabolic plasticity, and to determine the potential contribution of the adipocyte circadian clock. Methods: Mice were fed a regimen of 4-h meal at the beginning and end of the dark (waking) cycle, separated by 4 h of fasting. Daily experimental conditions consisted of either an early very high fat or high fat (EVHF or EHF, 60 or 45% kcals from fat, respectively) or late (LVHF or LHF) meal, paired with a low fat (LF, 10% kcals from fat) meal. Metabolic parameters, glucose tolerance, body fat composition and weight were assessed. To determine the role of the adipocyte circadian clock, an aP2-CLOCK mutant (ACM) mouse model was used. Results: Mice in the EVHF or EHF groups showed a 13.2 or 8.84 higher percentage of caloric intake from fat and had a 0.013 or 0.026 lower daily average respiratory exchange ratio, respectively, compared with mice eating the opposite feeding regime. Changes in glucose tolerance, body fat composition and weight were not significant at the end of the 9-day restricted feeding period. ACM mice did not exhibit different metabolic responses to the feeding regimes compared with wild-type littermates. Circadian clock disruption did not influence the short-term response to timed feeding. Conclusions: Both the total fat composition of diet and the timing of fat intake may differentially mediate the effect of timed feeding on substrate metabolism, but may not induce acute changes in metabolic flexibility. PMID:27133618

  15. Effects of soy or milk protein during a high-fat feeding challenge on oxidative stress, inflammation, and lipids in healthy men.

    PubMed

    Campbell, Christina G; Brown, Blakely D; Dufner, Danielle; Thorland, William G

    2006-03-01

    Soy isoflavones may impede atherogenic processes associated with cardiovascular disease. Research suggests that the postprandial generation of TG-rich remnants contributes to the development of atherosclerosis. The purpose of the current study was to determine if 39 g soy (85 mg aglycone isoflavones, treatment) compared with 40 g milk protein (0 mg aglycone isoflavones, control) in combination with a high-fat meal can modify postprandial, atherogenic-associated events and biomarkers for oxidative stress, inflammation, and thrombosis. Fifteen healthy men (20-47 yr) participated in a double-blind cross-over meal-challenge study occurring on two nonconsecutive days. The study meals consisted of two high-fat apple muffins consumed with either a soy or milk shake (229 mL, 41% fat, 41% carbohydrate, and 18% protein). Blood samples were obtained at baseline (fasted) and hours two, four, and six postprandial. Plasma TG significantly increased in both treatment and control meal challenges compared with baseline. There were no significant differences (P > 0.05) between treatment (soy) and control (milk) for ex vivo copper-induced LDL oxidation, serum C-reactive protein, serum interleukin-6 (IL-6), serum fibrinogen, or plasma lipids (total cholesterol, HDL, LDL, TG). IL-6-concentrations significantly decreased as a function of time during either meal challenge (P = 0.005). These data suggest that consumption of soy or milk protein in conjunction with a high-fat meal does not acutely modify postprandial oxidative stress, inflammation, or plasma lipid concentrations in young, healthy men.

  16. Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism.

    PubMed

    Sid, Victoria; Wu, Nan; Sarna, Lindsei K; Siow, Yaw L; House, James D; O, Karmin

    2015-11-15

    AMPK is an endogenous energy sensor that regulates lipid and carbohydrate metabolism. Nonalcoholic fatty liver disease (NAFLD) is regarded as a hepatic manifestation of metabolic syndrome with impaired lipid and glucose metabolism and increased oxidative stress. Our recent study showed that folic acid supplementation attenuated hepatic oxidative stress and lipid accumulation in high-fat diet-fed mice. The aim of the present study was to investigate the effect of folic acid on hepatic AMPK during high-fat diet feeding and the mechanisms involved. Male C57BL/6J mice were fed a control diet (10% kcal fat), a high-fat diet (60% kcal fat), or a high-fat diet supplemented with folic acid (26 mg/kg diet) for 5 wk. Mice fed a high-fat diet exhibited hyperglycemia, hepatic cholesterol accumulation, and reduced hepatic AMPK phosphorylation. Folic acid supplementation restored AMPK phosphorylation (activation) and reduced blood glucose and hepatic cholesterol levels. Activation of AMPK by folic acid was mediated through an elevation of its allosteric activator AMP and activation of its upstream kinase, namely, liver kinase B1 (LKB1) in the liver. Consistent with in vivo findings, 5-methyltetrahydrofolate (bioactive form of folate) restored phosphorylation (activation) of both AMPK and LKB1 in palmitic acid-treated HepG2 cells. Activation of AMPK by folic acid might be responsible for AMPK-dependent phosphorylation of HMG-CoA reductase, leading to reduced hepatic cholesterol synthesis during high-fat diet feeding. These results suggest that folic acid supplementation may improve cholesterol and glucose metabolism by restoration of AMPK activation in the liver.

  17. Meal to meal energy balance in rats.

    PubMed

    Le Magnen, J; Devos, M

    1984-01-01

    Meal to meal energy balance was examined in thirty-eight simultaneous recordings of feeding pattern and O2 consumption in six rats. The mean difference between energy intake in a meal and energy expenditure until the onset of the next meal was found positive at night and negative during day time. At night the excess of meal intake over meal to meal expenditures was decreasing from the beginning to the end of the night and was strongly correlated to meal sizes. During day time meal to meal deficit was decreasing from the beginning to the end of the period but was not correlated to meal sizes. These meal location and size effects on the meal to meal energy balance were not determined by an effect of these factors on metabolic rate. No indication was provided that meal to meal energy balance was influenced by a "meal induced thermogenesis." Rather an evolution from the beginning to the end of the night of the correlation between meal size and durations of meal to meal intervals was found to be parallel to the evolution of positive meal to meal energy balance throughout the night. From these data it is concluded that at night a dual utilization of meal caloric intake (current energy metabolism plus fat storage) and a dual source of fuel during the day (food plus mobilized fats) determine time and mechanism of meal onset.

  18. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    PubMed

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  19. Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the hippocampus of female rats.

    PubMed

    Sivanathan, Shathveekan; Thavartnam, Kabriya; Arif, Shahneen; Elegino, Trisha; McGowan, Patrick O

    2015-06-01

    The consumption of diets high in saturated fats and obesity have been associated with impaired physical and mental health. Previous studies indicate that chronic high fat diet consumption leads to systemic inflammation in humans and non-human animal models. Studies in non-human animals suggest that altered physiological responses to stress are also a consequence of high fat diet consumption. Glucocorticoid signalling mechanisms may link immune and stress-related pathways in the brain, and were shown to be significantly altered in the brains of female rat offspring of mothers exposed to chronic high fat diet during pregnancy and lactation. For adult females, the consequence of chronic high fat diet consumption on these signalling pathways and their relationship to stress-related behaviour is not known. In this study, we examined the effects of chronic consumption of a high fat diet compared to a low fat control diet among adult female Long Evans rats. We found significant differences in weight gain, caloric intake, anxiety-related behaviours, and glucocorticoid-related gene expression over a 10-week exposure period. As expected, rats in the high fat diet group gained the most weight and consumed the greatest number of calories. Rats in the high fat diet group showed significantly greater levels of anxiety-related behaviour in the Light Dark and Open Field tasks compared to rats in the low fat diet group. Rats consuming high fat diet also exhibited reduced transcript abundance in the hippocampus of stress-related mineralocorticoid receptor and glucocorticoid receptor genes, as well as nuclear factor kappa beta gene expression, implicated in inflammatory processes. Together, these data indicate that chronic high fat diet consumption may increase anxiety-like behaviour at least in part via alterations in glucocorticoid signalling mechanisms in limbic brain regions.

  20. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet.

    PubMed

    Penke, Melanie; Larsen, Per S; Schuster, Susanne; Dall, Morten; Jensen, Benjamin A H; Gorski, Theresa; Meusel, Andrej; Richter, Sandy; Vienberg, Sara G; Treebak, Jonas T; Kiess, Wieland; Garten, Antje

    2015-09-01

    Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism to protect against negative impact of hepatic lipid accumulation.

  1. Shift of Circadian Feeding Pattern by High-Fat Diets Is Coincident with Reward Deficits in Obese Mice

    PubMed Central

    Valladolid-Acebes, Ismael; Fole, Alberto; Cano, Victoria; Merino, Beatriz; Stucchi, Paula; Ruggieri, Daniela; López, Laura; Alguacil, Luis Fernando; Ruiz-Gayo, Mariano

    2012-01-01

    Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow (“forced synchronization”). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity. PMID:22570696

  2. Mori folium and mori fructus mixture attenuates high-fat diet-induced cognitive deficits in mice.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Park, Gunhyuk; Kim, Hocheol; Lim, Yunsook; Oh, Myung Sook

    2015-01-01

    Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE) for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  3. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  4. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease.

  5. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease. PMID:27343935

  6. Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance

    PubMed Central

    2011-01-01

    Background High fat diet impairs nitric oxide (NO) bioavailability, and induces insulin resistance. The link between NO availability and the metabolic adaptation to a high fat diet is not well characterized. The purpose of this study was to investigate the effect of high fat diet on metabolism in mice with decreased (eNOS-/-) and increased (DDAH overexpressed) NO bioavailability. Methods eNOS-/- (n = 16), DDAH (n = 24), and WT (n = 19) mice were fed a high fat diet (HFD) for 13 weeks. Body weight, biochemical parameters, adipokines and insulin were monitored. The matrigel in vivo model with CD31 immunostaining was used to assess angiogenesis. Gene expression in adipose tissues was analyzed by microarray and Real Time PCR. Comparisons of the mean values were made using the unpaired Student t test and p < 0.05 were considered statistically significant. Results eNOS-/- mice gained less weight than control WT and DDAH mice. In DDAH mice, a greater increase in serum adiponectin and a lesser increment in glucose level was observed. Fasting insulin and cholesterol levels remained unchanged. The angiogenic response was increased in DDAH mice. In adipose tissue of DDAH mice, genes characteristic of differentiated adipocytes were down-regulated, whereas in eNOS-/- mice, genes associated with adipogenesis, fatty acid and triglyceride synthesis were upregulated. Conclusions Our results indicate that increased NO availability attenuates some HFD induced alterations in metabolism and gene expression associated with insulin resistance. PMID:21781316

  7. Attentional bias in restrictive eating disorders. Stronger attentional avoidance of high-fat food compared to healthy controls?

    PubMed

    Veenstra, Esther M; de Jong, Peter J

    2012-02-01

    A striking feature of the restricting subtype of anorexia nervosa (AN) is that these patients are extremely successful in restricting their food intake. Possibly, they are highly efficient in avoiding attentional engagement of food cues, thereby preventing more elaborate processing of food cues and thus subsequent craving. This study examined whether patients diagnosed with restrictive eating disorders ('restricting AN-like patients'; N=88) indeed show stronger attentional avoidance of visual food stimuli than healthy controls (N=76). Attentional engagement and disengagement were assessed by means of a pictorial exogenous cueing task, and (food and neutral) pictures were presented for 300, 500, or 1000 ms. In the 500 ms condition, both restricting AN-like patients and healthy controls demonstrated attentional avoidance of high-fat food as indexed by a negative cue-validity effect and impaired attentional engagement with high-fat food, whereas no evidence was found for facilitated disengagement from high-fat food. Within the group of restricting AN-like patients, patients with relatively severe eating pathology showed relatively strong attentional engagement with low-fat food. There was no evidence for attentional bias in the 300 and 1000 ms condition. The pattern of findings indicate that attentional avoidance of high-fat food is a common phenomenon that may become counterproductive in restricting AN-like patients, as it could facilitate their restricted food intake.

  8. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats.

    PubMed

    Chaumontet, Catherine; Even, Patrick C; Schwarz, Jessica; Simonin-Foucault, Angélique; Piedcoq, Julien; Fromentin, Gilles; Azzout-Marniche, Dalila; Tomé, Daniel

    2015-10-28

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma β-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.

  9. High-fat and ketogenic diets in amyotrophic lateral sclerosis.

    PubMed

    Paganoni, Sabrina; Wills, Anne-Marie

    2013-08-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. Epidemiologic data suggest that malnutrition is a common feature in amyotrophic lateral sclerosis and being overweight or obese confers a survival advantage in this patient population. In amyotrophic lateral sclerosis mouse models, a high-fat diet has been shown to lead to weight gain and prolonged survival. However, little research has been conducted to test whether nutritional interventions might ameliorate the disease course in humans. Here we review the currently available evidence supporting the potential role of dietary interventions as a therapeutic tool for amyotrophic lateral sclerosis. Ultimately, determining whether a high-fat or ketogenic diet could be beneficial in amyotrophic lateral sclerosis will require large randomized, placebo-controlled clinical trials.

  10. High-fat diet combined with low-dose streptozotocin injections induces metabolic syndrome in Macaca mulatta.

    PubMed

    Li, Linzhao; Liao, Guangneng; Yang, Guang; Lu, Yanrong; Du, Xiaojiong; Liu, Jingping; Li, Lan; Wang, Chengshi; Li, Li; Ren, Yan; Zhong, Zhihui; Cheng, Jingqiu; Chen, Younan

    2015-08-01

    Metabolic syndrome (MetS) is associated with abdominal obesity, hyperlipidemia, insulin resistance, and type 2 diabetes mellitus, and increases the risk of cardiovascular disease. Given the complex multifactorial pathogenesis of MetS, qualified animal models are currently seriously limited for researchers. The aim of our study was to develop a MetS model in juvenile rhesus monkeys (Macaca mulatta). Rhesus monkeys (1-year-old) fed a high-fat diet (15 % fat, 2 % cholesterol) were used as the HF group (n = 6), and those on a normal diet (5 % fat) were used as the control group (n = 4). After being fed a high-fat diet for approximately 12 months, 2 monkeys (HF + STZ group) were injected with low-dose streptozotocin (STZ, 25 mg/kg) twice, with a 7 days interval, and were then fed the same diet continuously for another 24 months. After 36 months of treatment, the high-fat diet monkeys, including the HF and HF + STZ groups, had acquired increased body weights, abnormal serum lipids, and impaired glucose tolerance compared to the control group. In addition, much more marked metabolic changes were observed in the two monkeys of the HF + STZ group, particularly in terms of high-blood glucose level and insulin resistance. Morphological observation of biopsies of liver and pancreatic tissues showed decreased islet number and mass and decreased insulin staining in the monkeys of the HF + STZ group. In addition, Oil red O staining suggested remarkable accumulation of lipid droplets in the hepatocytes. Our study suggested that a long-term high-fat diet followed with a low-dose STZ was able to induce MetS in juvenile rhesus monkeys with faster pathophysiological progress compared with high-fat diet induction alone. Our primary data showed that this method may have potentials to develop MetS animal model in non-human primates.

  11. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    PubMed

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways.

  12. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    PubMed

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. PMID:26459640

  13. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet.

    PubMed

    Souto Padron de Figueiredo, Alvaro; Salmon, Adam B; Bruno, Francesca; Jimenez, Fabio; Martinez, Herman G; Halade, Ganesh V; Ahuja, Seema S; Clark, Robert A; DeFronzo, Ralph A; Abboud, Hanna E; El Jamali, Amina

    2015-05-22

    Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle.

  14. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  15. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin resistance leads to memory impairment. Cinnamon (CN) improves whole body insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling, and Alzheimer-associated gene expression in the brain were measured in male Wistar rats fed a high fat/high fructose...

  16. The effects of high-fat diet on implant osseointegration: an experimental study

    PubMed Central

    2016-01-01

    Objectives In this study, we investigated whether a high-fat diet (HFD) affected the bone implant connection (BIC) in peri-implant bone. Materials and Methods Four male rabbits were used in this study. Dental implant surgery was introduced into each tibia, and four implants were integrated into each animal. In both the normal diet (ND) group (n=2) and HFD group (n=2), 8 implants were integrated, for a total of 16 integrated implants. The animals continued with their respective diets for 12 weeks post-surgery. Afterward, the rabbits were sacrificed, and the BIC was assessed histomorphometrically. Results Histologic and histomorphometric analyses demonstrated that BIC was not impaired in the HFD group compared to the ND group. Conclusion Within the limitations of this study, we found that HFD did not decrease the BIC in rabbit tibias. PMID:27595085

  17. The effects of high-fat diet on implant osseointegration: an experimental study

    PubMed Central

    2016-01-01

    Objectives In this study, we investigated whether a high-fat diet (HFD) affected the bone implant connection (BIC) in peri-implant bone. Materials and Methods Four male rabbits were used in this study. Dental implant surgery was introduced into each tibia, and four implants were integrated into each animal. In both the normal diet (ND) group (n=2) and HFD group (n=2), 8 implants were integrated, for a total of 16 integrated implants. The animals continued with their respective diets for 12 weeks post-surgery. Afterward, the rabbits were sacrificed, and the BIC was assessed histomorphometrically. Results Histologic and histomorphometric analyses demonstrated that BIC was not impaired in the HFD group compared to the ND group. Conclusion Within the limitations of this study, we found that HFD did not decrease the BIC in rabbit tibias.

  18. High-fat diet alters gut microbiota physiology in mice

    PubMed Central

    Daniel, Hannelore; Gholami, Amin Moghaddas; Berry, David; Desmarchelier, Charles; Hahne, Hannes; Loh, Gunnar; Mondot, Stanislas; Lepage, Patricia; Rothballer, Michael; Walker, Alesia; Böhm, Christoph; Wenning, Mareike; Wagner, Michael; Blaut, Michael; Schmitt-Kopplin, Philippe; Kuster, Bernhard; Haller, Dirk; Clavel, Thomas

    2014-01-01

    The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level. PMID:24030595

  19. Effect of high-fat diets on mood and learning performance in adolescent mice.

    PubMed

    Del Rio, Danila; Morales, Lidia; Ruiz-Gayo, Mariano; Del Olmo, Nuria

    2016-09-15

    Recent studies point to dietary factors as important effectors in the brain and epidemiological studies suggest a direct relationship between mood and anxiety disorders, cognitive impairment and obesity. Nevertheless the link between the consumption of high-fat diets (HFD) and emotional disorders still remains unclear. This issue is of particular interest during adolescence, which is an important period for shaping learning and memory acquisition that can be particularly sensitive to the detrimental effects of HFD. Otherwise, major depressive disorder and anxiety crisis often emerge in adolescence. In the current study we have characterized in adolescent mice i) the onset of HFD-induced memory impairment using the novel location recognition (NLR) paradigm, and ii) the effect of HFD on depression- and anxiety-related behaviors by using the forced swimming and the elevated plus maze tests, respectively. Here we report that memory impairments induced by HFD were already perceptible after 4-weeks HFD whereas HFD induced already antidepressant-like effects after 48-h, that remained after long-term treatment (8 weeks). No effects in anxiety were found. These data indicate that the antidepressant-like effect of HFD is independent of memory deficits as it was already present after 48-h HFD, while no effects in memory were still observed at this time. PMID:27212119

  20. Maternal High-Fat Diet Worsens Memory Deficits in the Triple-Transgenic (3xTgAD) Mouse Model of Alzheimer’s Disease

    PubMed Central

    Martin, Sarah A. L.; Jameson, Christine H.; Allan, Stuart M.; Lawrence, Catherine B.

    2014-01-01

    Alzheimer’s disease (AD) is not normally diagnosed until later in life, although evidence suggests that the disease starts at a much earlier age. Risk factors for AD, such as diabetes, hypertension and obesity, are known to have their affects during mid-life, though events very early in life, including maternal over-nutrition, can predispose offspring to develop these conditions. This study tested whether over-nutrition during pregnancy and lactation affected the development of AD in offspring, using a transgenic AD mouse model. Female triple-transgenic AD dam mice (3xTgAD) were exposed to a high-fat (60% energy from fat) or control diet during pregnancy and lactation. After weaning (at 3 weeks of age), female offspring were placed on a control diet and monitored up until 12 months of age during which time behavioural tests were performed. A transient increase in body weight was observed in 4-week-old offspring 3xTgAD mice from dams fed a high-fat diet. However, by 5 weeks of age the body weight of 3xTgAD mice from the maternal high-fat fed group was no different when compared to control-fed mice. A maternal high-fat diet led to a significant impairment in memory in 2- and 12-month-old 3xTgAD offspring mice when compared to offspring from control fed dams. These effects of a maternal high-fat diet on memory were accompanied by a significant increase (50%) in the number of tau positive neurones in the hippocampus. These data demonstrate that a high-fat diet during pregnancy and lactation increases memory impairments in female 3xTgAD mice and suggest that early life events during development might influence the onset and progression of AD later in life. PMID:24918775

  1. Consequences of a Maternal High-Fat Diet and Late Gestation Diabetes on the Developing Rat Lung

    PubMed Central

    Forred, Benjamin J.; Larsen, Tricia D.; Jensen, Danielle N.; Wachal, Angela L.; Khan, Muhammad Ali; Vitiello, Peter F.

    2016-01-01

    expression, and an impaired Txnip/VEGF pathway that are important for vessel growth and migration. After 3 weeks, mortality remained highest and static lung compliance and hysteresis were lowest in combination-exposed offspring. Conclusion This study emphasizes the effects of a maternal high-fat diet, especially alongside late-gestation diabetes, on pulmonary vasculogenesis, demonstrates adverse consequences beyond the perinatal period and directs attention to mechanistic pathways of interest. Findings provide a foundation for additional investigation of preventative and therapeutic strategies aimed at decreasing pulmonary morbidity in at-risk infants. PMID:27518105

  2. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  3. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  4. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  5. Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis

    PubMed Central

    de Andrade, I S; Zemdegs, J C S; de Souza, A P; Watanabe, R L H; Telles, M M; Nascimento, C M O; Oyama, L M; Ribeiro, E B

    2015-01-01

    Background/Objectives: Glucose from the diet may signal metabolic status to hypothalamic sites controlling energy homeostasis. Disruption of this mechanism may contribute to obesity but its relevance has not been established. The present experiments aimed at evaluating whether obesity induced by chronic high-fat intake affects the ability of hypothalamic glucose to control feeding. We hypothesized that glucose transport to the hypothalamus as well as glucose sensing and signaling could be impaired by high-fat feeding. Subjects/methods: Female Wistar rats were studied after 8 weeks on either control or high-lard diet. Daily food intake was measured after intracerebroventricular (i.c.v.) glucose. Glycemia and glucose content of medial hypothalamus microdialysates were measured in response to interperitoneal (i.p.) glucose or meal intake after an overnight fast. The effect of refeeding on whole hypothalamus levels of glucose transporter proteins (GLUT) 1, 2 and 4, AMPK and phosphorylated AMPK levels was determined by immunoblotting. Results: High-fat rats had higher body weight and fat content and serum leptin than control rats, but normal insulin levels and glucose tolerance. I.c.v. glucose inhibited food intake in control but failed to do so in high-fat rats. Either i.p. glucose or refeeding significantly increased glucose hypothalamic microdialysate levels in the control rats. These levels showed exacerbated increases in the high-fat rats. GLUT1 and 4 levels were not affected by refeeding. GLUT2 levels decreased and phosphor-AMPK levels increased in the high-fat rats but not in the controls. Conclusions: The findings suggest that, in the high-fat rats, a defective glucose sensing by decreased GLUT2 levels contributed to an inappropriate activation of AMPK after refeeding, despite increased extracellular glucose levels. These derangements were probably involved in the abolition of hypophagia in response to i.c.v. glucose. It is proposed that ‘glucose resistance

  6. Sphingolipids in High Fat Diet and Obesity-Related Diseases

    PubMed Central

    Choi, Songhwa; Snider, Ashley J.

    2015-01-01

    Nutrient oversupply associated with a high fat diet (HFD) significantly alters cellular metabolism, and specifically including sphingolipid metabolism. Sphingolipids are emerging as bioactive lipids that play key roles in regulating functions, in addition to their traditional roles as membrane structure. HFD enhances de novo sphingolipid synthesis and turnover of sphingolipids via the salvage pathway, resulting in the generation of ceramide, and more specifically long chain ceramide species. Additionally, HFD elevates sphingomyelin and sphingosine-1 phosphate (S1P) levels in several tissues including liver, skeletal muscle, adipose tissue, and cardiovascular tissues. HFD-stimulated sphingolipid generation contributes to systemic insulin resistance, dysregulated lipid accumulation, and cytokine expression and secretion from skeletal muscle and adipose tissues, exacerbating obesity-related conditions. Furthermore, altered sphingolipid levels, particularly ceramide and sphingomyelin, are involved in obesity-induced endothelial dysfunction and atherosclerosis. In this review, HFD-mediated sphingolipid metabolism and its impact on HFD-induced biology and pathobiology will be discussed. PMID:26648664

  7. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory.

    PubMed

    Parent, Marise B

    2016-08-01

    There is a large gap in our understanding of how top-down cognitive processes, such as memory, influence energy intake. Similarly, there is limited knowledge regarding how the brain controls the timing of meals and meal frequency. Understanding how cognition influences ingestive behavior and how the brain controls meal frequency will provide a more complete explanation of the neural mechanisms that regulate energy intake and may also increase our knowledge of the factors that contribute to diet-induced obesity. We hypothesize that dorsal hippocampal neurons, which are critical for memory of personal experiences (i.e., episodic memory), form a memory of a meal, inhibit meal onset during the period following a meal, and limit the amount ingested at the next meal. In support, we describe evidence from human research suggesting that episodic memory of a meal inhibits intake and review data from human and non-human animals showing that impaired hippocampal function is associated with increased intake. We then describe evidence from our laboratory showing that inactivation of dorsal hippocampal neurons decreases the interval between sucrose meals and increases intake at the next meal. We also describe our evidence suggesting that sweet orosensation is sufficient to induce synaptic plasticity in dorsal hippocampal neurons and raise the possibility that impaired dorsal hippocampal function and episodic memory deficits contribute to the development and/or maintenance of diet-induced obesity. Finally, we raise some critical questions that need to be addressed in future research. PMID:27083124

  8. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice.

    PubMed

    Gao, Xiang; Xu, Jie; Jiang, Chengzi; Zhang, Yi; Xue, Yong; Li, Zhaojie; Wang, Jingfeng; Xue, Changhu; Wang, Yuming

    2015-04-01

    Trimethylamine N-oxide (TMAO), a component commonly present in seafood, has been found to have a harmful impact on glucose tolerance in high-fat diet (HFD)-fed mice. However, seafood also contains fish oil (FO), which has been shown to have beneficial effects on metabolism. Here, we investigated the effect of FO on TMAO-induced impaired glucose tolerance in HFD-fed mice. Male C57BL/6 mice were randomly assigned to the high fat (HF), TMAO, and fish oil groups. The HF group was fed a diet containing 25% fat, the TMAO group was fed the HFD plus 0.2% TMAO, and the FO group was fed the HFD plus 0.2% TMAO and 2% fish oil for 12 weeks. After 10 weeks of feeding, oral glucose tolerance tests were performed. Dietary FO improved the fasting glucose level, the fasting insulin level, HOMA-IR value, QUICKI score and ameliorated TMAO-induced exacerbated impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signalling pathway, glycogen synthesis, gluconeogenesis, and glucose transport in peripheral tissues. Dietary fish oil also decreased TMAO-aggravated adipose tissue inflammation. Our results suggested that dietary FO ameliorated TMAO-induced impaired glucose tolerance, insulin signal transduction in peripheral tissue, and adipose tissue inflammation in HFD-fed mice.

  9. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration

    PubMed Central

    2010-01-01

    Background Type 2 diabetes mellitus (T2DM) and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM. Hypothesis Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA) by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD) or low fat (5%; LFD) chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF) deficiency and resistance in the context of neurodegeneration. Results HFD ± NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT), which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD ± NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3β (reflecting increased GSK-3β activity), glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats. Conclusions Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of ceramides and probably

  10. Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression.

    PubMed

    Heyward, Frankie D; Walton, R Grace; Carle, Matthew S; Coleman, Mark A; Garvey, W Timothy; Sweatt, J David

    2012-07-01

    Mounting evidence has established that diet-induced obesity (DIO) is associated with deficits in hippocampus-dependent memory. The bulk of research studies dealing with this topic have utilized rats fed a high-fat diet as an experimental model. To date, there has been a paucity of research studies that have established whether the memory deficits exhibited in DIO rats can be recapitulated in mice. Moreover, the majority of experiments that have evaluated memory performance in rodent models of DIO have utilized memory tests that are essentially aversive in nature (i.e., Morris water maze). The current study sought to fill an empirical void by determining if mice maintained on a high-fat diet exhibit deficits in two non-aversive memory paradigms: novel object recognition (NOR) and object location memory (OLM). Here we report that mice fed a high-fat diet over 23 weeks exhibit intact NOR, albeit a marked impairment in hippocampus-dependent OLM. We also determined the existence of corresponding aberrations in gene expression within the hippocampus of DIO mice. DIO mice exhibited significant reductions in both SIRT1 and PP1 mRNA within the hippocampus. Our data suggest that mice maintained on a high-fat diet present with impaired hippocampus-dependent spatial memory and a corresponding alteration in the expression of genes that have been implicated in memory consolidation.

  11. PTEN Inhibition Improves Muscle Regeneration in Mice Fed a High-Fat Diet

    PubMed Central

    Hu, Zhaoyong; Wang, Huiling; Lee, In Hee; Modi, Swati; Wang, Xiaonan; Du, Jie; Mitch, William E.

    2010-01-01

    OBJECTIVE Mechanisms impairing wound healing in diabetes are poorly understood. To identify mechanisms, we induced insulin resistance by chronically feeding mice a high-fat diet (HFD). We also examined the regulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) during muscle regeneration because augmented IGF-1 signaling can improve muscle regeneration. RESEARCH DESIGN AND METHODS Muscle regeneration was induced by cardiotoxin injury, and we evaluated satellite cell activation and muscle maturation in HFD-fed mice. We also measured PIP3 and the enzymes regulating its level, IRS-1–associated phosphatidylinositol 3-kinase (PI3K) and PTEN. Using primary cultures of muscle, we examined how fatty acids affect PTEN expression and how PTEN knockout influences muscle growth. Mice with muscle-specific PTEN knockout were used to examine how the HFD changes muscle regeneration. RESULTS The HFD raised circulating fatty acids and impaired the growth of regenerating myofibers while delaying myofiber maturation and increasing collagen deposition. These changes were independent of impaired proliferation of muscle progenitor or satellite cells but were principally related to increased expression of PTEN, which reduced PIP3 in muscle. In cultured muscle cells, palmitate directly stimulated PTEN expression and reduced cell growth. Knocking out PTEN restored cell growth. In mice, muscle-specific PTEN knockout improved the defects in muscle repair induced by HFD. CONCLUSIONS Insulin resistance impairs muscle regeneration by preventing myofiber maturation. The mechanism involves fatty acid–stimulated PTEN expression, which lowers muscle PIP3. If similar pathways occur in diabetic patients, therapeutic strategies directed at improving the repair of damaged muscle could include suppression of PTEN activity. PMID:20200318

  12. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury.

    PubMed

    Li, Weiguo; Prakash, Roshini; Chawla, Dhruv; Du, Wenting; Didion, Sean P; Filosa, Jessica A; Zhang, Quanguang; Brann, Darrell W; Lima, Victor V; Tostes, Rita C; Ergul, Adviye

    2013-06-01

    Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals. PMID:23576615

  13. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance.

    PubMed

    McNay, Ewan C; Ong, Cecilia T; McCrimmon, Rory J; Cresswell, James; Bogan, Jonathan S; Sherwin, Robert S

    2010-05-01

    Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes.

  14. Time-restricted feeding reduces adiposity in mice fed a high-fat diet.

    PubMed

    Sundaram, Sneha; Yan, Lin

    2016-06-01

    Disruption of the circadian rhythm contributes to obesity. This study tested the hypothesis that time-restricted feeding (TRF) reduces high-fat diet-induced increase in adiposity. Male C57BL/6 mice were fed the AIN93G or the high-fat diet ad libitum (ad lib); TRF of the high-fat diet for 12 or 8hours during the dark cycle was initiated when high-fat diet-fed mice exhibited significant increases in body weight. Energy intake of the TRF 12-hour group was not different from that of the high-fat ad lib group, although that of the TRF 8-hour group was slightly but significantly lower. Restricted feeding of the high-fat diet reduced body fat mass and body weight compared with mice fed the high-fat diet ad lib. There were no differences in respiratory exchange ratio (RER) among TRF and high-fat ad lib groups, but the RER of these groups was lower than that of the AIN93G group. Energy expenditure of the TRF groups was slightly but significantly lower than that of the high-fat ad lib group. Plasma concentrations of ghrelin were increased in TRF groups compared with both AIN93G and high-fat ad lib groups. Elevations of plasma concentrations of insulin, leptin, monocyte chemoattractant protein-1, and tissue inhibitor metalloproteinase-1 by high-fat ad lib feeding were reduced by TRF to the levels of mice fed the AIN93G diet. In conclusion, TRF during the dark cycle reduces high-fat diet-induced increases in adiposity and proinflammatory cytokines. These results indicate that circadian timing of food intake may prevent obesity and abate obesity-related metabolic disturbance.

  15. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    PubMed

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle. PMID:26766570

  16. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  17. High fat diet enhances stemness and tumorigenicity of intestinal progenitors

    PubMed Central

    Beyaz, Semir; Mana, Miyeko D.; Roper, Jatin; Kedrin, Dmitriy; Saadatpour, Assieh; Hong, Sue-Jean; Bauer-Rowe, Khristian E.; Xifaras, Michael E.; Akkad, Adam; Arias, Erika; Pinello, Luca; Katz, Yarden; Shinagare, Shweta; Abu-Remaileh, Monther; Mihaylova, Maria M.; Lamming, Dudley W.; Dogum, Rizkullah; Guo, Guoji; Bell, George W.; Selig, Martin; Nielsen, G. Petur; Gupta, Nitin; Ferrone, Cristina R.; Deshpande, Vikram; Yuan, Guo-Cheng; Orkin, Stuart H.; Sabatini, David M.; Yilmaz, Ömer H.

    2016-01-01

    Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors. PMID:26935695

  18. Serotonin Improves High Fat Diet Induced Obesity in Mice

    PubMed Central

    Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T.; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle. PMID:26766570

  19. Curcumin ameliorates high-fat diet-induced spermatogenesis dysfunction

    PubMed Central

    Mu, Yang; Yan, Wen-Jie; Yin, Tai-Lang; Yang, Jing

    2016-01-01

    Curcumin, a type of natural active ingredient, is derived from rhizoma of Curcuma, which possesses antioxidant, antitumorigenic and anti-inflammatory activities. The present study aimed to investigate whether treatment with curcumin reduced high-fat diet (HFD)-induced spermatogenesis dysfunction. Sprague-Dawley rats fed a HFD were treated with or without curcumin for 8 weeks. The testis/body weight, histological analysis and serum hormone levels were used to evaluate the effects of curcumin treatment on spermatogenesis dysfunction induced by the HFD. In addition, the expression levels of apoptosis associated proteins, Fas, B-cell lymphoma (Bcl)-xl, Bcl-associated X protein (Bax) and cleaved-caspase 3, were determined in the testis. The results of the present study suggested that curcumin treatment attenuated decreased testis/body weight and abnormal hormone levels. Morphological changes induced by a HFD were characterized as atrophied seminiferous tubules, decreased spermatogenetic cells and interstitial cells were improved by curcumin treatment. In addition, curcumin treatment reduced apoptosis in the testis, and decreased expression of Fas, Bax and cleaved-caspase 3, as well as increased expression of Bcl-xl. In conclusion, the present study revealed that curcumin treatment reduced HFD-induced spermatogenesis dysfunction in male rats. PMID:27600729

  20. Intake of Meals Containing High Levels of Carbohydrates or High Levels of Unsaturated Fatty Acids Induces Postprandial Dysmetabolism in Young Overweight/Obese Men

    PubMed Central

    Adamska, Edyta; Ostrowska, Lucyna; Gościk, Joanna; Waszczeniuk, Magdalena; Krętowski, Adam; Górska, Maria

    2015-01-01

    Postprandial metabolic response depends on the meals' components and can be different in normal weight and obese people. However, there are some discrepancies between various reports. The aim of this study was to determine the metabolic response after intake of standardised meals with various fat and carbohydrate contents and to determine the differences among normal weight and overweight/obese individuals. The study group comprised 46 healthy men. The participants were divided into two groups and study was carried out using a crossover method. Group I received high- and normal-carbohydrate meals, whereas group II received high-carbohydrate and high-fat meals. Glucose, insulin, triglyceride, and free fatty acids levels were measured at fasting state and at 30, 60, 120, 180, and 240 minutes after meal intake. Despite the lack of differences in glucose levels, insulin levels were higher among overweight/obese individuals after each meal. TG and FFA levels were higher after normal-carbohydrate and high-fat meals. Moreover, in overweight/obese young men after high-fat meal intake postprandial hypertriglyceridemia was observed, even if meals contained predominantly unsaturated fatty acids, and fasting triglycerides levels were in normal range. The conducted study showed that postprandial metabolic response depends not only on the meal macronutrient content but also on the current body mass index (BMI). PMID:26609520

  1. High-Fat Diet–Induced Retinal Dysfunction

    PubMed Central

    Chang, Richard Cheng-An; Shi, Liheng; Huang, Cathy Chia-Yu; Kim, Andy Jeesu; Ko, Michael L.; Zhou, Beiyan; Ko, Gladys Y.-P.

    2015-01-01

    Purpose. The purpose of this study was to investigate the impact of obesity-induced prediabetes/early diabetes on the retina to provide new evidence on the pathogenesis of type 2 diabetes–associated diabetic retinopathy (DR). Methods. A high-fat diet (HFD)–induced obesity mouse model (male C57BL/6J) was used in this study. At the end of the 12-week HFD feeding regimen, mice were evaluated for glucose and insulin tolerance, and retinal light responses were recorded by electroretinogram (ERG). Western immunoblot and immunohistochemical staining were used to determine changes in elements regulating calcium homeostasis between HFD and control retinas, as well as unstained human retinal sections from DR patients and age-appropriate controls. Results. Compared to the control, the scotopic and photopic ERGs from HFD mice were decreased. There were significant decreases in molecules related to cell signaling, calcium homeostasis, and glucose metabolism from HFD retinas, including phosphorylated protein kinase B (pAKT), glucose transporter 4, L-type voltage-gated calcium channel (L-VGCC), and plasma membrane calcium ATPase (PMCA). Similar changes for pAKT, PMCA, and L-VGCC were also observed in human retinal sections from DR patients. Conclusions. Obesity-induced hyperglycemic and prediabetic/early diabetic conditions caused detrimental impacts on retinal light sensitivities and health. The decrease of the ERG components in early diabetes reflects the decreased neuronal activity of retinal light responses, which may be caused by a decrease in neuronal calcium signaling. Since PI3K-AKT is important in regulating calcium homeostasis and neural survival, maintaining proper PI3K-AKT signaling in early diabetes or at the prediabetic stage might be a new strategy for DR prevention. PMID:25788653

  2. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  3. What causes high fat diet-induced postprandial inflammation: endotoxin or free fatty acids?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction High fat (saturated fat) diet has been generally used to induce tissue inflammation, insulin resistance and obesity in animal models. High fat diet can also induce postprandial inflammation in humans. Importantly, postprandial inflammation is linked to elevated cardiovascular and metabo...

  4. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals; our lab has demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against put...

  5. You Are What You Eat: Linking High-Fat Diet to Stem Cell Dysfunction and Tumorigenesis.

    PubMed

    Haller, Samantha; Jasper, Heinrich

    2016-05-01

    A high-fat diet is linked to elevated cancer risk, yet this link remains poorly understood. New studies in mice are now beginning to obtain mechanistic insight into how high-fat diets perturb stem cell function and cause cancers. PMID:27152439

  6. You Are What You Eat: Linking High-Fat Diet to Stem Cell Dysfunction and Tumorigenesis.

    PubMed

    Haller, Samantha; Jasper, Heinrich

    2016-05-01

    A high-fat diet is linked to elevated cancer risk, yet this link remains poorly understood. New studies in mice are now beginning to obtain mechanistic insight into how high-fat diets perturb stem cell function and cause cancers.

  7. Green tea extract improves high fat diet-induced hypothalamic inflammation, without affecting the serotoninergic system.

    PubMed

    Okuda, Marcos H; Zemdegs, Juliane C S; de Santana, Aline A; Santamarina, Aline B; Moreno, Mayara F; Hachul, Ana C L; dos Santos, Bruno; do Nascimento, Claudia M Oller; Ribeiro, Eliane B; Oyama, Lila M

    2014-10-01

    To investigate possible mechanisms of green tea's anti-obesity and anti-diabetic effects in the hypothalamus, the central regulator of metabolism, of mice fed with high-fat diet (HFD), we analyzed proteins of the toll-like receptor 4 (TLR4) pathway and serotoninergic proteins involved in energy homeostasis. Thirty-day-old male Swiss mice were fed with HFD rich in saturated fat and green tea extract (GTE) for 8 weeks. After that, body weight and mass of fat depots were evaluated. Oral glucose tolerance test was performed 3 days prior to euthanasia; serum glucose, insulin and adiponectin were measured in fasted mice. Hypothalamic TLR4 pathway proteins, serotonin receptors 1B and 2C and serotonin transporter were analyzed by Western blotting or enzyme-linked immunosorbent assay. A second set of animals was used to measure food intake in response to fluoxetine, a selective serotonin reuptake inhibitor. Mice fed with HFD had increased body weight and mass of fat depots, impaired oral glucose tolerance, elevated glucose and insulin and decreased adiponectin serum levels. TLR4, IκB-α, nuclear factor κB p50 and interleukin 6 were increased by HFD. Concomitant GTE treatment ameliorated these parameters. The serotoninergic system remained functional after HFD treatment despite a few alterations in protein content of serotonin receptors 1B and 2C and serotonin transporter. In summary, the GTE attenuated the deleterious effects of the HFD investigated in this study, partially due to reduced hypothalamic inflammation.

  8. High fat diet induces central obesity, insulin resistance and microvascular dysfunction in hamsters.

    PubMed

    Costa, Rute R S; Villela, Nivaldo Ribeiro; Souza, Maria das Graças C; Boa, Beatriz C S; Cyrino, Fátima Z G A; Silva, Simone V; Lisboa, Patricia C; Moura, Egberto G; Barja-Fidalgo, Thereza Christina; Bouskela, Eliete

    2011-11-01

    Microvascular dysfunction is an early finding in obesity possibly related to co-morbidities like diabetes and hypertension. Therefore we have investigated changes on microvascular function, body composition, glucose and insulin tolerance tests (GTT and ITT) on male hamsters fed either with high fat (HFD, n=20) or standard (Control, n=21) diet during 16 weeks. Total body fat and protein content were determined by carcass analysis, aorta eNOS and iNOS expression by immunoblotting assay and mean blood pressure (MAP) and heart rate (HR) by an arterial catheter. Microvascular reactivity in response to acetylcholine and sodium nitroprusside, functional capillary density (FCD), capillary recruitment induced by a hyperinsulinemic status and macromolecular permeability after 30 min ischemia was assessed on either cheek pouch or cremaster muscle preparations. Compared to Control, HFD animals have shown increased visceral fat (6.0 ± 0.8 vs. 13.8 ± 0.6g/100g BW), impaired endothelial dependent vasodilatation, decreased FCD (11.3 ± 1.3 vs. 6.8 ± 1.2/field) and capillary recruitment during hyperinsulinemia and increased macromolecular permeability after ischemia/reperfusion (86.4 ± 5.2 vs.105.2 ± 5.1 leaks/cm(2)), iNOS expression and insulin resistance. MAP, HR, endothelial independent vasodilatation and eNOS expression were not different between groups. Our results have shown that HFD elicits an increase on visceral fat deposition, microvascular dysfunction and insulin resistance in hamsters.

  9. CMKLR1 deficiency influences glucose tolerance and thermogenesis in mice on high fat diet.

    PubMed

    Huang, Chen; Wang, Miaomiao; Ren, Lirong; Xiang, Liang; Chen, Jie; Li, Mengxia; Xiao, Tianxia; Ren, Peigen; Xiong, Likuan; Zhang, Jian V

    2016-04-29

    Obesity has become a global epidemic disease, contributing to increases in the prevalence of type 2 diabetes. CMKLR1, one of the receptors for chemerin, has a wide range of functions in physiological and pathological activity, including innate and adaptive immunity, inflammation, metabolism and reproduction. In our study, CMKLR1 deficiency did not influence the gain of body weight but did exacerbate glucose intolerance, increase serum insulin level, and promote insulin resistance in mice on high fat diets. The expression of thermogenesis related genes was examined and indicated to decrease in CMKLR1 knockout (KO) mice in both normal and cold environments, which indicated CMKLR1 influence the thermogenesis process. Cold exposure induced significant body mass decrease and improved glucose tolerance and insulin resistance in wild type HFD mice but had no obvious effect on CMKLR1 KO HFD mice. In vitro, loss of CMKLR1 did not significantly influence the differentiation of stromal vascular fibroblasts (SVFs) derived from adipose tissue, but did suppress the expression of thermogenesis related genes. Collectively, these data demonstrate that CMKLR1 deficiency induces inbalance of glucose metabolism and impairs the cold induced-thermogenesis process in high diet models. PMID:26972253

  10. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22

    PubMed Central

    Gulhane, Max; Murray, Lydia; Lourie, Rohan; Tong, Hui; Sheng, Yong H.; Wang, Ran; Kang, Alicia; Schreiber, Veronika; Wong, Kuan Yau; Magor, Graham; Denman, Stuart; Begun, Jakob; Florin, Timothy H.; Perkins, Andrew; Cuív, Páraic Ó.; McGuckin, Michael A.; Hasnain, Sumaira Z.

    2016-01-01

    Prolonged high fat diets (HFD) induce low-grade chronic intestinal inflammation in mice, and diets high in saturated fat are a risk factor for the development of human inflammatory bowel diseases. We hypothesized that HFD-induced endoplasmic reticulum (ER)/oxidative stress occur in intestinal secretory goblet cells, triggering inflammatory signaling and reducing synthesis/secretion of proteins that form the protective mucus barrier. In cultured intestinal cells non-esterified long-chain saturated fatty acids directly increased oxidative/ER stress leading to protein misfolding. A prolonged HFD elevated the intestinal inflammatory cytokine signature, alongside compromised mucosal barrier integrity with a decrease in goblet cell differentiation and Muc2, a loss in the tight junction protein, claudin-1 and increased serum endotoxin levels. In Winnie mice, that develop spontaneous colitis, HFD-feeding increased ER stress, further compromised the mucosal barrier and increased the severity of colitis. In obese mice IL-22 reduced ER/oxidative stress and improved the integrity of the mucosal barrier, and reversed microbial changes associated with obesity with an increase in Akkermansia muciniphila. Consistent with epidemiological studies, our experiments suggest that HFDs are likely to impair intestinal barrier function, particularly in early life, which partially involves direct effects of free-fatty acids on intestinal cells, and this can be reversed by IL-22 therapy. PMID:27350069

  11. Myeloperoxidase deletion prevents high-fat diet-induced obesity and insulin resistance.

    PubMed

    Wang, Qilong; Xie, Zhonglin; Zhang, Wencheng; Zhou, Jun; Wu, Yue; Zhang, Miao; Zhu, Huaiping; Zou, Ming-Hui

    2014-12-01

    Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high-fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of an HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue, with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO(-/-)) mice were protected from HFD-enhanced body weight gain and insulin resistance. The MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and expression of proinflammatory cytokines. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance.

  12. The effect of high-fat diet on rat's mood, feeding behavior and response to stress.

    PubMed

    Aslani, S; Vieira, N; Marques, F; Costa, P S; Sousa, N; Palha, J A

    2015-01-01

    An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior. PMID:26795748

  13. The effect of high-fat diet on rat's mood, feeding behavior and response to stress.

    PubMed

    Aslani, S; Vieira, N; Marques, F; Costa, P S; Sousa, N; Palha, J A

    2015-01-01

    An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior.

  14. Glucose intolerance induced by a high-fat/low-carbohydrate diet in rats effects of nonesterified fatty acids.

    PubMed

    Wang, Yuan; Miura, Yoshikazu; Kaneko, Takashi; Li, Jue; Qin, Li-Qiang; Wang, Pei-Yu; Matsui, Hisao; Sato, Akio

    2002-04-01

    We examined the time course of effects of a high-fat/low-carbohydrate (HF/LC) diet on the impairment of glucose tolerance in rats, clarified whether insulin secretion and sensitivity were impaired by the HF/LC diet, and investigated the relationship between the increased nonesterified fatty acids (NEFA) after HF/LC diet feeding and insulin secretion and sensitivity. We found that glucose tolerance and the postglucose-loading insulin secretion were impaired after 3 and 7 d on the HF/LC diet. The glucose intolerance was accompanied by a rise in the fasting plasma NEFA level. When stimulated with 15 mmol/L of glucose, the insulin secretion was impaired in pancreatic islets from rats fed the HF/LC diet. Rats fed the HF/LC diet showed insulin resistance in vivo. The glucose-stimulated insulin secretion was inhibited in the islets following 24-h culture with palmitic acid. The 24-h infusion of palmitic acid decreased whole-body insulin sensitivity. In summary, at least 3 d on a HF/LC diet is needed to induce glucose intolerance in rats, and the impairment may be induced by decreased insulin secretion and sensitivity, which is related to the increase in the plasma NEFA level. PMID:12108518

  15. Endothelium-Specific Interference with PPARγ Causes Cerebral Vascular Dysfunction in Response to a High Fat Diet

    PubMed Central

    Beyer, Andreas M.; de Lange, Willem J.; Halabi, Carmen M.; Modrick, Mary L.; Keen, Henry L.; Faraci, Frank M.; Sigmund, Curt D.

    2008-01-01

    The ligand-activated transcription factor PPARγ is expressed in vascular endothelium where it exerts anti-inflammatory and anti-oxidant effects. However, its role in regulating vascular function remains undefined. We examined endothelial function in transgenic mice expressing dominant negative mutants of PPARγ under the control of an endothelial-specific promoter to test the hypothesis that endothelial PPARγ plays a protective role in the vasculature. Under baseline conditions, responses to the endothelium-dependent agonist acetylcholine (Ach) were not affected in either aorta or the basilar artery in vitro. In response to feeding a high fat diet for 12 weeks, Ach produced dilation that was markedly impaired in the basilar artery of mice expressing dominant negative mutants, but not in mice expressing wildtype PPARγ controlled by the same promoter. Unlike basilar artery, 12 weeks of high fat diet was not sufficient to cause endothelial dysfunction in the aorta of mice expressing dominant negative PPARγ, although it became evident after 25 weeks. The responses to Ach in basilar artery were restored to normal after treatment with a scavenger of superoxide. Baseline blood pressure was only slightly elevated in the transgenic mice, but the pressor response to angiotensin-II was augmented. Thus, interference with PPARγ in the endothelium produces endothelial dysfunction in the cerebral circulation via a mechanism involving oxidative stress. Consistent with its role as a fatty acid sensor, these findings provide genetic evidence that endothelial PPARγ plays a critical role in protecting a range of blood vessels in response to a high fat diet. PMID:18676352

  16. Effects of alfalfa meal on carcase quality and fat metabolism of Muscovy ducks.

    PubMed

    Jiang, J F; Song, X M; Huang, X; Wu, J L; Zhou, W D; Zheng, H C; Jiang, Y Q

    2012-01-01

    1. The effects of alfalfa meal on carcase quality and fat metabolism of Muscovy duck were evaluated. The objective of this research was to establish whether alfalfa meal can reduce fat content and improve carcase quality of Muscovy duck. Animal products with a high fat content present a risk factor for many diseases. Reducing fat content in poultry products is an important goal for the poultry industry. 2. A total of 240 14-d-old white Muscovy ducks were selected and randomly allocated to 1 of 4 dietary treatments containing 0, 3, 6, and 9% of alfalfa meal for 5 weeks. Growth performances were recorded and carcase characteristics and lipid parameters were analysed. 3. Results showed that 3, 6, and 9% alfalfa meal in diet had no significant effects on growth performance of Muscovy ducks from 14 to 49 d of age. Ducks given 3, 6, and 9% alfalfa meal had significantly higher dressing percentage and lower abdominal fat percentage compared with those given no alfalfa meal. Ducks given 9% alfalfa meal had higher breast meat percentage compared with those given no alfalfa meal. The concentrations of triglyceride, total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL) and free fatty acid in serum of ducks fed on alfalfa meal decreased. Alfalfa meal in the diet decreased abdominal fat percentage and improved carcase traits of Muscovy duck. 4. The study showed that dietary alfalfa meal decreased abdominal fat percentage and improved carcase traits, without an adverse effect on performance.

  17. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    PubMed

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  18. Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice.

    PubMed

    Dubois, Vanessa; Laurent, Michaël R; Jardi, Ferran; Antonio, Leen; Lemaire, Katleen; Goyvaerts, Lotte; Deldicque, Louise; Carmeliet, Geert; Decallonne, Brigitte; Vanderschueren, Dirk; Claessens, Frank

    2016-02-01

    Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1β levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and β-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.

  19. Rat Models of Diet-Induced Obesity and High Fat/Low Dose Streptozotocin Type 2 Diabetes: Effect of Reversal of High Fat Diet Compared to Treatment with Enalapril or Menhaden Oil on Glucose Utilization and Neuropathic Endpoints.

    PubMed

    Holmes, Amey; Coppey, Lawrence J; Davidson, Eric P; Yorek, Mark A

    2015-01-01

    We examined whether reversal of high fat diet, stimulating weight loss, compared to two treatments previously shown to have beneficial effects, could improve glucose utilization and peripheral neuropathy in animal models of obesity and type 2 diabetes. Rats were fed a high fat diet and treated with a low dose of streptozotocin to create models of diet induced obesity or type 2 diabetes, respectively. Afterwards, rats were transferred to a normal diet or treated with enalapril or dietary enrichment with menhaden oil for 12 weeks. Obesity and to a greater extent type 2 diabetes were associated with impaired glucose utilization and peripheral neuropathy. Placing obese rats on a normal diet improved glucose utilization. Steatosis but not peripheral neuropathy was improved after placing obese or diabetic rats on a normal diet. Treating obese and diabetic rats with enalapril or a menhaden oil enriched diet generally improved peripheral neuropathy endpoints. In summary, dietary improvement with weight loss in obese or type 2 diabetic rats was not sufficient to correct peripheral neuropathy. These results further stress the need for discovery of a comprehensive treatment for peripheral neuropathy. PMID:26229968

  20. Rat Models of Diet-Induced Obesity and High Fat/Low Dose Streptozotocin Type 2 Diabetes: Effect of Reversal of High Fat Diet Compared to Treatment with Enalapril or Menhaden Oil on Glucose Utilization and Neuropathic Endpoints.

    PubMed

    Holmes, Amey; Coppey, Lawrence J; Davidson, Eric P; Yorek, Mark A

    2015-01-01

    We examined whether reversal of high fat diet, stimulating weight loss, compared to two treatments previously shown to have beneficial effects, could improve glucose utilization and peripheral neuropathy in animal models of obesity and type 2 diabetes. Rats were fed a high fat diet and treated with a low dose of streptozotocin to create models of diet induced obesity or type 2 diabetes, respectively. Afterwards, rats were transferred to a normal diet or treated with enalapril or dietary enrichment with menhaden oil for 12 weeks. Obesity and to a greater extent type 2 diabetes were associated with impaired glucose utilization and peripheral neuropathy. Placing obese rats on a normal diet improved glucose utilization. Steatosis but not peripheral neuropathy was improved after placing obese or diabetic rats on a normal diet. Treating obese and diabetic rats with enalapril or a menhaden oil enriched diet generally improved peripheral neuropathy endpoints. In summary, dietary improvement with weight loss in obese or type 2 diabetic rats was not sufficient to correct peripheral neuropathy. These results further stress the need for discovery of a comprehensive treatment for peripheral neuropathy.

  1. High Fat and High Sucrose (Western) Diet Induce Steatohepatitis that is Dependent on Fructokinase

    PubMed Central

    Ishimoto, Takuji; Lanaspa, Miguel A.; Rivard, Christopher J.; Roncal-Jimenez, Carlos A.; Orlicky, David J.; Cicerchi, Christina; McMahan, Rachel H.; Abdelmalek, Manal F.; Rosen, Hugo R.; Jackman, Matthew R.; MacLean, Paul S.; Diggle, Christine P.; Asipu, Aruna; Inaba, Shinichiro; Kosugi, Tomoki; Sato, Waichi; Maruyama, Shoichi; Sánchez-Lozada, Laura G.; Sautin, Yuri Y.; Hill, James O.; Bonthron, David T.; Johnson, Richard J.

    2013-01-01

    Fructose intake from added sugars has been implicated as a cause of nonalcoholic fatty liver disease. Here we tested the hypothesis that fructose may interact with high fat diet to induce fatty liver, and to determine if this was dependent on a key enzyme in fructose metabolism, fructokinase. Wild type or fructokinase knockout mice were fed a low fat (11%), high fat (36%) or high fat (36%) and high sucrose (30%) diet for 15 weeks. Both wild type and fructokinase knockout mice developed obesity with mild hepatic steatosis and no evidence for hepatic inflammation on a high fat diet compared to a low fat diet. In contrast, wild type mice fed a high fat and high sucrose diet developed more severe hepatic steatosis with low grade inflammation and fibrosis, as noted by increased CD68, TNF-alpha, MCP-1, alpha-smooth muscle actin, and collagen I and TIMP1 expression. These changes were prevented in the fructokinase knockout mice. Conclusion An additive effect of high fat and high sucrose diet on the development of hepatic steatosis exists. Further, the combination of sucrose with high fat diet may induce steatohepatitis. The protection in fructokinase knockout mice suggests a key role for fructose (from sucrose) in this development of steatohepatitis. These studies emphasize the important role of fructose in the development of fatty liver and nonalcoholic steatohepatitis (NASH). PMID:23813872

  2. High fat diet promotes achievement of peak bone mass in young rats

    SciTech Connect

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  3. Maternal high-fat diet is associated with impaired fetal lung development.

    PubMed

    Mayor, Reina S; Finch, Katelyn E; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D; Frank, Aaron P; Hahner, Lisa D; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F; Rosenfeld, Charles R; Savani, Rashmin C; Clegg, Deborah J

    2015-08-15

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development.

  4. Effects of diurnal variation of gut microbes and high fat feeding on host circadian clock function and metabolism

    PubMed Central

    Leone, Vanessa; Gibbons, Sean M.; Martinez, Kristina; Hutchison, Alan L.; Huang, Edmond Y.; Cham, Candace M.; Pierre, Joseph F.; Heneghan, Aaron F.; Nadimpalli, Anuradha; Hubert, Nathaniel; Zale, Elizabeth; Wang, Yunwei; Huang, Yong; Theriault, Betty; Dinner, Aaron R.; Musch, Mark W.; Kudsk, Kenneth A.; Prendergast, Brian J.; Gilbert, Jack A.; Chang, Eugene B.

    2015-01-01

    SUMMARY Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally-raised counterparts. Examination of gut microbiota in conventionally-raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low or high fat feeding, particularly short chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially-derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet. PMID:25891358

  5. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice.

    PubMed

    Dunn, Gregory A; Bale, Tracy L

    2009-11-01

    Maternal obesity and diet consumption during pregnancy have been linked to offspring adiposity, cardiovascular disease, and impaired glucose metabolism. Furthermore, nutrition during development is clearly linked to somatic growth. However, few studies have examined whether phenotypes derived from maternal high-fat diet exposure can be passed to subsequent generations and by what mechanisms this may occur. Here we report the novel finding of a significant body length increase that persisted across at least two generations of offspring in response to maternal high-fat diet exposure. This phenotype is not attributable to altered intrauterine conditions or maternal feeding behavior because maternal and paternal lineages were able to transmit the effect, supporting a true epigenetic manner of inheritance. We also detected a heritable feature of reduced insulin sensitivity across two generations. Alterations in the GH secretagogue receptor (GHSR), the GHSR transcriptional repressor AF5q31, plasma IGF-I concentrations, and IGF-binding protein-3 (IGFBP3) suggest a contribution of the GH axis. These studies provide evidence that the heritability of body length and glucose homeostasis are modulated by maternal diet across multiple generations, providing a mechanism where length can increase rapidly in concert with caloric availability.

  6. The nutritional content and cost of supermarket ready-meals. Cross-sectional analysis☆

    PubMed Central

    Remnant, Jennifer; Adams, Jean

    2015-01-01

    Background: Over-reliance on convenience foods, including ready-meals, has been suggested as one contributor to obesity. Little research has systematically explored the nutritional content of supermarket ready-meals. We described the nutritional content and cost of UK supermarket ready-meals. Methods: We conducted a survey of supermarket own-brand chilled and frozen ready-meals available in branches of ten national supermarket chains in one city in northern England. Data on price, weight and nutritional content of meals in four ranges (‘healthier’, luxury, economy and standard) and of six types (macaroni cheese, meat lasagne, cottage pie, chicken tikka masala, fish pie, and sweet and sour chicken) were collected. Nutritional content was compared to ranges used to identify low, medium and high fat, saturated fat, sugar and salt in nationally recommended front-of-pack labelling. Results: 166 ready-meals were included from 41 stores. Overall, ready-meals were high in saturated fat and salt, and low in sugar. One-fifth of meals were low in fat, saturated fat, salt and sugar, including two-thirds of ‘healthier’ meals. Meals that were low for three out of the four front-of-pack nutrients were the cheapest. Conclusions: Supermarket ready-meals do not have a healthful nutritional profile overall. However, a number of healthier meals were available – particularly amongst meals specifically marked as ‘healthier’. There was little evidence that healthier meals necessarily cost more. Further effort is required to encourage producers to improve the nutritional profile of the full range of ready-meals, and not just those specifically labelled as ‘healthier’. PMID:25963106

  7. Learning through school meals?

    PubMed

    Benn, Jette; Carlsson, Monica

    2014-07-01

    This article is based on a qualitative multiple case study aimed at evaluating the effects of free school meal interventions on pupils' learning, and on the learning environment in schools. The study was conducted at four schools, each offering free school meals for 20 weeks. At each school individual and focus group interviews were conducted with students in grades 5 to 7 and grades 8 to 9. Furthermore, students were observed during lunch breaks, and interviews were conducted with the class teacher, headmaster and/or the person responsible for school meals. The purpose of the article is to explore the learning potentials of school meals. The cross-case analysis focuses on the involved actors' perceptions of the school meal project and the meals, including places, times and contexts, and the pupils' concepts and competences in relation to food, meals and health, as well as their involvement in the school meal project. The analysis indicates that the pupils have developed knowledge and skills related to novel foods and dishes, and that school meals can contribute to pupils' learning, whether this learning is planned or not. However, if school meals are to be further developed as an arena for learning, greater consideration must be given to the interaction between pupil, school meal and teacher than in the school meal projects presented in this study, and the potentials for learning through school meals clarified and discussed in the schools. Studying the school meal projects raises a number of dilemmas, such as whether the lunch break should be a part of or a break from education, are school meals a common (school) or private (parent) responsibility, and questions about pupils' and teachers' roles and participation in school meals.

  8. Coacervate whey protein improves inflammatory milieu in mice fed with high-fat diet

    PubMed Central

    2014-01-01

    Background Functional foods with bioactive properties may help in treat obesity, as they can lead to a decreased risks of inflammatory diseases. The aim of this study was to investigate the effects of chitosan coacervate whey protein on the proinflammatory processes in mice fed with high-fat diet. Methods Mice were divided into two groups receiving either a normolipidic or high-fat diet; the animals in each of the two diet groups were given a diet supplement of either coacervate (gavage, 36 mg protein/kg of body weight) or tap water for four weeks [groups: normolipidic diet plus water (C); normolipidic diet and coacervate (CC); high-fat diet and water (H); and high-fat diet and coacervate (HC)]. Results The high-fat diet promoted inflammation, possibly by decreased adiponectin/sum of adipose tissues ratio and increased phosphorylation of NF-κB p50. In HC we observed a positive correlation between IL-10 and TNF-α in mesenteric adipose tissue, retroperitoneal adipose tissue and liver tissue. We also observed a positive correlation between lipopolisaccharide with IL-10 in the liver tissue. Conclusions High-fat diet treatment promoted metabolic alterations and inflammation, and chitosan coacervate whey protein modulated inflammatory milieu. PMID:24673809

  9. Beneficial effects of noni (Morinda citrifolia L.) juice on livers of high-fat dietary hamsters.

    PubMed

    Lin, Yi-Ling; Chang, Yuan-Yen; Yang, Deng-Jye; Tzang, Bor-Show; Chen, Yi-Chen

    2013-09-01

    Polyphenols in noni juice (NJ) are mainly composed of phenolic acids, mainly gentisic, p-hydroxybenoic, and chlorogenic acids. To investigate the beneficial effects of NJ on the liver, hamsters were fed with two diets, normal-fat and high-fat diets. Furthermore, high-fat dietary hamsters were received distilled water, and 3, 6, and 9 mL NJ/kg BW, respectively. After a 6-week feeding period, the increased (p<0.05) sizes of liver and visceral fat in high-fat dietary hamsters compared to the control hamsters were ameliorated (p<0.05) by NJ supplementation. NJ also decreased (p<0.05) serum/liver lipids but enhanced (p<0.05) daily faecal lipid/bile acid outputs in the high-fat dietary hamsters. High-fat dietary hamsters supplemented with NJ had higher (p<0.05) liver antioxidant capacities but lowered (p<0.05) liver iNOS, COX-2, TNF-α, and IL-1β expressions, gelatinolytic levels of MMP9, and serum ALT values compared to those without NJ. Hence, NJ protects liver against a high-fat dietary habit via regulations of antioxidative and anti-inflammatory responses.

  10. Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats.

    PubMed

    Manjunatha, H; Srinivasan, K

    2007-06-01

    The beneficial hypolipidemic and antioxidant influences of the dietary spice compounds curcumin and capsaicin were evaluated. Curcumin, capsaicin, or their combination were included in the diet of high-(30%)-fat-fed rats for 8 weeks. Dietary high-fat-induced hypertriglyceridemia was countered by dietary curcumin, capsaicin, or their combination by 12%-20%. Curcumin, capsaicin, and their combination also produced a slight decrease in serum total cholesterol in these animals. Serum alpha-tocopherol content was increased by dietary curcumin, capsaicin, and their combination in high-fat-fed rats. Serum total thiol content in high-fat-fed animals and serum ascorbic acid in normal animals was elevated by the combination of curcumin and capsaicin. Hepatic glutathione was increased by curcumin, capsaicin, or their combination in normal animals. Hepatic glutathione and alpha-tocopherol were increased, whereas lipid peroxide level was reduced by dietary curcumin and combination of curcumin and capsaicin in high-fat-fed animals. Serum glutathione peroxidase and glutathione transferase in high-fat-fed rats were generally higher as a result of dietary curcumin, capsaicin, and the combination of curcumin and capsaicin. Hepatic glutathione reductase and glutathione peroxidase were significantly elevated by dietary spice principles in high-fat-fed animals. The additive effect of the 2 bioactive compounds was generally not evident with respect to hypolipidemic or antioxidant potential. However, the effectiveness of the combination was higher in a few instances.

  11. Hepatic glucose metabolism in late pregnancy: normal versus high-fat and -fructose diet.

    PubMed

    Coate, Katie C; Smith, Marta S; Shiota, Masakazu; Irimia, Jose M; Roach, Peter J; Farmer, Ben; Williams, Phillip E; Moore, Mary Courtney

    2013-03-01

    Net hepatic glucose uptake (NHGU) is an important contributor to postprandial glycemic control. We hypothesized that NHGU is reduced during normal pregnancy and in a pregnant diet-induced model of impaired glucose intolerance/gestational diabetes mellitus (IGT/GDM). Dogs (n = 7 per group) that were nonpregnant (N), normal pregnant (P), or pregnant with IGT/GDM (pregnant dogs fed a high-fat and -fructose diet [P-HFF]) underwent a hyperinsulinemic-hyperglycemic clamp with intraportal glucose infusion. Clamp period insulin, glucagon, and glucose concentrations and hepatic glucose loads did not differ among groups. The N dogs reached near-maximal NHGU rates within 30 min; mean ± SEM NHGU was 105 ± 9 µmol·100 g liver⁻¹·min⁻¹. The P and P-HFF dogs reached maximal NHGU in 90-120 min; their NHGU was blunted (68 ± 9 and 16 ± 17 µmol·100 g liver⁻¹·min⁻¹, respectively). Hepatic glycogen synthesis was reduced 20% in P versus N and 40% in P-HFF versus P dogs. This was associated with a reduction (>70%) in glycogen synthase activity in P-HFF versus P and increased glycogen phosphorylase (GP) activity in both P (1.7-fold greater than N) and P-HFF (1.8-fold greater than P) dogs. Thus, NHGU under conditions mimicking the postprandial state is delayed and suppressed in normal pregnancy, with concomitant reduction in glycogen storage. NHGU is further blunted in IGT/GDM. This likely contributes to postprandial hyperglycemia during pregnancy, with potential adverse outcomes for the fetus and mother.

  12. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    PubMed

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss.

  13. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    PubMed

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss. PMID:27493246

  14. Comparison of rapamycin schedules in mice on high-fat diet.

    PubMed

    Leontieva, Olga V; Paszkiewicz, Geraldine M; Blagosklonny, Mikhail V

    2014-01-01

    At a wide range of doses, rapamycin extends life span in mice. It was shown that intraperitoneal injections (i.p.) of rapamycin prevent weight gain in mice on high-fat diet (HFD). We further investigated the effect of rapamycin on weight gain in female C57BL/6 mice on HFD started at the age of 7.5 months. By the age of 16 and 23 months, mice on HFD weighed significantly more (52 vs 33 g; p = 0.0001 and 70 vs 38 g; p < 0.0001, respectively) than mice on low fat diet (LFD). The i.p. administration of 1.5 mg/kg rapamycin, 3 times a week every other week, completely prevented weight gain, whereas administration of rapamycin by oral gavash did not. Rapamycin given in the drinking water slightly decreased weight gain by the age of 23 months. In addition, metabolic parameters were evaluated at the age of 16 and 23 months, 6 and 13 days after last rapamycin administration, respectively. Plasma leptin levels strongly correlated with body weight, (P < 0.0001, r=0.86), suggesting that the difference in weight was due to fat tissue mass. Levels of insulin, glucose, triglycerides and IGF1 were not statistically different in all groups, indicating that these courses of rapamycin treatment did not impair metabolic parameters at least after rapamycin discontinuation. Despite rapamycin discontinuation, cardiac levels of phospho-S6 and pAKT(S473) were low in the i.p.-treated group. This continuous effect of rapamycin can be explained by prevention of obesity in the i.p. group. We conclude that intermittent i.p. administration of rapamycin prevents weight gain without causing gross metabolic abnormalities. Intermittent gavash administration minimally affected weight gain. Potential clinical applications are discussed.

  15. Meal conditions affect the absorption of supplemental vitamin D3 but not the plasma 25-hydroxyvitamin D response to supplementation.

    PubMed

    Dawson-Hughes, Bess; Harris, Susan S; Palermo, Nancy J; Ceglia, Lisa; Rasmussen, Helen

    2013-08-01

    It is sometimes assumed that dietary fat is required for vitamin D absorption, although the impact of different amounts of dietary fat on vitamin D absorption is not established. This study was conducted to determine whether the presence of a meal and the fat content of the meal influences vitamin D absorption or the 25-hydroxyvitamin D [25(OH)D] response to supplemental vitamin D3 . Based on earlier studies in rats we postulated that absorption would be greatest in the low-fat meal group. Sixty-two healthy older men and women were randomly assigned to one of three meal groups: no meal, high-fat meal, or low-fat meal; each was given a monthly 50,000 IU vitamin D3 supplement with the test breakfast meal (or after a fast for the no-meal group) and followed for 90 days. Plasma vitamin D3 was measured by liquid chromatography-mass spectroscopy (LC/MS) before and 12 hours after the first dose; plasma 25(OH)D was measured by radioimmunoassay at baseline and after 30 and 90 days. The mean 12-hour increments in vitamin D3 , after adjusting for age and sex, were 200.9 nmol/L in the no-meal group, 207.4 nmol/L in the high-fat meal group, and 241.1 nmol/L in the low-fat meal group (p = 0.038), with the increase in the low-fat group being significantly greater than the increases in the other two groups. However, increments in 25(OH)D levels at 30 and 90 days did not differ significantly in the three groups. We conclude that absorption was increased when a 50,000 IU dose of vitamin D was taken with a low-fat meal, compared with a high-fat meal and no meal, but that the greater absorption did not result in higher plasma 25(OH)D levels in the low-fat meal group.

  16. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus

    PubMed Central

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-01-01

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet. PMID:27070590

  17. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus.

    PubMed

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-04-08

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats' intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14-20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. "Programming" of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  18. Bolus Estimation—Rethinking the Effect of Meal Fat Content

    PubMed Central

    Laxminarayan, Srinivas; Reifman, Jaques; Edwards, Stephanie S.; Wolpert, Howard

    2015-01-01

    Abstract Background: Traditionally, insulin bolus calculations for managing postprandial glucose levels in individuals with type 1 diabetes rely solely on the carbohydrate content of a meal. However, recent studies have reported that other macronutrients in a meal can alter the insulin required for good postprandial control. Specifically, studies have shown that high-fat (HF) meals require more insulin than low-fat (LF) meals with identical carbohydrate content. Our objective was to assess the mechanisms underlying the higher insulin requirement observed in one of these studies. Materials and Methods: We used a combination of previously validated metabolic models to fit data from a study comparing HF and LF dinners with identical carbohydrate content in seven subjects with type 1 diabetes. For each subject and dinner type, we estimated the model parameters representing the time of peak meal-glucose appearance (τm), insulin sensitivity (SI), the net hepatic glucose balance, and the glucose effect at zero insulin in four time windows (dinner, early night, late night, and breakfast) and assessed the differences in model parameters via paired Wilcoxon signed-rank tests. Results: During the HF meal, the τm was significantly delayed (mean and standard error [SE]: 102 [14] min vs. 71 [4] min; P = 0.02), and SI was significantly lower (7.25 × 10−4 [1.29 × 10−4] mL/μU/min vs. 8.72 × 10−4 [1.08 × 10−4] mL/μU/min; P = 0.02). Conclusions: In addition to considering the putative delay in gastric emptying associated with HF meals, we suggest that clinicians reviewing patient records consider that the fat content of these meals may alter SI. PMID:26270134

  19. Mouse Maternal High-Fat Intake Dynamically Programmed mRNA m6A Modifications in Adipose and Skeletal Muscle Tissues in Offspring

    PubMed Central

    Li, Xiao; Yang, Jing; Zhu, Youbo; Liu, Yuan; Shi, Xin’e; Yang, Gongshe

    2016-01-01

    Epigenetic mechanisms have an important role in the pre- and peri-conceptional programming by maternal nutrition. Yet, whether or not RNA m6A methylation—an old epigenetic marker receiving increased attention recently—is involved remains an unknown question. In this study, mouse high-fat feeding prior to conception was shown to induce overweight and glucose intolerant dams, which then continued to be exposed to a high-fat diet during gestation and lactation. The dams on a standard diet throughout the whole experiment were used as a control. Results showed that maternal high-fat intake impaired postnatal growth in male offspring, indicated by decreased body weight and Lee’s index at 3, 8 and 15 weeks old, but the percentages of visceral fat and tibialis anterior relative to the whole body weights were significantly increased at eight weeks of age. The maternal high-fat exposure significantly increased mRNA N6-methyladenosine (m6A) levels in visceral fat at three weeks old, combined with downregulated Fat mass and obesity-associated gene (FTO) and upregulated Methyltransferase like 3 (METTL3) transcription, and these changes were reversed at eight weeks of age. In the tibialis anterior muscle, the maternal high-fat diet significantly enhanced m6A modifications at three weeks, and lowered m6A levels at 15 weeks of age. Accordingly, FTO transcription was significantly inhibited at three weeks and stimulated at 15 weeks of age, and METTL3 transcripts were significantly improved at three weeks. Interestingly, both FTO and METTL3 transcription was significantly elevated at eight weeks of age, and yet the m6A modifications remained unchanged. Our study showed that maternal high-fat intake could affect mRNA m6A modifications and its related genes in offspring in a tissue-specific and development-dependent way, and provided an interesting indication of the working of the m6A system during the transmission from maternal nutrition to subsequent generations. PMID:27548155

  20. Mouse Maternal High-Fat Intake Dynamically Programmed mRNA m⁶A Modifications in Adipose and Skeletal Muscle Tissues in Offspring.

    PubMed

    Li, Xiao; Yang, Jing; Zhu, Youbo; Liu, Yuan; Shi, Xin'e; Yang, Gongshe

    2016-08-19

    Epigenetic mechanisms have an important role in the pre- and peri-conceptional programming by maternal nutrition. Yet, whether or not RNA m⁶A methylation-an old epigenetic marker receiving increased attention recently-is involved remains an unknown question. In this study, mouse high-fat feeding prior to conception was shown to induce overweight and glucose intolerant dams, which then continued to be exposed to a high-fat diet during gestation and lactation. The dams on a standard diet throughout the whole experiment were used as a control. Results showed that maternal high-fat intake impaired postnatal growth in male offspring, indicated by decreased body weight and Lee's index at 3, 8 and 15 weeks old, but the percentages of visceral fat and tibialis anterior relative to the whole body weights were significantly increased at eight weeks of age. The maternal high-fat exposure significantly increased mRNA N⁶-methyladenosine (m⁶A) levels in visceral fat at three weeks old, combined with downregulated Fat mass and obesity-associated gene (FTO) and upregulated Methyltransferase like 3 (METTL3) transcription, and these changes were reversed at eight weeks of age. In the tibialis anterior muscle, the maternal high-fat diet significantly enhanced m⁶A modifications at three weeks, and lowered m⁶A levels at 15 weeks of age. Accordingly, FTO transcription was significantly inhibited at three weeks and stimulated at 15 weeks of age, and METTL3 transcripts were significantly improved at three weeks. Interestingly, both FTO and METTL3 transcription was significantly elevated at eight weeks of age, and yet the m⁶A modifications remained unchanged. Our study showed that maternal high-fat intake could affect mRNA m⁶A modifications and its related genes in offspring in a tissue-specific and development-dependent way, and provided an interesting indication of the working of the m⁶A system during the transmission from maternal nutrition to subsequent generations.

  1. Mouse Maternal High-Fat Intake Dynamically Programmed mRNA m⁶A Modifications in Adipose and Skeletal Muscle Tissues in Offspring.

    PubMed

    Li, Xiao; Yang, Jing; Zhu, Youbo; Liu, Yuan; Shi, Xin'e; Yang, Gongshe

    2016-01-01

    Epigenetic mechanisms have an important role in the pre- and peri-conceptional programming by maternal nutrition. Yet, whether or not RNA m⁶A methylation-an old epigenetic marker receiving increased attention recently-is involved remains an unknown question. In this study, mouse high-fat feeding prior to conception was shown to induce overweight and glucose intolerant dams, which then continued to be exposed to a high-fat diet during gestation and lactation. The dams on a standard diet throughout the whole experiment were used as a control. Results showed that maternal high-fat intake impaired postnatal growth in male offspring, indicated by decreased body weight and Lee's index at 3, 8 and 15 weeks old, but the percentages of visceral fat and tibialis anterior relative to the whole body weights were significantly increased at eight weeks of age. The maternal high-fat exposure significantly increased mRNA N⁶-methyladenosine (m⁶A) levels in visceral fat at three weeks old, combined with downregulated Fat mass and obesity-associated gene (FTO) and upregulated Methyltransferase like 3 (METTL3) transcription, and these changes were reversed at eight weeks of age. In the tibialis anterior muscle, the maternal high-fat diet significantly enhanced m⁶A modifications at three weeks, and lowered m⁶A levels at 15 weeks of age. Accordingly, FTO transcription was significantly inhibited at three weeks and stimulated at 15 weeks of age, and METTL3 transcripts were significantly improved at three weeks. Interestingly, both FTO and METTL3 transcription was significantly elevated at eight weeks of age, and yet the m⁶A modifications remained unchanged. Our study showed that maternal high-fat intake could affect mRNA m⁶A modifications and its related genes in offspring in a tissue-specific and development-dependent way, and provided an interesting indication of the working of the m⁶A system during the transmission from maternal nutrition to subsequent generations

  2. Ameliorating effect of Allium Sativum on high-fat diet induced fatty liver in albino rats

    PubMed Central

    Qamar, Aisha; Usmani, Ambreen; Waqar, Humera; Siddiqui, Asma; Kumar, Hemant

    2016-01-01

    Objective: To assess the hepatoprotective effect provided by fresh garlic on fatty liver induced by high-fat diet. Methods: This experimental study was carried out at BMSI, JPMC from October to November 2008. Thirty adult albino rats, 200-240 gram weight, were divided into three groups. Group A received control diet, Group B received high-fat diet (20 mg butter/100 gm diet) and Group C received high-fat diet with fresh garlic (20 mg butter with 6 gm fresh garlic/100 gm diet). The groups were further divided on the basis of duration of treatment, four weeks and eight weeks respectively. The rats were sacrificed, liver removed, weighed and relative liver weight calculated. Hepatic tissue was processed and tissue slides stained with haematoxylin and eosin. Results: There was significant increase in relative liver weight in group B animals as compared to the control animals, which decreased significantly in group C. Haematoxylin and eosin stained sections revealed ballooned hepatocytes having vesicular appearance with pyknotic nuclei in high-fat group which were preserved to a great extent in group C animals. Conclusion: This study has shown that use of fresh garlic along with high-fat diet prevents its damaging effects on liver to a great extent. PMID:27182249

  3. Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment.

    PubMed

    Cherng, Jong-Yuh; Shih, Mei-Fen

    2005-05-13

    The effects of Chlorella pyrenoidosa on serum lipid profiles, after concomitant long-term treatment of high-fat diet (HFD) in rats and hamsters was studied. Wistar rats and Syrian hamsters were fed with or without various concentrations of Chlorella pyrenoidosa contained high-fat diet (CHFD) for 2, 4 and 8 weeks prior to assay of serum lipids. Fasting triglycerides, total cholesterol, and LDL cholesterol as well as HDL cholesterol levels in high-fat diet treated rats and hamster were determined. Results showed that triglycerides, total cholesterol and LDL cholesterol levels in HFD treated rats and hamsters were increased from the normal rodent diet (NRD) treated controls after 2, 4, and 8-week treatments. However, the presence of Chlorella pyrenoidosa in high-fat diets significantly decreased the levels of triglycerides, total cholesterol and LDL cholesterol with comparison to HFD group in rats and hamsters. The total cholesterol/HDL ratios, an indication of occurrence of coronary heart disease, were decreased in all CHFD treated grouped rats and hamsters which suggests administration of Chlorella pyrenoidosa could lower the occurring risk of heart diseases. In conclusion, Chlorella pyrenoidosa has the ability to prevent dyslipidemia in chronic high-fat fed animals and could be potential in use to prevent intestinal absorption of redundant lipid from our daily intake and subsequently to prevent hyperlipidemia as well as atherosclerosis. PMID:15850594

  4. Neonatal overfeeding attenuates acute central pro-inflammatory effects of short-term high fat diet

    PubMed Central

    Cai, Guohui; Dinan, Tara; Barwood, Joanne M.; De Luca, Simone N.; Soch, Alita; Ziko, Ilvana; Chan, Stanley M. H.; Zeng, Xiao-Yi; Li, Songpei; Molero, Juan; Spencer, Sarah J.

    2015-01-01

    Neonatal obesity predisposes individuals to obesity throughout life. In rats, neonatal overfeeding also leads to early accelerated weight gain that persists into adulthood. The phenotype is associated with dysfunction in a number of systems including paraventricular nucleus of the hypothalamus (PVN) responses to psychological and immune stressors. However, in many cases weight gain in neonatally overfed rats stabilizes in early adulthood so the animal does not become more obese as it ages. Here we examined if neonatal overfeeding by suckling rats in small litters predisposes them to exacerbated metabolic and central inflammatory disturbances if they are also given a high fat diet in later life. In adulthood we gave the rats normal chow, 3 days, or 3 weeks high fat diet (45% kcal from fat) and measured peripheral indices of metabolic disturbance. We also investigated hypothalamic microglial changes, as an index of central inflammation, as well as PVN responses to lipopolysaccharide (LPS). Surprisingly, neonatal overfeeding did not predispose rats to the metabolic effects of a high fat diet. Weight changes and glucose metabolism were unaffected by the early life experience. However, short term (3 day) high fat diet was associated with more microglia in the hypothalamus and a markedly exacerbated PVN response to LPS in control rats; effects not seen in the neonatally overfed. Our findings indicate neonatally overfed animals are not more susceptible to the adverse metabolic effects of a short-term high fat diet but may be less able to respond to the central effects. PMID:25628527

  5. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  6. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism. PMID:26301251

  7. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet.

    PubMed

    Tranberg, Britt; Madsen, Andreas N; Hansen, Axel K; Hellgren, Lars I

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured by indirect calorimetry during the first week of dietary intervention. Observed exclusively during the first week of intervention, whey significantly reduced body length (P<.01) and weight gain (P<.001) correlating positively with plasma concentrations of insulin-like growth factor-1. The combination diet displayed intermediate results indicating an interactive effect. Urea production, urea cycle activity, food intake and energy expenditure were unaffected by protein source. In conclusion, whey decreased growth-related parameters exclusively during the first week of dietary intervention. The early effect of whey could not be explained by food intake, energy expenditure, urea production or urea cycle activity but was correlated with plasma levels of insulin-like growth factor-1. PMID:25315863

  8. Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding.

    PubMed

    Coate, Katie C; Kraft, Guillaume; Moore, Mary Courtney; Smith, Marta S; Ramnanan, Christopher; Irimia, Jose M; Roach, Peter J; Farmer, Ben; Neal, Doss W; Williams, Phil; Cherrington, Alan D

    2014-07-15

    In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg(-1)·min(-1)) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg(-1)·min(-1) in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.

  9. Effect of nicotine on antioxidant defence mechanisms in rats fed a high-fat diet.

    PubMed

    Ashakumary, L; Vijayammal, P L

    1996-03-01

    Nicotine, a major component of cigarette smoke, plays an important role in the development of cardiovascular disease and lung cancer in smokers. Lipid peroxidation is a process associated with the pathogenesis of atherosclerosis and the level of lipid peroxides is increased in smokers. In rats fed a high-fat diet, the tissue concentration of lipid peroxides was found to be increased. On nicotine administration along with a high-fat diet an additive effect was observed in lipid peroxidation and free radical scavengers. The activities of scavenging enzymes superoxide dismutase, catalase and glutathione reductase were found to be decreased, while the glutathione concentration and activity of glutathione peroxidase were enhanced. PMID:8849484

  10. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia.

    PubMed

    Neha; Kumar, Amit; Jaggi, Amteshwar S; Sodhi, Rupinder K; Singh, Nirmal

    2014-08-01

    A huge body evidences suggest that obesity is the single great risk factor for the development of dementia. Recently, silymarin, a flavonoid, clinically in use as a hepatoprotectant, has been reported to prevent amyloid beta-induced memory impairment by reducing oxidative stress and inflammation in mice brain. However, its potential in high-fat-diet (HFD)-induced dementia has not yet been investigated. Therefore, the present study is designed to explore the role of silymarin in HFD-induced experimental dementia in mice. Morris water maze test was employed to assess learning and memory. Various biochemical estimations including brain acetylcholinerstarse activity (AchE), thiobarbituric acid-reactive species (TBARS) level, reduced glutathione level (GSH), nirate/nitrite, and myeloperoxidase (MPO) activity were measured. Serum cholesterol level was also determined. HFD significantly impaired the cognitive abilities, along with increasing brain AchE, TBARS, MPO, nitrate/nitrite, and serum cholesterol levels. Marked reduction of brain GSH levels was observed. On the contrary, silymarin significantly reversed HFD-induced cognitive deficits and the biochemical changes. The present study indicates strong potential of silymarin in HFD-induced experimental dementia.

  11. Dietary Reversal Ameliorates Short- and Long-Term Memory Deficits Induced by High-fat Diet Early in Life

    PubMed Central

    Sims-Robinson, Catrina; Bakeman, Anna; Bruno, Elizabeth; Jackson, Samuel; Glasser, Rebecca; Murphy, Geoffrey G.; Feldman, Eva L.

    2016-01-01

    A high-fat diet (HFD), one of the major factors contributing to metabolic syndrome, which is associated with an increased risk of neurodegenerative diseases, leads to insulin resistance and cognitive impairment. It is not known whether these alterations are improved with dietary intervention. To investigate the long-term impact of a HFD on hippocampal insulin signaling and memory, C57BL6 mice were placed into one of three groups based on the diet: a standard diet (control), a HFD, or a HFD for 16 weeks and then the standard diet for 8 weeks (HF16). HFD-induced impairments in glucose tolerance and hippocampal insulin signaling occurred concurrently with deficits in both short- and long-term memory. Furthermore, these conditions were improved with dietary intervention; however, the HFD-induced decrease in insulin receptor expression in the hippocampus was not altered with dietary intervention. Our results demonstrate that memory deficits due to the consumption of a HFD at an early age are reversible. PMID:27676071

  12. Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat diet-induced cognitive deficits in mice.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev; Ramagiri, Shruti

    2015-05-01

    Metabolic syndrome is increasingly recognized for its effects on cognitive health. Recent studies have highlighted the role of histone deacetylases (HDACs) in metabolic syndrome and cognitive functions. The present study was designed to investigate the possible therapeutic role of a HDAC inhibitor, trichostatin A (TSA), in cognitive impairment associated with metabolic syndrome. To ascertain the mechanisms involved, we fed mice with high-fat diet (HFD) for 4 weeks and examined changes in behavioral and biochemical/oxidative stress markers. Mice subjected to HFD exhibited characteristic features of metabolic disorder, viz., hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and lower high-density lipoprotein (HDL) cholesterol levels. Moreover, these mice showed severe deficits in learning and memory as assessed by the Morris water maze and passive avoidance tasks along with elevated oxidative stress and inflammatory markers in brain homogenates. The observed changes occurred concurrently with reduced brain-derived neurotrophic factor (BDNF). In contrast, the mice treated with the HDAC inhibitor, TSA (0.5 and 1 mg/kg, i.p.), showed a significant and dose-dependent reduction in serum glucose, triglycerides, and total cholesterol along with improvement in HDL-cholesterol levels and learning and memory performance. TSA treatment also results in alleviation of oxidative stress and neuroinflammatory markers. Moreover, TSA significantly augmented the BDNF levels in HFD-fed mice. Thus, based upon these observations, it may be suggested that HDAC inhibition could be a novel therapeutic strategy to combat cognitive impairment associated with metabolic syndrome.

  13. Acute Cocoa Supplementation Increases Postprandial HDL Cholesterol and Insulin in Obese Adults with Type 2 Diabetes after Consumption of a High-Fat Breakfast123

    PubMed Central

    Basu, Arpita; Betts, Nancy M; Leyva, Misti J; Fu, Dongxu; Aston, Christopher E; Lyons, Timothy J

    2015-01-01

    Background: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function. Objective: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food–style meal. Methods: Adults with T2D [n = 18; age (mean ± SE): 56 ± 3 y; BMI (in kg/m2): 35.3 ± 2.0; 14 women; 4 men] were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food–style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10–12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment. Results: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: −1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h. Conclusion: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food–style meal challenge

  14. The Timing of Meals

    ERIC Educational Resources Information Center

    Strubbe, Jan H.; Woods, Stephen C.

    2004-01-01

    In most individuals, food intake occurs as discrete bouts or meals, and little attention has been paid to the factors that normally determine when meals will occur when food is freely available. On the basis of experiments using rats, the authors suggest that when there are no constraints on obtaining food and few competing activities, 3 levels of…

  15. Meals for the Elderly

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA is drawing upon its food-preparation expertise to assist in solving a problem affecting a large segment of the American population. In preparation for manned space flight programs, NASA became experienced in providing astronauts simple, easily-prepared, nutritious meals. That experience now is being transferred to the public sector in a cooperative project managed by Johnson Space Center. Called Meal System for the Elderly, the project seeks to fill a gap by supplying nutritionally balanced meal packages to those who are unable to participate in existing meal programs. Many such programs are conducted by federal, state and private organizations, including congregate hot meal services and home-delivered "meals on wheels." But more than 3.5 million elderly Americans are unable to take advantage of these benefits. In some cases, they live in rural areas away from available services; in others, they are handicapped, temporarily ill, or homebound for other reasons. Meal System for the Elderly, a cooperative program in which the food-preparation expertise NASA acquired in manned space projects is being utilized to improve the nutritional status of elderly people. The program seeks to fill a gap by supplying nutritionally-balanced food packages to the elderly who are unable to participate b existing meal service programs.

  16. High Fat Diet and Inflammation – Modulation of Haptoglobin Level in Rat Brain

    PubMed Central

    Spagnuolo, Maria Stefania; Mollica, Maria Pina; Maresca, Bernardetta; Cavaliere, Gina; Cefaliello, Carolina; Trinchese, Giovanna; Scudiero, Rosaria; Crispino, Marianna; Cigliano, Luisa

    2015-01-01

    Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt) is an acute phase protein, which acts as antioxidant by binding free haemoglobin (Hb), thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aβ) uptake by astrocyte, and limiting Aβ toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks) high-fat diet (HFD) influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr). Hpt concentration was lower (p < 0.001) in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p < 0.01), inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p < 0.01) or 24 weeks (p < 0.001) compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p = 0.04) and 24 weeks groups (p = 0.01), and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p < 0.001) Hpt secretion in the extracellular compartment. We hypothesize that the HFD

  17. Meals for the Elderly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The aim of Skylab's multi-agency cooperative project was to make simple but nutritious space meals available to handicapped and otherwise homebound senior adults, unable to take advantage of existing meal programs sponsored by federal, state and private organizations. As a spinoff of Meal Systems for the Elderly, commercial food processing firms are now producing astronaut type meals for public distribution. Company offers variety of freeze dried foods which are reconstituted by addition of water, and "retort pouch" meals which need no reconstitution, only heating. The retort pouch is an innovative flexible package that combines the advantage of boil-in bag and metal can. Foods retain their flavor, minerals and vitamins can be stored without refrigeration and are lightweight for easy transportation.

  18. Effect of combination therapy consisting of enalapril, α-lipoic acid, and menhaden oil on diabetic neuropathy in a high fat/low dose streptozotocin treated rat.

    PubMed

    Davidson, Eric P; Holmes, Amey; Coppey, Lawrence J; Yorek, Mark A

    2015-10-15

    We have previously demonstrated that treating diabetic rats with enalapril, an angiotensin converting enzyme (ACE) inhibitor, α-lipoic acid, an antioxidant, or menhaden oil, a natural source of omega-3 fatty acids can partially improve diabetic peripheral neuropathy. In this study we sought to determine the efficacy of combining these three treatments on vascular and neural complications in a high fat fed low dose streptozotocin treated rat, a model of type 2 diabetes. Rats were fed a high fat diet for 8 weeks followed by a 30 mg/kg dose of streptozotocin. Eight weeks after the onset of hyperglycemia diabetic rats were treated with a combination of enalapril, α-lipoic acid and menhaden oil. Diabetic rats not receiving treatment were continued on the high fat diet. Glucose clearance was impaired in diabetic rats and significantly improved with treatment. Diabetes caused steatosis, elevated serum lipid levels, slowing of motor and sensory nerve conduction, thermal hypoalgesia, reduction in intraepidermal nerve fiber profiles, decrease in cornea sub-basal nerve fiber length and corneal sensitivity and impairment in vascular relaxation to acetylcholine and calcitonin gene-related peptide in epineurial arterioles of the sciatic nerve. Treating diabetic rats with the combination of enalapril, α-lipoic acid and menhaden oil reversed all these deficits to near control levels except for motor nerve conduction velocity which was also significantly improved compared to diabetic rats but remained significantly decreased compared to control rats. These studies suggest that a combination therapeutic approach may be most effective for treating vascular and neural complications of type 2 diabetes.

  19. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hype...

  20. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  1. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  2. Effects of high-fat diets composed of different oils on adipokine production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dysregulation of adipokines is a hallmark of obesity. Polyunsaturated (n3) fatty acids in fish oil are shown to exert anti-inflammatory effects on adipose tissue mitigating the dysregulation of adipokines. In this study, we compared high-fat diets composed of different dietary oils with various le...

  3. High-fat diet lowers the nutritional status indicators of pantothenic acid in weaning rats.

    PubMed

    Yoshida, Erina; Fukuwatari, Tsutomu; Ohtsubo, Masako; Shibata, Katsumi

    2010-01-01

    Weaning rats were fed a 5% or 30% fat diet containing limited calcium pantothenate for 28 d. The plasma, liver and adrenal pantothenic acid levels in the rats fed on the 30% fat diet were significantly lower than with the 5% fat diet. The results suggest that the high-fat diet affected pantothenic acid metabolism. PMID:20699566

  4. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  5. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs.

    PubMed

    Haagensen, Annika Maria Juul; Sørensen, Dorte Bratbo; Sandøe, Peter; Matthews, Lindsay R; Birck, Malene Muusfeldt; Fels, Johannes Josef; Astrup, Arne

    2014-01-01

    High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour. Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test-related behaviours were recorded during tests involving animal-human contact and reaction towards a novel object. We showed that the minipigs fed a high fat/cholesterol, low carbohydrate diet were less aggressive, showed more non-agonistic social contact and had fewer and less severe skin lesions and were less fearful of a novel object than minipigs fed low fat, high carbohydrate diets. These results found in a porcine model could have important implications for general health and wellbeing of humans and show the potential for using dietary manipulations to reduce aggression in human society.

  6. The effects of blueberry supplementation in middle aged mice consuming a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consuming a high fat diet may result in behavioral deficits that are similar to those observed in aging animals, possibly because of increased brain inflammation and oxidative stress. Our lab has demonstrated that diets supplemented with polyphenolic- rich berries, such as blueberries, can allay beh...

  7. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  8. A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals. PMID:22685607

  9. Nonalcoholic Steatohepatitis Induced by a High-Fat Diet Promotes Diethylnitrosamine Initiated Early Hepatocarcinogenesis in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that patients with nonalcoholic steatohepatitis (NASH) have a high risk for liver cancer. However, it is unknown whether high-fat diet induced NASH promotes chemical carcinogen-initiated hepatocarcinogenesis. In the present study, Sprague-Dawley rats were injected with a low d...

  10. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine initiated early hepatocarcinogenesis in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that patients with nonalcoholic steatohepatitis (NASH) are at a high risk for liver cancer. However, it is unknown whether high-fat diet induced NASH promotes hepatocarcinogenesis. In the present study, Sprague-Dawley rats were injected with a low dose of hepatic carcinogen die...

  11. Influence of dietary fatty acid composition and exercise on changes in fat oxidation from a high-fat diet.

    PubMed

    Cooper, J A; Watras, A C; Shriver, T; Adams, A K; Schoeller, D A

    2010-10-01

    Acute high-fat (HF) diets can lead to short-term positive fat balances until the body increases fat oxidation to match intake. The purpose of this study was to examine the effects of a HF diet, rich in either mono-unsaturated or saturated fatty acids (FAs) and exercise, on the rate at which the body adapts to a HF diet.(13)C-labeled oleate and (2)H-labeled palmitate were also given to determine the contribution of exogenous vs. global fat oxidation. Eight healthy men (age of 18-45 yr; body mass index of 22 ± 3 kg/m(2)) were randomized in a 2 × 2 crossover design. The four treatments were a high saturated fat diet with exercise (SE) or sedentary (SS) conditions and a high monounsaturated fat diet with exercise (UE) or sedentary (US) conditions. Subjects stayed for 5 days in a metabolic chamber. All meals were provided. On day 1, 30% of energy intake was from fat, whereas days 2-5 had 50% of energy as fat. Subjects exercised on a stationary cycle at 45% of maximal oxygen uptake for 2 h each day. Respiratory gases and urinary nitrogen were collected to calculate fat oxidation. Change from day 1 to day 5 showed both exercise treatments increased fat oxidation (SE: 76 ± 30 g, P = 0.001; UE: 118 ± 31 g, P < 0.001), whereas neither sedentary condition changed fat oxidation (SS: -10 ± 33 g, P = not significant; US: 41 ± 14 g, P = 0.07). No differences for dietary FA composition were found. Exercise led to a faster adaptation to a HF diet by increasing fat oxidation and achieving fat balance by day 5. Dietary FA composition did not differentially affect 24-h fat oxidation. PMID:20651220

  12. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    PubMed

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity.

  13. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    PubMed

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. PMID:26150317

  14. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats.

    PubMed

    Abu, Mohd Nazri; Samat, Suhana; Kamarapani, Norathirah; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani; Hassan, Hamzah Fansuri

    2015-01-01

    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet. PMID:25821506

  15. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    PubMed Central

    Kamarapani, Norathirah; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani; Hassan, Hamzah Fansuri

    2015-01-01

    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet. PMID:25821506

  16. High Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity

    PubMed Central

    Hildebrandt, Marie A.; Hoffman, Christian; Sherrill-Mix, Scott A.; Keilbaugh, Sue A.; Hamady, Micah; Chen, Ying-Yu; Knight, Rob; Ahima, Rexford S.; Bushman, Frederic; Wu, Gary D.

    2009-01-01

    Background The composition of the gut microbiome is affected by host phenotype, genotype, immune function, and diet. Here we used the phenotype of RELMβ Knockout (KO) mice to assess the influence of these factors. Methods and Results Both wild-type and RELMβ KO mice were lean on a standard chow diet, but upon switching to a high fat diet, wild-type mice became obese while RELMβ KO mice remained comparatively lean. To investigate the influence of diet, genotype, and obesity on microbiome composition we used deep sequencing to characterize 25,790 16S rDNA sequences from uncultured bacterial communities from both genotypes on both diets. We found large alterations associated with switching to the high fat diet, including a decrease in Bacteroidetes and an increase in both Firmicutes and Proteobacteria. This was seen for both genotypes (i.e. in the presence and absence of obesity), indicating that the high fat diet itself, and not the obese state, mainly accounted for the observed changes in the gut microbiota. The RELMβ genotype also modestly influenced microbiome composition independently of diet. Metagenomic analysis of 537,604 sequence reads documented extensive changes in gene content due to a high fat diet, including an increase in transporters and two-component sensor-responders as well as a general decrease in metabolic genes. Unexpectedly, we found a substantial amount of murine DNA in our samples that increased in proportion on a high fat diet. Conclusions These results demonstrate the importance of diet as a determinant of gut microbiome composition and suggest the need to control for dietary variation when evaluating the composition of the human gut microbiome. PMID:19706296

  17. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    SciTech Connect

    Lu, Yunxia; Cheng, Jingjing; Chen, Li; Li, Chaofei; Chen, Guanjun; Gui, Li; Shen, Bing; Zhang, Qiu

    2015-02-27

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  18. Juvenile exposure to a high fat diet promotes behavioral and limbic alterations in the absence of obesity.

    PubMed

    Vinuesa, Angeles; Pomilio, Carlos; Menafra, Martin; Bonaventura, Maria Marta; Garay, Laura; Mercogliano, María Florencia; Schillaci, Roxana; Lux Lantos, Victoria; Brites, Fernando; Beauquis, Juan; Saravia, Flavia

    2016-10-01

    The incidence of metabolic disorders including obesity, type 2 diabetes and metabolic syndrome have seriously increased in the last decades. These diseases - with growing impact in modern societies - constitute major risk factors for neurodegenerative disorders such as Alzheimer's disease (AD), sharing insulin resistance, inflammation and associated cognitive impairment. However, cerebral cellular and molecular pathways involved are not yet clearly understood. Thus, our aim was to study the impact of a non-severe high fat diet (HFD) that resembles western-like alimentary habits, particularly involving juvenile stages where the brain physiology and connectivity are in plain maturation. To this end, one-month-old C57BL/6J male mice were given either a control diet or HFD during 4 months. Exposure to HFD produced metabolic alterations along with changes in behavioral and central parameters, in the absence of obesity. Two-month-old HFD mice showed increased glycemia and plasmatic IL1β but these values normalized at the end of the HFD protocol at 5 months of age, probably representing an acute response that is compensated at later stages. After four months of HFD exposure, mice presented dyslipidemia, increased Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, hepatic insulin resistance and inflammation. Alterations in the behavioral profile of the HFD group were shown by the impediment in nest building behavior, deficiencies in short and mid-term spatial memories, anxious and depressive- like behavior. Regarding the latter disruptions in emotional processing, we found an increased neural activity in the amygdala, shown by a greater number of c-Fos+ nuclei. We found that hippocampal adult neurogenesis was decreased in HFD mice, showing diminished cell proliferation measured as Ki67+ cells and neuronal differentiation in SGZ by doublecortin labeling. These phenomena were accompanied by a neuroinflammatory and insulin-resistant state in the hippocampus

  19. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity. PMID:25827219

  20. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity.

  1. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  2. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  3. Optimizing protein quality of mixtures of blood meal, feather meal and bone meal.

    PubMed

    Hegedüs, M; Bokori, J; Andrásofszky, E; Kövári, L

    1990-01-01

    The protein quality of two- or three-component mixtures of blood meal, feather meal and bone meal was characterized by amino acid scores and rat net protein utilization (NPU) values. A graphic method designed to find optimum levels of the limiting essential amino acids in the mixtures was suitable for predicting the optimum of NPU values determined by feeding rats with diets having 10% crude protein. The protein quality of mixtures of blood meal, feather meal and bone meal showed an optimum if blood meal constituted 60% of the protein content of the mixtures; however, poor feed intake and growth data were obtained.

  4. Insufficient glucose supply is linked to hypothermia upon cold exposure in high-fat diet-fed mice lacking PEMT.

    PubMed

    Gao, Xia; van der Veen, Jelske N; Fernandez-Patron, Carlos; Vance, Jean E; Vance, Dennis E; Jacobs, René L

    2015-09-01

    Mice that lack phosphatidylethanolamine N-methyltransferase (Pemt(-/-) mice) are protected from high-fat (HF) diet-induced obesity. HF-fed Pemt(-/-) mice show higher oxygen consumption and heat production, indicating that more energy might be utilized for thermogenesis and might account for the resistance to diet-induced weight gain. To test this hypothesis, HF-fed Pemt(-/-) and Pemt(+/+) mice were challenged with acute cold exposure at 4°C. Unexpectedly, HF-fed Pemt(-/-) mice developed hypothermia within 3 h of cold exposure. In contrast, chow-fed Pemt(-/-) mice, possessing similar body mass, maintained body temperature. Lack of PEMT did not impair the capacity for thermogenesis in skeletal muscle or brown adipose tissue. Plasma catecholamines were not altered by Pemt genotype, and stimulation of lipolysis was intact in brown and white adipose tissue of Pemt(-/-) mice. HF-fed Pemt(-/-) mice also developed higher systolic blood pressure, accompanied by reduced cardiac output. Choline supplementation reversed the cold-induced hypothermia in HF-fed Pemt(-/-) mice with no effect on blood pressure. Plasma glucose levels were ∼50% lower in HF-fed Pemt(-/-) mice compared with Pemt(+/+) mice. Choline supplementation normalized plasma hypoglycemia and the expression of proteins involved in gluconeogenesis. We propose that cold-induced hypothermia in HF-fed Pemt(-/-) mice is linked to plasma hypoglycemia due to compromised hepatic glucose production.

  5. Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia

    PubMed Central

    Morimoto, M; Lee, E-Y; Zhang, X; Inaba, Y; Inoue, H; Ogawa, M; Shirasawa, T; Yokosuka, O; Miki, T

    2016-01-01

    Background/Objective: Eicosapentaenoic acid (EPA) exerts pleiotropic effects on metabolic disorders such as atherosclerosis and dyslipidemia, but its effectiveness in the treatment of type 2 diabetes mellitus remains controversial. Methods: We examined the antidiabetic effect of EPA in insulin receptor mutant (InsrP1195L/+) mice that exhibit high-fat diet (HFD)-dependent hyperglycemia. Results: EPA supplementation was found to alleviate hyperglycemia of InsrP1195L/+ mice fed HFD (InsrP1195L/+/HFD mice), which was accompanied by amelioration of increased gluconeogenesis and impaired insulin signaling, as assessed by glucose-6-phosphatase (G6pc) expression on refeeding and insulin-induced phosphorylation of Akt in the liver, respectively. We found that serum levels of adiponectin, the antidiabetic adipokine, were decreased by HFD along with the body weight gain in InsrP1195L/+ mice but not in wild-type mice, suggesting that InsrP1195L/+ mice are prone to hypoadiponectinemia in response to obesity. Interestingly, the blood glucose levels of InsrP1195L/+ mice were in reverse proportion to their serum adiponectin levels and EPA supplementation ameliorated their hyperglycemia in conjunction with the restoration of hypoadiponectinemia. Conclusions: EPA exerts an antidiabetic effect in InsrP1195L/+/HFD mice, an HFD-sensitive, insulin-resistant animal model, possibly through its action against hypoadiponectinemia. PMID:27348201

  6. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats.

    PubMed

    Kumar, Parveen; Bhandari, Uma; Jamadagni, Shrirang

    2014-01-01

    This study investigated the inhibitory effect of aqueous extract of Trigonella foenum-graecum seeds (AqE-TFG) on fat accumulation and dyslipidemia in high fat diet- (HFD-) induced obese rats. Female Wistar rats were fed with HFD ad libitum, and the rats on HFD were treated orally with AqE-TFG or orlistat ((HFD for 28 days+AqE-TFG (0.5 and 1.0 g/kg) or orlistat (10 mg/kg) from day 8 to 28), respectively. Treatment with AqE-TFG produced significant reduction in body weight gain, body mass index (BMI), white adipose tissue (WAT) weights, blood glucose, serum insulin, lipids, leptin, lipase, and apolipoprotein-B levels and elevation in adiponectin levels. AqE-TFG improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and lactate dehydrogenase (LDH) levels. AqE-TFG treatment reduced the hepatic and cardiac thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme (glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT)) levels. In addition, liver and uterine WAT lipogenic enzyme (fatty acid synthetase (FAS) and glucose-6-phosphate dehydrogenase (G6PD)) activities were restored towards normal levels. These findings demonstrated the preventive effect of AqE-TFG on fat accumulation and dyslipidemia, due to inhibition of impaired lipid digestion and absorption, in addition to improvement in glucose and lipid metabolism, enhancement of insulin sensitivity, increased antioxidant defense, and downregulation of lipogenic enzymes. PMID:24868532

  7. Low concentration of ethanol favors progenitor cell differentiation and neovascularization in high-fat diet-fed mice model.

    PubMed

    Vergori, Luisa; Lauret, Emilie; Soleti, Raffaella; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2016-09-01

    Endothelial progenitor cells (EPCs) and monocytic cells from bone marrow (BM) can be recruited to the injured endothelium and contribute to its regeneration. During metabolic diseases such as obesity and diabetes, progenitor cell function is impaired. Several studies have shown that moderate alcohol consumption prevents the development and progression of atherosclerosis in a variety of animal/mouse models and increases mobilization of progenitor cells. Along with these studies, we identify ethanol at low concentration as therapeutic tool to in vitro expand progenitor cells in order to obtain an adequate number of cells for their use in the treatment of cardiovascular diseases. We evaluated the effects of ethanol on the phenotype of BM-derived cells from mice fed with high-fat diet (HFD). HFD did not induce changes in weight of mice but induced metabolic alterations. HFD feeding increased the differentiation of monocytic progenitors but not EPCs. Whereas ethanol at 0.6% is able to increase monocytic progenitor differentiation, 1% ethanol diminished it. Furthermore, ethanol at 0.6% increased the ability of progenitor cells to promote in vivo angiogenesis as well as secretome of BM-derived cells from mice fed with HFD, but not in mice fed normal diet. In conclusion, ethanol at low concentration is able to increase angiogenic abilities of progenitor cells from animals with early metabolic alterations.

  8. Defective adipose tissue development associated with hepatomegaly in cathepsin E-deficient mice fed a high-fat diet.

    PubMed

    Kadowaki, Tomoko; Kido, Mizuho A; Hatakeyama, Junko; Okamoto, Kuniaki; Tsukuba, Takayuki; Yamamoto, Kenji

    2014-03-28

    Cathepsin E is an intracellular aspartic proteinase, which is predominantly distributed in immune-related and epithelial cells. However, the role of the enzyme in adipose tissues remains unknown. In this study, we investigated the characteristics of cathepsin E-deficient (CatE(-/-)) mice fed a high-fat diet (HFD), as a mouse model of obesity. HFD-fed CatE(-/-) mice displayed reduced body weight gain and defective development of white adipose tissue (WAT) and brown adipose tissue (BAT), compared with HFD-fed wild-type mice. Moreover, fat-induced CatE(-/-) mice showed abnormal lipid accumulation in non-adipose tissues characterized by hepatomegaly, which is probably due to defective adipose tissue development. Detailed pathological and biochemical analyses showed that hepatomegaly was accompanied by hepatic steatosis and hypercholesterolemia in HFD-induced CatE(-/-) mice. In fat-induced CatE(-/-) mice, the number of macrophages infiltrating into WAT was significantly lower than in fat-induced wild-type mice. Thus, the impaired adipose tissue development in HFD-induced CatE(-/-) mice was probably due to reduced infiltration of macrophages and may lead to hepatomegaly accompanied by hepatic steatosis and hypercholesterolemia.

  9. Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    PubMed Central

    Huang, Jun-Yuan; Chiang, Ming-Tsai; Yet, Shaw-Fang; Chau, Lee-Young

    2012-01-01

    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity. PMID:22761690

  10. Environmental enrichment ameliorated high-fat diet-induced Aβ deposition and memory deficit in APP transgenic mice.

    PubMed

    Maesako, Masato; Uemura, Kengo; Kubota, Masakazu; Kuzuya, Akira; Sasaki, Kazuki; Asada, Megumi; Watanabe, Kiwamu; Hayashida, Naoko; Ihara, Masafumi; Ito, Hidefumi; Shimohama, Shun; Kihara, Takeshi; Kinoshita, Ayae

    2012-05-01

    The pathogenesis of Alzheimer's disease (AD) is tightly associated with metabolic dysfunctions. In particular, a potential link between type 2 diabetes (T2DM) and AD has been suggested epidemiologically, clinically, and experimentally, and some studies have suggested that exercise or dietary intervention reduces risk of cognitive decline. However, there is little solid molecular evidence for the effective intervention of metabolic dysfunctions for prevention of AD. In the present study, we established the AD model mice with diabetic conditions through high-fat diet (HFD) to examine the effect of environmental enrichment (EE) on HFD-induced AD pathophysiology. Here, we demonstrated that HFD markedly deteriorated memory impairment and increased β-amyloid (Aβ) oligomers as well as Aβ deposition in amyloid precursor protein (APP) transgenic mice, which was reversed by exposure to an enriched environment for 10 weeks, despite the continuation of HFD. These studies provide solid evidence that EE is a useful intervention to ameliorate behavioral changes and AD pathology in HFD-induced aggravation of AD symptoms in APP transgenic mice.

  11. The influence of a high-fat dietary environment in the fetal period on postnatal metabolic and immune function.

    PubMed

    Odaka, Yukino; Nakano, Mana; Tanaka, Tomoko; Kaburagi, Tomoko; Yoshino, Haruka; Sato-Mito, Natsuko; Sato, Kazuto

    2010-09-01

    Few reports show whether a high-fat (HF) dietary environment in the fetal period affects immune function or the development of lifestyle-related disease at maturity. We examined the influence of an HF dietary environment in the fetal period on postnatal metabolic and immune function. A total of 16 pregnant mice were given control (CON) diet and 16 were given HF diet in the gestational period, from mating to delivery. After delivery lactating mice were given either CON or HF diet, resulting in four groups. After weaning, the offspring mice were given the same diet that their mothers received during lactation. HF dietary intake in the postnatal period increased fat pad weights, serum glucose, and leptin levels. An HF diet in the fetal period resulted in fewer splenic lymphocytes, a thinner thymic cortex, and impaired antigen-specific immune reactions. Furthermore, tumor necrosis factor (TNF)-alpha production and serum triglyceride levels were elevated in the fetal HF group. In addition, the HF-HF group showed a consistent decrease in ovalbumin (OVA)-specific IgG and elevation of IgE, associated with advanced fatty changes in the liver. Results from this study suggest that HF environment during the fetal period induces epigenetic propensity toward obesity and immunological burden in part due to increased adipose tissue mass, significant reduction in the number of immune cells and decreased activities of immune cells.

  12. Antihyperlipidemic and Antioxidant Potential of Paeonia emodi Royle against High-Fat Diet Induced Oxidative Stress

    PubMed Central

    Zargar, Bilal A.; Masoodi, Mubashir H.; Ahmed, Bahar; Ganie, Showkat A.

    2014-01-01

    The present study was intended to evaluate the effects of Paeonia emodi rhizome extracts on serum triglycerides (TGs), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), atherogenic index (AI), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The plant was extensively examined for its in vitro antioxidant activity, and the preliminary phytochemical screening was carried out using standard protocols. Male Wistar rats were induced with hyperlipidemia using high-fat diet and were treated orally with hydroalcoholic and aqueous extracts at the dose of 200 mg/kg bw for 30 days. TGs, TC, LDL-c, and AI were significantly reduced while HDL-c, SOD, and GPx levels rose to a considerable extent. After subjecting to acute toxicity testing, the extracts were found to be safe. The observations suggest antihyperlipidemic and antioxidant potential of P. emodi in high-fat diet induced hyperlipidemic/oxidative stressed rats. PMID:24734192

  13. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet.

    PubMed

    Salaj, Rastislav; Stofilová, Jana; Soltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter; Bomba, Alojz

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance.

  14. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  15. Cereal byproducts have prebiotic potential in mice fed a high-fat diet.

    PubMed

    Berger, Karin; Falck, Peter; Linninge, Caroline; Nilsson, Ulf; Axling, Ulrika; Grey, Carl; Stålbrand, Henrik; Nordberg Karlsson, Eva; Nyman, Margareta; Holm, Cecilia; Adlercreutz, Patrick

    2014-08-13

    Barley husks, rye bran, and a fiber residue from oat milk production were processed by heat pretreatment, various separation steps, and treatment with an endoxylanase in order to improve the prebiotic potential of these cereal byproducts. Metabolic functions were intended to improve along with improved microbial activity. The products obtained were included in a high-fat mouse diet so that all diets contained 5% dietary fiber. In addition, high-fat and low-fat controls as well as partially hydrolyzed guar gum were included in the study. The soluble fiber product obtained from rye bran caused a significant increase in the bifidobacteria (log copies of 16S rRNA genes; median (25-75 percentile): 6.38 (6.04-6.66) and 7.47 (7.30-7.74), respectively; p < 0.001) in parallel with a tendency of increased production of propionic acid and indications of improved metabolic function compared with high-fat fed control mice. The oat-derived product caused an increase in the pool of cecal propionic (from 0.62 ± 0.12 to 0.94 ± 0.08) and butyric acid (from 0.38 ± 0.04 to 0.60 ± 0.04) compared with the high-fat control, and it caused a significant increase in lactobacilli (log copies of 16S rRNA genes; median (25-75 percentile): 6.83 (6.65-7.53) and 8.04 (7.86-8.33), respectively; p < 0.01) in the cecal mucosa. However, no changes in measured metabolic parameters were observed by either oat or barley products.

  16. Effects on Bacterial Translocation of High-Fat Enteral Nutrition in Bile Duct Ligated Rats

    PubMed Central

    Elipek, Tufan; Utkan, Nihat Zafer

    2012-01-01

    Objective: Bacterial Translocation (BT) from the gastrointestinal system is at the center of current sepsis theories. In patients with obstructive jaundice, the absence of intraluminal bile flow causes some alterations and mucosal damage in the gut. In the present study, it was aimed to investigate the effects on BT of high-fat enteral nutrition in bile duct ligated rats. Material and Methods: In this study, a total of 28 healthy Spraque-Dawley rats, weighing 230–300 gr, were grouped into four as sham group, control group, high-fat enteral nutrition group and low-fat enteral nutrition group. The rats in all the groups were sacrificed on the seventh postoperative day The values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total and direct bilirubin were measured for biochemical evaluation. Also, samples were taken from the blood, lung, liver, spleen and mesenteric lymph nodes for microbiological evaluation. The results were calculated as CFU/gr and evaluated statistically. Results: In all bile duct ligated rats, all findings of obstructive jaundice were observed clinically (in postoperatively third day) and in the laboratory. It was determined that the lymphatic system is an essential pathway for BT, as reported by similar studies. However, it was observed in this study that the high-fat enteral nutrition may be not severely effective in reducing BT in bile duct ligated rats. The results were supported by statistical analyses. Conclusion: It was observed that high-fat enteral nutrition has no meaningful effects on reducing BT in bile duct ligated rats. PMID:25207019

  17. Maternal Deprivation Exacerbates the Response to a High Fat Diet in a Sexually Dimorphic Manner

    PubMed Central

    Mela, Virginia; Llorente-Berzal, Álvaro; Díaz, Francisca; Argente, Jesús; Viveros, María-Paz; Chowen, Julie A.

    2012-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors. PMID:23145019

  18. Maternal deprivation exacerbates the response to a high fat diet in a sexually dimorphic manner.

    PubMed

    Mela, Virginia; Llorente-Berzal, Álvaro; Díaz, Francisca; Argente, Jesús; Viveros, María-Paz; Chowen, Julie A

    2012-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.

  19. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    NASA Astrophysics Data System (ADS)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  20. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice.

    PubMed

    Morton, Tiffany L; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  1. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice

    PubMed Central

    Morton, Tiffany L.; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete’s paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a “brown” phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  2. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p < 0.05). The expression of POMC and MC4R genes were significantly increased in offspring exposed to FS diet during gestation, lactation and into 32-week age (p < 0.05). Consistently, hypomethylation of POMC promoter in the hypothalamus occurred in the FS diet offspring (p < 0.05), compared with the C group. However, no methylation was detected of MC4R promoter in both the two groups. Furthermore, POMC-specific methylation (%) was negatively associated with glucose response to a glucose load (r = -0.273, p = 0.039). Maternal and post-weaning high-fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  3. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    PubMed Central

    Lee, Seong-Jong; Han, Jong-Min; Lee, Jin-Seok; Son, Chang-Gue; Im, Hwi-Jin; Jo, Hyun-Kyung; Yoo, Ho-Ryong; Kim, Yoon-Sik; Seol, In-Chan

    2015-01-01

    The medicinal plants Artemisia iwayomogi (A. iwayomogi) and Curcuma longa (C. longa) radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM). In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE) on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group) were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group) were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg) or curcumin (50 mg/kg). Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides), glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα). The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model. PMID:26508977

  4. Voglibose administration regulates body weight and energy intake in high fat-induced obese mice.

    PubMed

    Do, Hyun Ju; Jin, Taeon; Chung, Ji Hyung; Hwang, Ji Won; Shin, Min-Jeong

    2014-01-17

    We tested whether long-term administration of voglibose (VO) prevents diet induced obesity in addition to hypoglycemic effects in high fat fed mice and further investigated the underlying mechanisms by which voglibose exerts its weight lowering effect. Male C57BL/6 mice were fed ad libitum for 12 weeks with the control diet (CTL), high-fat diet (HFD) or the HFD with VO supplementations. Blood lipid profile, plasma leptin levels and hepatic triglyceride content, as well as expressions of genes involved in appetite and mitochondrial function were examined. The results showed that VO significantly reduced body weight, fat mass and energy intakes in high fat fed mice. VO showed improved metabolic profiles including blood glucose, triglyceride and free fatty acid. Elevated levels of plasma leptin in HFD were significantly reduced with the VO, furthermore, VO modulated the hypothalamic expressions of leptin receptors and appetite related genes. VO showed the upregulated expressions of PGC-1 in the liver and epididymal adipose tissue. In conclusion, VO may exert antiobesity properties through reductions in energy intake and improvement in mitochondrial function, indicating that VO has potential therapeutic use in patients with obesity, type 2 diabetes, and related complications.

  5. Neuropeptide Y administration into the amygdala alters high fat food intake.

    PubMed

    Primeaux, Stefany D; York, David A; Bray, George A

    2006-07-01

    The orexigenic effects of neuropeptide Y (NPY) are mediated through the hypothalamus, while the anxiolytic effects of NPY appear to be mediated through the amygdala. We hypothesized that intra-amygdalar administration of NPY might alter food preference without changing total food intake. Neuropeptide Y was administered into the central nucleus of the amygdala in both satiated and overnight-fasted rats, and intake and preference for a high fat diet (56%)/low carbohydrate (20%) diet or a low fat (10%)/high carbohydrate (66%) diet were measured. Intra-amygdalar NPY administration in satiated rats did not change total caloric intake, but it did produce a dose-dependent decrease in intake of and preference for high fat diet relative to low fat diet over 24 h. In overnight-fasted rats, intra-amygdalar NPY also decreased the intake and preference for a high fat diet relative to low fat diet over 24 h, without altering total caloric intake. Intra-amygdalar NPY administration did not produce conditioned taste aversions to a novel saccharin solution. These results suggest that amygdalar NPY may have a role in macronutrient selection, without altering total caloric intake.

  6. Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.

    PubMed

    Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen

    2011-08-01

    Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters.

  7. A High Fat Diet and NAD+ Rescue Premature Aging in Cockayne Syndrome

    PubMed Central

    Scheibye-Knudsen, Morten; Mitchell, Sarah J.; Fang, Evandro F.; Iyama, Teruaki; Ward, Theresa; Wang, James; Dunn, Christopher A.; Singh, Nagendra; Veith, Sebastian; Hasan, M. Mahdi; Mangerich, Aswin; Wilson, Mark A.; Mattson, Mark P.; Bergersen, Linda H.; Cogger, Victoria C.; Warren, Alessandra; Le Couteur, David G.; Moaddel, Ruin; Wilson, David M.; Croteau, Deborah L.; de Cabo, Rafael; Bohr, Vilhelm A.

    2014-01-01

    Summary Cockayne syndrome (CS) is an accelerated aging disorder characterized by progressive neurodegeneration caused by mutations in the genes encoding the DNA repair proteins CSA or CSB. Csbm/m mice were given a high fat, caloric restricted or resveratrol supplemented diet. The high fat diet rescued the phenotype of Csbm/m mice at the metabolic, transcriptomic and behavioral levels. Additional analysis suggests that the premature aging seen in CS mice, nematodes and human cells results from aberrant PARP activation due to deficient DNA repair leading to decreased SIRT1 activity and mitochondrial dysfunction. Notably, β-hydroxybutyrate levels are increased by the high fat diet; and β-hydroxybutyrate, PARP inhibition, or NAD+ supplementation can activate SIRT1 and rescue CS-associated phenotypes. Mechanistically, CSB is able to displace activated PARP1 from damaged DNA to limit its activity. This study connects two emerging longevity metabolites, β-hydroxybutyrate and NAD+, through the deacetylase SIRT1 and suggests possible interventions for CS. PMID:25440059

  8. Influence of dark phase restricted high fat feeding on myocardial adaptation in mice.

    PubMed

    Tsai, Ju-Yun; Villegas-Montoya, Carolina; Boland, Brandon B; Blasier, Zachary; Egbejimi, Oluwaseun; Gonzalez, Raquel; Kueht, Michael; McElfresh, Tracy A; Brewer, Rachel A; Chandler, Margaret P; Bray, Molly S; Young, Martin E

    2013-02-01

    Prolonged high fat feeding is associated with myocardial contractile dysfunction in rodents. However, epidemiological data do not necessarily support the concept that fat-enriched diets adversely affect cardiac function in humans. When fed in an ad libitum manner, laboratory rodents consume chow throughout the day. In contrast, humans typically consume food only during the awake phase. Discrepancies between rodent and human feeding behaviors led us to hypothesize that the time of day at which dietary lipids are consumed significantly influences myocardial adaptation. In order to better mimic feeding behavior in humans, mice were fed (either a control or high fat diet) only during the 12-hour dark phase (i.e., no food was provided during the light phase). We report that compared to dark phase restricted control diet fed mice, mice fed a high fat diet during the dark phase exhibit: 1) essentially normal body weight gain and energy balance; 2) increased fatty acid oxidation at whole body, as well as skeletal and cardiac muscle (in the presence of insulin and/or at high workloads) levels; 3) induction of fatty acid responsive genes, including genes promoting triglyceride turnover in the heart; 4) no evidence of cardiac hypertrophy; and 5) persistence/improvement of myocardial contractile function, as assessed ex vivo. These data are consistent with the hypothesis that ingestion of dietary fat only during the more active/awake period allows adequate metabolic adaptation, thereby preserving myocardial contractile function. This article is part of a Special Issue entitled "Focus on cardiac metabolism".

  9. Hypocholesterolemic effect of daily fisetin supplementation in high fat fed Sprague-Dawley rats.

    PubMed

    Shin, Min-Jeong; Cho, Yoonsu; Moon, Jiyoung; Jeon, Hyun Ju; Lee, Seung-Min; Chung, Ji Hyung

    2013-07-01

    We aimed to test whether fisetin could modulate cholesterol homeostasis in rats with diet-induced hypercholesterolemia, and further investigated the underlying mechanisms by which fisetin exerts its cholesterol lowering effect. Blood lipid profile, hepatic cholesterol content, as well as gene expressions in cholesterol metabolism were examined. Elevated levels of total cholesterol and LDL-cholesterol, along with hepatic cholesterol content in a high fat group were found to be significantly reduced by fisetin. The high fat diet significantly decreased hepatic mRNA levels of LDLR, SREBP2, HMGCR and PCSK9 in comparison to the control diet, however, fisetin did not further elicit any changes in mRNA levels of the same genes. The high fat diet dramatically increased the transcript levels of CYP7A1, which was subsequently reversed by the fisetin. In HepG2 cells, fisetin was found to increase the levels of a nuclear form of SREBP2 and LDLR. In conclusion, fisetin supplementation displayed hypocholesterolemic effects by modulating the expression of genes associated with cholesterol and bile acid metabolism.

  10. Correlates of high fat/calorie food intake in a worksite population: the Healthy Worker Project.

    PubMed

    Shah, M; French, S A; Jeffery, R W; McGovern, P G; Forster, J L; Lando, H A

    1993-01-01

    Behavioral and sociodemographic correlates of high fat/calorie food consumption were examined in a population-based sample of working adults (N = 2038 men; N = 2335 women). Relative weight, dieting history, and cigarette smoking were significantly related to total energy intake from high fat/calorie foods. Relative weight was positively related to the intake of meat, eggs, fried potatoes, and fats. Current dieting to lose weight was associated with a lower intake of all foods, except alcohol and fats. These foods were unrelated to dieting status in men and positively related to dieting status in women. Physical activity and smoking were related to higher intake of high fat/calorie foods. Smokers consumed fewer sweet foods than nonsmokers, however. These results underscore the importance of controlling for dieting status, as well as other behavioral and demographic variables, in population studies of dietary intake. They also suggest factors that may be important in the etiology of unhealthy eating patterns and potential targets for dietary intervention.

  11. High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity

    PubMed Central

    Martins, Fernando; Campos, Dijon Henrique Salomé; Pagan, Luana Urbano; Martinez, Paula Felippe; Okoshi, Katashi; Okoshi, Marina Politi; Padovani, Carlos Roberto; de Souza, Albert Schiaveto; Cicogna, Antonio Carlos; de Oliveira-Junior, Silvio Assis

    2015-01-01

    Background Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity. Objective To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet. Methods Sixteen Wistar rats were used, distributed into two groups, the control (C) group, treated with isocaloric diet (2.93 kcal/g) and an obese (OB) group, treated with high-fat diet (3.64 kcal/g). The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed. Results High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained. Conclusions It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity. PMID:26291841

  12. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  13. Green tea extract with polyethylene glycol-3350 reduces body weight and improves glucose tolerance in db/db and high-fat diet mice.

    PubMed

    Park, Jae-Hyung; Choi, Yoon Jung; Kim, Yong Woon; Kim, Sang Pyo; Cho, Ho-Chan; Ahn, Shinbyoung; Bae, Ki-Cheor; Im, Seung-Soon; Bae, Jae-Hoon; Song, Dae-Kyu

    2013-08-01

    Green tea extract (GTE) is regarded to be effective against obesity and type 2 diabetes, but definitive evidences have not been proven. Based on the assumption that the gallated catechins (GCs) in GTE attenuate intestinal glucose and lipid absorption, while enhancing insulin resistance when GCs are present in the circulation through inhibiting cellular glucose uptake in various tissues, this study attempted to block the intestinal absorption of GCs and prolong their residence time in the lumen. We then observed whether GTE containing the nonabsorbable GCs could ameliorate body weight (BW) gain and glucose intolerance in db/db and high-fat diet mice. Inhibition of the intestinal absorption of GCs was accomplished by co-administering the nontoxic polymer polyethylene glycol-3350 (PEG). C57BLKS/J db/db and high-fat diet C57BL/6 mice were treated for 4 weeks with drugs as follows: GTE, PEG, GTE+PEG, voglibose, or pioglitazone. GTE mixed with meals did not have any ameliorating effects on BW gain and glucose intolerance. However, the administration of GTE plus PEG significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite. The effect was comparable to the effects of an α-glucosidase inhibitor and a peroxisome proliferator-activated receptor-γ/α agonist. These results indicate that prolonging the action of GCs of GTE in the intestinal lumen and blocking their entry into the circulation may allow GTE to be used as a prevention and treatment for both obesity and obesity-induced type 2 diabetes.

  14. Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism.

    PubMed

    Deminice, Rafael; da Silva, Robin P; Lamarre, Simon G; Kelly, Karen B; Jacobs, René L; Brosnan, Margaret E; Brosnan, John T

    2015-04-01

    The purpose of this study was to examine the effects of betaine supplementation on the regulation of one-carbon metabolism and liver lipid accumulation induced by a high-fat diet in rats. Rats were fed one of three different liquid diets: control diet, high-fat diet and high-fat diet supplemented with betaine. The control and high-fat liquid diets contained, respectively, 35 and 71 % of energy derived from fat. Betaine supplementation involved the addition of 1 % (g/L) to the diet. After three weeks on the high-fat diet the rats had increased total liver fat concentration, liver triglycerides, liver TBARS and plasma TNF-α. The high-fat diet decreased the hepatic S-adenosylmethionine concentration and the S-adenosylmethionine/S-adenosylhomocysteine ratio compared to the control as well as altering the expression of genes involved in one-carbon metabolism. Betaine supplementation substantially increased the hepatic S-adenosylmethionine concentration (~fourfold) and prevented fatty liver and hepatic injury induced by the high-fat diet. It was accompanied by the normalization of the gene expression of BHMT, GNMT and MGAT, which code for key enzymes of one-carbon metabolism related to liver fat accumulation. In conclusion, the regulation of the expression of MGAT by betaine supplementation provides an additional and novel mechanism by which betaine supplementation regulates lipid metabolism and prevents accumulation of fat in the liver.

  15. Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters.

    PubMed

    Boa, Beatriz C S; Souza, Maria das Graças C; Leite, Richard D; da Silva, Simone V; Barja-Fidalgo, Thereza Christina; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2014-01-01

    Obesity is epidemic in the western world and central adipose tissue deposition points to increased cardiovascular morbidity and mortality, independently of any association between obesity and other cardiovascular risk factors. Physical exercise has been used as non-pharmacological treatment to significantly reverse/attenuate obesity comorbidities. In this study we have investigated effects of exercise and/or dietary modification on microcirculatory function, body composition, serum glucose, iNOS and eNOS expression on 120 male hamsters treated for 12 weeks with high fat chow (HF, n = 30) starting on the 21st day of birth. From week 12 to 20, animals were randomly separated in HF (no treatment change), return to standard chow (HFSC, n = 30), high fat chow associated to an aerobic exercise training program (AET) (HFEX, n = 30) and return to standard chow+AET (HFSCEX, n = 30). Microvascular reactivity in response to acetylcholine and sodium nitroprusside and macromolecular permeability increase induced by 30 minutes ischemia followed by reperfusion were assessed on the cheek pouch preparation. Total body fat and aorta eNOS and iNOS expression by immunoblotting assay were evaluated on the experimental day. Compared to HFSC and HFSCEX groups, HF and HFEX ones presented increased visceral fat [(mean±SEM) (HF)4.9±1.5 g and (HFEX)4.7±0.9 g vs. (HFSC)*3.0±0.7 g and (HFSCEX)*1.9±0.4 g/100 g BW]; impaired endothelial-dependent vasodilatation [Ach 10(-8) M (HF)87.9±2.7%; (HFSC)*116.7±5.9%; (HFEX)*109.1±4.6%; (HFSCEX)*105±2.8%; Ach10(-6) M (HF)95.3±3.1%; (HFSC)*126±6.2%; (HFEX)*122.5±2.8%; (HFSCEX)*118.1±4.3% and Ach10(-4) M (HF)109.5±4.8%; (HFSC)*149.6±6.6%; (HFEX)*143.5±5.4% and (HFSCEX)*139.4±5.2%], macromolecular permeability increase after ischemia/reperfusion [(HF)40.5±4.2; (HFSC)*19.0±1.6; (HFEX)*18.6±2.1 and (HFSCEX)* 21.5±3.7 leaks/cm2), decreased eNOS expression, increased leptin and glycaemic levels. Endothelial

  16. Short-Term High Fat Intake Does Not Significantly Alter Markers of Renal Function or Inflammation in Young Male Sprague-Dawley Rats.

    PubMed

    Crinigan, Catherine; Calhoun, Matthew; Sweazea, Karen L

    2015-01-01

    Chronic high fat feeding is correlated with diabetes and kidney disease. However, the impact of short-term high fat diets (HFD) is not well-understood. Six weeks of HFD result in indices of metabolic syndrome (increased adiposity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hyperleptinemia, and impaired endothelium-dependent vasodilation) compared to rats fed on standard chow. The hypothesis was that short-term HFD would induce early signs of renal disease. Young male Sprague-Dawley rats were fed either HFD (60% fat) or standard chow (5% fat) for six weeks. Morphology was determined by measuring changes in renal mass and microstructure. Kidney function was measured by analyzing urinary protein, creatinine, and hydrogen peroxide (H2O2) concentrations, as well as plasma cystatin C concentrations. Renal damage was measured through assessment of urinary oxDNA/RNA concentrations as well as renal lipid peroxidation, tumor necrosis factor alpha (TNFα), and interleukin 6 (IL-6). Despite HFD significantly increasing adiposity and renal mass, there was no evidence of early stage kidney disease as measured by changes in urinary and plasma biomarkers as well as histology. These findings suggest that moderate hyperglycemia and inflammation produced by short-term HFD are not sufficient to damage kidneys or that the ketogenic HFD may have protective effects within the kidneys.

  17. Plasma Acylcarnitines and Amino Acid Levels As an Early Complex Biomarker of Propensity to High-Fat Diet-Induced Obesity in Mice

    PubMed Central

    Bardova, Kristina; Gardlo, Alzbeta; Rombaldova, Martina; Kuda, Ondrej; Rossmeisl, Martin; Kopecky, Jan

    2016-01-01

    Obesity is associated with insulin resistance and impaired glucose tolerance, which represent characteristic features of the metabolic syndrome. Development of obesity is also linked to changes in fatty acid and amino acid metabolism observed in animal models of obesity as well as in humans. The aim of this study was to explore whether plasma metabolome, namely the levels of various acylcarnitines and amino acids, could serve as a biomarker of propensity to obesity and impaired glucose metabolism. Taking advantage of a high phenotypic variation in diet-induced obesity in C57BL/6J mice, 12-week-old male and female mice (n = 155) were fed a high-fat diet (lipids ~32 wt%) for a period of 10 weeks, while body weight gain (BWG) and changes in insulin sensitivity (ΔHOMA-IR) were assessed. Plasma samples were collected before (week 4) and after (week 22) high-fat feeding. Both univariate and multivariate statistical analyses were then used to examine the relationships between plasma metabolome and selected phenotypes including BWG and ΔHOMA-IR. Partial least squares-discrimination analysis was able to distinguish between animals selected either for their low or high BWG (or ΔHOMA-IR) in male but not female mice. Among the metabolites that differentiated male mice with low and high BWG, and which also belonged to the major discriminating metabolites when analyzed in plasma collected before and after high-fat feeding, were amino acids Tyr and Orn, as well as acylcarnitines C16-DC and C18:1-OH. In general, the separation of groups selected for their low or high ΔHOMA-IR was less evident and the outcomes of a corresponding multivariate analysis were much weaker than in case of BWG. Thus, our results document that plasma acylcarnitines and amino acids could serve as a gender-specific complex biomarker of propensity to obesity, however with a limited predictive value in case of the associated impairment of insulin sensitivity. PMID:27183228

  18. Plasma Acylcarnitines and Amino Acid Levels As an Early Complex Biomarker of Propensity to High-Fat Diet-Induced Obesity in Mice.

    PubMed

    Horakova, Olga; Hansikova, Jana; Bardova, Kristina; Gardlo, Alzbeta; Rombaldova, Martina; Kuda, Ondrej; Rossmeisl, Martin; Kopecky, Jan

    2016-01-01

    Obesity is associated with insulin resistance and impaired glucose tolerance, which represent characteristic features of the metabolic syndrome. Development of obesity is also linked to changes in fatty acid and amino acid metabolism observed in animal models of obesity as well as in humans. The aim of this study was to explore whether plasma metabolome, namely the levels of various acylcarnitines and amino acids, could serve as a biomarker of propensity to obesity and impaired glucose metabolism. Taking advantage of a high phenotypic variation in diet-induced obesity in C57BL/6J mice, 12-week-old male and female mice (n = 155) were fed a high-fat diet (lipids ~32 wt%) for a period of 10 weeks, while body weight gain (BWG) and changes in insulin sensitivity (ΔHOMA-IR) were assessed. Plasma samples were collected before (week 4) and after (week 22) high-fat feeding. Both univariate and multivariate statistical analyses were then used to examine the relationships between plasma metabolome and selected phenotypes including BWG and ΔHOMA-IR. Partial least squares-discrimination analysis was able to distinguish between animals selected either for their low or high BWG (or ΔHOMA-IR) in male but not female mice. Among the metabolites that differentiated male mice with low and high BWG, and which also belonged to the major discriminating metabolites when analyzed in plasma collected before and after high-fat feeding, were amino acids Tyr and Orn, as well as acylcarnitines C16-DC and C18:1-OH. In general, the separation of groups selected for their low or high ΔHOMA-IR was less evident and the outcomes of a corresponding multivariate analysis were much weaker than in case of BWG. Thus, our results document that plasma acylcarnitines and amino acids could serve as a gender-specific complex biomarker of propensity to obesity, however with a limited predictive value in case of the associated impairment of insulin sensitivity. PMID:27183228

  19. Onion peel tea ameliorates obesity and affects blood parameters in a mouse model of high-fat-diet-induced obesity.

    PubMed

    Matsunaga, Shogo; Azuma, Kazuo; Watanabe, Mayumi; Tsuka, Takeshi; Imagawa, Tomohiro; Osaki, Tomohiro; Okamoto, Yoshiharu

    2014-02-01

    The present study examined the effects of onion peel tea (OPT) in a mouse model of high-fat-diet-induced obesity. BALB/c mice were fed a high-fat diet for three weeks, followed by a normal diet with or without OPT for 28 days. OPT suppressed the increases in body weight and level of epididymal fat tissue; it also significantly reduced the serum concentrations of total cholesterol on day 14 and those of glucose and leptin on day 28. The results indicate that OPT has anti-obesity effects in an experimental mouse model of high-fat-diet-induced obesity. PMID:24396409

  20. Diet-Induced Maternal Obesity Alters Insulin Signalling in Male Mice Offspring Rechallenged with a High-Fat Diet in Adulthood

    PubMed Central

    de Fante, Thaís; Simino, Laís Angélica; Reginato, Andressa; Payolla, Tanyara Baliani; Vitoréli, Débora Cristina Gustavo; de Souza, Monique; Torsoni, Márcio Alberto; Milanski, Marciane; Torsoni, Adriana Souza

    2016-01-01

    Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnant women and the young population. It has been well established that the consumption of a high-fat diet (HFD) has many direct effects on glucose metabolism. However, it is important to assess whether maternal consumption of a HFD during critical periods of development can lead to metabolic changes in the offspring metabolism. This study evaluated the potential effects of metabolic programming on the impairment of insulin signalling in recently weaned offspring from obese dams. Additionally, we investigated if early exposure to an obesogenic environment could exacerbate the impairment of glucose metabolism in adult life in response to a HFD. Swiss female mice were fed with Standard Chow (SC) or a HFD during gestation and lactation and tissues from male offspring were analysed at d28 and d82. Offspring from obese dams had greater weight gain and higher adiposity and food intake than offspring from control dams. Furthermore, they showed impairment in insulin signalling in central and peripheral tissues, which was associated with the activation of inflammatory pathways. Adipose tissue was ultimately the most affected in adult offspring after HFD rechallenge; this may have contributed to the metabolic deregulation observed. Overall, our results suggest that diet-induced maternal obesity leads to increased susceptibility to obesity and impairment of insulin signalling in offspring in early and late life that cannot be reversed by SC consumption, but can be aggravated by HFD re-exposure. PMID:27479001

  1. Positive correlation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats.

    PubMed

    You, Jeong Soon; Zhao, Xu; Kim, Sung Hoon; Chang, Kyung Ja

    2013-01-01

    The purpose of this study was to investigate the relationship between serum taurine level and serum adiponectin or leptin levels in high-fat diet-induced obesity rats. Five-week-old male Sprague-Dawley rats were randomly divided into three groups for a period of 8 weeks (normal diet, N group; high-fat diet, HF group; high-fat diet + taurine, HFT group). Taurine was supplemented by dissolving in feed water (3% w/v), and the same amount of distilled water was orally administrated to N and HF groups. In serum, adiponectin level was higher in HFT group compared to HF group. The serum taurine level was negatively correlated with serum total cholesterol (TC) level and positively correlated with serum adiponectin level. These results suggest that dietary taurine supplementation has beneficial effects on total cholesterol and adiponectin levels in high-fat diet-induced obesity rats.

  2. Effect of Morinda citrifolia (Noni) Fruit Juice on High Fat Diet Induced Dyslipidemia in Rats

    PubMed Central

    Shoeb, Ahsan; Alwar, M.C.; Gokul, P.

    2016-01-01

    Introduction The medicinal value of Morinda citrifolia L. (commonly known as Noni) has been explored in ancient folk remedies with a wide range of therapeutic utility, including antibacterial, antiviral, antifungal, antitumour, analgesic, hypotensive, anti-inflammatory and immune enhancing effects. Aim The present study was designed to evaluate the effects of Noni fruit juice on serum lipid profile in high fat diet induced murine model of dyslipidemia. Materials and Methods Hyperlipidemia was induced by feeding a cholesterol rich high fat diet for 45 days in wistar albino rats of either sex (n=8). Noni fruit juice administered at 50mg/kg/day and 100mg/kg/day, per oral, was compared with the standard drug Atorvastatin (10mg/kg/day, oral) fed for the latter 30 days. The blood samples were then sent for complete blood lipid profile, after 30 days of treatment. The data presented as mean ± SEM was analyzed using one-way ANOVA followed by Tukey’s post-hoc test. The p <0.05 was considered as statistically significant. Results The Noni fruit juice treated group showed a significant decrease in the total cholesterol, triglycerides and very low density lipoprotein - Cholesterol at both the doses when compared to the disease control (p<0.05). However, the decrease in the TC (102.75±9.79 mg/dL) and LDL-C (47.87±7.47 mg/dL) levels observed with the noni fruit juice at the 50mg/kg dose employed, failed to show a statistical significance when compared to atorvastatin. Conclusion The present study provides evidence for the hypolipidemic activity of Noni fruit juice in high fat diet induced hyperlipidemia in rats. PMID:27190827

  3. Endurance capacity and high-intensity exercise performance responses to a high fat diet.

    PubMed

    Fleming, Jesse; Sharman, Matthew J; Avery, Neva G; Love, Dawn M; Gómez, Ana L; Scheett, Timothy P; Kraemer, William J; Volek, Jeff S

    2003-12-01

    The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate protein (HFMP; 61% fat diet) (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (-2.2 kg; p < or = .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 +/- 0.14 to 3.27 +/- 0.09 L x min(-1)) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (-10 and -20%, respectively) group but not the C (-8 and -16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (-18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.

  4. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK)*

    PubMed Central

    Chan, Kenny L.; Pillon, Nicolas J.; Sivaloganathan, Darshan M.; Costford, Sheila R.; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-01-01

    A rise in tissue-embedded macrophages displaying “M1-like” proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues. PMID:25987561

  5. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    PubMed

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-01

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  6. Meals Served in Public Schools.

    ERIC Educational Resources Information Center

    Vivigal, Lisa

    The Physicians Committee for Responsible Medicine (PCRM) contacted public school districts around the United States to determine if they offered low-fat, healthful meals. The PCRM ranked the schools according to whether they served low-fat and vegetarian meals daily, whether these meals varied through the week, and whether children needed to…

  7. Districts Tackling Meal Debt

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2012-01-01

    School districts have resorted to hiring debt collectors, employing constables, and swapping out standard meals for scaled-back versions to try to coerce parents to pay off school lunch debt that, in recent years, appears to have surged as the result of a faltering economy and better record-keeping. While the average school lunch costs just about…

  8. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Fernandez, Francesca; Dinh, Chi H L; Huang, Xu-Feng

    2015-06-01

    High fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to learning and memory impairments. Previous studies of oleanolic acid derivatives have found that these compounds can cross the blood-brain barrier to prevent neuronal cell death. We examined the hypothesis that the oleanolic acid derivative, bardoxolone methyl (BM) would prevent diet-induced cognitive deficits in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC) (5% of energy as fat), a HF (40% of energy as fat), or a HF diet supplemented with 10mg/kg/day BM orally for 21weeks. Recognition memory was assessed by performing a novel object recognition test on the treated mice. Downstream brain-derived neurotrophic factor (BDNF) signalling molecules were examined in the prefrontal cortex (PFC) and hippocampus of mice via Western blotting and N-methyl-d-aspartate (NMDA) receptor binding. BM treatment prevented HF diet-induced impairment in recognition memory (p<0.001). In HF diet fed mice, BM administration attenuated alterations in the NMDA receptor binding density in the PFC (p<0.05), however, no changes were seen in the hippocampus (p>0.05). In the PFC and hippocampus of the HF diet fed mice, BM administration improved downstream BDNF signalling as indicated by increased protein levels of BDNF, phosphorylated tropomyosin related kinase B (pTrkB) and phosphorylated protein kinase B (pAkt), and increased phosphorylated AMP-activated protein kinase (pAMPK) (p<0.05). BM administration also prevented the HF diet-induced increase in the protein levels of inflammatory molecules, phosphorylated c-Jun N-terminal kinase (pJNK) in the PFC, and protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus. In summary, these findings suggest that BM prevents HF diet-induced impairments in recognition memory by improving downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the PFC and hippocampus.

  9. Impact of ovariectomy, high fat diet, and lifestyle modifications on oxidative/antioxidative status in the rat liver

    PubMed Central

    Vuković, Rosemary; Blažetić, Senka; Oršolić, Ivana; Heffer, Marija; Vari, Sandor G.; Gajdoš, Martin; Krivošíková, Zora; Kramárová, Patrícia; Kebis, Anton; Has-Schön, Elizabeta

    2014-01-01

    Aim To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. Methods The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. Results High fat diet significantly increased TBARS content in the liver compared to standard diet (P = 0.032, P = 0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P < 0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P = 0.026, P = 0.009), while in ovariectomized group CAT activity was increased (P = 0.018) in rats that received cereal selenized onion biscuits. Conclusion Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status. PMID:24891280

  10. Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats.

    PubMed

    Rodriguez-Mateos, Ana; Ishisaka, Akari; Mawatari, Kazuaki; Vidal-Diez, Alberto; Spencer, Jeremy P E; Terao, Junji

    2013-05-28

    Growing evidence suggests that intake of flavonoid-containing foods may exert cardiovascular benefits in human subjects. We have investigated the effects of a 10-week blueberry (BB) supplementation on blood pressure (BP) and vascular reactivity in rats fed a high-fat/high-cholesterol diet, known to induce endothelial dysfunction. Rats were randomly assigned to follow a control chow diet, a chow diet supplemented with 2 % (w/w) BB, a high-fat diet (10 % lard; 0·5 % cholesterol) or the high fat plus BB for 10 weeks. Rats supplemented with BB showed significant reductions in systolic BP (SBP) of 11 and 14 %, at weeks 8 and 10, respectively, relative to rats fed the control chow diet (week 8 SBP: 107·5 (SEM 4·7) v. 122·2 (SEM 2·1) mmHg, P= 0·018; week 10 SBP: 115·0 (SEM 3·1) v. 132·7 (SEM 1·5) mmHg, P< 0·0001). Furthermore, SBP was reduced by 14 % in rats fed with the high fat plus 2 % BB diet at week 10, compared to those on the high-fat diet only (SBP: 118·2 (SEM 3·6) v. 139·5 (SEM 4·5) mmHg, P< 0·0001). Aortas harvested from BB-fed animals exhibited significantly reduced contractile responses (to L-phenylephrine) compared to those fed the control chow or high-fat diets. Furthermore, in rats fed with high fat supplemented with BB, aorta relaxation was significantly greater in response to acetylcholine compared to animals fed with the fat diet. These data suggest that BB consumption can lower BP and improve endothelial dysfunction induced by a high fat, high cholesterol containing diet. PMID:23046999

  11. Effects of pectin lyase-modified red ginseng extracts in high-fat diet-fed obese mice

    PubMed Central

    Lee, Hak-Yong; Park, Kwang-Hyun; Park, Young-Mi; Moon, Dae-In; Oh, Hong-Geun; Kwon, Dae-Young; Yang, Hye-Jeong; Kim, Okjin; Kim, Dong-Woo; Yoo, Ji-Hyun; Hong, Se-Chul; Lee, Kun-Hee; Seol, Su-Yeon; Park, Yong-Sik; Park, Jong-Dae

    2014-01-01

    Red ginseng and its extracts have been used as traditional medicines and functional foods in countries worldwide. The aim of this study was to examine the bioavailability of pectin lyase-modified red ginseng extracts (GS-E3D), and the effects of GS-E3D on adipogenesis of 3T3-L1 adipocytes, as well as on metabolic disorders such as hyperglycemia, dyslipidemia, and fatty liver in high-fat diet fed obese C57BL/6 mice. Mice were divided into 5 groups: normal diet group, high fat diet-vehicle group, high fat diet + 0.1 g/kg GS-E3D (0.1-GS-E3D), high fat diet + 0.3 g/kg (0.3-GS-E3D), high fat diet + 1.0 g/kg (1.0-GS-E3D). Treatment of GS-E3D reduced differentiation of 3T3-L1 adipocytes with low cytotoxicity. In the animal model, compared to the high fat diet control, serum glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TG, and leptin level were reduced in treatment animals in a dose-dependent manner. In addition, we found that GS-E3D could decrease total hepatic lipid droplets. These results suggest that GS-E3D, as a dietary supplement, has beneficial effects on obesity and may have useful effects in health-care products. PMID:25628725

  12. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress.

    PubMed

    Vijayakumar, R S; Surya, D; Nalini, N

    2004-01-01

    The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.

  13. AKT and AMPK activation after high-fat and high-glucose in vitro treatment of prostate epithelial cells.

    PubMed

    Ribeiro, D L; Góes, R M; Pinto-Fochi, M E; Taboga, S R; Abrahamsson, P-A; Dizeyi, N

    2014-06-01

    Considering the increasing consumption of saturated fat and glucose in diets worldwide and its possible association to carcinogenesis, this investigation analysed the proliferation profile of nonmalignant human prostate epithelial cells after exposure to elevated levels of fat and glucose. PNT1A cells were cultured with palmitate (100 or 200 μM) and/or glucose (450 mg/dl) for 24 or 48 h. Treated cells were evaluated for viability test and cell proliferation (MTS assay). AKT and AMPK phosphorylation status were analysed by Western blotting. After 24 h of high-fat alone or associated with high-glucose treatment, there was an increase in AMPK and AKT activation associated to unchanged MTS-cell proliferation. Following 48 h of high-fat but not high-glucose alone, cells decreased AMPK activation and maintained elevated AKT levels. These data were associated to increased cell proliferation after further high-fat treatment. After longer high-fat exposure, MTS revealed that cells remained proliferating. High-glucose alone or associated to high-fat treatment was not able to increase cell proliferation and AKT activation. A high-fat medium containing 100 μM of palmitate stimulates proliferation in PNT1A cells by decreasing the activation of AMPK and increasing activation of AKT after longer exposure time. These findings improve the knowledge about the negative effect of high levels of this saturated fatty acid on proliferative disorders of prostate.

  14. Phenotypic Changes in Diabetic Neuropathy Induced by a High-Fat Diet in Diabetic C57Bl/6 Mice

    PubMed Central

    Guilford, B. L.; Ryals, J. M.; Wright, D. E.

    2011-01-01

    Emerging evidence suggests that dyslipidemia is an independent risk factor for diabetic neuropathy (DN) (reviewed by Vincent et al. 2009). To experimentally determine how dyslipidemia alters DN, we quantified neuropathic symptoms in diabetic mice fed a high-fat diet. Streptozotocin-induced diabetic C57BL/6 mice fed a high-fat diet developed dyslipidemia and a painful neuropathy (mechanical allodynia) instead of the insensate neuropathy (mechanical insensitivity) that normally develops in this strain. Nondiabetic mice fed a high-fat diet also developed dyslipidemia and mechanical allodynia. Thermal sensitivity was significantly reduced in diabetic compared to nondiabetic mice, but was not worsened by the high-fat diet. Moreover, diabetic mice fed a high-fat diet had significantly slower sensory and motor nerve conduction velocities compared to nondiabetic mice. Overall, dyslipidemia resulting from a high-fat diet may modify DN phenotypes and/or increase risk for developing DN. These results provide new insight as to how dyslipidemia may alter the development and phenotype of diabetic neuropathy. PMID:22144990

  15. Impact of High-Fat Diet and Obesity on Energy Balance and Fuel Utilization During the Metabolic Challenge of Lactation

    PubMed Central

    Wahlig, Jessica L.; Bales, Elise S.; Jackman, Matthew R.; Johnson, Ginger C.; McManaman, James L.; MacLean, Paul S.

    2014-01-01

    The effects of obesity and a high-fat (HF) diet on whole body and tissue-specific metabolism of lactating dams and their offspring were examined in C57/B6 mice. Female mice were fed low-fat (LF) or HF diets before and throughout pregnancy and lactation. HF-fed mice were segregated into lean (HF-Ln) and obese (HF-Ob) groups before pregnancy by their weight gain response. Compared to LF-Ln dams, HF-Ln, and HF-Ob dams exhibited a greater positive energy balance (EB) and increased dietary fat retention in peripheral tissues (P < 0.05). HF-Ob dams had greater dietary fat retention in liver and adipose compared to HF-Ln dams (P < 0.05). De novo synthesized fat was decreased in tissues and milk from HF-fed dams compared to LF-Ln dams (P < 0.05). However, less dietary and de novo synthesized fat was found in the HF-Ob mammary glands compared to HF-Ln (P < 0.05). Obesity was associated with reduced milk triglycerides relative to lean controls (P < 0.05). Compared to HF diet alone obesity has additional adverse affects, impairing both lipid metabolism as well as milk fat production. Growth rates of LF-Ln litters were lower than HF-Ln and HF-Ob litters (P < 0.05). Total energy expenditure (TEE) of HF-Ob litters was reduced relative to HF-Ln litters, whereas their respiratory exchange ratios (RERs) were increased (P < 0.05). Collectively these data show that consumption of a HF diet significantly affects maternal and neonatal metabolism and that maternal obesity can independently alter these responses. PMID:21720435

  16. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    PubMed Central

    Heyman-Lindén, Lovisa; Kotowska, Dorota; Sand, Elin; Bjursell, Mikael; Plaza, Merichel; Turner, Charlotta; Holm, Cecilia; Fåk, Frida; Berger, Karin

    2016-01-01

    Background The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF)-induced metabolic alterations. Methods Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2) during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP) as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain. PMID:27125264

  17. A high-fat diet rich in corn oil reduces spontaneous locomotor activity and induces insulin resistance in mice.

    PubMed

    Wong, Chi Kin; Botta, Amy; Pither, Jason; Dai, Chuanbin; Gibson, William T; Ghosh, Sanjoy

    2015-04-01

    Over the last few decades, polyunsaturated fatty acid (PUFA), especially n-6 PUFA, and monounsaturated fatty acid content in 'Western diets' has increased manyfold. Such a dietary shift also parallels rising sedentary behavior and diabetes in the Western world. We queried if a shift in dietary fats could be linked to physical inactivity and insulin insensitivity in mice. Eight-week old female C57/Bl6 mice were fed either high-fat (HF) diets [40% energy corn oil (CO) or isocaloric olive oil (OO) diets] or chow (n=10/group) for 6 weeks, followed by estimation of spontaneous locomotor activity, body composition and in vivo metabolic outcomes. Although lean mass and resting energy expenditure stayed similar in both OO- and CO-fed mice, only CO-fed mice demonstrated reduced spontaneous locomotor activity. Such depressed activity in CO-fed mice was accompanied by a lower respiratory ratio, hyperinsulinemia and impaired glucose disposal following intraperitoneal glucose tolerance and insulin tolerance tests compared to OO-fed mice. Unlike the liver, where both HF diets increased expression of fat oxidation genes like PPARs, the skeletal muscle of CO-fed mice failed to up-regulate such genes, thereby supporting the metabolic insufficiencies observed in these mice. In summary, this study demonstrates a specific contribution of n-6 PUFA-rich oils like CO to the loss of spontaneous physical activity and insulin sensitivity in mice. If these data hold true for humans, this study could provide a novel link between recent increases in dietary n-6 PUFA to sedentary behavior and the development of insulin resistance in the Western world.

  18. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Ward, Leigh C; Waanders, Jennifer; Brown, Lindsay

    2012-06-15

    Age-related physiological changes develop at the same time as the increase in metabolic syndrome in humans after young adulthood. There is a paucity of data in models mimicking chronic diet-induced changes in human middle age and interventions to reverse these changes. This study measured the changes during chronic consumption of a high-carbohydrate (as cornstarch), low-fat (C) diet and a high-carbohydrate (as fructose and sucrose), high-fat (H) diet in rats for 32 wk. C diet feeding induced changes without metabolic syndrome, such as disproportionate increases in total body lean and fat mass, reduced bone mineral content, cardiovascular remodeling with increased systolic blood pressure, left ventricular and arterial stiffness, and increased plasma markers of liver injury. H diet feeding induced visceral adiposity with reduced lean mass, increased lipid infiltration in the skeletal muscle, impaired glucose and insulin tolerance, cardiovascular remodeling, hepatic steatosis, and increased infiltration of inflammatory cells in the heart and the liver. Chia seed supplementation for 24 wk attenuated most structural and functional modifications induced by age or H diet, including increased whole body lean mass and lipid redistribution from the abdominal area, and normalized the chronic low-grade inflammation induced by H diet feeding; these effects may be mediated by increased metabolism of anti-inflammatory n-3 fatty acids from chia seed. These results suggest that chronic H diet feeding for 32 wk mimics the diet-induced cardiovascular and metabolic changes in middle age and that chia seed may serve as an alternative dietary strategy in the management of these changes.

  19. Deletion of miR-150 Exacerbates Retinal Vascular Overgrowth in High-Fat-Diet Induced Diabetic Mice

    PubMed Central

    Shi, Liheng; Kim, Andy Jeesu; Chang, Richard Cheng-An; Chang, Janet Ya-An; Ying, Wei; Ko, Michael L.; Zhou, Beiyan; Ko, Gladys Yi-Ping

    2016-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness among American adults above 40 years old. The vascular complication in DR is a major cause of visual impairment, making finding therapeutic targets to block pathological angiogenesis a primary goal for developing DR treatments. MicroRNAs (miRs) have been proposed as diagnostic biomarkers and potential therapeutic targets for various ocular diseases including DR. In diabetic animals, the expression levels of several miRs, including miR-150, are altered. The expression of miR-150 is significantly suppressed in pathological neovascularization in mice with hyperoxia-induced retinopathy. The purpose of this study was to investigate the functional role of miR-150 in the development of retinal microvasculature complications in high-fat-diet (HFD) induced type 2 diabetic mice. Wild type (WT) and miR-150 null mutant (miR-150-/-) male mice were given a HFD (59% fat calories) or normal chow diet. Chronic HFD caused a decrease of serum miR-150 in WT mice. Mice on HFD for 7 months (both WT and miR-150-/-) had significant decreases in retinal light responses measured by electroretinograms (ERGs). The retinal neovascularization in miR-150-/--HFD mice was significantly higher compared to their age matched WT-HFD mice, which indicates that miR-150 null mutation exacerbates chronic HFD-induced neovascularization in the retina. Overexpression of miR-150 in cultured endothelial cells caused a significant reduction of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels. Hence, deletion of miR-150 significantly increased the retinal pathological angiogenesis in HFD induced type 2 diabetic mice, which was in part through VEGFR2. PMID:27304911

  20. Hypoxia-Induced Intrauterine Growth Restriction Increases the Susceptibility of Rats to High-Fat Diet–Induced Metabolic Syndrome

    PubMed Central

    Rueda-Clausen, Christian F.; Dolinsky, Vernon W.; Morton, Jude S.; Proctor, Spencer D.; Dyck, Jason R.B.; Davidge, Sandra T.

    2011-01-01

    OBJECTIVE It is recognized that there is a remarkable variability in the systemic response to high-fat (HF) diets that cannot be completely explained by genetic factors. In addition, pregnancy complications leading to intrauterine growth restriction (IUGR) have been associated with an increased risk of developing metabolic syndrome (MetS) later in life. Thus, we hypothesized that offspring born with IUGR exhibit permanent metabolic changes that make them more susceptible to HF diet–induced MetS. RESEARCH DESIGN AND METHODS SD rats born normal (control) or with hypoxia-induced IUGR were randomized to low-fat (10% fat) or HF (45% fat) diets. After 9 weeks of feeding, physiological and molecular pathways involved in the MetS were evaluated. RESULTS IUGR offspring exhibited decreased energy intake and physical activity relative to controls. In offspring fed a HF diet, IUGR was associated with decreased total body fat content, a relative increase in intra-abdominal fat deposition and adipocyte size, an increase in fasting plasma concentrations of leptin, triglyceride and free fatty acids, and an increased concentration of triglycerides and ceramides in both liver and skeletal muscle. These changes in lipid homeostasis were accompanied by in vivo insulin resistance and impaired glucose tolerance and associated with increased phosphorylation of protein kinase C θ, inhibition of insulin receptor substrate 1, and a decreased activation of protein kinase B (PKB; also known as Akt) in liver and skeletal muscle in response to insulin. CONCLUSIONS IUGR enhances specific deleterious metabolic responses to a HF diet. Our results suggest that offspring born with IUGR may require special attention and follow-up to prevent the early onset of MetS. PMID:21270262

  1. Re-Examining High-Fat Diets for Sports Performance: Did We Call the 'Nail in the Coffin' Too Soon?

    PubMed

    Burke, Louise M

    2015-11-01

    During the period 1985-2005, studies examined the proposal that adaptation to a low-carbohydrate (<25 % energy), high-fat (>60 % energy) diet (LCHF) to increase muscle fat utilization during exercise could enhance performance in trained individuals by reducing reliance on muscle glycogen. As little as 5 days of training with LCHF retools the muscle to enhance fat-burning capacity with robust changes that persist despite acute strategies to restore carbohydrate availability (e.g., glycogen supercompensation, carbohydrate intake during exercise). Furthermore, a 2- to 3-week exposure to minimal carbohydrate (<20 g/day) intake achieves adaptation to high blood ketone concentrations. However, the failure to detect clear performance benefits during endurance/ultra-endurance protocols, combined with evidence of impaired performance of high-intensity exercise via a down-regulation of carbohydrate metabolism led this author to dismiss the use of such fat-adaptation strategies by competitive athletes in conventional sports. Recent re-emergence of interest in LCHF diets, coupled with anecdotes of improved performance by sportspeople who follow them, has created a need to re-examine the potential benefits of this eating style. Unfortunately, the absence of new data prevents a different conclusion from being made. Notwithstanding the outcomes of future research, there is a need for better recognition of current sports nutrition guidelines that promote an individualized and periodized approach to fuel availability during training, allowing the athlete to prepare for competition performance with metabolic flexibility and optimal utilization of all muscle substrates. Nevertheless, there may be a few scenarios where LCHF diets are of benefit, or at least are not detrimental, for sports performance.

  2. Re-Examining High-Fat Diets for Sports Performance: Did We Call the 'Nail in the Coffin' Too Soon?

    PubMed

    Burke, Louise M

    2015-11-01

    During the period 1985-2005, studies examined the proposal that adaptation to a low-carbohydrate (<25 % energy), high-fat (>60 % energy) diet (LCHF) to increase muscle fat utilization during exercise could enhance performance in trained individuals by reducing reliance on muscle glycogen. As little as 5 days of training with LCHF retools the muscle to enhance fat-burning capacity with robust changes that persist despite acute strategies to restore carbohydrate availability (e.g., glycogen supercompensation, carbohydrate intake during exercise). Furthermore, a 2- to 3-week exposure to minimal carbohydrate (<20 g/day) intake achieves adaptation to high blood ketone concentrations. However, the failure to detect clear performance benefits during endurance/ultra-endurance protocols, combined with evidence of impaired performance of high-intensity exercise via a down-regulation of carbohydrate metabolism led this author to dismiss the use of such fat-adaptation strategies by competitive athletes in conventional sports. Recent re-emergence of interest in LCHF diets, coupled with anecdotes of improved performance by sportspeople who follow them, has created a need to re-examine the potential benefits of this eating style. Unfortunately, the absence of new data prevents a different conclusion from being made. Notwithstanding the outcomes of future research, there is a need for better recognition of current sports nutrition guidelines that promote an individualized and periodized approach to fuel availability during training, allowing the athlete to prepare for competition performance with metabolic flexibility and optimal utilization of all muscle substrates. Nevertheless, there may be a few scenarios where LCHF diets are of benefit, or at least are not detrimental, for sports performance. PMID:26553488

  3. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet.

    PubMed

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Mélançon, Sébastien; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2008-09-01

    This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.

  4. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue. PMID:26618193

  5. Is sensitivity to reward associated with the malleability of implicit inclinations toward high-fat food?

    PubMed

    Ashby, Casey R; Stritzke, Werner G K

    2013-08-01

    Two experiments examined the effect of positive and negative priming on implicit approach and avoidance inclinations toward high-fat food stimuli in participants high or low in reward sensitivity, using personalized unipolar variants of the Implicit Association Test (IAT; A. G. Greenwald, D. E. McGhee, & J. L. K. Schwartz, 1998, "Measuring individual differences in implicit cognition: The Implicit Association Test," Journal of Personality and Social Psychology, Vol. 74, pp. 1464-1480). Participants high in reward sensitivity showed an automatic processing bias that is characterized by a dual vulnerability of being particularly susceptible to priming of the rewarding aspects of high-fat foods, while being unaffected by priming of the negative aspects of those foods. In contrast, participants low in reward sensitivity generally showed no facilitation of implicit-approach inclinations following positive priming, but consistently showed facilitation of implicit-avoidance inclinations following negative priming. These results are consistent with the revised reinforcement sensitivity theory ( J. A. Gray & N. McNaughton, 2000, The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system, 2nd ed., New York, NY, Oxford University Press.) and suggest that the systems mediating reward sensitivity and punishment sensitivity are not orthogonal, as predicted by the separable subsystems hypothesis, but can be interdependent, as predicted by the joint subsystems hypothesis.

  6. Plant Proteins Differently Affect Body Fat Reduction in High-fat Fed Rats.

    PubMed

    Kim, Joohee; Lee, Hyo Jung; Kim, Ji Yeon; Kim, Mi Kyung; Kwon, Oran

    2012-09-01

    This study examined the effects of corn gluten (CG), wheat gluten (WG), and soybean protein isolate (SPI), as well as their hydrolysates, on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=70) were fed a high-fat diet (40% of the calories were fat) for 4 weeks. Rats were then randomly divided into seven groups and were fed isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate (CGH group), intact WG (WG group), WG hydrolysate (WGH group), intact SPI (SPI group), and SPI hydrolysate (SPIH group). Body weight gain, adipose tissue weights, lipid profiles in plasma and liver; and hepatic activities of carnitine palmitoyl transferase, fatty acid synthase (FAS), malic enzyme, and glucose-6-phosphate dehydrogenase were assessed. The CGH group showed significant weight reduction compared with the other groups. Epididymal fat pad and plasma triglycerides in the CGH group were the lowest and were significantly different than those in the control group. FAS activity in the CGH group was significantly lower than that in the other groups. In conclusion, the CGH diet of these experimental animals demonstrated a weight-reducing effect by lowering the adipose tissue weight and by affecting the activities of hepatic lipogenic enzymes.

  7. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters.

    PubMed

    Jang, Eun-Mi; Choi, Myung-Sook; Jung, Un Ju; Kim, Myung-Joo; Kim, Hye-Jin; Jeon, Seon-Min; Shin, Su-Kyung; Seong, Chi-Nam; Lee, Mi-Kyung

    2008-11-01

    This study investigated the effect of curcumin (0.05-g/100-g diet) supplementation on a high-fat diet (10% coconut oil, 0.2% cholesterol, wt/wt) fed to hamsters, one of the rodent species that are most closely related to humans in lipid metabolism. Curcumin significantly lowered the levels of free fatty acid, total cholesterol, triglyceride, and leptin and the homeostasis model assessment of insulin resistance index, whereas it elevated the levels of high-density lipoprotein cholesterol and apolipoprotein (apo) A-I and paraoxonase activity in plasma, compared with the control group. The levels of hepatic cholesterol and triglyceride were also lower in the curcumin group than in the control group. In the liver, fatty acid beta-oxidation activity was significantly higher in the curcumin group than in the control group, whereas fatty acid synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and acyl coenzyme A:cholesterol acyltransferase activities were significantly lower. Curcumin significantly lowered the lipid peroxide levels in the erythrocyte and liver compared with the control group. These results indicate that curcumin exhibits an obvious hypolipidemic effect by increasing plasma paraoxonase activity, ratios of high-density lipoprotein cholesterol to total cholesterol and of apo A-I to apo B, and hepatic fatty acid oxidation activity with simultaneous inhibition of hepatic fatty acid and cholesterol biosynthesis in high-fat-fed hamsters.

  8. Heterozygous Deficiency of Endoglin Decreases Insulin and Hepatic Triglyceride Levels during High Fat Diet

    PubMed Central

    Beiroa, Daniel; Romero-Picó, Amparo; Langa, Carmen; Bernabeu, Carmelo; López, Miguel; López-Novoa, José M.; Nogueiras, Ruben; Diéguez, Carlos

    2013-01-01

    Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism. PMID:23336009

  9. Is sensitivity to reward associated with the malleability of implicit inclinations toward high-fat food?

    PubMed

    Ashby, Casey R; Stritzke, Werner G K

    2013-08-01

    Two experiments examined the effect of positive and negative priming on implicit approach and avoidance inclinations toward high-fat food stimuli in participants high or low in reward sensitivity, using personalized unipolar variants of the Implicit Association Test (IAT; A. G. Greenwald, D. E. McGhee, & J. L. K. Schwartz, 1998, "Measuring individual differences in implicit cognition: The Implicit Association Test," Journal of Personality and Social Psychology, Vol. 74, pp. 1464-1480). Participants high in reward sensitivity showed an automatic processing bias that is characterized by a dual vulnerability of being particularly susceptible to priming of the rewarding aspects of high-fat foods, while being unaffected by priming of the negative aspects of those foods. In contrast, participants low in reward sensitivity generally showed no facilitation of implicit-approach inclinations following positive priming, but consistently showed facilitation of implicit-avoidance inclinations following negative priming. These results are consistent with the revised reinforcement sensitivity theory ( J. A. Gray & N. McNaughton, 2000, The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system, 2nd ed., New York, NY, Oxford University Press.) and suggest that the systems mediating reward sensitivity and punishment sensitivity are not orthogonal, as predicted by the separable subsystems hypothesis, but can be interdependent, as predicted by the joint subsystems hypothesis. PMID:23527505

  10. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet

    PubMed Central

    Nizari, Shereen; Carare, Roxana O.; Hawkes, Cheryl A.

    2016-01-01

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer’s disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD. PMID:26911528

  11. Effect of high-fat diet on lypolisis in isolated adipocytes from visceral and subcutaneous WAT.

    PubMed

    Portillo, M P; Simón, E; García-Calonge, M A; Del Barrio, A S

    1999-08-01

    Variations in total energy intake and composition of daily food play an important role in the regulation of metabolic processes and so, in the control of body weight. This study was designed in order to investigate the effect of a high-fat diet on lipolysis in isolated adipocytes. For this purpose, fourteen Wistar rats were divided into two groups and fed either a standard-fat diet or a high-fat diet ad libitum for 7 weeks. Adipocytes were prepared from fat pads by collagenase digestion and incubated in vitro in the absence or presence of various lipolytic agents. Lipolysis was measured by the release of glycerol into the medium during 90 min of incubation. We observed that a high amount of fat in the diet induced an enlargement of adipose tissue, which was accompanied by a reduction of beta-adrenergic agonist-induced lipolysis, that could be due to a loss of beta(1) and beta(3)-adrenoceptor number or to alterations of their coupling to adenylate-cyclase through the guanine nucleotide regulatory protein. New data about regional differences were provided by comparing two adipose locations (subcutaneous and visceral). PMID:10502029

  12. Anti-obesity effect of alkaline reduced water in high fat-fed obese mice.

    PubMed

    Ignacio, Rosa Mistica Coles; Kang, Tae-Young; Kim, Cheol-Su; Kim, Soo-Ki; Yang, Young-Chul; Sohn, Joon-Hyung; Lee, Kyu-Jae

    2013-01-01

    Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.

  13. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    SciTech Connect

    Brown, C.M.; Layman, D.K.

    1988-11-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of UC-labeled chylomicron-triglyceride ( UC-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from UC-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of UC-CM-TG from plasma and the half-lives of UC-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides.

  14. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Nie, Jing; Wang, Xi; DuBois, Debra C; Jusko, William J; Almon, Richard R

    2015-01-01

    Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance. PMID:26309393

  15. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver.

    PubMed

    Davaatseren, Munkhtugs; Hur, Haeng Jeon; Yang, Hye Jeong; Hwang, Jin-Taek; Park, Jae Ho; Kim, Hyun-Jin; Kim, Min Jung; Kwon, Dae Young; Sung, Mi Jeong

    2013-08-01

    The purpose of this study is to determine the protective effect of Taraxacum official (dandelion) leaf extract (DLE) on high-fat-diet (HFD)-induced hepatic steatosis, and elucidate the molecular mechanisms behind its effects. To determine the hepatoprotective effect of DLE, we fed C57BL/6 mice with normal chow diet (NCD), high-fat diet (HFD), HFD supplemented with 2g/kg DLE DLE (DL), and HFD supplemented with 5 g/kg DLE (DH). We found that the HFD supplemented by DLE dramatically reduced hepatic lipid accumulation compared to HFD alone. Body and liver weights of the DL and DH groups were significantly lesser than those of the HFD group, and DLE supplementation dramatically suppressed triglyceride (TG), total cholesterol (TC), insulin, fasting glucose level in serum, and Homeostatic Model Assessment Insulin Resistance (HOMA-IR) induced by HFD. In addition, DLE treatment significantly increased activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) in liver and muscle protein. DLE significantly suppressed lipid accumulation in the liver, reduced insulin resistance, and lipid in HFD-fed C57BL/6 mice via the AMPK pathway. These results indicate that the DLE may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease.

  16. The Effects of High-fat-diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats

    PubMed Central

    Yang, Jin Ling; Liu, De Xiang; Jiang, Hong; Pan, Fang; Ho, Cyrus SH; Ho, Roger CM

    2016-01-01

    Leptin plays a key role in the pathogenesis of obesity and depression via the long form of leptin receptor (LepRb). An animal model of comorbid obesity and depression induced by high-fat diet (HFD) combined with chronic unpredictable mild stress (CUMS) was developed to study the relationship between depression/anxiety-like behavior, levels of plasma leptin and LepRb in the brains between four groups of rats, the combined obesity and CUMS (Co) group, the obese (Ob) group, the CUMS group and controls. Our results revealed that the Co group exhibited most severe depression-like behavior in the open field test (OFT), anxiety-like behavior in elevated plus maze test (EMT) and cognitive impairment in the Morris water maze (MWM). The Ob group had the highest weight and plasma leptin levels while the Co group had the lowest levels of protein of LepRb in the hypothalamus and hippocampus. Furthermore, depressive and anxiety-like behaviors as well as cognitive impairment were positively correlated with levels of LepRb protein and mRNA in the hippocampus and hypothalamus. The down-regulation of leptin/LepRb signaling might be associated with depressive-like behavior and cognitive impairment in obese rats facing chronic mild stress. PMID:27739518

  17. Foods with a high fat quality are essential for healthy diets.

    PubMed

    Zevenbergen, H; de Bree, A; Zeelenberg, M; Laitinen, K; van Duijn, G; Flöter, E

    2009-01-01

    Fat is generally a highly valued element of the diet to provide energy, palatability to dry foods or to serve as a cooking medium. However, some foods rich in fat have a low fat quality with respect to nutrition, i.e., a relative high content of saturated (SFA) as compared to unsaturated fatty acids, whereas others have a more desirable fat quality, i.e., a relative high content of unsaturated fatty acids as compared to SFA. High-fat dairy products and fatty meats are examples of foods with low fat quality, whereas vegetable oils (tropical oils such as palm and coconut oil excluded) are products with a generally high fat quality. The aim of this paper is to explore the nutritional impact of products made of vegetable oils, e.g. margarines and dressings, and how they can be designed to contribute to good health. Since their first industrial production, the food industry has endeavored to improve products like margarines, including their nutritional characteristics. With evolving nutrition science, margarines and cooking products, and to a lesser extent dressings, have been adapted to contain less trans fatty acids (TFA), less SFA and more essential (polyunsaturated, PUFA) fatty acids. This has been possible by using careful fat and oil selection and modification processes. By blending vegetable oils rich in the essential PUFAs alpha-linolenic acid (vegetable omega-3) or linoleic acid (omega-6), margarines and dressings with both essential fatty acids present in significant quantities can be realized. In addition, full hydrogenation and fat rearrangement have enabled the production of cost-effective margarines virtually devoid of TFA and low in SFA. Dietary surveys indicate that vegetable oils, soft margarines and dressings are indeed often important sources of essential fatty acids in people's diets, whilst providing negligible amounts of TFA and contributing modestly to SFA intakes. Based on empirical and epidemiological data, the public health benefit of switching

  18. Foods with a high fat quality are essential for healthy diets.

    PubMed

    Zevenbergen, H; de Bree, A; Zeelenberg, M; Laitinen, K; van Duijn, G; Flöter, E

    2009-01-01

    Fat is generally a highly valued element of the diet to provide energy, palatability to dry foods or to serve as a cooking medium. However, some foods rich in fat have a low fat quality with respect to nutrition, i.e., a relative high content of saturated (SFA) as compared to unsaturated fatty acids, whereas others have a more desirable fat quality, i.e., a relative high content of unsaturated fatty acids as compared to SFA. High-fat dairy products and fatty meats are examples of foods with low fat quality, whereas vegetable oils (tropical oils such as palm and coconut oil excluded) are products with a generally high fat quality. The aim of this paper is to explore the nutritional impact of products made of vegetable oils, e.g. margarines and dressings, and how they can be designed to contribute to good health. Since their first industrial production, the food industry has endeavored to improve products like margarines, including their nutritional characteristics. With evolving nutrition science, margarines and cooking products, and to a lesser extent dressings, have been adapted to contain less trans fatty acids (TFA), less SFA and more essential (polyunsaturated, PUFA) fatty acids. This has been possible by using careful fat and oil selection and modification processes. By blending vegetable oils rich in the essential PUFAs alpha-linolenic acid (vegetable omega-3) or linoleic acid (omega-6), margarines and dressings with both essential fatty acids present in significant quantities can be realized. In addition, full hydrogenation and fat rearrangement have enabled the production of cost-effective margarines virtually devoid of TFA and low in SFA. Dietary surveys indicate that vegetable oils, soft margarines and dressings are indeed often important sources of essential fatty acids in people's diets, whilst providing negligible amounts of TFA and contributing modestly to SFA intakes. Based on empirical and epidemiological data, the public health benefit of switching

  19. Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate:fat intake.

    PubMed

    Azzout-Marniche, Dalila; Chalvon-Demersay, Tristan; Pimentel, Grégory; Chaumontet, Catherine; Nadkarni, Nachiket A; Piedcoq, Julien; Fromentin, Gilles; Tomé, Daniel; Gaudichon, Claire; Even, Patrick C

    2016-06-01

    We tested the hypothesis that, for rats fed a high-fat diet (HFD), a prioritization of maintaining protein intake may increase energy consumption and hence result in obesity, particularly for individuals prone to obesity ("fat sensitive," FS, vs. "fat resistant," FR). Male Wistar rats (n = 80) first received 3 wk of HFD (protein 15%, fat 42%, carbohydrate 42%), under which they were characterized as being FS (n = 18) or FR (n = 20) based on body weight gain. They then continued on the same HFD but in which protein (100%) was available separately from the carbohydrate:fat (50:50%) mixture. Under this second regimen, all rats maintained their previous protein intake, whereas intake of fat and carbohydrate was reduced by 50%. This increased protein intake to 26% and decreased fat intake to 37%. Adiposity gain was prevented in both FR and FS rats, and gain in fat-free mass was increased only in FS rats. At the end of the study, the rats were killed 2 h after ingestion of a protein meal, and their tissues and organs were collected for analysis of body composition and measurement of mRNA levels in the liver, adipose tissue, arcuate nucleus, and nucleus accumbens. FS rats had a higher expression of genes encoding enzymes involved in lipogenesis in the liver and white adipose tissue. These results show that FS rats strongly reduced food intake and adiposity gain through macronutrient selection, despite maintenance of a relatively high-fat intake and overexpression of genes favoring lipogenesis.

  20. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect.

    PubMed

    Huang, Ying-Hsien; Chen, Chih-Jen; Tang, Kuo-Shu; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Tain, You-Lin; Chen, Chih-Cheng; Chu, En-Wei; Li, Shih-Wen; Yu, Hong-Ren; Huang, Li-Tung

    2016-01-01

    The objective of this study was to investigate cellular apoptosis in prenatal glucocorticoid overexposure and a postnatal high fat diet in rats. Pregnant Sprague-Dawley rats at gestational days 14 to 21 were administered saline (vehicle) or dexamethasone and weaned onto either a normal fat diet or a high fat diet for 180 days; in total four experimental groups were designated, i.e., vehicle treated group (VEH), dexamethasone treated group (DEX), vehicle treated plus high-fat diet (VHF), and dexamethasone treated plus high-fat diet (DHF). Chronic effects of prenatal liver programming were assessed at postnatal day 180. The apoptotic pathways involved proteins were analyzed by Western blotting for their expressions. Apoptosis and liver steatosis were also examined by histology. We found that liver steatosis and apoptosis were increased in the DHF, DEX, and VHF treated groups, and that the DHF treated group was increased at higher levels than the DEX and VHF treated groups. The expression of leptin was decreased more in the DHF treated group than in the DEX and VHF treated groups. Decreased peroxisome proliferator-activated receptor-gamma coactivator 1α, phosphoinositide-3-kinase, manganese superoxide dismutase and increased malondialdehyde expression levels were seen in DHF treated group relative to the DEX treated group. The DHF treated group exhibited higher levels of oxidative stress, apoptosis and liver steatosis than the DEX treated group. These results indicate that the environment of high-fat diet plays an important role in the development of liver injury after prenatal stress.

  1. Maternal Methyl Donors Supplementation during Lactation Prevents the Hyperhomocysteinemia Induced by a High-Fat-Sucrose Intake by Dams

    PubMed Central

    Cordero, Paul; Milagro, Fermin I.; Campion, Javier; Martinez, J. Alfredo

    2013-01-01

    Maternal perinatal nutrition may program offspring metabolic features. Epigenetic regulation is one of the candidate mechanisms that may be affected by maternal dietary methyl donors intake as potential controllers of plasma homocysteine levels. Thirty-two Wistar pregnant rats were randomly assigned into four dietary groups during lactation: control, control supplemented with methyl donors, high-fat-sucrose and high-fat-sucrose supplemented with methyl donors. Physiological outcomes in the offspring were measured, including hepatic mRNA expression and global DNA methylation after weaning. The newborns whose mothers were fed the obesogenic diet were heavier longer and with a higher adiposity and intrahepatic fat content. Interestingly, increased levels of plasma homocysteine induced by the maternal high-fat-sucrose dietary intake were prevented in both sexes by maternal methyl donors supplementation. Total hepatic DNA methylation decreased in females due to maternal methyl donors administration, while Dnmt3a hepatic mRNA levels decreased accompanying the high-fat-sucrose consumption. Furthermore, a negative association between Dnmt3a liver mRNA levels and plasma homocysteine concentrations was found. Maternal high-fat-sucrose diet during lactation could program offspring obesity features, while methyl donors supplementation prevented the onset of high hyperhomocysteinemia. Maternal dietary intake also affected hepatic DNA methylation metabolism, which could be linked with the regulation of the methionine-homocysteine cycle. PMID:24351826

  2. Efficacy of Garcinia Cambogia on Body Weight, Inflammation and Glucose Tolerance in High Fat Fed Male Wistar Rats

    PubMed Central

    Sripradha, Ramalingam

    2015-01-01

    Introduction: Obesity leads to derangements in lipid and glucose homeostasis resulting in various metabolic complications. Plants containing vital phytochemicals are known to posses anti obesity properties and have proved to exert beneficial effects in obesity. Objectives: The present study was aimed to investigate the effects of Garcinia Cambogia on body weight, glucose tolerance and inflammation in high fat diet fed male Wistar rats. Materials and Methods: Five month old male wistar rats (n=40) were divided into four groups. Two groups were fed with standard rodent diet and the remaining two with 30% high fat diet. One group in each of the two sets received the crude ethanolic extract of Garcinia Cambogia at a dose of 400mg/kg body weight/day for ten weeks. Body weight, intraperitoneal glucose tolerance test, leptin, tumour necrosis factor-α (TNF-α) and renal function (urea, creatinine, uric acid) were studied. Results: High fat diet fed rats showed increased body weight gain, glucose intolerance, elevated levels of plasma leptin and TNF-α. Supplementation of Garcinia Cambogia extract (GE) along with high fat diet significantly decreased body weight gain, glucose intolerance, plasma leptin and TNF-α level. No significant changes were observed in the renal function parameters in any of the groups. Conclusion: Supplementation of the Garcinia Cambogia extract with high fat diet reduced body weight gain, inflammation and glucose intolerance. PMID:25859449

  3. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice

    PubMed Central

    Blanco, Narda; Sterner, Olov; Holm, Cecilia

    2014-01-01

    Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20%) with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders. PMID:24669315

  4. Effect of thioacetamide and dexamethasone on serum lipids in rats fed on high-fat sunflower or olive oil diets.

    PubMed

    Esteban, F J; Sánchez-López, A M; Del Moral, M L; Camacho, M V; Hernández, R; Jiménez, A; Pedrosa, J A; Peinado, M A

    1999-04-01

    We have previously reported that high-fat diets develop hepatic steatosis and, depending on the fat quality, affect serum lipid levels differently (J Nutr Sci Vitaminol, 1997, 43, 155-160). The aim of this work is to study the influence of high-fat diets (14% sunflower or olive oils) on serum lipids in a model of hepatic acute damage induced by thioacetamide, and their influence when dexamethasone is administered before thioacetamide injection. Serum lipids and hepatic collagen have been evaluated using biochemical methods, and the steatotic process by histological staining. The results showed that hepatic steatosis and fibrosis are developed either by high-fat diets or thioacetamide injection. Pretreatment with dexamethasone did not decrease the hepatic collagen content. Thioacetamide injection alone or pretreatment with dexamethasone produced increase in serum tryglicerides (TG), total cholesterol (TC) and LDL-C in both high-fat diet groups, and a HDL-C increase in the olive-oil group, even though the atherogenic indices (HDL/TC and HDL/TG) were different depending on the enriched diet. The administration of high-fat diets to study the influence of the fat quality on health and disease should be interpreted carefully due to the ability of the diets themselves to cause hepatic damage. PMID:10450564

  5. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats.

    PubMed

    Sasidharan, Suja Rani; Joseph, Joshua Allan; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Madhavan, Chandrasekharan Nair Ariyattu; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms.

  6. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour.

    PubMed

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534

  7. Antidyslipidemic activity of polyprenol from Coccinia grandis in high-fat diet-fed hamster model.

    PubMed

    Singh, Geetu; Gupta, Prasoon; Rawat, Preeti; Puri, Anju; Bhatia, Gitika; Maurya, Rakesh

    2007-12-01

    Ethanol extract of Coccinia grandis (L.) Voigt showed significant triglyceride (TG) and cholesterol-lowering effects in dyslipidemic hamster model. Ethanolic extract was fractionated into chloroform, n-butanol and water-soluble fractions and were evaluated. Activity was proved to be concentrated in chloroform-soluble fraction. Chloroform-soluble fraction containing active component was subjected to repeated column chromatography, furnished a polyprenol characterized as C(60)-polyprenol (1) isolated for the first time from this plant. It significantly decreased serum TG by 42%, total cholesterol (TC) 25% and glycerol (Gly) 12%, accompanied HDL-C/TC ratio 26% in high-fat diet (HFD)-fed dyslipidemic hamsters at the dose of 50mg/kg body weight. Results are comparable to standard drug fenofibrate at the dose of 108 mg/kg. Based on these investigations, it was concluded that the compound polyprenol (1) isolated from leaves of C. grandis possess marked antidyslipidemic activity.

  8. STORAGE, NUTRITIONAL AND SENSORY PROPERTIES OF HIGH-FAT FISH AND RICE FLOUR COEXTRUDATES

    SciTech Connect

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Sukumar Bandyopadhyay; Amarender Singh Bawa

    2013-10-01

    The present research is on understanding the storage, nutritional and sensory characteristics of high-fat fish (khoira) and rice flour coextrudates at storage temperature of 30C. The extruder processing conditions used are barrel temperature (200C), screw speed (109 rpm), fish content of feed (44%) and feed moisture content (39%). Sorption isotherm data indicated that the safe aw level was about 0.4–0.7. Guggenheim -Anderson -de Boer model described the sorption data adequately with an r2 value of 0.99. During the initial 15 days of storage, there was a loss of vitamin A and total tocopherols by 64.4 and 20.6%, and an increase in peroxides and free fatty acid content by about 116 mg/kg and 21.7%. The nonlinear mathematical model developed has adequately described the changes in nutritional and storage properties. Sensory attributes indicated that the product fried for 15 s was most acceptable.

  9. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats.

    PubMed

    Sasidharan, Suja Rani; Joseph, Joshua Allan; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Madhavan, Chandrasekharan Nair Ariyattu; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms. PMID:24688399

  10. Ameliorative Potential of Tamarindus indica on High Fat Diet Induced Nonalcoholic Fatty Liver Disease in Rats

    PubMed Central

    Sasidharan, Suja Rani; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Ariyattu Madhavan, Chandrasekharan Nair; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms. PMID:24688399

  11. Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose

    PubMed Central

    Goossens, Gijs H.; Moors, Chantalle C. M.; Jocken, Johan W. E.; van der Zijl, Nynke J.; Jans, Anneke; Konings, Ellen; Diamant, Michaela; Blaak, Ellen E.

    2016-01-01

    Altered skeletal muscle fatty acid (FA) metabolism contributes to insulin resistance. Here, we compared skeletal muscle FA handling between subjects with impaired fasting glucose (IFG; n = 12 (7 males)) and impaired glucose tolerance (IGT; n = 14 (7 males)) by measuring arterio-venous concentration differences across forearm muscle. [2H2]-palmitate was infused intravenously, labeling circulating endogenous triacylglycerol (TAG) and free fatty acids (FFA), whereas [U-13C]-palmitate was incorporated in a high-fat mixed-meal, labeling chylomicron-TAG. Skeletal muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid content, their fractional synthetic rate (FSR) and degree of saturation, and gene expression. Insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. Net skeletal muscle glucose uptake was lower (p = 0.018) and peripheral insulin sensitivity tended to be reduced (p = 0.064) in IGT as compared to IFG subjects. Furthermore, IGT showed higher skeletal muscle extraction of VLDL-TAG (p = 0.043), higher muscle TAG content (p = 0.025), higher saturation of FFA (p = 0.004), lower saturation of TAG (p = 0.017) and a tendency towards a lower TAG FSR (p = 0.073) and a lower saturation of DAG (p = 0.059) versus IFG individuals. Muscle oxidative gene expression was lower in IGT subjects. In conclusion, increased liver-derived TAG extraction and reduced lipid turnover of saturated FA, rather than DAG content, in skeletal muscle accompany the more pronounced insulin resistance in IGT versus IFG subjects. PMID:26985905

  12. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice.

    PubMed

    Tan, Min; Schmidt, Robin H; Beier, Juliane I; Watson, Walter H; Zhong, Hai; States, J Christopher; Arteel, Gavin E

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations.

  13. Genetic and Sex-Specific Transgenerational Effects of a High Fat Diet in Drosophila melanogaster

    PubMed Central

    Dew-Budd, Kelly; Jarnigan, Julie

    2016-01-01

    An organism's phenotype is the product of its environment and genotype, but an ancestor’s environment can also be a contributing factor. The recent increase in caloric intake and decrease in physical activity of developed nations' populations is contributing to deteriorating health and making the study of the longer term impacts of a changing lifestyle a priority. The dietary habits of ancestors have been shown to affect phenotype in several organisms, including humans, mice, and the fruit fly. Whether the ancestral dietary effect is purely environmental or if there is a genetic interaction with the environment passed down for multiple generations, has not been determined previously. Here we used the fruit fly, Drosophila melanogaster, to investigate the genetic, sex-specific, and environmental effects of a high fat diet for three generations’ on pupal body weights across ten genotypes. We also tested for genotype-specific transgenerational effects on metabolic pools and egg size across three genotypes. We showed that there were substantial differences in transgenerational responses to ancestral diet between genotypes and sexes through both first and second descendant generations. Additionally, there were differences in phenotypes between maternally and paternally inherited dietary effects. We also found a treated organism’s reaction to a high fat diet was not a consistent predictor of its untreated descendants’ phenotype. The implication of these results is that, given our interest in understanding and preventing metabolic diseases like obesity, we need to consider the contribution of ancestral environmental experiences. However, we need to be cautious when drawing population-level generalization from small studies because transgenerational effects are likely to exhibit substantial sex and genotype specificity. PMID:27518304

  14. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle.

    PubMed

    Skovbro, Mette; Boushel, Robert; Hansen, Christina Neigaard; Helge, Jørn Wulff; Dela, Flemming

    2011-06-01

    Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.

  15. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    SciTech Connect

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet ({+-} arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: Black-Right-Pointing-Pointer Characterizes a mouse model of arsenic enhanced NAFLD. Black-Right-Pointing-Pointer Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. Black-Right-Pointing-Pointer This effect is associated with increased inflammation.

  16. Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating.

    PubMed

    Hardaway, J Andrew; Jensen, Jennifer; Kim, Michelle; Mazzone, Christopher M; Sugam, Jonathan A; Diberto, Jeffrey F; Lowery-Gionta, Emily G; Hwa, Lara S; Pleil, Kristen E; Bulik, Cynthia M; Kash, Thomas L

    2016-07-01

    Binge eating is a dysregulated form of feeding behavior that occurs in multiple eating disorders including binge-eating disorder, the most common eating disorder. Feeding is a complex behavioral program supported through the function of multiple brain regions and influenced by a diverse array of receptor signaling pathways. Previous studies have shown the overexpression of the opioid neuropeptide nociceptin (orphanin FQ, N/OFQ) can induce hyperphagia, but the role of endogenous nociceptin receptor (NOP) in naturally occurring palatability-induced hyperphagia is unknown. In this study we adapted a simple, replicable form of binge eating of high fat food (HFD). We found that male and female C57BL/6J mice provided with daily one-hour access sessions to HFD eat significantly more during this period than those provided with continuous 24h access. This form of feeding is rapid and entrained. Chronic intermittent HFD binge eating produced hyperactivity and increased light zone exploration in the open field and light-dark assays respectively. Treatment with the potent and selective NOP antagonist SB 612111 resulted in a significant dose-dependent reduction in binge intake in both male and female mice, and, unlike treatment with the serotonin selective reuptake inhibitor fluoxetine, produced no change in total 24-h food intake. SB 612111 treatment also significantly decreased non-binge-like acute HFD consumption in male mice. These data are consistent with the hypothesis that high fat binge eating is modulated by NOP signaling and that the NOP system may represent a promising novel receptor to explore for the treatment of binge eating.

  17. Genetic and Sex-Specific Transgenerational Effects of a High Fat Diet in Drosophila melanogaster.

    PubMed

    Dew-Budd, Kelly; Jarnigan, Julie; Reed, Laura K

    2016-01-01

    An organism's phenotype is the product of its environment and genotype, but an ancestor's environment can also be a contributing factor. The recent increase in caloric intake and decrease in physical activity of developed nations' populations is contributing to deteriorating health and making the study of the longer term impacts of a changing lifestyle a priority. The dietary habits of ancestors have been shown to affect phenotype in several organisms, including humans, mice, and the fruit fly. Whether the ancestral dietary effect is purely environmental or if there is a genetic interaction with the environment passed down for multiple generations, has not been determined previously. Here we used the fruit fly, Drosophila melanogaster, to investigate the genetic, sex-specific, and environmental effects of a high fat diet for three generations' on pupal body weights across ten genotypes. We also tested for genotype-specific transgenerational effects on metabolic pools and egg size across three genotypes. We showed that there were substantial differences in transgenerational responses to ancestral diet between genotypes and sexes through both first and second descendant generations. Additionally, there were differences in phenotypes between maternally and paternally inherited dietary effects. We also found a treated organism's reaction to a high fat diet was not a consistent predictor of its untreated descendants' phenotype. The implication of these results is that, given our interest in understanding and preventing metabolic diseases like obesity, we need to consider the contribution of ancestral environmental experiences. However, we need to be cautious when drawing population-level generalization from small studies because transgenerational effects are likely to exhibit substantial sex and genotype specificity. PMID:27518304

  18. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    PubMed Central

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. PMID:21983427

  19. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    PubMed

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.

  20. Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice

    PubMed Central

    Ma, Yongjie; Gao, Mingming

    2015-01-01

    Purpose Chlorogenic acid (CGA), the most abundant component in coffee, has exhibited many biological activities. The objective of this study is to assess preventive and therapeutic effects of CGA on obesity and obesity-related liver steatosis and insulin resistance. Methods Two sets of experiments were conducted. In set 1, 6-week old C57BL/6 mice were fed a regular chow or high-fat diet (HFD) for 15 weeks with twice intra-peritoneal (IP) injection of CGA (100 mg/kg) or DMSO (carrier solution) per week. In set 2, obese mice (average 50 g) were treated by CGA (100 mg/kg, IP, twice weekly) or DMSO for 6 weeks. Body weight, body composition and food intake were monitored. Blood glucose, insulin and lipid levels were measured at end of the study. Hepatic lipid accumulation and glucose homeostasis were evaluated. Additionally, genes involved in lipid metabolism and inflammation were analyzed by real time PCR. Results CGA significantly blocked the development of diet-induced obesity but did not affect body weight in obese mice. CGA treatment curbed HFD-induced hepatic steatosis and insulin resistance. Quantitative PCR analysis shows that CGA treatment suppressed hepatic expression Pparγ, Cd36, Fabp4, and Mgat1 gene. CGA treatment also attenuated inflammation in the liver and white adipose tissue accompanied by a decrease in mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and Tnfa, Mcp-1 and Ccr2 encoding inflammatory proteins. Conclusion Our study provides direct evidence in support of CGA as a potent compound in preventing diet-induced obesity and obesity-related metabolic syndrome. Our results suggest that drinking coffee is beneficial in maintaining metabolic homeostasis when on a high fat diet. PMID:25248334

  1. Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating.

    PubMed

    Hardaway, J Andrew; Jensen, Jennifer; Kim, Michelle; Mazzone, Christopher M; Sugam, Jonathan A; Diberto, Jeffrey F; Lowery-Gionta, Emily G; Hwa, Lara S; Pleil, Kristen E; Bulik, Cynthia M; Kash, Thomas L

    2016-07-01

    Binge eating is a dysregulated form of feeding behavior that occurs in multiple eating disorders including binge-eating disorder, the most common eating disorder. Feeding is a complex behavioral program supported through the function of multiple brain regions and influenced by a diverse array of receptor signaling pathways. Previous studies have shown the overexpression of the opioid neuropeptide nociceptin (orphanin FQ, N/OFQ) can induce hyperphagia, but the role of endogenous nociceptin receptor (NOP) in naturally occurring palatability-induced hyperphagia is unknown. In this study we adapted a simple, replicable form of binge eating of high fat food (HFD). We found that male and female C57BL/6J mice provided with daily one-hour access sessions to HFD eat significantly more during this period than those provided with continuous 24h access. This form of feeding is rapid and entrained. Chronic intermittent HFD binge eating produced hyperactivity and increased light zone exploration in the open field and light-dark assays respectively. Treatment with the potent and selective NOP antagonist SB 612111 resulted in a significant dose-dependent reduction in binge intake in both male and female mice, and, unlike treatment with the serotonin selective reuptake inhibitor fluoxetine, produced no change in total 24-h food intake. SB 612111 treatment also significantly decreased non-binge-like acute HFD consumption in male mice. These data are consistent with the hypothesis that high fat binge eating is modulated by NOP signaling and that the NOP system may represent a promising novel receptor to explore for the treatment of binge eating. PMID:27036650

  2. Phototherapy improves wound healing in rats subjected to high-fat diet.

    PubMed

    Leite, Saulo Nani; Leite, Marcel Nani; Caetano, Guilherme Ferreira; Ovidio, Paula Payão; Jordão Júnior, Alceu Afonso; Frade, Marco Andrey C

    2015-07-01

    This study aimed to compare the phototherapy effects on wound healing in rats submitted to normal and high-fat diets. Thirty-six rats received normal lipidic diet (NL) and 36 high lipidic (HL) diet for 45 days. The nutritional status was measured by body mass, blood glucose, total cholesterol, and triglycerides levels. Four experimental groups were performed according light (L) therapy applied "on" or "off" (660 nm, 100 mW, 70 J/cm(2), 2 J) on 1.5-mm-punched dorsum skin wounds as NLL+, NLL-, HLL+, and HLL-. The wound healing rate (WHR) and oxidative stress markers were analyzed on 2nd, 7th, and 14th days. Despite no difference among body mass, the HL rats presented higher blood glucose, total cholesterol, and triglycerides levels than NL rats. Respectively, on the 2nd and 14th days, the HLL+ group presented the highest WHRs (0.38 ± 0.16/0.97 ± 0.02) among all groups, while the HLL- (-0.002 ± 0.12/0.81 ± 12.1) the lowest WHRs. Hydroxyproline level was lower in HLL- (6.41 ± 1.09 μg/mg) than HLL+ (7.71 ± 0.61 μg/mg) and also NLL+ (9.33 ± 0.84 μg/mg). HLL+ presented oxidative stress markers similar to normal control group (NLL-) during follow up and highest antioxidant defense on 7th day. The results showed phototherapy accelerated the cutaneous wound healing by modulating oxidative stress in rats with metabolic disorders under a high-fat diet.

  3. Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating

    PubMed Central

    Hardaway, J. Andrew; Jensen, Jennifer; Kim, Michelle; Mazzone, Christopher M.; Sugam, Jonathan A.; Diberto, Jeffrey F.; Lowery-Gionta, Emily G.; Hwa, Lara S.; Pleil, Kristen E.; Bulik, Cynthia M.; Kash, Thomas L.

    2016-01-01

    Binge eating is a dysregulated form of feeding behavior that occurs in multiple eating disorders including binge-eating disorder, the most common eating disorder. Feeding is a complex behavioral program supported through the function of multiple brain regions and influenced by a diverse array of receptor signaling pathways. Previous studies have shown the overexpression of the opioid neuropeptide nociceptin (orphanin FQ, N/OFQ) can induce hyperphagia, but the role of endogenous nociceptin receptor (NOP) in naturally occurring palatability-induced hyperphagia is unknown. In this study we adapted a simple, replicable form of binge eating of high fat food (HFD). We found that male and female C57BL/6J mice provided with daily one-hour access sessions to HFD eat significantly more during this period than those provided with continuous 24 hour access. This form of feeding is rapid and entrained. Chronic intermittent HFD binge eating produced hyperactivity and increased light zone exploration in the open field and light-dark assays respectively. Treatment with the potent and selective NOP antagonist SB 612111 resulted in a significant dose-dependent reduction in binge intake in both male and female mice, and, unlike treatment with the serotonin selective reuptake inhibitor fluoxetine, produced no change in total 24-hour food intake. SB 612111 treatment also significantly decreased non-binge-like acute HFD consumption in male mice. These data are consistent with the hypothesis that high fat binge eating is modulated by NOP signaling and that the NOP system may represent a promising novel receptor to explore for the treatment of binge eating. PMID:27036650

  4. Effects of high fat diet on GPR109A and GPR81 gene expression.

    PubMed

    Wanders, Desiree; Graff, Emily C; Judd, Robert L

    2012-08-24

    GPR109A (PUMA-G, NIACR1, HCA(2)) and GPR81 (HCA(1)) are G protein-coupled receptors located predominantly on adipocytes that mediate anti-lipolytic effects. These cell surface receptors give the adipocyte the ability to "sense" metabolic changes in the environment and respond through lipolytic regulation and release of products including free fatty acids and pro- or anti-inflammatory adipokines. The endogenous ligands for GPR109A and GPR81 are β-hydroxybutyrate and lactate, respectively, both of which are hydroxycarboxylic acids and intermediates of energy metabolism. Circulating β-hydroxybutyrate levels are increased during a 2-3 day fast and prolonged starvation, while lactate levels are elevated during times of intense exercise. Therefore, regulation of expression of these receptors is crucial for the metabolic sensing ability of the adipocyte and ultimately whole body energy homeostasis. We investigated the effects of high fat diet-induced obesity on expression of GPR109A and GPR81. Sixteen male C57BL/6 mice were placed on a control (10% kcal fat; n=8) or a high fat (60% kcal fat; n=8) diet for 11 weeks. Diet-induced obesity significantly reduced GPR109A and GPR81 gene expression in epididymal fat pads. This decrease in GPR109A and GPR81 gene expression was positively correlated with a decrease in adipose tissue PPARγ gene expression. In contrast, acute treatment of both 3T3-L1 adipocytes and RAW 264.7 macrophages with lipopolysaccharide significantly increased GPR109A gene expression, but had no effect on GPR81 expression in 3T3-L1 adipocytes. In conclusion, chronic obesity reduces GPR109A and GPR81 expression in the adipose tissue, while acute in vitro LPS treatment increases expression of GPR109A in adipocytes and macrophages.

  5. Dietary Cocoa Reduces Metabolic Endotoxemia and Adipose Tissue Inflammation in High-Fat Fed Mice

    PubMed Central

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D.

    2014-01-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 wk. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40 – 60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cycloxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia. PMID:24561154

  6. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    PubMed

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (P<0.001) higher energy expenditure than WT mice and increased expression in skeletal muscle and brown adipose tissue of peroxisome proliferator activated receptor-α and β1- and β3-adrenergic receptor genes, which are associated with increased lipolysis and enhanced lipid β-oxidation. In vitro, GDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  7. Effect of tomato extract supplementation against high-fat diet-induced hepatic lesions.

    PubMed

    Melendez-Martinez, Antonio J; Nascimento, Andre F; Wang, Yan; Liu, Chun; Mao, Yilei; Wang, Xiang-Dong

    2013-08-01

    Higher intake of tomatoes or tomato-based products has been associated with lower risk for liver cancer. In this study, we investigated the effects of supplementing tomato extract (TE), which contains mainly lycopene (LY) and less amounts of its precursors, phytoene (PT) and phytofluene (PTF) against high-fat-diet related hepatic inflammation and lipid profiles, and carcinogenesis. Four groups of rats were injected with a hepatic carcinogen, diethylnitrosamine (DEN) and then fed either Lieber-DeCarli control diet (35% fat, CD) or high fat diet (71% fat, HFD) with or without TE supplementation for 6 weeks. Results showed that the supplementation of TE significantly decreased the multiplicity of both inflammatory foci and altered hepatic foci (AHF) expressing placental form glutathione-S transferase (p-GST) in the liver of HFD-fed rats. High-performance liquid chromatography (HPLC) analysis showed that TE supplementation results in a significantly higher accumulation of both PT and PTF than LY in livers of rats. In addition, the TE supplementation led to a decrease of plasma cholesterol levels but an overall increase in hepatic lipids which is associated with changes in the genes on lipid metabolism, including the peroxisome proliferator-activated receptor gamma (PPARγ) and the sterol-regulatory element binding protein (SREBP-1). These data suggest that TE supplementation decreases hepatic inflammation and plasma total cholesterol associated with high dietary fat intake. Moreover, TE supplementation results in an accumulation of hepatic PT and PTF as well as increased lipogenesis suggesting further investigation into their biological function(s). PMID:24273751

  8. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    SciTech Connect

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  9. Lin28a Protects against Hypoxia/Reoxygenation Induced Cardiomyocytes Apoptosis by Alleviating Mitochondrial Dysfunction under High Glucose/High Fat Conditions

    PubMed Central

    Hu, Jianqiang; Yuan, Yuan; Sun, Shuhong; Wang, Jiaxing; Yu, Wenjun; Wang, Chen; Sun, Dongdong; Wang, Haichang

    2014-01-01

    Aim The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions. Methods Primary cardiomyocytes which were isolated from neonatal mouse were randomized to be treated with lentivirus carrying Lin28a siRNA, Lin28acDNA 72 h before H/R (9 h/2 h). Cardiomyocytes biomarkers release (LDH and CK), cardiomyocytes apoptosis, mitochondria biogenesis and morphology, intracellular reactive oxygen species (ROS) production, ATP content and inflammatory cytokines levels after H/R injury in high glucose/high fat conditions were compared between groups. The target proteins of Lin28a were examined by western blot analysis. Results Our results revealed that Lin28a cDNA transfection (overexpression) significantly inhibited cardiomyocyte apoptotic index, improved mitochondria biogenesis, increased ATP production and reduced ROS production as compared with the H/R group in HG/HF conditions. Lin28a siRNA transfection (knockdown) rendered the cardiomyocytes more susceptible to H/R injury as evidenced by increased apoptotic index, impaired mitochondrial biogenesis, decreased ATP production and increased ROS level. Interestingly, these effects of Lin28a were blocked by pretreatment with the PI3K inhibitor wortmannin. Lin28a overexpression increased, while Lin28a knockdown inhibited IGF1R, Nrf-1, Tfam, p-IRS-1, p-Akt, p-mTOR, p-p70s6k, p-AMPK expression levels after H/R injury in HG/HF conditions. Moreover, pretreatment with wortmannin abolished the effects of Lin28a on the expression levels of p-AKT, p-mTOR, p-p70s6k, p-AMPK. Conclusions The present results suggest that Lin28a inhibits cardiomyocytes apoptosis by enhancing mitochondrial biogenesis and function under high glucose/high fat conditions. The mechanism responsible for the effects of Lin28a is associated with the PI3K/Akt dependent pathway. PMID:25313561

  10. Nutrient quality of fast food kids meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  11. Pre-meal water consumption for weight loss.

    PubMed

    2013-07-01

    Drinking 500 mL of water 30 minutes before each meal can be used in conjunction with a hypocaloric diet to lead to greater weight loss in overweight or obese middle-aged and older adults. Pre-meal water consumption for weight loss is an easy to implement intervention. It has NHMRC Level 2 evidence of efficacy and adverse effects are unlikely. There are some considerations, and the intervention would be contraindicated in patients with congestive cardiac failure, and in those with severe renal impairment.

  12. p13 overexpression in pancreatic β-cells ameliorates type 2 diabetes in high-fat-fed mice.

    PubMed

    Higashi, Shintaro; Katagi, Kazuhiko; Shintani, Norihito; Ikeda, Kazuya; Sugimoto, Yukihiko; Tsuchiya, Soken; Inoue, Naoki; Tanaka, Shota; Koumoto, Mai; Kasai, Atsushi; Nakazawa, Takanobu; Hayata-Takano, Atsuko; Hamagami, Ken-Ichi; Tomimoto, Shuhei; Yoshida, Takuya; Ohkubo, Tadayasu; Nagayasu, Kazuki; Ago, Yukio; Onaka, Yusuke; Hashimoto, Ryota; Ichikawa, Atsushi; Baba, Akemichi; Hashimoto, Hitoshi

    2015-06-12

    We examined the pancreatic function of p13 encoded by 1110001J03Rik, whose expression is decreased in pancreatic islets in high-fat-fed diabetic mice, by generating transgenic mice overexpressing p13 (p13-Tg) in pancreatic β-cells. p13-Tg mice showed normal basal glucose metabolism; however, under high-fat feeding, these animals showed augmented glucose-induced first-phase and total insulin secretion, improved glucose disposal, greater islet area and increased mitotic insulin-positive cells. In addition, high-fat diet-induced 4-hydroxynonenal immunoreactivity, a reliable marker and causative agent of lipid peroxidative stress, was significantly decreased in p13-Tg mouse islets. These results indicate that p13 is a novel pancreatic factor exerting multiple beneficial effects against type 2 diabetes.

  13. Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1

    PubMed Central

    Sobesky, Julia L.; D’Angelo, Heather M.; Anderson, Nathan D.; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Abstract The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone. PMID:27595136

  14. Maternal high-fat diet-induced programing of gut taste receptor and inflammatory gene expression in rat offspring is ameliorated by CLA supplementation.

    PubMed

    Reynolds, Clare M; Segovia, Stephanie A; Zhang, Xiaoyuan D; Gray, Clint; Vickers, Mark H

    2015-10-01

    Consumption of a high-fat (HF) diet during pregnancy and lactation influences later life predisposition to obesity and cardiometabolic disease in offspring. The mechanisms underlying this phenomenon remain poorly defined, but one potential target that has received scant attention and is likely pivotal to disease progression is that of the gut. The present study examined the effects of maternal supplementation with the anti-inflammatory lipid, conjugated linoleic acid (CLA), on offspring metabolic profile and gut expression of taste receptors and inflammatory markers. We speculate that preventing high-fat diet-induced metainflammation improved maternal metabolic parameters conferring beneficial effects on adult offspring. Sprague Dawley rats were randomly assigned to a purified control diet (CD; 10% kcal from fat), CD with CLA (CLA; 10% kcal from fat, 1% CLA), HF (45% kcal from fat) or HF with CLA (HFCLA; 45% kcal from fat, 1% CLA) throughout gestation and lactation. Plasma/tissues were taken at day 24 and RT-PCR was carried out on gut sections. Offspring from HF mothers were significantly heavier at weaning with impaired insulin sensitivity compared to controls. This was associated with increased plasma IL-1β and TNFα concentrations. Gut Tas1R1, IL-1β, TNFα, and NLRP3 expression was increased and Tas1R3 expression was decreased in male offspring from HF mothers and was normalized by maternal CLA supplementation. Tas1R1 expression was increased while PYY and IL-10 decreased in female offspring of HF mothers. These results suggest that maternal consumption of a HF diet during critical developmental windows influences offspring predisposition to obesity and metabolic dysregulation. This may be associated with dysregulation of taste receptor, incretin, and inflammatory gene expression in the gut. PMID:26493953

  15. Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1.

    PubMed

    Sobesky, Julia L; D'Angelo, Heather M; Weber, Michael D; Anderson, Nathan D; Frank, Matthew G; Watkins, Linda R; Maier, Steven F; Barrientos, Ruth M

    2016-01-01

    The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.

  16. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice.

    PubMed

    Collins, Brian; Hoffman, Jessie; Martinez, Kristina; Grace, Mary; Lila, Mary Ann; Cockrell, Chase; Nadimpalli, Anuradha; Chang, Eugene; Chuang, Chia-Chi; Zhong, Wei; Mackert, Jessica; Shen, Wan; Cooney, Paula; Hopkins, Robin; McIntosh, Michael

    2016-05-01

    The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet.

  17. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice.

    PubMed

    Jia, Huijuan; Aw, Wanping; Egashira, Kenji; Takahashi, Shoko; Aoyama, Shinya; Saito, Kenji; Kishimoto, Yoshimi; Kato, Hisanori

    2014-05-01

    Epidemiologic findings offer the promise that coffee or its many constituents may be useful as a dietary intervention in type 2 diabetes (T2D) prevention. We aimed to elucidate the molecular mechanisms involved in the ameliorative effects of caffeinated coffee (CC), decaffeinated coffee (DC) and unroasted caffeinated green coffee (GC) on skeletal muscle gene expression profiles and their relationships in an obesity animal model. Eight-week-old male C57BL6 mice were raised for 9 weeks ad libitum on a normal diet, a high-fat diet, or high-fat diet containing 2 % freeze-dried CC, or DC, or GC. Total RNA and protein were extracted from skeletal muscle and subjected to microarray (Mouse Genome 430 2.0, Affymetrix) and western blotting analyses, respectively. Coffee intake mitigated the insulin resistance by decreasing plasma glucose levels during an insulin tolerance test and by increasing tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1), p85/IRS-1 complex and pAkt/PKB (protein kinase B). In addition, coffee intake down-regulated the anti-inflammatory genes activating transcription factor 3, FBJ osteosarcoma oncogene, heat shock protein 1A, heat shock protein 1B and synuclein, gamma and the inflammation-associated insulin signaling genes stearoyl-coenzyme A desaturase 1 and secreted phosphoprotein 1. These results provide scientific insight on the probable positive effects of coffee intake on impaired insulin signaling, inflammation and obesity, thereby providing a new perspective on the prevention of obesity and T2D.

  18. Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1

    PubMed Central

    Sobesky, Julia L.; D’Angelo, Heather M.; Anderson, Nathan D.; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Abstract The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.

  19. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet

    PubMed Central

    Jackson, Ellen E.; Rendina-Ruedy, Elisabeth; Smith, Brenda J.; Lacombe, Veronique A.

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway. PMID:26539824

  20. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice.

    PubMed

    Jia, Huijuan; Aw, Wanping; Egashira, Kenji; Takahashi, Shoko; Aoyama, Shinya; Saito, Kenji; Kishimoto, Yoshimi; Kato, Hisanori

    2014-05-01

    Epidemiologic findings offer the promise that coffee or its many constituents may be useful as a dietary intervention in type 2 diabetes (T2D) prevention. We aimed to elucidate the molecular mechanisms involved in the ameliorative effects of caffeinated coffee (CC), decaffeinated coffee (DC) and unroasted caffeinated green coffee (GC) on skeletal muscle gene expression profiles and their relationships in an obesity animal model. Eight-week-old male C57BL6 mice were raised for 9 weeks ad libitum on a normal diet, a high-fat diet, or high-fat diet containing 2 % freeze-dried CC, or DC, or GC. Total RNA and protein were extracted from skeletal muscle and subjected to microarray (Mouse Genome 430 2.0, Affymetrix) and western blotting analyses, respectively. Coffee intake mitigated the insulin resistance by decreasing plasma glucose levels during an insulin tolerance test and by increasing tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1), p85/IRS-1 complex and pAkt/PKB (protein kinase B). In addition, coffee intake down-regulated the anti-inflammatory genes activating transcription factor 3, FBJ osteosarcoma oncogene, heat shock protein 1A, heat shock protein 1B and synuclein, gamma and the inflammation-associated insulin signaling genes stearoyl-coenzyme A desaturase 1 and secreted phosphoprotein 1. These results provide scientific insight on the probable positive effects of coffee intake on impaired insulin signaling, inflammation and obesity, thereby providing a new perspective on the prevention of obesity and T2D. PMID:24599575

  1. Deficiency of oncostatin M receptor β (OSMRβ) exacerbates high-fat diet-induced obesity and related metabolic disorders in mice.

    PubMed

    Komori, Tadasuke; Tanaka, Minoru; Senba, Emiko; Miyajima, Atsushi; Morikawa, Yoshihiro

    2014-05-16

    Oncostatin M (OSM) belongs to the IL-6 family of cytokines and has diverse biological effects, including the modulation of inflammatory responses. In the present study we analyzed the roles of OSM signaling in obesity and related metabolic disorders. Under a high-fat diet condition, OSM receptor β subunit-deficient (OSMRβ(-/-)) mice exhibited increases in body weight and food intake compared with those observed in WT mice. In addition, adipose tissue inflammation, insulin resistance, and hepatic steatosis were more severe in OSMRβ(-/-) mice than in wild-type (WT) mice. These metabolic phenotypes did not improve when OSMRβ(-/-) mice were pair-fed with WT mice, suggesting that the effects of OSM signaling on these phenotypes are independent of the increases in the body weight and food intake. In the liver of OSMRβ(-/-) mice, the insulin-induced phosphorylation of p70 S6 kinase remained intact, whereas insulin-induced FOXO1 phosphorylation was impaired. In addition, OSMRβ(-/-) mice displayed a higher expression of genes related to de novo lipogenesis in the liver than WT mice. Furthermore, treatment of genetically obese ob/ob mice with OSM improved insulin resistance, adipose tissue inflammation, and hepatic steatosis. Intraportal administration of OSM into ob/ob mice activated STAT3 and increased the expression of long-chain acyl-CoA synthetase (ACSL) 3 and ACSL5 with decreased expression of fatty acid synthase in the liver, suggesting that OSM directly induces lipolysis and suppresses lipogenesis in the liver of obese mice. These findings suggest that defects in OSM signaling promote the deterioration of high-fat diet-induced obesity and related metabolic disorders.

  2. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD.

    PubMed

    Luo, Yuwen; Burrington, Christine M; Graff, Emily C; Zhang, Jian; Judd, Robert L; Suksaranjit, Promporn; Kaewpoowat, Quanhathai; Davenport, Samantha K; O'Neill, Ann Marie; Greene, Michael W

    2016-03-15

    nonalcoholic fatty liver disease (NAFLD), an obesity and insulin resistance associated clinical condition - ranges from simple steatosis to nonalcoholic steatohepatitis. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. Even though liver pathophysiology has been well characterized in the model, little is known about the metabolic phenotype (e.g., energy expenditure, activity, or food intake). Furthermore, whether the consumption of liquid sugar exacerbates the development of glucose intolerance, insulin resistance, and adipose tissue dysfunction in the model is currently in question. In our study, a high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT). Hepatic TG, plasma alanine aminotransferase, and normalized liver weight were significantly increased only in HFWD+F/S-fed mice. HFWD+F/S also resulted in increased hepatic fibrosis and elevated collagen 1a2, collagen 3a1, and TGFβ gene expression. Furthermore, HWFD+F/S-fed mice developed more profound eWAT inflammation characterized by adipocyte hypertrophy, macrophage infiltration, a dramatic increase in crown-like structures, and upregulated proinflammatory gene expression. An early hypoxia response in the eWAT led to reduced vascularization and increased fibrosis gene expression in the HFWD+F/S-fed mice. Our results demonstrate that sugary water consumption induces acute hyperphagia, limits adipose tissue expansion, and exacerbates glucose intolerance and insulin resistance, which are associated with NAFLD progression.

  3. Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1.

    PubMed

    Sobesky, Julia L; D'Angelo, Heather M; Weber, Michael D; Anderson, Nathan D; Frank, Matthew G; Watkins, Linda R; Maier, Steven F; Barrientos, Ruth M

    2016-01-01

    The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone. PMID:27595136

  4. Brown (BAT) and white (WAT) adipose tissue in high-fat junk food (HFJF) and chow-fed rats with dorsomedial hypothalamic lesions (DMNL rats).

    PubMed

    Bernardis, L L; Bellinger, L L

    1991-05-15

    Male weanling rats received dorsomedial hypothalamic nucleus lesions (DMNL) or sham operations and were fed for 173 postoperative days a high-fat diet and given a 32% sucrose solution as drinking fluid. This was supplemented with chocolate chip cookies, potato chips and marshmallows. Other DMNL and sham-operated controls were fed lab chow instead of the above high-fat junk food diet (HFJF) and given tap water instead of 32% sucrose solution. All animals were killed on postoperative day 174. Caloric intake per 100 g body weight was similar in all groups; however, the HFJF fed control and DMNL rats had significantly elevated carcass fat. Since HFJF-DMNL rats were not nearly as obese as the HFJF control animals, it appears that the DMNL offered some protection against the HFJF-diet-produced obesity. When their smaller body size is considered. DMN lesions had no effect on brown adipose tissue (BAT) mass in chow-fed or HFJF fed rats, whereas BAT size was significantly enlarged in HFJF-fed control animals. This suggests but does not prove that HFJF-fed controls, but not DMNL rats, may be using dietary-induced thermogenesis (DIT) to attenuate their obesity. We hypothesize that the HFJF-fed DMNL may not be enhancing DIT as reflected in normal BAT size, because they had not attained a degree of fatness to activate this system, or the DMN lesions impaired its activation. Both HFJF-fed groups showed reduced linear growth compared to their counterparts. The reason for stunting is uncertain, but may be related to their low plasma insulin concentrations.

  5. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat.

    PubMed

    Sampath, Sathish; Karundevi, Balasubramanian

    2014-10-01

    Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1(Tyr632), p-Akt(Ser473), β-arrestin-2, c-Src, p-AS160(Thr642), and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.

  6. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    PubMed

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  7. Haloperidol and rimonabant increase delay discounting in rats fed high-fat and standard-chow diets.

    PubMed

    Boomhower, Steven R; Rasmussen, Erin B

    2014-12-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for 3 months. Then, operant sessions began in which rats (n=9 standard chow; n=10 high-fat) chose between one sucrose pellet delivered immediately versus three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered intraperitoneally before some choice sessions under both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve values. Rats in the high-fat diet condition showed increased sensitivity to haloperidol compared with chow-fed controls; haloperidol increased discounting in both dietary groups in the sucrose condition, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking dopamine-2 and cannabinoid-1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task.

  8. Alleviation of high-fat diet-induced fatty liver damage in group IVA phospholipase A2-knockout mice.

    PubMed

    Ii, Hiromi; Yokoyama, Naoki; Yoshida, Shintaro; Tsutsumi, Kae; Hatakeyama, Shinji; Sato, Takashi; Ishihara, Keiichi; Akiba, Satoshi

    2009-12-01

    Hepatic fat deposition with hepatocellular damage, a feature of non-alcoholic fatty liver disease, is mediated by several putative factors including prostaglandins. In the present study, we examined whether group IVA phospholipase A(2) (IVA-PLA(2)), which catalyzes the first step in prostanoid biosynthesis, is involved in the development of fatty liver, using IVA-PLA(2)-knockout mice. Male wild-type mice on high-fat diets (20% fat and 1.25% cholesterol) developed hepatocellular vacuolation and liver hypertrophy with an increase in the serum levels of liver damage marker aminotransferases when compared with wild-type mice fed normal diets. These high-fat diet-induced alterations were markedly decreased in IVA-PLA(2)-knockout mice. Hepatic triacylglycerol content was lower in IVA-PLA(2)-knockout mice than in wild-type mice under normal dietary conditions. Although high-fat diets increased hepatic triacylglycerol content in both genotypes, the degree was lower in IVA-PLA(2)-knockout mice than in wild-type mice. Under the high-fat dietary conditions, IVA-PLA(2)-knockout mice had lower epididymal fat pad weight and smaller adipocytes than wild-type mice. The serum level of prostaglandin E(2), which has a fat storage effect, was lower in IVA-PLA(2)-knockout mice than in wild-type mice, irrespective of the kind of diet. In both genotypes, high-fat diets increased serum leptin levels equally between the two groups, but did not affect the serum levels of adiponectin, resistin, free fatty acid, triacylglycerol, glucose, or insulin. Our findings suggest that a deficiency of IVA-PLA(2) alleviates fatty liver damage caused by high-fat diets, probably because of the lower generation of IVA-PLA(2) metabolites, such as prostaglandin E(2). IVA-PLA(2) could be a promising therapeutic target for obesity-related diseases including non-alcoholic fatty liver disease.

  9. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    SciTech Connect

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  10. Obesity Takes Its Toll on Visceral Pain: High-Fat Diet Induces Toll-Like Receptor 4-Dependent Visceral Hypersensitivity

    PubMed Central

    Dinan, Timothy G.; Cryan, John F.

    2016-01-01

    Exposure to high-fat diet induces both, peripheral and central alterations in TLR4 expression. Moreover, functional TLR4 is required for the development of high-fat diet-induced obesity. Recently, central alterations in TLR4 expression have been associated with the modulation of visceral pain. However, it remains unknown whether there is a functional interaction between the role of TLR4 in diet-induced obesity and in visceral pain. In the present study we investigated the impact of long-term exposure to high-fat diet on visceral pain perception and on the levels of TLR4 and Cd11b (a microglial cell marker) protein expression in the prefrontal cortex (PFC) and hippocampus. Peripheral alterations in TLR4 were assessed following the stimulation of spleenocytes with the TLR4-agonist LPS. Finally, we evaluated the effect of blocking TLR4 on visceral nociception, by administering TAK-242, a selective TLR4-antagonist. Our results demonstrated that exposure to high-fat diet induced visceral hypersensitivity. In parallel, enhanced TLR4 expression and microglia activation were found in brain areas related to visceral pain, the PFC and the hippocampus. Likewise, peripheral TLR4 activity was increased following long-term exposure to high-fat diet, resulting in an increased level of pro-inflammatory cytokines. Finally, TLR4 blockage counteracted the hyperalgesic phenotype present in mice fed on high-fat diet. Our data reveal a role for TLR4 in visceral pain modulation in a model of diet-induced obesity, and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity present in pathologies associated to fat diet consumption. PMID:27159520

  11. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury.

  12. Effects of exercise and L-arginine intake on inflammation in aorta of high-fat diet induced obese rats

    PubMed Central

    Kim, Hee-jae; Son, Junseok; Jin, Eunhee; Lee, Jin; Park, Sok

    2016-01-01

    [Purpose] In the present study, we investigated the effect of exercise and arginine on the inflammatory makers and Cu-Mn superoxide dismutase (SOD) expression in the aortas of high-fat-induced obese rats. [Methods] Fifty 6-month-old male Sprague-Dawley rats were randomly assigned as follows: HF-Con: high-fat diet, HF-Ex: high-fat diet and exercise, HF-Ex+A: high-fat diet and combined exercise and arginine, HF-A: high-fat diet and arginine. The high-fat diet was fed for 12 weeks following 1 week of environmental adaptation with mixed solid chow. The rats performed treadmill exercise 6 times per week for 12 weeks at20 m/min for 60 min. L-argininewas mixed with saline and orally administered at 150 mg/kg once a day. Expressions of inflammatory markers (including NF- κB, TNF-α, COX-2) and SOD were evaluated using western blotting. [Results] NF-κB expression decreased significantly (p<0.05) in the HF-Ex group compared with HF-Con group, and we found additional effects(p<0.01) on NF-κB expression in HF-EX+A compared withHF-Ex. TNF-α expression decreased significantly (p<0.01) in HF-Ex, FH-Ex+A, and FH-A compared with HF-Con. In a similar trend with NF-κB expression, COX-2 expression decreased significantly in HF-Ex compared withHF-Con. In Cu-Mn SOD expression, there was no difference between HF and HF-Ex, but significant increases (p<0.01) inCu-Mn SOD werefound in HF-Ex+A and HF-A. [Conclusion] Based on our results, treatment that combines exercise and arginine might be effective for modulatingvascular inflammation and oxidative stress in obesity PMID:27298811

  13. CENTRAL ADMINISTRATION OF THE RF-AMIDE PEPTIDES, QRFP-26 AND QRFP-43, INCREASES HIGH FAT FOOD INTAKE IN RATS

    PubMed Central

    Primeaux, Stefany D.; Blackmon, Christine; Barnes, Maria J.; Braymer, H. Douglas; Bray, George A.

    2008-01-01

    Pyrogultamylated arginine-phenylalanineamide peptide (QRFP) is strongly conserved across species and is a member of the family of RFamide-related peptides, with the motif Arg-Phe-NH2 at the C-terminal end. The precursor peptide for QRFP generates a 26-amino acid peptide (QRFP-26) and a 43-amino acid peptide (QRFP-43), both of which bind to the G protein-coupled receptor, GPR103. Recently, QRFP has been characterized in rats, mice and humans and has been reported to have orexigenic properties. In rodents, prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus, a region implicated in feeding behavior. Increased intake of a high fat diet contributes to increased weight gain and obesity. Therefore, the current experiments investigated the effects of QRFP administration in rats and the effects of a high fat diet on prepro-QRFP mRNA and GPR103 receptor mRNA levels. Intracerebroventricular administration of QRFP-26 (3.0nM, 5.0nM) and QRFP-43 (1.0nM, 3.0nM) dose-dependently increased 1h, 2h, and 4h cumulative intake of high fat (55% fat), but not low fat (10% fat) diet. In Experiment 2, hypothalamic prepro-QRFP mRNA levels and GPR103 receptor mRNA levels were measured in rats fed a high fat or a low fat diet for 21 days. Prepro-QRFP mRNA was significantly increased in the ventromedial nucleus/arcuate nucleus of the hypothalamus of rats fed a high fat diet compared to those fed a low fat diet, while GPR103 mRNA levels were unchanged. These findings suggest that QRFP is a regulator of dietary fat intake and is influenced by the intake of a high fat diet. PMID:18765262

  14. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats.

    PubMed

    Thanos, Panayotis K; Cho, Jacob; Kim, Ronald; Michaelides, Michael; Primeaux, Stefany; Bray, George; Wang, Gene-Jack; Volkow, Nora D

    2011-02-01

    Dopamine (DA) and DA D₂ receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  15. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  16. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells.

    PubMed

    Qian, Chao; Zhu, Chenyuan; Yu, Weiqiang; Jiang, Xinquan; Zhang, Fuqiang

    2015-01-01

    Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt signaling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived BMSCs were cultured on calcium phosphate cement (CPC) scaffolds and placed subcutaneously into nude mice for eight weeks; they were detected at a low level in newly formed bone. The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture environment, but it was impaired by inhibition of the Wnt signaling pathway, likely due to an insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone together with the use of supplementary growth factors to stimulate the Wnt signaling pathway. PMID:26296196

  17. Portal vein glucose entry triggers a coordinated cellular response that potentiates hepatic glucose uptake and storage in normal but not high-fat/high-fructose-fed dogs.

    PubMed

    Coate, Katie C; Kraft, Guillaume; Irimia, Jose M; Smith, Marta S; Farmer, Ben; Neal, Doss W; Roach, Peter J; Shiota, Masakazu; Cherrington, Alan D

    2013-02-01

    The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed dogs. In CTR dogs, we demonstrated that PoG infusion in the presence of hyperinsulinemia and hyperglycemia triggered an increase in the activity of hepatic glucokinase (GK) and glycogen synthase (GS), which occurred in association with further augmentation in HGU and glycogen synthesis (GSYN) in vivo. In contrast, 4 weeks of HFFD feeding markedly reduced GK protein content and impaired the activation of GS in association with diminished HGU and GSYN in vivo. Furthermore, the enzymatic changes associated with PoG sensing in chow-fed animals were abolished in HFFD-fed animals, consistent with loss of the stimulatory effects of PoG delivery. These data reveal new insight into the molecular physiology of the portal glucose signaling mechanism under normal conditions and to the pathophysiology of aberrant postprandial hepatic glucose disposition evident under a diet-induced glucose-intolerant condition.

  18. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    PubMed

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD.

  19. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells

    PubMed Central

    Yu, Weiqiang; Jiang, Xinquan; Zhang, Fuqiang

    2015-01-01

    Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt signaling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived BMSCs were cultured on calcium phosphate cement (CPC) scaffolds and placed subcutaneously into nude mice for eight weeks; they were detected at a low level in newly formed bone. The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture environment, but it was impaired by inhibition of the Wnt signaling pathway, likely due to an insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone together with the use of supplementary growth factors to stimulate the Wnt signaling pathway. PMID:26296196

  20. Meal Counting and Claiming Manual.

    ERIC Educational Resources Information Center

    Food and Nutrition Service (USDA), Washington, DC.

    This manual contains information about the selection and implementation of a meal counting and claiming system for the National School Lunch Program (NSLP) and the School Breakfast Program (BSP). Federal reimbursement is provided for each meal that meets program requirements and is served to an eligible student. Part 1 explains the six elements of…

  1. Postnatal overfeeding promotes early onset and exaggeration of high-fat diet-induced nonalcoholic fatty liver disease through disordered hepatic lipid metabolism in rats.

    PubMed

    Ji, Chenlin; Dai, Yanyan; Jiang, Weiwei; Liu, Juan; Hou, Miao; Wang, Junle; Burén, Jonas; Li, Xiaonan

    2014-11-01

    Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis.

  2. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    SciTech Connect

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  3. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats

    PubMed Central

    Sampathkumar, M. T.; Kasetti, R. B.; Nabi, S. A.; Sudarshan, P. Renuka; Swapna, S.; Apparao, C.

    2011-01-01

    Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD). Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt) was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition), Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases. PMID:21966168

  4. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats.

    PubMed

    Sampathkumar, M T; Kasetti, R B; Nabi, S A; Sudarshan, P Renuka; Swapna, S; Apparao, C

    2011-07-01

    Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD). Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt) was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition), Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases.

  5. Tranilast alleviates endothelial dysfunctions and insulin resistance via preserving glutathione peroxidase 1 in rats fed a high-fat emulsion.

    PubMed

    Yang, Xuan; Feng, Lei; Li, Changjiang; Li, Yu

    2014-01-01

    We investigated the effects of treatment with tranilast on vascular and metabolic dysfunction induced by a high-fat emulsion intragastric administration. Wistar rats were randomized to receive water or high-fat emulsion with or without tranilast treatment (400 mg/kg per day) for 4 weeks. Insulin sensitivity was determined with a hyperinsulinemic-euglycemic clamp experiment and short insulin tolerance test. Vascular reactivity was evaluated using aortic rings in organ chambers. Glutathione peroxidase 1 (GPX1) expressions, eNOS phosphorylation and activity, MCP-1, H2O2 formation, and NO production were determined in vascular or soleus tissues. Tranilast treatment was found to prevent alterations in vascular reactivity and insulin sensitivity and to prevent increases in plasma glucose and insulin noted in the high-fat emulsion-treated rats. These were associated with increased antioxidant enzyme GPX1 expression, eNOS phosphorylation and activity, and NO production, but reductions in H2O2 accumulation. Moreover, tranilast preserved GPX1 expression in palmitic acid (PA)-treated endothelial cells with a consequent decreased ROS formation and increased eNOS phosphorylation and NO production. Therefore, oxidative stress induced by a relatively short-term high-fat diet could cause the early development of vascular and metabolic abnormalities in rats, and tranilast has a beneficial effect in vascular dysfunctions and insulin resistance via preserving GPX1 and alleviating oxidative stress. PMID:24389817

  6. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  7. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and Cell Senescence by Activating SIRT1.

    PubMed

    Zhang, Nannan; Li, Zhongchi; Xu, Kang; Wang, Yanying; Wang, Zhao

    2016-01-01

    Obesity-related renal diseases have been a worldwide issue. Effective strategy that prevents high fat-diet induced renal damage is of great significance. Resveratrol, a natural plant polyphenol, is famous for its antioxidant activity, cardioprotective effects and anticancer properties. However whether resveratrol can play a role in the treatment of renal diseases is unknown. In this study, we added resveratrol in normal glucose or high glucose medium and provide evidences that resveratrol protects against high-glucose triggered oxidative stress and cell senescence. Moreover, mice were fed with standard diet, standard diet plus resveratrol, high-fat diet or high-fat diet plus resveratrol for 3 months, and results show that resveratrol treatment prevents high-fat diet induced renal pathological damage by activating SIRT1, a key member in the mammalian sirtuin family that response to calorie restriction life-extension method. This research confirms the potential role of resveratrol in the treatment of renal diseases and may provide an effective and convenient method to mimic the beneficial effects of calorie restriction. PMID:27582325

  8. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis.

  9. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue.

    PubMed

    Cui, BoKang; Liu, Su; Lin, XiaoJun; Wang, Jun; Li, ShuHong; Wang, QiBo; Li, ShengPing

    2011-11-01

    This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.

  10. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  11. High-fat diets containing different amounts of n-3 polyunsaturated acids modulate adipokine production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dysregulation of adipokines is a hallmark of obesity. Polyunsaturated (n3) fatty acids in fish oil may exert anti-inflammatory effects on adipose tissue mitigating the dysregulation of adipokines thereby preventing obesity. This study investigated the effects of high-fat diets containing different...

  12. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis. PMID:27262537

  13. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  14. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats.

    PubMed

    Sampathkumar, M T; Kasetti, R B; Nabi, S A; Sudarshan, P Renuka; Swapna, S; Apparao, C

    2011-07-01

    Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD). Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt) was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition), Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases. PMID:21966168

  15. Diets containing Sophora japonica L. prevent weight gain in high-fat diet-induced obese mice.

    PubMed

    Park, Kye Won; Lee, Ji-Eun; Park, Ki-Moon

    2009-11-01

    Obesity, a worldwide epidemic, is associated with metabolic diseases such as insulin resistance, dyslipidemia, hypertension, and heart disease. Many strategies, including natural alternative antiobesity agents, have been widely used to prevent obesity. Polyphenolic compounds and flavonoids from natural products are shown to inhibit adipogenesis. Because mature fruits of Sophora japonica L. were previously shown to contain antiadipogenic compounds, we hypothesized that diets with mature fruits of S japonica L. would prevent body weight gain in high-fat diet-induced obesity. Four-week-old mice were fed either a control high-fat diet, or high-fat diet containing 1% or 5% of S japonica L. for 4 weeks. The administration of S japonica L. fed in combination with a 30% high-fat diet significantly decreased body weight gain. S japonica L. also reduced serum and hepatic triglyceride, serum total, and high-density lipoprotein cholesterol. Consistent with the effects of lowering glucose level and fat mass, S japonica L. caused a decrease in the number of large adipocytes and a concomitant increase in the number of small adipocytes, which may explain at least in part the antiobesity effects of S japonica L. Together, these data provide evidence for roles of S japonica L. in the control of body weight and obesity-related metabolic diseases. PMID:19932871

  16. Hepatic Gene Expression Related to Lower Plasma Cholesterol in Hamsters Fed High Fat Diets Supplemented with Blueberry Pomace and Extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed plasma lipid profiles, and genes related to cholesterol and bile acid metabolism, and inflammation in livers as well as adipose tissue from Syrian Golden hamsters fed high-fat diets supplemented with blueberry (BB) pomace byproducts including 8% dried whole blueberry peels (BBPWHL), 2% d...

  17. Survival of Salmonella enterica serotype Tennessee during simulated gastric passage is improved by low water activity and high fat content.

    PubMed

    Aviles, Bryan; Klotz, Courtney; Smith, Twyla; Williams, Robert; Ponder, Monica

    2013-02-01

    The low water activity (a(w) 0.3) of peanut butter prohibits the growth of Salmonella in a product; however, illnesses are reported from peanut butter contaminated with very small doses, suggesting the food matrix itself influences the infectious dose of Salmonella, potentially by improving Salmonella's survival in the gastrointestinal tract. The purpose of our study was to quantify the survival of a peanut butter outbreak-associated strain of Salmonella enterica serotype Tennessee when inoculated into peanut butters with different fat contents and a(w) (high fat, high a(w); high fat, low a(w); low fat, high a(w); low fat, low a(w)) and then challenged with a simulated gastrointestinal system. Exposures to increased fat content and decreased a(w) both were associated with a protective effect on the survival of Salmonella Tennessee in the simulated gastric fluid compared with control cells. After a simulated intestinal phase, the populations of Salmonella Tennessee in the control and low-fat formulations were not significantly different; however, a 2-log CFU/g increase occurred in high-fat formulations. This study demonstrates that cross-protection from low-a(w) stress and the presence of high fat results in improved survival in the low pH of the stomach. The potential for interaction of food matrix and stress adaptations could influence the virulence of Salmonella and should be considered for risk analysis. PMID:23433384

  18. Time-restricted feeding of a high-fat diet reduces adiposity and inflammatory cytokine production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythms contributes to obesity. Restricting feeding to particular times of the day may reset the circadian rhythms and reduce obesity and resulting complications. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity...

  19. Preserving of Postnatal Leptin Signaling in Obesity-Resistant Lou/C Rats following a Perinatal High-Fat Diet

    PubMed Central

    Poher, Anne-Laure; Arsenijevic, Denis; Asrih, Mohamed; Dulloo, Abdul G.; Jornayvaz, François R.; Rohner-Jeanrenaud, Françoise; Veyrat-Durebex, Christelle

    2016-01-01

    Physiological processes at adulthood, such as energy metabolism and insulin sensitivity may originate before or weeks after birth. These underlie the concept of fetal and/or neonatal programming of adult diseases, which is particularly relevant in the case of obesity and type 2 diabetes. The aim of this study was to determine the impact of a perinatal high fat diet on energy metabolism and on leptin as well as insulin sensitivity, early in life and at adulthood in two strains of rats presenting different susceptibilities to diet-induced obesity. The impact of a perinatal high fat diet on glucose tolerance and diet-induced obesity was also assessed. The development of glucose intolerance and of increased fat mass was confirmed in the obesity-prone Wistar rat, even after 28 days of age. By contrast, in obesity-resistant Lou/C rats, an improved early leptin signaling may be responsible for the lack of deleterious effect of the perinatal high fat diet on glucose tolerance and increased adiposity in response to high fat diet at adulthood. Altogether, this study shows that, even if during the perinatal period adaptation to the environment appears to be genetically determined, adaptive mechanisms to nutritional challenges occurring at adulthood can still be observed in rodents. PMID:27618559

  20. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effects of diet (AIN93G or high-fat), physical activity (sedentary or voluntary running) and protein source (casein or soy protein isolate) and their interactions on bone microstructural changes in distal femurs in male C57BL/6 mice by using micro-computed tomography. After 14 w...

  1. Resveratrol supplementation restores high-fat diet-induced insulin secretion dysfunction by increasing mitochondrial function in islet

    PubMed Central

    Kong, Wen; Zheng, Juan; Zhang, Hao-hao; Hu, Xiang; Zeng, Tian-shu; Hu, Di

    2015-01-01

    Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet. PMID:25228148

  2. Chlorella Protein Hydrolysate Attenuates Glucose Metabolic Disorder and Fatty Liver in High-fat Diet-induced Obese Mice.

    PubMed

    Noguchi, Naoto; Yanagita, Teruyoshi; Rahman, Shaikh Mizanoor; Ando, Yotaro

    2016-07-01

    Chlorella (Parachlorella beijerinckii) powder is reported to show a preventive effect against metabolic syndromes such as arteriosclerosis, hyperlipidemia, and hypertension. Approximately 60% of the chlorella content is protein. In order to understand the role of chlorella protein, we prepared a chlorella protein hydrolysate (CPH) by protease treatment. Male C57BL/6 mice were divided into three groups: a normal diet group, high-fat diet (HFD) group, and high-fat diet supplemented with CPH (HFD+CPH) group. The CPH administration improved glucose intolerance, insulin sensitivity, and adipose tissue hypertrophy in the high-fat diet-fed mice. In addition, the HFD+CPH group had significantly decreased liver total cholesterol and triglyceride levels compared with those in the HFD group. Furthermore, the HFD+CPH group had a decreased level of monocyte chemotactic protein-1 (MCP-1) in serum and a lower MCP-1 mRNA expression level in adipose tissue compared with the HFD group. The present study suggests that chlorella protein hydrolysate can prevent a high-fat diet-induced glucose disorder and fatty liver by inhibiting adipocyte hypertrophy and reducing the MCP-1 protein and gene expression. PMID:27321121

  3. High-fat diet enhances primary mammary tumorigenesis and pulmonary metastasis in MMTV-PyMT mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The MMTV-PyMT transgenic mouse model is commonly used to study luminal B breast cancer, which has a lower prevalence but a worse prognosis. The objective of the present study was to determine whether an obesogenic, high-fat diet enhances primary tumorigenesis and pulmonary metastasis in female MMTV...

  4. Preserving of Postnatal Leptin Signaling in Obesity-Resistant Lou/C Rats following a Perinatal High-Fat Diet.

    PubMed

    Poher, Anne-Laure; Arsenijevic, Denis; Asrih, Mohamed; Dulloo, Abdul G; Jornayvaz, François R; Rohner-Jeanrenaud, Françoise; Veyrat-Durebex, Christelle

    2016-01-01

    Physiological processes at adulthood, such as energy metabolism and insulin sensitivity may originate before or weeks after birth. These underlie the concept of fetal and/or neonatal programming of adult diseases, which is particularly relevant in the case of obesity and type 2 diabetes. The aim of this study was to determine the impact of a perinatal high fat diet on energy metabolism and on leptin as well as insulin sensitivity, early in life and at adulthood in two strains of rats presenting different susceptibilities to diet-induced obesity. The impact of a perinatal high fat diet on glucose tolerance and diet-induced obesity was also assessed. The development of glucose intolerance and of increased fat mass was confirmed in the obesity-prone Wistar rat, even after 28 days of age. By contrast, in obesity-resistant Lou/C rats, an improved early leptin signaling may be responsible for the lack of deleterious effect of the perinatal high fat diet on glucose tolerance and increased adiposity in response to high fat diet at adulthood. Altogether, this study shows that, even if during the perinatal period adaptation to the environment appears to be genetically determined, adaptive mechanisms to nutritional challenges occurring at adulthood can still be observed in rodents. PMID:27618559

  5. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets.

    PubMed

    Lindenmaier, Laurence B; Philbrick, Kenneth A; Branscum, Adam J; Kalra, Satya P; Turner, Russell T; Iwaniec, Urszula T

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  6. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets.

    PubMed

    Lindenmaier, Laurence B; Philbrick, Kenneth A; Branscum, Adam J; Kalra, Satya P; Turner, Russell T; Iwaniec, Urszula T

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  7. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  8. Extraction procedures for oilseeds and related high fat-low moisture products.

    PubMed

    Sawyer, L D

    1982-09-01

    A combined sample preparation/extraction procedure is presented for pesticide residue analysis of oilseeds and related high fat-low moisture products. The procedure utilizes high-speed milling to prepare the sample and high-speed homogenization in the extraction step to achieve what is apparently quantitative isolation of both incurred residues and natural oils. A separate, simple, oil determination step allows findings to be reported on either the fat or whole product basis. Petroleum ether, ethyl ether-petroleum ether (1 + 1), and ethanol are used serially as the extractants. Usual fatty food cleanup procedures and multiresidue gas chromatographic detection techniques are utilized. The procedure presented in this paper is a refinement of earlier work which used a homogenizer both to grind and to extract samples of unground seeds and which demonstrated essentially complete extraction of endrin residues in soybeans and DDT residues in mustard seed. Identical samples analyzed by the currently recommended shakeout procedure, 29.012, gave recoveries of approximately 50% of the total residues. The procedure presented in this paper was satisfactorily tested on 13 different oilseed types and one sample of soda crackers. Oil content for these samples ranged from 5 to 69%. PMID:6890060

  9. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice.

    PubMed

    Harada, Naoki; Hanaoka, Ryo; Horiuchi, Hiroko; Kitakaze, Tomoya; Mitani, Takakazu; Inui, Hiroshi; Yamaji, Ryoichi

    2016-03-10

    Late-onset hypogonadism (i.e. androgen deficiency) raises the risk for abdominal obesity in men. The mechanism for this obesity is unclear. Here, we demonstrated that hypogonadism after castration caused abdominal obesity in high-fat diet (HFD)-fed, but not in standard diet (SD)-fed, C57BL/6J mice. Furthermore, the phenotype was not induced in mice treated with antibiotics that disrupt the intestinal microflora. In HFD-fed mice, castration increased feed efficiency and decreased fecal weight per food intake. Castration also induced in an increase of visceral fat mass only in the absence of antibiotics in HFD-fed mice, whereas subcutaneous fat mass was increased by castration irrespective of antibiotics. Castration reduced the expression in the mesenteric fat of both adipose triglyceride lipase and hormone-sensitive lipase in HFD-fed mice, which was not observed in the presence of antibiotics. Castration decreased thigh muscle (i.e. quadriceps and hamstrings) mass, elevated fasting blood glucose levels, and increased liver triglyceride levels in a HFD-dependent manner, whereas these changes were not observed in castrated mice treated with antibiotics. The Firmicutes/Bacteroidetes ratio and Lactobacillus species increased in the feces of HFD-fed castrated mice. These results show that androgen (e.g. testosterone) deficiency can alter the intestinal microbiome and induce abdominal obesity in a diet-dependent manner.

  10. Deepure Tea Improves High Fat Diet-Induced Insulin Resistance and Nonalcoholic Fatty Liver Disease

    PubMed Central

    Deng, Jing-Na; Li, Juan; Mu, Hong-Na; Liu, Yu-Ying; Wang, Ming-Xia; Pan, Chun-Shui; Fan, Jing-Yu; Ye, Fei; Han, Jing-Yan

    2015-01-01

    This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD) for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2), which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthesis (FAS), and acetyl-CoA carboxylase (ACC) proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC. PMID:26504484

  11. High fat diet drives obesity regardless the composition of gut microbiota in mice

    PubMed Central

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L.; Chou, Chieh Jason

    2016-01-01

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice. PMID:27577172

  12. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice.

    PubMed

    Soni, Nikul K; Ross, Alastair B; Scheers, Nathalie; Savolainen, Otto I; Nookaew, Intawat; Gabrielsson, Britt G; Sandberg, Ann-Sofie

    2016-01-01

    Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation. PMID:27598198

  13. Phylometabonomic Patterns of Adaptation to High Fat Diet Feeding in Inbred Mice

    PubMed Central

    Fearnside, Jane F.; Dumas, Marc-Emmanuel; Rothwell, Alice R.; Wilder, Steven P.; Cloarec, Olivier; Toye, Ayo; Blancher, Christine; Holmes, Elaine; Tatoud, Roger; Barton, Richard H.; Scott, James; Nicholson, Jeremy K.; Gauguier, Dominique

    2008-01-01

    Insulin resistance plays a central role in type 2 diabetes and obesity, which develop as a consequence of genetic and environmental factors. Dietary changes including high fat diet (HFD) feeding promotes insulin resistance in rodent models which present useful systems for studying interactions between genetic background and environmental influences contributing to disease susceptibility and progression. We applied a combination of classical physiological, biochemical and hormonal studies and plasma 1H NMR spectroscopy-based metabonomics to characterize the phenotypic and metabotypic consequences of HFD (40%) feeding in inbred mouse strains (C57BL/6, 129S6, BALB/c, DBA/2, C3H) frequently used in genetic studies. We showed the wide range of phenotypic and metabonomic adaptations to HFD across the five strains and the increased nutrigenomic predisposition of 129S6 and C57BL/6 to insulin resistance and obesity relative to the other strains. In contrast mice of the BALB/c and DBA/2 strains showed relative resistance to HFD-induced glucose intolerance and obesity. Hierarchical metabonomic clustering derived from 1H NMR spectral data of the strains provided a phylometabonomic classification of strain-specific metabolic features and differential responses to HFD which closely match SNP-based phylogenetic relationships between strains. Our results support the concept of genomic clustering of functionally related genes and provide important information for defining biological markers predicting spontaneous susceptibility to insulin resistance and pathological adaptations to fat feeding. PMID:18301746

  14. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice

    PubMed Central

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-01-01

    Background Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Methods Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. Results HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3 I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. Conclusions These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. PMID:25982698

  15. Suppression of adipogenesis and obesity in high-fat induced mouse model by hydroxylated polymethoxyflavones.

    PubMed

    Lai, Ching-Shu; Ho, Min-Hau; Tsai, Mei-Ling; Li, Shiming; Badmaev, Vladimir; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-10-30

    This study demonstrated that hydroxylated polymethoxyflavones (HPMFs) effectively and dose-dependently suppressed accumulation of lipid droplets in adipocytes by approximately 51-55%. Western blot analysis revealed that HPMFs markedly down-regulated adipogenesis-related transcription factors peroxisome proliferator-activated receptor (PPAR) γ and sterol regulatory element-binding protein (SREBP)-1c as well as downstream target fatty acid binding protein 2 (aP2), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). In addition, HPMFs also activated adenosine monophosphate-activated protein kinase (AMPK) signaling in 3T3-L1 adipocytes. In the early phase of adipogenesis, HPMF-treated preadipocytes displayed a delayed cell cycle entry into G2/M phase at 24 h (35.5% for DMI group and 4.8% for 20 μg/mL HPMFs-treated group) after initiation of adipogenesis. Furthermore, administration of HPMFs (0.25 and 1%) decreased high-fat diet (HFD) induced weight gain (15.3 ± 3.9 g for HFD group, 10.3 ± 0.3 g and 7.9 ± 0.7 g for 0.25 and 1% HPMFs groups, respectively) and relative perigonadal, retroperitoneal, mesenteric fat weight in C57BL/6 mice. Administration of HPMFs reduced serum levels of aspartate aminotransferase (GOT), alanine aminotransferase (GPT), triglycerides (TG), and total cholesterol (T-cho). The results suggested that HPMFs may have a potential benefit in preventing obesity. PMID:24089698

  16. Ghrelin enhances cue-induced bar pressing for high fat food.

    PubMed

    St-Onge, Veronique; Watts, Alexander; Abizaid, Alfonso

    2016-02-01

    Ghrelin is an orexigenic hormone produced by the stomach that acts on growth hormone secretagogue receptors (GHSRs) both peripherally and centrally. The presence of GHSRs in the ventral tegmental area (VTA) suggests that ghrelin signaling at this level may increase the incentive value of palatable foods as well as other natural and artificial rewards. The present investigation sought to determine if ghrelin plays a role in relapse to such foods following a period of abstinence. To achieve this, thirty-six male Long Evans rats were trained to press a lever to obtain a high fat chocolate food reward on a fixed ratio schedule of 1. Following an extinction period during which lever presses were not reinforced, rats were implanted with a cannula connected to a minipump that continuously delivered ghrelin, a GHSR antagonist ([d-Lys-3]-GHRP-6), or saline in the VTA for 14days. One week later, food reward-associated cues, food reward priming, and an overnight fast were used to induce reinstatement of the lever pressing response. Our results indicate that intra-VTA ghrelin enhances cue-induced reinstatement of responses for palatable food pellets. To the extent that the reinstatement paradigm is considered a valid model of relapse in humans, this suggests that ghrelin signaling facilitates relapse to preferred foods in response to food cues through GHSR signaling in the VTA. PMID:26592452

  17. Reduced anticipatory dopamine responses to food in rats exposed to high fat during early development.

    PubMed

    Naef, L; Moquin, L; Gratton, A; Walker, C-D

    2013-06-01

    We have previously demonstrated that exposure to high fat (HF) during early development alters the presynaptic regulation of mesolimbic dopamine (DA), and increases incentive motivation for HF food rewards. The goal of the present experiments was to examine the long-term consequences of early exposure to HF on anticipatory and consumatory nucleus accumbens (NAc) DA responses to HF food rewards. Mothers were maintained on a HF (30% fat) or control diet (CD; 5% fat) from gestation day 13 to postnatal day 22 when offspring from both diet groups were weaned and maintained on the CD until adulthood. In vivo NAc DA responses to food anticipation and consumption were measured in a Pavlovian conditioning paradigm using voltammetry in freely moving rats. HF-exposed offspring displayed reduced NAc DA responses to a tone previously paired with the delivery of HF food rewards. In an unconditioned protocol, consumatory NAc DA responses could be isolated, and were similar in HF and control offspring. These data demonstrate that exposure to HF through maternal diet during early development might program behavioral and functional responses associated with mesolimbic DA neurotransmission, thus leading to an increased HF feeding and obesity.

  18. High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis and Inflammation.

    PubMed

    Dutheil, Sophie; Ota, Kristie T; Wohleb, Eric S; Rasmussen, Kurt; Duman, Ronald S

    2016-06-01

    Depression and type 2 diabetes (T2D) are highly comorbid disorders that carry a large public health burden. However, there is a clear lack of knowledge of the neural pathological pathways underlying these illnesses. The present study aims to elucidate the molecular mechanisms by which a diet rich in fat can cause multiple complications in the brain, thereby affecting intracellular signaling and gene expression that underlie anxiety and depressive behaviors. The results show that a high-fat diet (HFD; ~16 weeks) causes anxiety and anhedonic behaviors. Importantly, the results also show that 4 months of HFD causes disruption of intracellular cascades involved in synaptic plasticity and insulin signaling/glucose homeostasis (ie, Akt, extracellular signal-regulated kinase (ERK), P70S6K), as well as increased corticosterone levels and activation of the innate immune system, including elevation of inflammatory cytokines (ie, IL-6, IL-1β, TNFα). Interestingly, the rapid acting antidepressant ketamine reverses the behavioral deficits caused by HFD and activates ERK and P70S6 kinase signaling in the prefrontal cortex. In addition, we found that pharmacological blockade of the innate immune inflammasome system by repeated administration of an inhibitor of the purinergic P2X7 receptor blocks the anxiety caused by HFD. Together these studies further elucidate the signaling pathways that underlie chronic HFD exposure on anxiety and depressive behaviors, and identify novel therapeutic targets for patients with metabolic disorder or T2D who suffer from anxiety and depression.

  19. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  20. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Hou, Zhiping

    2015-01-01

    Edible bird’s nest (EBN) is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD-) induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipoprotein (oxLDL), adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count) were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. PMID:26251574

  1. High-efficiency sample preparation approach to determine acrylamide levels in high-fat foods.

    PubMed

    Li, Xiaodan; Li, Jinwei; Cao, Peirang; Liu, Yuanfa

    2016-08-01

    An improved sample preparation method was developed to enhance acrylamide recovery in high-fat foods. Prior to concentration, distilled deionized water was added to protect acrylamide from degradation, resulting in a higher acrylamide recovery rate from fried potato chips. A Chrome-Matrix C18 column (2.6 μm, 2.1 × 100 mm) was used for the first time to analyze acrylamide levels using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry, displaying good separation of acrylamide from interference. A solid-phase extraction procedure was avoided, and an average recovery of >89.00% was achieved from different food matrices for three different acrylamide spiking levels. Good reproducibility was observed, with an intraday relative standard deviation of 0.04-2.38%, and an interday relative standard deviation of 2.34-3.26%. Thus, combining the improved sample preparation method for acrylamide analysis with the separation on a Chrome-Matrix C18 column (2.6 μm, 2.1 × 100 mm) using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry is highly useful for analyzing acrylamide levels in complex food matrices.

  2. High fat diet aggravates the nephrotoxicity of berberrubine by influencing on its pharmacokinetic profile.

    PubMed

    Yang, Na; Sun, Runbin; Zhao, Yuqing; He, Jun; Zhen, Le; Guo, Jiahua; Geng, Jianliang; Xie, Yuan; Wang, Jiankun; Feng, Siqi; Fei, Fei; Liao, Xiaoying; Zhu, Xuanxuan; Wang, Hongbo; Fu, Fenghua; Aa, Jiye; Wang, Guangji

    2016-09-01

    Berberrubine (BRB), the active metabolite of berberine (BBR), possesses various pharmacological activities. In this study, we found BRB showed not only a stronger lipid-lowering effect than berberine but also a specific nephrotoxicity in mice fed with high fat diet (HFD). To explore the underlying mechanism, the pharmacokinetics of BRB were evaluated. There was a greater in vivo exposure of BRB in C57BL/6J mice fed with HFD than with routine chows, in terms of Cmax, AUC0-t, levels of BRB in kidney and urinary excretion. Moreover, in vitro assessment clearly showed BRB had a toxic effect on renal cell lines, while the primary metabolite, berberrubine-9-O-β-d-glucuronide (BRBG), did not show any obvious toxicity. These results suggested HFD aggravated BRB-induced nephrotoxicity by promoting the in vivo exposure of BRB especially in urine and kidney. Although our previous study indicated BRB could be metabolized into BRBG, BRBG did not show any obvious toxicity in vitro. PMID:27525563

  3. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats.

    PubMed

    Yao, Xiaoming; Lin, Zi; Jiang, Cuihua; Gao, Meng; Wang, Qingqing; Yao, Nan; Ma, Yonglan; Li, Yue; Fang, Shengzuo; Shang, Xulan; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2015-08-01

    Cyclocarya paliurus (CP; qing qian liu), which is used as an herbal tea in China, has been confirmed to have therapeutic effects on hyperlipidemia and obesity, and therefore it is widely consumed to prevent metabolic diseases such as hyperlipidemia and diabetes. In this study, we investigated the preventive effects of CP on obesity and hyperlipidemia, as well as the underlying mechanisms involved in intestinal secretion of apolipoprotein (apo) B48. Sprague-Dawley rats were fed a high-fat diet (HFD) and with or without various concentrations of an ethanol extract of CP (CPE; 2, 4, or 8 g·(kg body mass)(-1)) administered by gavage for 8 weeks. From the results we see that CPE dose-dependently blocked increases in body mass, and decreased food utilization as well as visceral fat mass. Decreased serum levels of total cholesterol, triglycerides, and low density lipoprotein cholesterol, and elevated levels of high density lipoprotein cholesterol, as well as lowered levels of total cholesterol and triglycerides in the liver were also noticed in CPE-treated rats. Magnetic resonance images indicated that the abnormal fat storage induced by the HFD was obviously suppressed by CPE. In addition, ELISA analysis showed reduced fasting serum apoB48 in the CPE treatment groups. Based on the above results, CPE shows a promising preventive effect on obesity and hyperlipidemia, partially through suppressing intestinal apoB48 overproduction.

  4. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice.

    PubMed

    Dinh, Chi H L; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-04-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora.

  5. Maternal High Fat Diet Affects Offspring’s Vitamin K-Dependent Proteins Expression Levels

    PubMed Central

    Lanham, Stuart; Cagampang, Felino R.; Oreffo, Richard O. C.

    2015-01-01

    Studies suggest bone growth & development and susceptibility to vascular disease in later life are influenced by maternal nutrition, during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including Osteocalcin, Matrix-gla protein, Periostin, and Gas6, in bone and vascular development. This study extends the analysis of VKDPs previously conducted in 6 week old offspring, into offspring of 30 weeks of age, to assess the longer term effects of a maternal and postnatal high fat (HF) diet on VKDP expression. Overall a HF maternal diet and offspring diet exacerbated the bone changes observed. Sex specific and tissue specific differences were observed in VKDP expression for both aorta and femoral tissues. In addition, significant correlations were observed between femoral OCN, Periostin Gas6, and Vkor expression levels and measures of femoral bone structure. Furthermore, MGP, OCN, Ggcx and Vkor expression levels correlated to mass and fat volume, in both sexes. In summary the current study has highlighted the importance of the long-term effects of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure. PMID:26381752

  6. Hypolipidemic effect of dihydroisoquinoline oxaziridine in high-fat diet-fed rats.

    PubMed

    Aydi, Rihab; Gara, Amel Ben; Chaaben, Rim; Saad, Hajer Ben; Fki, Lotfi; ElFeki, Abdelfattah; Belghith, Hafedh; Belghith, Karima; Kammoun, Majed

    2016-08-01

    Obesity is a serious health problem that increases the risk of many complications, including diabetes and cardiovascular disease. This study aims to evaluate, for the first time, the effects of oxaziridine 3 on lipoprotein lipase activity in the serum of rats fed with a high-fat diet (HFD) on body weight, lipid profile and liver-kidney functions. The administration of oxaziridine 3 to HFD-rats lowered body weight and inhibited the lipase activity of obese rats leading to notable decrease of T-Ch, TGs and LDL-Ch levels accompanied with an increase in HDL-Ch concentration in serum. Moreover, the findings of this study revealed that oxaziridine 3 helped to protect liver tissue from the appearance of fatty cysts. Additionally, oxaziridine 3 administration to HFD-rats induces antioxidant activity proven by the increase of superoxide dismutase (SOD) and catalase (CAT) activities and the decrease in Thiobarbituric acid reactive substances (TBARS) levels. It also induces the protection of liver-kidney functions confirmed by a decrease in the levels of toxicity parameters in blood. PMID:27470409

  7. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats.

    PubMed

    Yao, Xiaoming; Lin, Zi; Jiang, Cuihua; Gao, Meng; Wang, Qingqing; Yao, Nan; Ma, Yonglan; Li, Yue; Fang, Shengzuo; Shang, Xulan; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2015-08-01

    Cyclocarya paliurus (CP; qing qian liu), which is used as an herbal tea in China, has been confirmed to have therapeutic effects on hyperlipidemia and obesity, and therefore it is widely consumed to prevent metabolic diseases such as hyperlipidemia and diabetes. In this study, we investigated the preventive effects of CP on obesity and hyperlipidemia, as well as the underlying mechanisms involved in intestinal secretion of apolipoprotein (apo) B48. Sprague-Dawley rats were fed a high-fat diet (HFD) and with or without various concentrations of an ethanol extract of CP (CPE; 2, 4, or 8 g·(kg body mass)(-1)) administered by gavage for 8 weeks. From the results we see that CPE dose-dependently blocked increases in body mass, and decreased food utilization as well as visceral fat mass. Decreased serum levels of total cholesterol, triglycerides, and low density lipoprotein cholesterol, and elevated levels of high density lipoprotein cholesterol, as well as lowered levels of total cholesterol and triglycerides in the liver were also noticed in CPE-treated rats. Magnetic resonance images indicated that the abnormal fat storage induced by the HFD was obviously suppressed by CPE. In addition, ELISA analysis showed reduced fasting serum apoB48 in the CPE treatment groups. Based on the above results, CPE shows a promising preventive effect on obesity and hyperlipidemia, partially through suppressing intestinal apoB48 overproduction. PMID:26203820

  8. Metabolism of the mouse made obese by a high-fat diet.

    PubMed

    Lemonnier, D; Suquet, J P; Aubert, R; De Gasquet, P; Pequignot, E

    1975-06-01

    Lean mice were made obese by feeding, ad libitum, a high-lard diet. They showed an increased fat cell size and number which were maintained when this diet was replaced by the control high-carbohydrate diet for 10 weeks. Obese fed mice showed normal glucose and insulin serum levels, but insulinaemia was elevated after an overnight fast. The insulinaemic response after intraperitoneal injection of glucose was insignificant. Thus hyperinsulinism is not a prerequisite for the development of obesity. High-fat diet influenced, in vitro, glucose metabolism of adipose tissue, liver and muscle: basal lipogenesis was markedly reduced in adipose tissue and liver, and glucose oxidation was decreased in muscle. Insulin sensitivity was reduced by increased fat cell size. De novo formation of fatty acids in liver and adipose tissue did not contribute to the development of obesity. The increased lipoprotein lipase activity of the large fat cells suggested that obesity resulted from a direct storage of dietary fatty acids esterified by glycerol formed from circulating glucose.

  9. Alaska pollack protein prevents the accumulation of visceral fat in rats fed a high fat diet.

    PubMed

    Oishi, Yoshie; Dohmoto, Nobuhiko

    2009-04-01

    In the first study (Study 1), 4-wk-old Sprague-Dawley (SD) rats were fed high fat diets containing casein, Alaska pollack, yellowfin tuna, or chicken as the protein source for 28 d. The purpose of this study was to compare the effect of Alaska pollack protein with other animal proteins (casein, yellowfin tuna, and chicken) on the prevention of visceral fat accumulation. We found that Alaska pollack protein was a more potent inhibitor of visceral fat accumulation than the other proteins (p<0.05). In the second study (Study 2), we determined the quantity of Alaska pollack protein needed to have an effect. To test this, 4-wk-old SD rats were fed diets containing different percentages of Alaska pollack proteins (0, 3, 10, 30 or 100%) to replace casein as the protein source for 28 d. The diets with 30 or 100% Alaska pollack protein as the protein source prevented visceral fat accumulation and elevated plasma adiponectin levels. Based on these findings, an inhibitory effect on the accumulation of visceral fats can be achieved by consuming a diet in which 30% or more of the total protein content comes from Alaska pollack. PMID:19436142

  10. Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet.

    PubMed

    Tu, Yaosheng; Sun, Dongmei; Zeng, Xiaohui; Yao, Nan; Huang, Xuejun; Huang, Dane; Chen, Yuxing

    2014-07-01

    It has previously been demonstrated that curcumin possesses a hypocholesterolemic effect and potentiates numerous pharmacological effects of curcumin, however, the mechanisms underlying this hypocholesterolemic effect and the interaction between curcumin and piperine remain to be elucidated. In the present study, male Sprague-Dawley rats were fed on a high-fat diet (HFD) to establish a hyperlipidemia (HLP) model. Co-administration of curcumin plus piperine was found to decrease the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol in the serum and liver, as well as increase the levels of fecal TC, TG and total bile acid, compared with administration of curcumin alone. Curcumin plus piperine also markedly increased the levels of high-density lipoprotein cholesterol. Furthermore, compared with administration of curcumin alone, administration of curcumin plus piperine resulted in a significant upregulation of the activity and gene expression of apolipoprotein AI (ApoAI), lecithin cholesterol acyltransferase (LCAT), cholesterol 7α-hydroxylase (CYP7A1) and low-density lipoprotein receptor (LDLR). In conclusion, these results indicated that co-administration of curcumin plus piperine potentiates the hypocholesterolemic effects of curcumin by increasing the activity and gene expression of ApoAI, CYP7A1, LCAT and LDLR, providing a promising combination for the treatment of HLP.

  11. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice.

    PubMed

    Das, Nilanjan; Sikder, Kunal; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharya; Ghosh, Santinath; Majumdar, Subrata; Dey, Sanjit

    2013-06-01

    Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice. PMID:23644882

  12. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    PubMed Central

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  13. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets.

    PubMed

    Domínguez-Avila, J Abraham; González-Aguilar, Gustavo A; Alvarez-Parrilla, Emilio; de la Rosa, Laura A

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  14. Leucine supplementation improves leptin sensitivity in high-fat diet fed rats

    PubMed Central

    Yuan, Xue-Wei; Han, Shu-Fen; Zhang, Jian-Wei; Xu, Jia-Ying; Qin, Li-Qiang

    2015-01-01

    Background Several studies have reported the favorable effect of leucine supplementation on insulin resistance or insulin sensitivity. However, whether or not leucine supplementation improves leptin sensitivity remains unclear. Design Forty-eight male Sprague-Dawley rats were fed with either a high-fat diet (HFD) or HFD supplemented with 1.5, 3.0, and 4.5% leucine for 16 weeks. At the end of the experiment, serum leptin level was measured by ELISA, and leptin receptor (ObR) in the hypothalamus was examined by immunohistochemistry. The protein expressions of ObR and leptin-signaling pathway in adipose tissues were detected by western blot. Results No significant differences in body weight and food/energy intake existed among the four groups. Serum leptin levels were significantly lower, and ObR expression in the hypothalamus and adipose tissues was significantly higher in the three leucine groups than in the control group. These phenomena suggested that leptin sensitivity was improved in the leucine groups. Furthermore, the expressions of JAK2 and STAT3 (activated by ObR) were significantly higher, and that of SOCS3 (inhibits leptin signaling) was significantly lower in the three leucine groups than in the control group. Conclusions Leucine supplementation improves leptin sensitivity in rats on HFD likely by promoting leptin signaling. PMID:26115673

  15. Edible bird's nest attenuates procoagulation effects of high-fat diet in rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Hou, Zhiping

    2015-01-01

    Edible bird's nest (EBN) is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD-) induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipoprotein (oxLDL), adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count) were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. PMID:26251574

  16. Effect of high fat, fiber and caloric restriction on rat mammary tumorigenesis

    SciTech Connect

    Magrane, D.; Van Sant, J.; Butler, B.

    1986-03-05

    Female rats given 7,12-Dimethylbenz(a)anthracene (DMBA) were placed on diets of control fat (CF-4.5%) or high fat (HF-20%) with either control fiber (6%) or high fiber (FB-12%). A 60% reduction in the CF diet was used to study the effects of caloric restriction on tumorigenesis. Results showed that HF diets had a shorter latency period than CF rats. The respective average number of tumors per rat and tumor volume were 7.3 +/- 1.3 and 23694 mm/sup 2/ for rats on a HF diet and 5.1+/-1.1 and 9144 mm/sup 3/ for CF rats. Addition of high fiber to the diets reduced the tumor incidence from 95% to 70% in the CF group but did not reduce the incidence in HF group. Although tumor number was reduced to 3.7+/-1.5 in CF+FB rats, the tumor volumes were not reduced (8950 mm/sup 3/). Rats fed HF+FB did not have fewer tumors (7.0+/-1.1), but did show a 53% reduction in tumor load. The estrogen dependent enzyme glucose-6-phosphate dehydrogenase was not affected by dietary levels of fat, which suggests that the promotional effects of fat may not be through estrogen stimulation. None of the caloric restricted rats had tumors 12 weeks post-DMBA. These restricted rats all had significantly elevated levels of serum corticosterone.

  17. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  18. Sesamin Ameliorates High-Fat Diet–Induced Dyslipidemia and Kidney Injury by Reducing Oxidative Stress

    PubMed Central

    Zhang, Ruijuan; Yu, Yan; Deng, Jianjun; Zhang, Chao; Zhang, Jinghua; Cheng, Yue; Luo, Xiaoqin; Han, Bei; Yang, Haixia

    2016-01-01

    The study explored the protective effect of sesamin against lipid-induced renal injury and hyperlipidemia in a rat model. An animal model of hyperlipidemia was established in Sprague-Dawley rats. Fifty-five adult Sprague-Dawley rats were divided into five groups. The control group was fed a standard diet, while the other four groups were fed a high-fat diet for 5 weeks to induce hyperlipidemia. Three groups received oral sesamin in doses of 40, 80, or 160 mg/(kg·day). Seven weeks later, the blood lipids, renal function, antioxidant enzyme activities, and hyperoxide levels in kidney tissues were measured. The renal pathological changes and expression levels of collagen type IV (Col-IV) and α-smooth muscle actin (α-SMA) were analyzed. The administration of sesamin improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, apolipoprotein-B, oxidized-low-density lipoprotein, and serum creatinine levels in hyperlipidemic rats, while it increased the high-density lipoprotein cholesterol and apolipoprotein-A levels. Sesamin reduced the excretion of 24-h urinary protein and urinary albumin and downregulated α-SMA and Col-IV expression. Moreover, sesamin ameliorated the superoxide dismutase activity and reduced malondialdehyde levels in kidney tissue. Sesamin could mediate lipid metabolism and ameliorate renal injury caused by lipid metabolism disorders in a rat model of hyperlipidemia. PMID:27171111

  19. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    PubMed

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-01-01

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice. PMID:27577172

  20. Alternating Diet as a Preventive and Therapeutic Intervention for High Fat Diet-induced Metabolic Disorder

    PubMed Central

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    This study presents the alternating diet as a new strategy in combating obesity and metabolic diseases. Lean or obese mice were fed a high-fat diet (HFD) for five days and switched to a regular diet for one (5 + 1), two (5 + 2), or five (5 + 5) days before switching back to HFD to start the second cycle, for a total of eight weeks (for prevention) or five weeks (for treatment) without limiting animals’ access to food. Our results showed that animals with 5 + 2 and 5 + 5 diet alternations significantly inhibited body weight and fat mass gain compared to animals fed an HFD continuously. The dietary switch changed the pattern of daily caloric intake and suppressed HFD-induced adipose macrophage infiltration and chronic inflammation, resulting in improved insulin sensitivity and alleviated fatty liver. Alternating diet inhibited HFD-induced hepatic Pparγ-mediated lipid accumulation and activated the expression of Pparα and its target genes. Alternating diet in the 5 + 5 schedule induced weight loss in obese mice and reversed the progression of metabolic disorders, including hepatic steatosis, glucose intolerance, and inflammation. The results provide direct evidence to support that alternating diet represents a new intervention in dealing with the prevalence of diet-induced obesity. PMID:27189661

  1. Sasa borealis Stem Extract Attenuates Hepatic Steatosis in High-Fat Diet-induced Obese Rats

    PubMed Central

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-01-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  2. Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats.

    PubMed

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-06-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  3. High fat diet induces specific pathological changes in hypothalamic orexin neurons in mice.

    PubMed

    Nobunaga, Mizuki; Obukuro, Kanae; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Tsutsui, Masato; Katsuki, Hiroshi

    2014-12-01

    Loss of orexin neurons in the hypothalamus is a prominent feature of narcolepsy and several other neurological conditions. We have recently demonstrated that sleep deprivation stimulates local nitric oxide (NO) production by neuronal NO synthase in the lateral hypothalamus, which leads to selective degeneration of orexin neurons accompanied by formation of orexin-immunoreactive aggregates. Here we analyzed whether lifestyle-related conditions other than sleep deprivation could trigger similar pathological changes in orexin neurons. Four-week-old male C57BL/6 mice were fed with high fat diet (HFD) for 8 weeks. Immunohistochemical analysis revealed that the number of orexin-immunopositive neurons was significantly decreased by HFD intake, whereas the number of melanin-concentrating hormone-immunopositive neurons was unchanged. In addition, HFD promoted formation of intracellular orexin-immunoreactive aggregates in a subset of orexin neurons. We also confirmed that expression of inducible NO synthase (iNOS) in the hypothalamus was upregulated in response to HFD intake. Notably, loss of orexin-immunopositive neurons and formation of orexin-immunoreactive aggregates were not observed in iNOS knockout mice fed with HFD. These results indicate that inappropriate dietary conditions could trigger specific neuropathological events in orexin neurons in an iNOS-dependent manner.

  4. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis

    PubMed Central

    Matthew Morris, E.; Jackman, Matthew R.; Johnson, Ginger C.; Liu, Tzu-Wen; Lopez, Jordan L.; Kearney, Monica L.; Fletcher, Justin A.; Meers, Grace M. E.; Koch, Lauren G.; Britton, Stephen L.; Scott Rector, R.; Ibdah, Jamal A.; MacLean, Paul S.

    2014-01-01

    Aerobic capacity/fitness significantly impacts susceptibility for fatty liver and diabetes, but the mechanisms remain unknown. Herein, we utilized rats selectively bred for high (HCR) and low (LCR) intrinsic aerobic capacity to examine the mechanisms by which aerobic capacity impacts metabolic vulnerability for fatty liver following a 3-day high-fat diet (HFD). Indirect calorimetry assessment of energy metabolism combined with radiolabeled dietary food was employed to examine systemic metabolism in combination with ex vivo measurements of hepatic lipid oxidation. The LCR, but not HCR, displayed increased hepatic lipid accumulation in response to the HFD despite both groups increasing energy intake. However, LCR rats had a greater increase in energy intake and demonstrated greater daily weight gain and percent body fat due to HFD compared with HCR. Additionally, total energy expenditure was higher in the larger LCR. However, controlling for the difference in body weight, the LCR has lower resting energy expenditure compared with HCR. Importantly, respiratory quotient was significantly higher during the HFD in the LCR compared with HCR, suggesting reduced whole body lipid utilization in the LCR. This was confirmed by the observed lower whole body dietary fatty acid oxidation in LCR compared with HCR. Furthermore, LCR liver homogenate and isolated mitochondria showed lower complete fatty acid oxidation compared with HCR. We conclude that rats bred for low intrinsic aerobic capacity show greater susceptibility for dietary-induced hepatic steatosis, which is associated with a lower energy expenditure and reduced whole body and hepatic mitochondrial lipid oxidation. PMID:24961240

  5. Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions.

    PubMed

    Nasteska, Daniela; Harada, Norio; Suzuki, Kazuyo; Yamane, Shunsuke; Hamasaki, Akihiro; Joo, Erina; Iwasaki, Kanako; Shibue, Kimitaka; Harada, Takanari; Inagaki, Nobuya

    2014-07-01

    Gastric inhibitory polypeptide (GIP) exhibits potent insulinotropic effects on β-cells and anabolic effects on bone formation and fat accumulation. We explored the impact of reduced GIP levels in vivo on glucose homeostasis, bone formation, and fat accumulation in a novel GIP-GFP knock-in (KI) mouse. We generated GIP-GFP KI mice with a truncated prepro-GIP gene. The phenotype was assessed in heterozygous and homozygous states in mice on a control fat diet and a high-fat diet (HFD) in vivo and in vitro. Heterozygous GIP-GFP KI mice (GIP-reduced mice [GIP(gfp/+)]) exhibited reduced GIP secretion; in the homozygous state (GIP-lacking mice [GIP(gfp/gfp)]), GIP secretion was undetectable. When fed standard chow, GIP(gfp/+) and GIP(gfp/gfp) mice showed mild glucose intolerance with decreased insulin levels; bone volume was decreased in GIP(gfp/gfp) mice and preserved in GIP(gfp/+) mice. Under an HFD, glucose levels during an oral glucose tolerance test were similar in wild-type, GIP(gfp/+), and GIP(gfp/gfp) mice, while insulin secretion remained lower. GIP(gfp/+) and GIP(gfp/gfp) mice showed reduced obesity and reduced insulin resistance, accompanied by higher fat oxidation and energy expenditure. GIP-reduced mice demonstrate that partial reduction of GIP does not extensively alter glucose tolerance, but it alleviates obesity and lessens the degree of insulin resistance under HFD conditions, suggesting a potential therapeutic value.

  6. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice.

    PubMed

    Das, Nilanjan; Sikder, Kunal; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharya; Ghosh, Santinath; Majumdar, Subrata; Dey, Sanjit

    2013-06-01

    Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice.

  7. Extract of Sesbania grandiflora Ameliorates Hyperglycemia in High Fat Diet-Streptozotocin Induced Experimental Diabetes Mellitus

    PubMed Central

    Panigrahi, Ghanshyam; Panda, Chhayakanta; Patra, Arjun

    2016-01-01

    Background. Sesbania grandiflora has been traditionally used as antidiabetic, antioxidant, antipyretic, and expectorant and in the management of various ailments. Materials and Methods. The study evaluates the antidiabetic activity of methanolic extract of Sesbania grandiflora (MESG) in type 2 diabetic rats induced by low dose streptozotocine and high fat diet. Diabetic rats were given vehicle, MESG (200 and 400 mg/kg, p.o.), and the standard drug, metformin (10 mg/kg), for 28 days. During the experimental period, body weight, abdominal girth, food intake, fasting serum glucose, urine analyses were measured. Insulin tolerance test was carried out on 25th day of drug treatment period. Serum analyses for lipid profile and SGOT and SGPT and serums creatinine, urea, protein, SOD, and MDA were also carried out. At the end of the experiment, animals were euthanized, the liver and pancreas were immediately dissected out, and the ratio of pancreas to body weight and hepatic glycogen were calculated. Results. MESG (200 and 400 mg/kg, p.o.) induced significant reduction (P < 0.05) of raised blood glucose levels in diabetic rats and also restored other parameters to normal level. Conclusion. Therefore, it is concluded that MESG has potential antihyperglycemic and antihyperlipemic activities and alleviate insulin resistance conditions. PMID:27313954

  8. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    PubMed Central

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.). Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL), accompanied by an increase in serum high-density lipoprotein (HDL). Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO) staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia. PMID:27340422

  9. Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets.

    PubMed

    Zhang, Jiali; Liu, Jingna; Li, Ling; Xia, Wenshui

    2008-06-01

    The hypolipidemic mechanism of chitosan was investigated in male Sprague-Dawley rats. Animals were divided into 5 groups (n = 8): a normal fat control group, a high-fat control group (HF), a positive control group (CR), and 2 chitosan groups (CIS1 and CIS2). Chitosan was fed at the beginning (CIS1) and after 2 weeks (CIS2). A commercial diet with 5% (wt/wt) cellulose (HF), cholestyramine (CR), or chitosan (CIS1, CIS2) was fed for 6 weeks. Chitosan did not affect food intake but decreased body weight gain and significantly increased fecal fat and cholesterol excretion, reduced the lipid level in plasma and liver, increased liver hepatic and lipoprotein lipase activities compared with HF (P < .05), and tended to relieve the degenerated fatty liver tissue. No significant differences in all measurements were found between the CIS1 and CIS2 groups although the CIS1 rats exhibited lower lipid levels compared to those in the CIS2 group. The results suggest that chitosan reduced the absorption of dietary fat and cholesterol in vivo and could effectively improve hypercholesterolemia in rats.

  10. Nuciferine Prevents Hepatic Steatosis and Injury Induced by a High-Fat Diet in Hamsters

    PubMed Central

    Li, Xiaoxia; Feng, Rennan; Guan, Chunmei; Wang, Yanwen; Li, Ying; Sun, Changhao

    2013-01-01

    Background Nuciferine is a major active aporphine alkaloid from the leaves of N. nucifera Gaertn that possesses anti-hyperlipidemia, anti-hypotensive, anti-arrhythmic, and insulin secretagogue activities. However, it is currently unknown whether nuciferine can benefit hepatic lipid metabolism. Methodology/Principal Findings In the current study, male golden hamsters were randomly divided into four groups fed a normal diet, a high-fat diet (HFD), or a HFD supplemented with nuciferine (10 and 15 mg/kg·BW/day). After 8 weeks of intervention, HFD-induced increases in liver and visceral adipose tissue weight, dyslipidemia, liver steatosis, and mild necroinflammation in hamsters were analyzed. Nuciferine supplementation protected against HFD-induced changes, alleviated necroinflammation, and reversed serum markers of metabolic syndrome in hamsters fed a HFD. RT-PCR and western blot analyses revealed that hamsters fed a HFD had up-regulated levels of genes related to lipogenesis, increased free fatty acid infiltration, and down-regulated genes involved in lipolysis and very low density lipoprotein secretion. In addition, gene expression of cytochrome P4502E1 and tumor necrosis factor-α were also increased in the HFD group. Nuciferine supplementation clearly suppressed HFD-induced alterations in the expression of genes involved in lipid metabolism. Conclusions/Significance Nuciferine supplementation ameliorated HFD-induced dyslipidemia as well as liver steatosis and injury. The beneficial effects of nuciferine were associated with altered expression of hepatic genes involved in lipid metabolism. PMID:23691094

  11. Erchen Decoction Prevents High-Fat Diet Induced Metabolic Disorders in C57BL/6 Mice

    PubMed Central

    Gao, Bi-Zhen; Chen, Ji-Cheng; Liao, Ling-Hong; Xu, Jia-Qi; Lin, Xiao-Feng; Ding, Shan-Shan

    2015-01-01

    Erchen decoction (ECD) is a traditional Chinese medicine prescription, which is used in the treatment of obesity, hyperlipidemia, fatty liver, diabetes, hypertension, and other diseases c