Science.gov

Sample records for high-frequency electromagnetic fields

  1. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  2. Differentiation of osteoprogenitor cells is induced by high-frequency pulsed electromagnetic fields.

    PubMed

    Teven, Chad M; Greives, Matthew; Natale, Ryan B; Su, Yuxi; Luo, Qing; He, Bai-Cheng; Shenaq, Deana; He, Tong-Chuan; Reid, Russell R

    2012-03-01

    Craniofacial defect repair is often limited by a finite supply of available autologous tissue (ie, bone) and less than ideal alternatives. Therefore, other methods to produce bony healing must be explored. Several studies have demonstrated that low-frequency pulsed electromagnetic field (PEMF) stimulation (ie, 5-30 Hz) of osteoblasts enhances bone formation. The current study was designed to investigate whether a Food and Drug Administration-approved, high-frequency PEMF-emitting device is capable of inducing osteogenic differentiation of osteoprogenitor cells. Osteoprogenitor cells (commercially available C3H10T1/2 and mouse calvarial) in complete Dulbecco modified Eagle medium were continuously exposed to PEMF stimulation delivered by the ActiPatch at a frequency of 27.1 MHz. Markers of cellular proliferation and early, intermediate, and terminal osteogenic differentiation were measured and compared with unstimulated controls. All experiments were performed in triplicate. High-frequency PEMF stimulation increases alkaline phosphatase activity in both cell lines. In addition, high-frequency PEMF stimulation augments osteopontin and osteocalcin expression as well as mineral nodule formation in C3H10T1/2 cells, indicating late and terminal osteogenic differentiation, respectively. Cellular proliferation, however, was unaffected by high-frequency PEMF stimulation. Mechanistically, high-frequency PEMF-stimulated osteogenic differentiation is associated with elevated mRNA expression levels of osteogenic bone morphogenetic proteins in C3H10T1/2 cells. Our findings suggest that high-frequency PEMF stimulation of osteoprogenitor cells may be explored as an effective tissue engineering strategy to treat critical-size osseous defects of the craniofacial and axial skeleton. ALP, alkaline phosphatase; BMP, bone morphogenetic protein; ERK-1, extracellular signal-regulated kinase 1; iCALs, immortalized calvarial cells; IHC, immunohistochemical; MAP, mitogen-activated protein

  3. Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields

    SciTech Connect

    Wolke, S.; Gollnick, F.; Meyer, R.; Neibig, U.; Elsner, R.

    1996-05-01

    The intracellular calcium concentration ([Ca{sup 2+}]{sub i}) of isolated ventricular cardiac myocytes of the guinea pig was measured during the application of pulsed high-frequency electromagnetic fields. The high-frequency fields were applied in a transverse electromagnetic cell designed to allow microscopic observation of the myocytes during the presence of the high-frequency fields. The [Ca{sup 2+}]{sub i} was measured as fura-2 fluorescence by means of digital image analysis. Both the carrier frequency and the square-wave pulse-modulation pattern were varied during the experiments (carrier frequencies: 900, 1,300, and 1,800 MHz pulse modulated at 217 Hz with 14% duty cycle; pulsation pattern at 900 MHz; continuous wave, 16 Hz,and 50 Hz modulation with 50% duty cycle and 30 kHz modulation with 80% duty cycle). The mean specific absorption rate (SAR) values in the solution were within one order of magnitude of 1 mW/kg. They varied depending on the applied carrier frequency and pulse pattern. The experiments were designed in three phases: 500 s of sham exposure, followed by 500 s of field exposure, then chemical stimulation without field. The chemical stimulation (K{sup +}-depolarization) indicated the viability of the cells. The K{sup +} depolarization yielded a significant increase in [Ca{sup 2+}]{sub i}. Significant differences between sham exposure and high-frequency field exposure were not found except when a very small but statistically significant difference was detected in the case of 900 MHz/50 Hz. However, this small difference was not regarded as a relevant effect of the exposure.

  4. A Parallel Multigrid Solver for High Frequency Electromagnetic Field Analyses with Small-scale PC Cluster

    NASA Astrophysics Data System (ADS)

    Yosui, Kuniaki; Iwashita, Takeshi; Mori, Michiya; Kobayashi, Eiichi

    Finite element analyses of electromagnetic field are commonly used for designing of various electronic devices. The scale of the analyses becomes larger and larger, therefore, a fast linear solver is needed to solve linear equations arising from the finite element method. Since a multigrid solver is the fastest linear solver for these problems, parallelization of a multigrid solver is a quite useful approach. From the viewpoint of industrial applications, an effective usage of a small-scale PC cluster is important due to initial cost for introducing parallel computers. In this paper, a distributed parallel multigrid solver for a small-scale PC cluster is developed. In high frequency electromagnetic field analyses, a special block Gauss-Seidel smoother is used for the multigrid solver instead of general smoothers such as Gauss-Seidel smoother or Jacobi smoother in order to improve a convergence rate. The block multicolor ordering technique is applied to parallelize the smoother. A numerical exsample shows that a 3.7-fold speed-up in computational time and a 3.0-fold increase in the scale of the analysis were attained when the number of CPU was increased from one to five.

  5. Mitigation measures of electromagnetic field exposure in the vicinity of high frequency welders.

    PubMed

    Zubrzak, Bartłomiej; Bieńkowski, Pawel; Cała, Pawel

    2017-09-20

    Presented information about the welding process and equipment, focusing on the emission of electromagnetic field (EMF) with levels significant in terms of the labor safety regulations in force in Poland - the ordinances of the Minister of Family, Labour and Social Policy that came into force on June 27, 2016 and June 29, 2016 - emerged due to harmonization with EU directive 2013/35/EU of 26 June 2013 of the European Parliament and the Council. They presented methods of determination of the EMF distribution in the welding machine surroundings and analyzed the background knowledge from the available literature. The subject of the analysis included popular high frequency welders widely used in the industry. Electromagnetic field measurements were performed in the welder operating place (in situ) during machine normal operations, using measurement methods accordant with labor safety regulations in force in Poland and according to the same guidelines, the EMF distributions and parameters having been described. They presented various scenarios of particular, real examples of excessive exposure to EMF in the dielectric welder surroundings and showed solutions, ranging from simple and costless and ending on dedicated electromagnetic shielding systems, which allowed to reduce EMF exposure in some cases of more than 80% (protection zone ranges) or eliminate dangerous zone presence. It has shown that in the dielectric welders surrounding, significant EMF strength levels may be the result of errors or omissions which often occur during development, installation, operation or modification of welding machines. It has allowed to present the measures that may significantly reduce the exposure to EMF of workers in the welder surroundings. The role of accredited laboratories in helping in such cases was underlined. Med Pr 2017;68(6).

  6. Behavioral in-effectiveness of high frequency electromagnetic field in mice.

    PubMed

    Salunke, Balwant P; Umathe, Sudhir N; Chavan, Jagatpalsingh G

    2015-03-01

    The present investigation was carried out with an objective to study the influence of high frequency electromagnetic field (HF-EMF) on anxiety, obsessive compulsive disorder (OCD) and depression-like behavior. For exposure to HF-EMF, non-magnetic material was used to fabricate the housing. Mice were exposed to HF-EMF (2.45GHz), 60min/day for 7 or 30 or 60 or 90 or 120days. The exposure was carried out by switching-on inbuilt class-I BLUETOOTH device that operates on 2.45GHz frequency in file transfer mode at a peak density of 100mW. Mice were subjected to the assessment of anxiety, OCD and depression-like behavior for 7 or 30 or 60 or 90 or 120days of exposure. The anxiety-like behavior was assessed by elevated plus maze, open field test and social interaction test. OCD-like behavior was assessed by marble burying behavior, whereas depression-like behavior was assessed by forced swim test and tail suspension test. The present experiment demonstrates that up to 120days of exposure to HF-EMF does not produce anxiety, OCD and depression-like behavior in mice.

  7. Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study.

    PubMed

    Kramarenko, Alexander V; Tan, Uner

    2003-07-01

    Cell phones emitting pulsed high-frequency electromagnetic fields (EMF) may affect the human brain, but there are inconsistent results concerning their effects on electroencephalogram (EEG). We used a 16-channel telemetric electroencephalograph (ExpertTM), to record EEG changes during exposure of human skull to EMF emitted by a mobile phone. Spatial distribution of EMF was especially concentrated around the ipsilateral eye adjacent to the basal surface of the brain. Traditional EEG was full of noises during operation of a cellular phone. Using a telemetric electroencephalograph (ExpertTM) in awake subjects, all the noise was eliminated, and EEG showed interesting changes: after a period of 10-15 s there was no visible change, the spectrum median frequency increased in areas close to antenna; after 20-40 s, a slow-wave activity (2.5-6.0 Hz) appeared in the contralateral frontal and temporal areas. These slow waves lasting for about one second repeated every 15-20 s at the same recording electrodes. After turning off the mobile phone, slow-wave activity progressively disappeared; local changes such as increased median frequency decreased and disappeared after 15-20 min. We observed similar changes in children, but the slow-waves with higher amplitude appeared earlier in children (10-20 s) than adults, and their frequency was lower (1.0-2.5 Hz) with longer duration and shorter intervals. The results suggested that cellular phones may reversibly influence the human brain, inducing abnormal slow waves in EEG of awake persons.

  8. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  9. Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression.

    PubMed

    Port, M; Abend, M; Römer, B; Van Beuningen, D

    2003-09-01

    International thresholds for exposure to non-ionizing radiation leading to non-thermal effects were conservatively set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The aim of this study was to examine whether biological effects such as different modes of cell death and gene expression modifications related to tumorgenesis are detectable above the threshold defined. Human leukaemia cells (HL-60) grown in vitro were exposed to electromagnetic fields (EMF; t 1/2(r) about 1 ns; field strength about 25 times higher than the ICNIRP reference levels for occupational exposure) leading to non-thermal effects using a high-voltage-improved GTEM cell 5302 (EMCO) connected to a pulse generator NP20 (C = 1 nF, U(Load) = 20kV). HL-60 cells were harvested at 0, 24, 48 and 72 h after radiation exposure. Micronuclei, apoptosis and abnormal cells (e.g. necrosis) were determined using morphological criteria. In parallel, the expression of 1176 genes was measured using Atlas Human 1.2. Array. Based on high data reproducibility calculated from two independent experiments (> 99%), array analysis was performed. No significant change in apoptosis, micronucleation, abnormal cells and differential gene expression was found. Exposure of HL-60 cells to EMFs 25 times higher than the ICNIRP reference levels for occupational exposure failed to induce any changes in apoptosis, micronucleation, abnormal morphologies and gene expression. Further experiments using EMFs above the conservatively defined reference level set by the ICNIRP may be desirable.

  10. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  11. The effect of a high frequency electromagnetic field in the microwave range on red blood cells.

    PubMed

    Nguyen, The Hong Phong; Pham, Vy T H; Baulin, Vladimir; Croft, Rodney J; Crawford, Russell J; Ivanova, Elena P

    2017-09-07

    The effect of red blood cells (RBC) exposed to an 18 GHz electromagnetic field (EMF) was studied. The results of this study demonstrated for the first time that exposure of RBCs to 18 GHz EMF has the capacity to induce nanospheres uptake in RBCs. The uptake of nanospheres (loading efficiency 96% and 46% for 23.5 and 46.3 nm nanospheres respectively), their presence and locality were confirmed using three independent techniques, namely scanning electron microscopy, confocal laser scanning microscopy and transmission electron microscopy. It appeared that 23.5 nm nanospheres were translocated through the membrane into the cytosol, while the 46.3 nm-nanospheres were mostly translocated through the phospholipid-cholesterol bilayer, with only some of these nanospheres passing the 2D cytoskeleton network. The nanospheres uptake increased by up to 12% with increasing temperature from 33 to 37 °C. The TEM analysis revealed that the nanospheres were engulfed by the cell membrane itself, and then translocated into the cytosol. It is believed that EMF-induced rotating water dipoles caused disturbance of the membrane, initiating its deformation and result in an enhanced degree of membrane trafficking via a quasi-exocytosis process.

  12. Abnormal responses of electronic pocket dosimeters caused by high frequency electromagnetic fields emitted from digital cellular telephones.

    PubMed

    Deji, Shizuhiko; Nishizawa, Kunihide

    2005-09-01

    High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high and erroneous indicated dose readings on electronic pocket dosimeters (EPDs). Electric field strength distribution around a cell phone transmitting 1.5 GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five types of EPDs were exposed to the fields for 50 s under configurations relative to the cell phone. The electric field distribution expanded around the phone's antenna and had a maximum electric field strength of 36.5 +/- 0.3 V m(-1). The cell phone gave rise to erroneous indicated dose readings on four out of five EPDs. The maximum value of erroneous indicated dosage for 50 s reached 1,283 microSv, which was about 2.6% of the annual effective dose limit of 50 mSv. The electromagnetic susceptibility of the EPDs was higher in the sections where the semiconductor detectors or electric circuit boards were located. The distance required to prevent electromagnetic interference differed for each EPD and ranged from 2.0 to 21.0 cm from the cell phone. The electric and magnetic field immunity levels of the EPDs varied from 9.2 V m(-1) to greater than 37.6 V m(-1), and from 0.03 A m(-1) to greater than 0.51 A m(-1). The EPDs displayed erroneous dose readings during exposure but recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection. The simplest and most reliable measure to prevent potential malfunction is to prohibit the radiation workers from carrying cell phones to their workplace.

  13. Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida.

    PubMed

    Grémiaux, Alexandre; Girard, Sébastien; Guérin, Vincent; Lothier, Jérémy; Baluška, František; Davies, Eric; Bonnet, Pierre; Vian, Alain

    2016-01-15

    It is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks. We performed exposures at two different development stages (rooted cuttings bearing an axillary bud and 5-leaf stage plants), using two high frequency (900MHz) field amplitudes (5 and 200Vm(-1)). We achieved a tight control on the experimental conditions using a state-of-the-art stimulation device (Mode Stirred Reverberation Chamber) and specialized culture-chambers. After the exposure, we followed the shoot growth for over a one-month period. We observed no growth modification whatsoever exposure was performed on the 5-leaf stage plants. When the exposure was performed on the rooted cuttings, no growth modification was observed on Axis I (produced from the elongation of the axillary bud). Likewise, no significant modification was noted on Axis II produced at the base of Axis I, that came from pre-formed secondary axillary buds. In contrast, Axis II produced at the top of Axis I, that came from post-formed secondary buds consistently displayed a delayed and significant reduced growth (45%). The measurements of plant energy uptake from HF-EMF in this exposure condition (SAR of 7.2 10(-4)Wkg(-1)) indicated that this biological response is likely not due to thermal effect. These results suggest that exposure to electromagnetic field only affected development of post-formed organs.

  14. Occupational exposure to high frequency electromagnetic fields and its effect on human immune parameters.

    PubMed

    Tuschl, H; Neubauer, G; Garn, H; Duftschmid, K; Winker, N; Brusl, H

    1999-01-01

    The present study recorded a considerable excess of recommended exposure limits in the vicinity of shortwave diathermy devices used for medical treatment of patients. Different kinds of field probes were used to measure electric and magnetic field strength and the whole body exposure of medical personnel operating shortwave, decimeter wave and microwave units was calculated. To investigate the influence of chronic exposure on the immune system of operators, blood was sampled from physiotherapists working at the above mentioned devices. Eighteen exposed and thirteen control persons, matched by sex and age, were examined. Total leucocyte and lymphocyte counts were performed and leucocytic subpopulations determined by flow cytometry and monoclonal antibodies against surface antigens. In addition, to quantify subpopulations of immunocompetent cells, the activity of lymphocytes was measured. Lymphocytes were stimulated by mitogen phytohemagglutinin and their proliferation measured by a flow cytometric method. No statistically significant differences between the control and exposed persons were found. In both study groups all immune parameters were within normal ranges.

  15. Ultra high frequency-electromagnetic field irradiation during pregnancy leads to an increase in erythrocytes micronuclei incidence in rat offspring.

    PubMed

    Ferreira, Amâncio Romanelli; Knakievicz, Tanise; Pasquali, Matheus Augusto de Bittencourt; Gelain, Daniel Pens; Dal-Pizzol, Felipe; Fernández, Claudio Enrique Rodriguez; de Salles, Alvaro Augusto de Almeida; Ferreira, Henrique Bunselmeyer; Moreira, José Cláudio Fonseca

    2006-12-03

    Mobile telephones and their base stations are an important ultra high frequency-electromagnetic field (UHF-EMF) source and their utilization is increasing all over the world. Epidemiological studies suggested that low energy UHF-EMF emitted from a cellular telephone may cause biological effects, such as DNA damage and changes on oxidative metabolism. An in vivo mammalian cytogenetic test, the micronucleus (MN) assay, was used to investigate the occurrence of chromosomal damage in erythrocytes from rat offspring exposed to a non-thermal UHF-EMF from a cellular phone during their embryogenesis; the irradiated group showed a significant increase in MN occurrence. In order to investigate if UHF-EMF could also alter oxidative parameters in the peripheral blood and in the liver - an important hematopoietic tissue in rat embryos and newborns - we also measured the activity of antioxidant enzymes, quantified total sulfhydryl content, protein carbonyl groups, thiobarbituric acid-reactive species and total non-enzymatic antioxidant defense. No significant differences were found in any oxidative parameter of offspring blood and liver. The average number of pups in each litter has also not been significantly altered. Our results suggest that, under our experimental conditions, UHF-EMF is able to induce a genotoxic response in hematopoietic tissue during the embryogenesis through an unknown mechanism.

  16. 17-β-Estradiol Counteracts the Effects of High Frequency Electromagnetic Fields on Trophoblastic Connexins and Integrins

    PubMed Central

    Cervellati, Franco; Lunghi, Laura; Fabbri, Elena; Valbonesi, Paola; Marci, Roberto; Biondi, Carla; Vesce, Fortunato

    2013-01-01

    We investigated the effect of high-frequency electromagnetic fields (HF-EMFs) and 17-β-estradiol on connexins (Cxs), integrins (Ints), and estrogen receptor (ER) expression, as well as on ultrastructure of trophoblast-derived HTR-8/SVneo cells. HF-EMF, 17-β-estradiol, and their combination induced an increase of Cx40 and Cx43 mRNA expression. HF-EMF decreased Int alpha1 and β1 mRNA levels but enhanced Int alpha5 mRNA expression. All the Ints mRNA expressions were increased by 17-β-estradiol and exposure to both stimuli. ER-β mRNA was reduced by HF-EMF but augmented by 17-β-estradiol alone or with HF-EMF. ER-β immunofluorescence showed a cytoplasmic localization in sham and HF-EMF exposed cells which became nuclear after treatment with hormone or both stimuli. Electron microscopy evidenced a loss of cellular contact in exposed cells which appeared counteracted by 17-β-estradiol. We demonstrate that 17-β-estradiol modulates Cxs and Ints as well as ER-β expression induced by HF-EMF, suggesting an influence of both stimuli on trophoblast differentiation and migration. PMID:23819010

  17. Cytotoxic and genotoxic effects of high-frequency electromagnetic fields (GSM 1800 MHz) on immature and mature rats.

    PubMed

    Sekeroğlu, Vedat; Akar, Ayşegül; Sekeroğlu, Zülal Atlı

    2012-06-01

    We investigated the cytogenotoxic effects of high frequency electromagnetic fields (HF-EMF) for 45 day and the effect of a recovery period of 15 day after exposure to EMF on bone marrow cells of immature and mature rats. The animals in treatment groups were exposed to 1800 MHz EMF at SAR of 0.37 W/kg and 0.49 W/kg for 2h/day for 45 day. Two recovery groups were kept for a recovery period of 15 day without EMF after exposure to HF-EMF. Two control groups for both immature and mature rats were also included. Significant differences were also observed in chromosome aberrations (CA), micronucleus (MN) frequency, mitotic index (MI) and ratio of polychromatic erythrocytes (PCEs) in all treatment groups. The cytogenotoxic damage was more remarkable in immature rats and, the recovery period did not improve this damage in immature rats. Because much higher and irreversible cytogenotoxic damage was observed in immature rats than in mature rats, further studies are needed to understand effects of EMF on DNA damage and DNA repair, and to determine safe limits for environment and human, especially for children.

  18. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  19. The enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth properties.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2015-01-01

    The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

  20. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  1. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  2. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  3. A novel model of interaction between high frequency electromagnetic non-ionizing fields and microtubules viewed as coupled two-degrees of freedom harmonic oscillators.

    PubMed

    Caligiuri, Luigi Maxmilian

    2015-01-01

    The question regarding the potential biological and adverse health effects of non-ionizing electromagnetic fields on living organisms is of primary importance in biophysics and medicine. Despite the several experimental evidences showing such occurrence in a wide frequency range from extremely low frequency to microwaves, a definitive theoretical model able to explain a possible mechanism of interaction between electromagnetic fields and living matter, especially in the case of weak and very weak intensities, is still missing. In this paper it has been suggested a possible mechanism of interaction involving the resonant absorption of electromagnetic radiation by microtubules. To this aim these have been modeled as non-dissipative forced harmonic oscillators characterized by two coupled "macroscopic" degrees of freedom, respectively describing longitudinal and transversal vibrations induced by the electromagnetic field. We have shown that the proposed model, although at a preliminary stage, is able to explain the ability of even weak electromagnetic radiating electromagnetic fields to transfer high quantities of energy to living systems by means of a resonant mechanism, so capable to easily damage microtubules structure.

  4. Development oF High Frequency Electromagnetic Mapping (HFEM) technology

    NASA Astrophysics Data System (ADS)

    Jesch, R. L.

    1982-04-01

    High frequency electromagnetic mapping (HFEM) techniques were developed for evaluating rubblized oil shale in the cold retort state in the modified in situ process. This technology development is also applicable for using HFEM techniques for diagnosing, monitoring, controlling and evaluating modified in situ retorts after they are ignited. The baseline data work required to design a high temperature sample holder and experiments for determining the EM properties of oil shale samples at elevated temperatures (200 to 500 C) are described. A theoretical approach is given for modeling oil shale retorts for electromagnetic sensing techniques by a spheroid with an average dielectric constant along with numerical results. Finally, the measurement results are given for the spent and raw shale samples that were obtained from portions of the ten half score samples plus the results of the electromagnetic transmission measurements taken on oil shale samples.

  5. Stationary structure of a high-frequency discharge maintained by a distributed electromagnetic source in the presence of an external magnetic field

    SciTech Connect

    Es'kin, V. A.; Kudrin, A. V.

    2010-04-15

    The stationary structure of an axisymmetric high-frequency discharge maintained by a given source in an external dc magnetic field is investigated. The source is assumed to be a current wave that travels over the discharge tube surface in the direction of the external magnetic field. The source current has a single azimuthal component and its frequency belongs to the lower hybrid range. The main emphasis is placed on the special case where the electron heat conduction length across the external magnetic field exceeds considerably the tube radius. The dependences of discharge plasma parameters on the current amplitude and propagation constant along the tube have been found for this case. The results of numerical calculations of the distributions of the field and the power of the Joule loss in a discharge are presented.

  6. High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao

    1994-05-01

    High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.

  7. On board electronic devices safety subject to high frequency electromagnetic radiation effects

    NASA Astrophysics Data System (ADS)

    Nikitin, V. F.; Smirnov, N. N.; Smirnova, M. N.; Tyurenkova, V. V.

    2017-06-01

    Spacecraft on board electronic devices are subjected to the effects of Space environment, in particular, electromagnetic radiation. The weight limitations for spacecraft pose an important material and structures problem: developing effective protection for on board electronic devices from high frequency electromagnetic radiation. In the present paper the problem of the effect of external high frequency electromagnetic field on electronic devices shielding located on orbital platforms is investigated theoretically. It is demonstrated that the characteristic time for the unsteady stage of the process is negligibly small as compared with characteristic time of electromagnetic field diffusion into a conductor for the studied range of governing parameters. A system of governing material parameters is distinguished, which contribute to protecting electronic devices from induced electrical currents.

  8. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    DOE PAGES

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  9. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    SciTech Connect

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  10. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  11. Benchmark of Different Electromagnetic Codes for the High Frequency Calculation

    SciTech Connect

    Kai Tian, Haipeng Wang, Frank Marhauser, Guangfeng Cheng, Chuandong Zhou

    2009-05-01

    In this paper, we present benchmarking results for highclass 3D electromagnetic (EM) codes in designing RF cavities today. These codes include Omega3P [1], VORPAL [2], CST Microwave Studio [3], Ansoft HFSS [4], and ANSYS [5]. Two spherical cavities are selected as the benchmark models. We have compared not only the accuracy of resonant frequencies, but also that of surface EM fields, which are critical for superconducting RF cavities. By removing degenerated modes, we calculate all the resonant modes up to 10 GHz with similar mesh densities, so that the geometry approximation and field interpolation error related to the wavelength can be observed.

  12. Longitudinal ELF to LF electromagnetic oscillations and waves generated in the ionosphere under the influence of strong high-frequency electric field

    SciTech Connect

    Alpert, Y.L.

    1995-01-01

    Results of detailed numerical calculations of some parametric decay effects, arising in a magnetoplasma under the influence of a HF, sufficiently strong electric field {rvec E} = {rvec E}{sub p} {center_dot} cos{omega}{sub E}t, are given in this paper. The resonance branches and the VLF parametric resonances are calculated in the ionosphere at altitudes Z = 200, 300, and 400 km. Calculations in the resonance regions {omega}{sub E} = s{omega}{sub o} ({omega}{sub o} is the electron Langmuir frequency, s=1,2...) were done in the cold palsma and also in the kinetic approximations. It is shown that the angle dependence {omega}{sub 1}({Theta}, E{sub p}=0) of the ELF (0 < w {le} {Omega}{sub B}) resonance branch is close to the cosine law. This is in contrast with the earlier published results and with the angle dependence {omega}{sub 1}({Theta}, E=0). This important effect and the other dependencies given in the paper may be used for the search of the parametric instabilities and of the electric field in the ionosphere and magnetosphere, especially by experiments in situ on satellites. 9 refs., 5 figs., 11 tabs.

  13. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  14. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  15. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  16. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay.

    PubMed

    Franzellitti, Silvia; Valbonesi, Paola; Ciancaglini, Nicola; Biondi, Carla; Contin, Andrea; Bersani, Ferdinando; Fabbri, Elena

    2010-01-05

    One of the most controversial issue regarding high-frequency electromagnetic fields (HF-EMF) is their putative capacity to affect DNA integrity. This is of particular concern due to the increasing use of HF-EMF in communication technologies, including mobile phones. Although epidemiological studies report no detrimental effects on human health, the possible disturbance generated by HF-EMF on cell physiology remains controversial. In addition, the question remains as to whether cells are able to compensate their potential effects. We have previously reported that a 1-h exposure to amplitude-modulated 1.8 GHz sinusoidal waves (GSM-217 Hz, SAR=2 W/kg) largely used in mobile telephony did not cause increased levels of primary DNA damage in human trophoblast HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations were considered of interest. In the present work, HTR-8/SVneo cells were exposed for 4, 16 or 24h to 1.8 GHz continuous wave (CW) and different GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters in trophoblast cells after 16 and 24h of exposure, while the un-modulated CW was ineffective. However, alterations were rapidly recovered and the DNA integrity of HF-EMF exposed cells was similar to that of sham-exposed cells within 2h of recovery in the absence irradiation. Our data suggest that HF-EMF with a carrier frequency and modulation scheme typical of the GSM signal may affect the DNA integrity.

  17. Amplification of a high-frequency electromagnetic wave by a relativistic plasma

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.

    1990-01-01

    The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.

  18. Numerical Modeling of High Frequency Electromagnetic Wave Propagation through Ionospheric Plasma with Randomly Distributed Flute Vortices

    NASA Astrophysics Data System (ADS)

    Caplinger, J.; Sotnikov, V. I.; Wallerstein, A. J.

    2014-12-01

    A three dimensional numerical ray-tracing algorithm based on a Hamilton-Jacobi geometric optics approximation is used to analyze propagation of high frequency (HF) electromagnetic waves through a plasma with randomly distributed vortex structures having a spatial dependence in the plane perpendicular to earth's magnetic field. This spatial dependence in density is elongated and uniform along the magnetic field lines. Similar vortex structures may appear in the equatorial spread F region and in the Auroral zone of the ionosphere. The diffusion coefficient associated with wave vector deflection from a propagation path can be approximated by measuring the average deflection angle of the beam of rays. Then, the beam broadening can be described statistically using the Fokker-Planck equation. Visualizations of the ray propagation through generated density structures along with estimated and analytically calculated diffusion coefficients will be presented.

  19. What Are Electromagnetic Fields?

    MedlinePlus

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  20. Computer-aided design-based high-frequency electromagnetic wave scattering from complex bodies

    NASA Astrophysics Data System (ADS)

    Baldauf, John Eric

    1991-02-01

    This work investigates the use of high frequency electromagnetic scattering techniques, such as the physical theory of diffraction (PTD) and the geometrical theory of diffraction (GTD) and the shooting and bouncing rays (SBR) method combined with computer aided design (CAD) compatible geometries, to perform the electromagnetic scattering analysis of complex arbitrary bodies. The use of CAD formats such as solid modelled bodies and bodies modelled with triangular patch surface elements allows the scattering analysis of arbitrary bodies which can be constructed using CAD packages. The scattering analyses are applied to radar cross section (RCS) problems, cavity radiation problems, and antenna pattern predictions of complex electrically large structures, thereby showing that it is feasible to accurately approximate the electromagnetic wave scattering from general complex bodies using CAD techniques and high frequency scattering techniques. First, the RCS of large targets which involve multiple geometric optics (GO) interactions are investigated by comparing the RCS calculated using CAD designed radar targets and the SBR method and PTD for targets such as trihedral corner reflectors and an idealized military vehicle model with the experimentally obtained RCS. The comparisons between the calculated and measured results demonstrate that the SBR and PTD can provide accurate approximations of the RCS for targets which have complex multiple GO interactions. Second, the problem of interior cavity radiation for closed cavities is approached using a ray tracing and GO method based on the SBR method and triangular surface patch described geometries. Comparisons between the ray-based calculations and more exact techniques such as the method of moments (MM) for two-dimensional cavities demonstrate that ray-based methods can provide good approximations for the field behavior inside of nonresonant cavities. A three-dimensional case is shown to demonstrate that this technique can be

  1. Development of Numerical Codes for Modeling Electromagnetic Behavior at High Frequencies Near Large Objects

    NASA Technical Reports Server (NTRS)

    Joshi, R. P.; Deshpande, M. D. (Technical Monitor)

    2003-01-01

    A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to

  2. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  3. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  4. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thidé, B.; McCarrick, M.

    2009-02-01

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  5. Physical modeling of small shallow conductive 3-D targets with high-frequency electromagnetics

    SciTech Connect

    Birken, R.A.; Poulton, M.; Sterngerg, B.K.

    1996-09-01

    The goal of this study is to show that physical modeling can provide important support for three-dimensional (3D) interpretation of electromagnetic geophysical data for environmental problems. This is specially true when high-frequency electromagnetic methods are used, which are difficult to model with existing 3D forward modeling programs. Existing electromagnetic geophysical systems usually operate in the frequency range of a few hertz to several hundred hertz. For environmental problems, such as characterization of waste sites, systems with higher frequencies are desirable. This is because at lower frequencies, the depth of investigation is too deep for environmental characterizations. This leads to subsurface images, which don`t have enough resolution to map small shallow objects. Electromagnetic 3D modeling programs which solve the full wave equation are still not widely available, even though 3D modeling has improved remarkably during the last few years (Oristaglio and Spies, 1995). Since such a program was not available for this study, we used a specialized 3D program EM1DSH (Zhou, 1989). With this program, we can model layered-earth cases, taking dielectric effects into account over the whole frequency range of interest. Stewart et al. (1994) published ellipticity curves for similar system configurations and frequency ranges that indicate that dielectric effects can not be neglected for model calculations using frequencies above several 100 kHz. EM1DSH can also model thin conductive sheets in a two-layer earth but neglecting dielectric effects. Therefore we are only able to model and compare our field data with 3D forward modeling results for the lower frequencies. One way of bridging the gap between the interpretation needs and limitations of existing 3D forward modeling programs is to conduct physical modeling experiments. 6 refs., 2 figs.

  6. High Frequency Electromagnetic Impedance Measurements For Characterization, Monitoring And Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex

    2000-12-31

    Electromagnetic methods in exploration geophysics include many technologies capable of imaging the subsurface. The electromagnetic geophysical spectrum for shallow subsurface imaging is roughly 1 Hz to 500 MHz, with electrical resistivity and other geometric sounding methods located at the low frequency end and the familiar GPR method at the high end of the spectrum. Baseline studies (Pellerin et al., 1997) show that electromagnetic instrumentation in the mid- and low-frequencies (< 300 kHz) and GPR systems (> 30 MHz) are well developed in the commercial sector. In the high-frequency range of 300 kHz to 100 MHz developments have been quite recent and reside within the research community. Accurate theoretical numerical modeling algorithms are available for simulations and interpretation across the entire spectrum (Mackie and Madden, 1993; Pellerin et al., 1995; Pellerin et al., 1997; Alumbaugh and Newman, 1995; Lee et al., 1995, Newmann and Alumbaugh, 1997; Newmann, 1999; Sasaki, 1999, etc.), but instrumentation suitable for collecting calibrated field data in the important high-frequency range is critically lacking. Several attempts to develop reliable, accurate and calibrated instruments (Sternberg and Poulton, 1996; Stewart et al., 1994; Wright et el., 1996) have produced mixed results. We proposed to exploit the concept of electromagnetic impedance, the ratio of orthogonal horizontal electric to horizontal magnetic fields, to provide the necessary technology in the high-frequency band described above. The effective depth of investigation for surface impedance measurements depends on the frequency, and is commonly expressed in terms of the skin depth, the distance into the conductive half space at which the amplitude of the incoming wave has decreased to e-1 of its surface value. In order to achieve skin depths between 0.5 and 10 meters in material of resistivity between 1 and 100 ohm-m and relative permittivity between 1 and 30, frequencies bet ween about 300 k

  7. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  8. High-frequency electromagnetic radiation injury to the upper extremity: local and systemic effects.

    PubMed

    Ciano, M; Burlin, J R; Pardoe, R; Mills, R L; Hentz, V R

    1981-08-01

    Industrial use of radiofrequency and microwave energy sources (nonionizing, high-frequency electromagnetic radiation) is a growing and widespread phenomenon, with projected risks of exposure to more than 20 million workers in the United States. A description of the nature of this form of electromagnetic energy is given, with emphasis on the variability of energy absorption by humans. The current state of biological research is reviewed, and a summary of the known effects of radiofrequency and microwave radiation exposure on animals and humans provided. These known effects appear to be principally thermal, similar to conventional electrical burn injuries, but with some unique systemic expression. Derangements of cardiovascular, gastrointestinal, endocrine, hematological, ophthalmological, and behavioral functions are well described in animal experimentation. Two patients are presented--one a young woman exposed to a high-density radiofrequency field in an industrial setting, leading to necrosis of the entire hand and wrist as well as to a constellation of systemic effects, and one an older woman exposed to excessive microwave radiation from a malfunctioning microwave oven, leading to chronic hand pain and paresthesias resembling median nerve entrapment at the carpus. The prevalence of potential exposure in certain industries is noted and recommendations for follow-up care of workers exposed to this form of trauma are delineated.

  9. High-frequency electromagnetic radiation injury to the upper extremity: local and systemic effects

    SciTech Connect

    Ciano, M.; Burlin, J.R.; Pardoe, R.; Mills, R.L.; Hentz, V.R.

    1981-01-01

    Industrial use of radiofrequency and microwave energy sources (nonionizing, high-frequency electromagnetic radiation) is a growing and widespread phenomenon, with projected risks of exposure to more than 20 million workers in the United States. A description of the nature of this form of electromagnetic energy is given, with emphasis on the variability of energy absorption by humans. The current state of biological research is reviewed, and a summary of the known effects of radiofrequency and microwave radiation exposure on animals and humans provided. These known effects appear to be principally thermal, similar to conventional electrical burn injuries, but with some unique systemic expression. Derangements of cardiovascular, gastrointestinal, endocrine, hematological, ophthalmological, and behavioral functions are well described in animal experimentation. Two patients are presented--one a young woman exposed to a high-density radiofrequency field in an industrial setting, leading to necrosis of the entire hand and wrist as well as to a constellation of systemic effects, and one an older woman exposed to excessive microwave radiation from a malfunctioning microwave oven, leading to chronic hand pain and paresthesias resembling median nerve entrapment at the carpus. The prevalence of potential exposure in certain industries is noted and recommendations for follow-up care of workers exposed to this form of trauma are delineated.

  10. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  11. Parametric excitation of high-frequency electromagnetic waves by the lower-frequency dipole pumping

    SciTech Connect

    Gamayunov, K.V. ); Khazanov, G.V. ); Krivorutsky, E.N.; Veryaev, A.A. )

    1993-01-01

    The possibility of parametric excitation of high-frequency electromagnetic waves by lower-frequency dipole pumping is studied. It is shown that the obtained general dispersive equation may be reduced to the Mathieu equation, provided the case of the flux instability is neglected. In the framework of the developed approach, the excitation of magnetohydrodynamic waves and whistler oscillations is examined.

  12. Electro-magnetic analysis of high-frequency digital signal processors.

    PubMed

    Li, Bing; Lei, Mingzhu; Chen, Meiyuan; Zhang, Lanyong

    2016-01-01

    High-frequency digital signal processors are increasingly suffering from electro-magnetic interference, due to its ever-increasing integration level and operation speed. The accurate prediction of its electro-magnetic effects require less effort to be spared in the design procedures to obtain better electro-magnetic compatibility and to avoid later modifications that are lengthy and expensive. In this paper, the dipole method is implemented to predict the magnetic impacts of DSP6713 system in order to reduce its design costs.

  13. Heating of ions by high frequency electromagnetic waves in magnetized plasmas

    SciTech Connect

    Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.

    2013-07-15

    The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be

  14. Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas

    SciTech Connect

    Zhang Yuru; Xu Xiang; Wang Younian; Zhao Shuxia; Bogaerts, A.

    2010-11-15

    A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.

  15. High frequency electromagnetic impedance measurements for characterization, monitoring and verification efforts. 1998 annual progress report

    SciTech Connect

    Lee, K.H.; Pellerin, L.; Becker, A.

    1998-06-01

    'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents

  16. Evaluating and expressing uncertainty in high-frequency electromagnetic measurements: a selective review

    NASA Astrophysics Data System (ADS)

    Ridler, Nick M.; Salter, Martin J.

    2014-08-01

    This paper provides a selected review of topics relating to evaluating and expressing uncertainty for some measurands that occur in high-frequency electromagnetic metrology. Specific emphasis is given to complex-valued quantities (i.e. vector measurands having both an associated magnitude and phase component), such as scattering parameters (i.e. S-parameters) used at radio, microwave, millimetre-wave and terahertz frequencies.

  17. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.

  18. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.

  19. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.

  20. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen; Choi, Youngki

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.

  1. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.

  2. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  3. [Analysis of Electric Stress in Human Head in High-frequency Low-power Electromagnetic Environment].

    PubMed

    Zhou, Yongjun; Zhang, Hui; Niu, Zhongqi

    2015-04-01

    Action of electromagnetic radiation exerting on human body has been a concerned issue for people. Because electromagnetic waves could generate an electric stress in a discontinuous medium, we used the finite difference time domain (FDTD) as calculation methods to calculate the electric stress and its distribution in human head caused by high-frequency low-power electromagnetic environment, which was generated by dual-band (900 MHz and 1 800 MHz) PIFA antennas with radiated power 1 W, and we then performed the safety evaluation of cell phone radiation from the angle whether the electric stress further reached the human hearing threshold. The result showed that there existed the electric stress at the interface of different permittivity organization caused by the two kinds of high-frequency low-power electromagnetic environment and the maximum electric stress was located at the interface between skin and air of the phone side, and the electric stress peak at skull did not reach the threshold of auditory caused by bone tissue conduction so that it can not produce auditory effects.

  4. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    PubMed

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  5. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  6. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  7. High Frequency Circuit Simulator: An Advanced Electromagnetic Simulation Tool for Microwave Sources

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Fang; Yang, Zhong Hai; Li, Bin; Li, Jian Qing; Xu, Li

    2009-08-01

    High Frequency Circuit Simulator (HFCS) is developed as an advanced electromagnetic simulation tool for microwave sources, which is based on Finite Integration Technique (FIT). In this paper, the detail of the design and realization of HFCS is provided and for validation one actual Helical Slow-Wave Structure (HSWS) is fully analyzed. Convergent process is studied and the cold-test characteristics (including dispersion, coupling impedance and attenuation constant) are calculated and compared with those from MAFIA. The consistency of the results of these two simulation tools has proved the reliability and validity of HFCS.

  8. Renormalization of the diffusion tensor for high-frequency, electromagnetic modes

    SciTech Connect

    Litwin, C.; Sudan, R.N.

    1987-08-01

    The resonance broadening theory is used to derive the diffusion tensor for resonant particles in a spectrum of electromagnetic modes propagating parallel to the magnetic field. The magnetic trapping limit for saturation of wave amplitudes is discussed.

  9. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  10. Influence of inhomogeneous magnetic field on the characteristics of very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Kenney, Jason; Dorf, Leonid; Collins, Ken

    2010-03-15

    The effect of inhomogeneous magnetic field on the spatial structure of very high frequency (VHF) plasmas is investigated for different coil configurations, gas pressures, high frequency bias powers, and degrees of electronegativity. The simulation results show that the electron density peaks in the center of the chamber for VHF plasmas due to the standing electromagnetic wave effect. On application of a magnetic field, the density increases near the wafer edge and decreases at the chamber center. The radial magnetic field component is found to limit electron loss to the electrodes and locally enhance the electron density. The axial magnetic field component limits plasma diffusion in the radial direction helping preserve the effect of improved electron confinement by the radial magnetic field. The peak electron density decreases with increasing magnetic field as the plasma moves toward the electrode edge occupying a larger volume. The effect of magnetic field becomes weaker at higher pressure due to the increased electron-neutral collisions which reduce the effectiveness of electron confinement around the magnetic field lines. The impact of magnetic field on plasma profile is somewhat weaker in an electronegative Ar/CF{sub 4} plasma because of the presence of less mobile and unmagnetized negative ions.

  11. On the ponderomotive force of a high-frequency field in a cold plasma

    SciTech Connect

    Bespalov, S.V.; Milantiev, V.P.

    1994-12-31

    It is shown that in the presence of the high-frequency electromagnetic field the pressure tensor has an averaged part which does not vanish in the cold plasma limit. It leads to the change of expressions for the ponderomotive force and for the stress tensor. It is found also that in the case of a warm plasma the inclusion into consideration only the scalar pressure seems to be incorrect. A correct approach should be based on the general statistical definition of the pressure tensor. Thermal effects can be excluded only after the calculation of the averaged part of the pressure tensor, which exists in both cold and warm plasma. The expression for the electromagnetic stress tensor obtained this way has additional terms explicitly representing the effects of dispersion of the medium.

  12. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  13. High-frequency electromagnetic dynamics properties of THP1 cells using scanning microwave microscopy.

    PubMed

    Oh, Yoo Jin; Huber, Hans-Peter; Hochleitner, Markus; Duman, Memed; Bozna, Bianca; Kastner, Markus; Kienberger, Ferry; Hinterdorfer, Peter

    2011-11-01

    Microwave measurements combined with scanning probe microscopy is a novel tool to explore high-localized mechanical and electrical properties of biological species. Complex permittivities and permeabilities are detected through slight variations of an incident microwave signal. Here we report the high-frequency dependence of the electromagnetic dynamic characteristics in human monocytic leukemia cells (THP1) through local measurements by scanning microwave microscopy (SMM). The amplitude and phase images were shown to depend on the applied resonance frequency. While the amplitude yields information about the resistivity determined by the water and the ionic strength, the phase information reflects the dielectric losses arising from the fluid density. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli.

    PubMed

    Torgomyan, Heghine; Tadevosyan, Hasmik; Trchounian, Armen

    2011-03-01

    Antibacterial effects of the electromagnetic irradiation (EMI) of 51.8 and 53 GHz frequencies with low intensity (the flux capacity of 0.06 mW/cm(2)) and non-thermal action were investigated upon direct irradiation of E. coli K12. Significant decrease in bacterial growth rate and in the number of viable cells, marked change in H(+) and K(+) transport across membrane were shown. Subsequent addition of kanamycin or ceftriaxone (15 or 0.4 μM, respectively) enhanced the effects of irradiation. This was maximally achieved at the frequency of 53 GHz. These all might reveal membrane as probable target for antibacterial effects. Apparently, the action of EMI on bacteria might lead to changed membrane properties and to antibiotic resistance. The results should improve using extremely high frequency EMI in combination with antibiotics in biotechnology, therapeutic practice, and food industry.

  15. Low and High-Frequency Field Potentials of Cortical Networks ...

    EPA Pesticide Factsheets

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  16. Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma

    SciTech Connect

    Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.

    2011-11-15

    The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.

  17. Asymptotic high frequency analysis of the electromagnetic backscattering from an inlet model consisting of piecewise linearly tapered sections

    NASA Technical Reports Server (NTRS)

    Altintas, A.; Pathak, P. H.

    1985-01-01

    Electromagnetic backscattering from an open ended three dimensional inlet model is analyzed and computed patterns are compared with results of experimental measurements. The model is comprised of two sections. The first section consists of a linearly tapered waveguide with a rectangular opening at one end and the other end is connected to the second section which is a uniform rectangular waveguide with a planar perfectly conducting termination. The model is electrically large so that many propagating modes are excited. The method of analysis contains conventional aperture integration and modal techniques combined with high frequency techniques, which employ concepts such as modal rays, geometrical theory of diffraction and equivalent currents. For the cases considered, it is shown that only a few of the many propagating modes contribute appreciably to the backscattered field. These modes are selected according to their modal ray angle directions.

  18. Computational modeling of a single microdischarge and its interactions with high frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.

    2016-09-01

    We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.

  19. Predictive factors for beneficial application of high-frequency electromagnetics for tumour vaporization and coagulation in neurosurgery

    PubMed Central

    Ritz, Rainer; Heckl, Stefan; Safavi-Abbasi, Sam; Feigl, Guenther C; Krischek, Boris; Lüdemann, Wolf; Mirzayan, Javed M; Koerbel, Andrei; Samii, Madjid; Tatagiba, Marcos; Gharabaghi, Alireza

    2008-01-01

    Objective To identify preoperative and intraoperative factors and conditions that predicts the beneficial application of a high-frequency electromagnetic field (EMF) system for tumor vaporization and coagulation. Methods One hundred three subsequent patients with brain tumors were microsurgically treated using the EMF system in addition to the standard neurosurgical instrumentarium. A multivariate analysis was performed regarding the usefulness (ineffective/useful/very helpful/essential) of the new technology for tumor vaporization and coagulation, with respect to tumor histology and location, tissue consistency and texture, patients' age and sex. Results The EMF system could be used effectively during tumor surgery in 83 cases with an essential contribution to the overall success in 14 cases. In the advanced category of effectiveness (very helpful/essential), there was a significant difference between hard and soft tissue consistency (50 of 66 cases vs. 3 of 37 cases). The coagulation function worked well (very helpful/essential) for surface (73 of 103 cases) and spot (46 of 103 cases) coagulation when vessels with a diameter of less than one millimeter were involved. The light-weight bayonet hand piece and long malleable electrodes made the system especially suited for the resection of deep-seated lesions (34 of 52 cases) compared to superficial tumors (19 of 50 cases). The EMF system was less effective than traditional electrosurgical devices in reducing soft glial tumors. Standard methods where also required for coagulation of larger vessels. Conclusion It is possible to identify factors and conditions that predict a beneficial application of high-frequency electromagnetics for tumor vaporization and coagulation. This allows focusing the use of this technology on selective indications. PMID:18445296

  20. Enhanced Airglow by High Frequency Electromagnetic Pumping of the Ionosphere at Auroral Latitudes

    NASA Astrophysics Data System (ADS)

    Leyser, T. B.; Gustavsson, B.; Brändström, B. U. E.; Steen, E.; Honary, F.; Rietveld, M. T.; Aso, T.; Ejiri, M.

    2000-10-01

    A powerful high frequency electromagnetic pump wave transmitted into the ionosphere from the ground may enhance the background airglow. The airglow enhancement is due to an increase in the number of electrons having energies which are an order of magnitude higher than the thermal energy in the ionospheric plasma. The energetic electrons collisionally excite, for example, the meta-stable O(1D) state in atomic oxygen, which radiates at 630 nm as the excited oxygen atom relaxes to its ground state. Airglow enhancement is used to study, for example, the dissipation of the pump-driven plasma turbulence by electron energization. We present experimental results of pumping the ionospheric F region with the EISCAT-Heating facility at auroral latitudes in Norway and detection of the airglow with the multi-station Auroral Large Imaging System (ALIS) in northern Sweden. The experimental results also include simultaneous measurements of background plasma parameter values with the EISCAT-UHF incoherent scatter radar. The multi-station imaging technique enables for the first time tomography-like inversion to estimate the spatial extent of the pumped airglow cloud. Further, the airglow enhancement is correlated with large pump-induced electron temperature enhancements of up to 250

  1. Performance analysis of high frequency single-site-location antenna arrays using numerical electromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Schiantarelli, Harry T.

    1990-09-01

    Electronic support measures (ESM) systems play an increasingly important role in modern warfare and can influence the outcome of a military engagement. The application of ESM can be extended to anti-guerrilla and anti-drug operations where law enforcement agencies can exploit the fact that their presence is inducing the outlaw to depend more on radio communications to coordinate their activities. When a propagation path of no more than one reflection at the ionosphere (1-hop) can be assumed, position of an HF emitter can be determined by a single observing site using vertical triangulation, provided that the height of the ionosphere at the point where the radio wave is reflected, can be determined. This technique is known as high frequency direction finding single-site-location (HFDF SSL). This thesis analyzes the HFDF SSL error in measuring the direction of arrival of the signal, how this error is generated by the antenna array and its effect on emitter location. The characteristics of the two antenna arrays used by a specific HFDF SSL system that implements the phase-interferometer techniques were studied using electromagnetic modeling.

  2. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics.

    PubMed

    Tadevosyan, Hasmik; Kalantaryan, Vitaly; Trchounian, Armen

    2008-01-01

    The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm(2)) affected the growth of Escherichia coli K12(lambda) under fermentation conditions: the lowering of the growth specific rate was considerably (approximately 2-fold) increased with exposure duration of 30-60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of H(+)-transporting F(0)F(1)-ATPase, on energy-dependent H(+) efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F(0)F(1)-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

  3. Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation.

    PubMed

    Gapeyev, Andrew B; Mikhailik, Elena N; Chemeris, Nikolay K

    2009-09-01

    Using a model of acute zymosan-induced paw edema in NMRI mice, we test the hypothesis that anti-inflammatory effects of extremely high-frequency electromagnetic radiation (EHF EMR) can be essentially modified by application of pulse modulation with certain frequencies. It has been revealed that a single exposure of animals to continuous EHF EMR for 20 min reduced the exudative edema of inflamed paw on average by 19% at intensities of 0.1-0.7 mW/cm(2) and frequencies from the range of 42.2-42.6 GHz. At fixed effective carrier frequency of 42.2 GHz, the anti-inflammatory effect of EHF EMR did not depend on modulation frequencies, that is, application of different modulation frequencies from the range of 0.03-100 Hz did not lead to considerable changes in the effect level. On the contrary, at "ineffective" carrier frequencies of 43.0 and 61.22 GHz, the use of modulation frequencies of 0.07-0.1 and 20-30 Hz has allowed us to restore the effect up to a maximal level. The results obtained show the critical dependence of anti-inflammatory action of low-intensity EHF EMR on carrier and modulation frequencies. Within the framework of this study, the possibility of changing the level of expected biological effect of modulated EMR by a special selection of combination of carrier and modulation frequencies is confirmed.

  4. High frequency electromagnetism, heat transfer and fluid flow coupling in ANSYS multiphysics.

    PubMed

    Sabliov, Cristina M; Salvi, Deepti A; Boldor, Dorin

    2007-01-01

    The goal of this study was to numerically predict the temperature of a liquid product heated in a continuous-flow focused microwave system by coupling high frequency electromagnetism, heat transfer, and fluid flow in ANSYS Multiphysics. The developed model was used to determine the temperature change in water processed in a 915 MHz microwave unit, under steady-state conditions. The influence of the flow rates on the temperature distribution in the liquid was assessed. Results showed that the average temperature of water increased from 25 degrees C to 34 degrees C at 2 l/min, and to 42 degrees C at 1 l/min. The highest temperature regions were found in the liquid near the center of the tube, followed by progressively lower temperature regions as the radial distance from the center increased, and finally followed by a slightly higher temperature region near the tube's wall corresponding to the energy distribution given by the Mathieu function. The energy distribution resulted in a similar temperature pattern, with the highest temperatures close to the center of the tube and lower at the walls. The presented ANSYS Multiphysics model can be easily improved to account for complex boundary conditions, phase change, temperature dependent properties, and non-Newtonian flows, which makes for an objective of future studies.

  5. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  6. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria

    2010-05-01

    An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of

  7. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  8. High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: A novel electromagnetic material

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Gul, I. H.

    2014-01-01

    Nanoparticles of holmium substituted nickel ferrites (NiHoxFe2-xO4) with x ranging from 0.0 to 0.15 have been prepared by the sol-gel auto-combustion method. Structural and morphology studies have been performed by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). XRD patterns revealed the formation of pure spinel phase ferrites without any impurity phase. Lattice parameter increases along with a decrease in crystallite size with increasing the concentration of Ho3+ in the parent nickel ferrite due to large ionic radius of Ho3+ (0.901 Å) as compared to Fe3+ (0.67 Å). SEM shows the spherical, uniformly distributed homogenous nanoparticles grown by controlled reaction parameters of the sol-gel method. Complex permittivity (ɛ*) and complex electric modulus (M*) have been studied for the present nanoferrites in the frequency ranges of 1 MHz-1 GHz. Frequency dependent dielectric parameters (relative permittivity (ɛ'), dielectric loss (ɛ″), dielectric loss tangent (tan δ)) decreases due to holmium substitution in nickel ferrites, showing the electrical conduction is decreasing in the nickel holmium ferrites with increase in the concentration of holmium. Complex modulus plots shows the poorly resolved semi circles and relaxation of nanoferrite is studied in the high frequency region. Also the relaxation time increases due to increase in x (0.0-0.15). DC electrical resistivity increases (107 Ω-cm-1010 Ω-cm) due to holmium ions substitution in nickel ferrites. Magnetic behavior was also characterized using a Vibrating Sample Magnetometer (VSM) under an applied magnetic field of 10 kOe and shows that magnetization decreases with increase in composition of holmium in nickel ferrites. High frequency behavior, low losses and very high DC electrical resistivity made the material a novel one for electromagnetic devices.

  9. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  10. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  11. Radio-frequency (RF) electromagnetic emissions from materials under high-frequency mechanical excitation

    NASA Astrophysics Data System (ADS)

    Sorensen, Christian; Moore, David

    2017-01-01

    Direct contact piezoelectric transducers were used to excite compacted polycrystalline dielectric material samples with high amplitude but short duration ultrasound through a frequency range of 50 kHz to 10 MHz, while near field RF emissions were measured in 12 frequency bands from 18 to 750 GHz using a suite of detectors. Emissions were observed only in three detectors, covering the 40-75 GHz, 110-170 GHz, and 170-260 GHz frequency ranges. Emission amplitudes appear to rise nonlinearly with applied ultrasound amplitude, and the emission amplitudes versus ultrasound frequency are different than the thermal responses of these samples. Data comparing thermal responses and electromagnetic emissions versus ultrasound frequency and amplitude for several sample types (oxidizers and energetic materials) are reported.

  12. Electromagnetic effects in high-frequency large-area capacitive discharges: A review

    SciTech Connect

    Liu, Yong-Xin; Zhang, Yu-Ru; Wang, You-Nian; Bogaerts, Annemie

    2015-03-15

    In traditional capacitively coupled plasmas, the discharge can be described by an electrostatic model, in which the Poisson equation is employed to determine the electrostatic electric field. However, current plasma reactors are much larger and driven at a much higher frequency. If the excitation wavelength λ in the plasma becomes comparable to the electrode radius, and the plasma skin depth δ becomes comparable to the electrode spacing, the electromagnetic (EM) effects will become significant and compromise the plasma uniformity. In this regime, capacitive discharges have to be described by an EM model, i.e., the full set of Maxwell's equations should be solved to address the EM effects. This paper gives an overview of the theory, simulation and experiments that have recently been carried out to understand these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel display industries. Furthermore, some methods for improving the plasma uniformity are also described and compared.

  13. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  14. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  15. The distinguishing effects of low-intensity electromagnetic radiation of different extremely high frequencies on Enterococcus hirae: growth rate inhibition and scanning electron microscopy analysis.

    PubMed

    Hovnanyan, K; Kalantaryan, V; Trchounian, A

    2017-09-01

    A low-intensity electromagnetic field of extremely high frequency has inhibitory and stimulatory effects on bacteria, including Enterococcus hirae. It was shown that the low-intensity (the incident power density of 0·06 mW cm(-2) ) electromagnetic field at the frequencies of 51·8 GHz and 53 GHz inhibited E. hirae ATCC 9790 bacterial growth rate; a stronger effect was observed with 53 GHz, regardless of exposure duration (0·5 h, 1 h or 2 h). Scanning electron microscopy analysis of these effects has been done; the cells were of spherical shape. Electromagnetic field at 53 GHz, but not 51·8 GHz, changed the cell size-the diameter was enlarged 1·3 fold at 53 GHz. These results suggest the difference in mechanisms of action on bacteria for electromagnetic fields at 51·8 GHz and 53 GHz. A stronger inhibitory effect of low-intensity electromagnetic field on Enterococcus hirae ATCC 9790 bacterial growth rate was observed with 53 GHz vs 51·8 GHz, regardless of exposure duration. Scanning electron microscopy analysis showed that almost all irradiated cells in the population have spherical shapes similar to nonirradiated ones, but they have increased diameters in case of irradiated cells at 53 GHz, but not 51·8 GHz. The results are novel, showing distinguishing effects of low-intensity electromagnetic field of different frequencies. They could be applied in treatment of food and different products in medicine and veterinary, where E. hirae plays an important role. © 2017 The Society for Applied Microbiology.

  16. Interaction of High Frequency Electromagnetic Waves with Vortex Density Structures: Comparison of Analytical and LSP Simulation Results

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-10-01

    Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of flute type vortex density structures and interaction of high frequency electromagnetic waves used for surveillance and communication with such structures. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP), and in many other applications. We will present PIC simulation results of EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Two cases will be analyzed. In the first case electromagnetic wave scattering will take place in the ionospheric plasma. In the second case laser probing in a high-beta Z-pinch plasma will be presented. This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE Grant No. DE-FC52-06NA27616 at the University of Nevada at Reno.

  17. Electromagnetic Fields and Cancer

    MedlinePlus

    ... are in the ionizing radiation part of the electromagnetic spectrum and can damage DNA or cells directly. Low- ... in the non-ionizing radiation part of the electromagnetic spectrum and are not known to damage DNA or ...

  18. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  19. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    PubMed

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  20. [Combined biological effect of electromagnetic fields and chemical substances (toxic)].

    PubMed

    Kamedula, M; Kamedula, T

    1996-01-01

    The authors present results of own measurements and examinations as well as the literature data on the occurrence and effect of direct, low and high frequency electromagnetic fields and chemicals. In real working conditions and in experimental conditions, the following relations can be observed: 1) concomitant occurrence of electromagnetic fields and chemicals, e.g. processes of electrolysis, inductive and dielectric heating; 2) experimental studies of combined effect of electromagnetic fields and chemicals on e.g. cancer development: 3) drug effect modified by electromagnetic fields; 4) effect of chemicals produced in materials under the influence of electromagnetic fields. There are only a few publications on medical examinations of workers exposed simultaneously to electromagnetic fields and chemicals. However, even in those reported studies, an attempt to distinguish changes in the health state due to electromagnetic fields, and due to chemicals has field. The studies of the effect of electromagnetic fields which modify the effect of carcinogenic substances have not yielded unequivocal results. Electromagnetic fields may modify significantly the effect of some psychotropic and hormonal drugs. Under the influence of pyrolisis, induced by thermal effect of electromagnetic fields, toxic substances or substances with harmful biological effect may occur in some materials.

  1. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  2. External control of ion waves in a plasma by high frequency fields

    DOEpatents

    Kaw, P.K.; Dawson, J.M.

    1973-12-18

    An apparatus and method are described for stabilizing plasma instabilities, in a magnetically confined plasma column by transmitting into the plasma high frequency electromagnetic waves at a frequency close to the electron plasma frequency. The said frequencies, e.g., are between the plasma frequency and 1.5 times the plasma frequency at a power level below the level for producing parametric instabilities in a plasma having temperatures from below 10 eV to about 10 keV or more, at densities from below 10/sup 13/ to above 10/sup 18/ particles/cm/sup 3/. (Official Gazette)

  3. Nonlinear electromagnetic fields and symmetries

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  4. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  5. Molecular detrapping and band narrowing with high frequency modulation of pulsed field electrophoresis.

    PubMed Central

    Turmel, C; Brassard, E; Slater, G W; Noolandi, J

    1990-01-01

    In high electric fields, megabase DNA fragments are found to be trapped, i.e. to enter or migrate in the gel only very slowly, if at all, leading to very broad electrophoretic bands and loss of separation. As a consequence, low electric fields are usually used to separate these molecules by pulsed field electrophoretic methods. We report here that high-frequency pulses eliminate the molecular trapping found in continuous fields. When high frequency pulses are used to modulate the longer pulses used in pulsed field electrophoresis, narrower bands result, and higher fields can be used. We suggest that this is due to effects that occur on the length scale of a single pore. Images PMID:2408015

  6. [Biological effects of electromagnetic radiation of extremely high frequencies combined with physiologically active compounds].

    PubMed

    Rogacheva, S M; Denisova, S A; Shul'gin, S V; Somov, A Iu; Kuznetsov, P E

    2008-01-01

    The study of the action of the electromagnetic radiation (EMR) of low intensity (10 microW/cm2) in the range of frequencies 120-170 GHz at the test-reaction of Infusoria Paramecium caudatum was carried out. The resonant character of the effects was established. The EMR action at 156.6 and 161.3 GHz caused the increase of infusorians mobility, the action at frequencies 151.8, 155.7, 167.1 GHz caused the mobility reduction. Isolated and combined with EMR effects of nicotine (10(-4)-10(-15) mol/l) and antimicrobial drug metronidazole (10(-5), 10(-8), 10(-9) mol/l) were investigated. The radiation at the frequency 167.1 GHz was shown to reduce the effect of nicotine (10(-9) mol/l) and to enhance the effect of metronidazole (10(-9) mol/l). This phenomenon may be explained by different effects of the substances in low concentration at the water hydrogen bonds net structure.

  7. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  8. High-frequency field-deployable isotope analyzer for hydrological applications

    Treesearch

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  9. Spontaneous emission from the atom stabilized by a strong high-frequency laser field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2017-09-01

    The spontaneous emission of a quantum system driven by a high-intensity, high-frequency classical laser field is analyzed. The study is based on the accurate consideration of the quantum system interacting with vacuum-quantized field modes in the first order of perturbation theory, while the intense laser field is considered classically beyond this theory. It is demonstrated that the spectrum of the spontaneous emission can be used for analyzing the strong-field dynamics and the structure of the energy spectrum of an atomic system. In particular, it is found that in high-frequency fields (where the energy of the laser quanta is greater than the ionization potential) atoms manifest the features of the Kramers-Henneberger atom. It is also found that in the stabilization regime, the atom emits both odd and even laser radiation harmonics.

  10. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  11. An inverse methodology for high frequency RF head coil design with preemphasized B/sub 1/ field in MRI.

    PubMed

    Xu, B; Crozier, S; Li, B K; Wei, Q; Liu, F

    2004-01-01

    An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B/sub 1/ field are used to calculate the current density on the coil cylinder. With B/sub 1/ field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B/sub 1/ fields. FDTD is employed to calculate B/sub 1/ field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B/sub 1/ field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.

  12. [The influence of electromagnetic fields on flora and fauna].

    PubMed

    Rochalska, Małgorzata

    2009-01-01

    This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.

  13. An inverse methodology for high-frequency RF coil design for MRI with de-emphasized B1 fields.

    PubMed

    Xu, Bin; Wei, Qing; Liu, Feng; Crozier, Stuart

    2005-09-01

    An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B1 target fields. An in-house finite-difference time-domain routine is employed to evaluate B1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.

  14. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.

    PubMed

    Zou, Yong; Wang, Changzhen; Peng, Ruiyun; Wang, Lifeng; Hu, Xiangjun

    2015-04-01

    A change of the transmembrane voltage is considered to cause biophysical and biochemical responses in cells. The present study focuses on the cellular transmembrane voltage (Δφ) induced by external fields. We detail analytical equations for the transmembrane voltage induced by external high-frequency (above the relaxation frequency of the cell membrane) fields on cells of a spherical shape in suspensions and layers. At direct current (DC) and low frequencies, the cell membrane was assumed to be non-conductive under physiologic conditions. However, with increasing frequency, the permittivity of the cytoplasm/extracellular medium and conductivity of the membrane must be accounted for. Our main work is to extend application of the analytical solution of Δφ to the high-frequency range. We first introduce the transmembrane voltage generated by DC and low-frequency exposures on a single cell. Then, we focus on cell suspensions exposed to high-frequency fields. Using the effective medium theory and the reasonable assumption, the approximate analytical solution of Δφ on cells in suspensions and layers can be derived. Phenomenological effective medium theory equations cannot be used to calculate the local electric field of cell suspensions, so we raised a possible solution based on the Bergman theory.

  15. Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field

    NASA Astrophysics Data System (ADS)

    Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team

    2016-11-01

    The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).

  16. High-frequency audiometry using precision earphones: reliability under laboratory and field conditions.

    PubMed

    Ising, H; Babisch, W; Dziombowski, D; von Arentsschild, O; Fischer, R

    1986-01-01

    New circumaural earphones were tested in the frequency range from 100 Hz to 20 kHz and compared to commonly used supra-aural earphones. The circumaural earphone HD 230 (Sennheiser) generates test stimuli at up to 20 kHz with almost constant sound pressure levels when its pos ed on an artificial ear. The reproducibility of hearing threshold mea ed with a new microprocessor-controlled Békésy audiometer using the ne was nearly as good as under free-field conditions. The practicabil diagnostic value of high-frequency audiometry have been demonstrated er field conditions. For this application, the good sound attenuation these earphones (30 dB above 1 kHz) are important. High-frequency he ds of healthy pupils and of pupils with a history of otitis media are kHz, the hearing threshold level difference between both groups reached 20 dB.

  17. A high frequency analysis of electromagnetic plane wave scattering by perfectly-conducting semi-infinite parallel plate and rectangular waveguides with absorber coated inner walls

    NASA Technical Reports Server (NTRS)

    Noh, H. M.; Pathak, P. H.

    1986-01-01

    An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.

  18. The role of fatty acids in anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation.

    PubMed

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V; Chemeris, Nikolay K

    2011-07-01

    The effects of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR; 42.2 GHz, 0.1 mW/cm(2) , exposure duration 20 min) on the fatty acid (FA) composition of thymic cells and blood plasma in normal mice and in mice with peritoneal inflammation were studied. It was found that the exposure of normal mice to EHF EMR increased the content of polyunsaturated FAs (PUFAs) (eicosapentaenoic and docosapentaenoic) in thymic cells. Using a model of zymosan-induced peritoneal inflammation, it was shown that the exposure of mice to EHF EMR significantly increased the content of PUFAs (dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic) and reduced the content of monounsaturated FAs (MUFAs) (palmitoleic and oleic) in thymic cells. Changes in the FA composition in the blood plasma were less pronounced and manifested themselves as an increase in the level of saturated FAs during the inflammation. The data obtained support the notion that MUFAs are replaced by PUFAs that can enter into the thymic cells from the external media. Taking into account the fact that the metabolites of PUFAs are lipid messengers actively involved in inflammatory and immune reactions, we assume that the increase in the content of n-3 and n-6 PUFAs in phospholipids of cellular membranes facilitates the realization of anti-inflammatory effects of EHF EMR.

  19. Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence.

    PubMed

    Gapeyev, A B; Mikhailik, E N; Chemeris, N K

    2008-04-01

    Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR.

  20. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    PubMed

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  1. [Effects of extremely high-frequency electromagnetic radiation on the immune system and systemic regulation of homeostasis].

    PubMed

    Lushnikov, K V; Gapeev, A B; Chemeris, N K

    2002-01-01

    Low-intensity of electromagnetic radiation of extremely high frequencies (EHF EMR) is effectively used in medical practice for diagnostics, prevention and treatment of a broad spectrum of diseases of different etiology. However, in spite of existence of many hypotheses about mechanisms of EHF EMR effects on the molecular and cellular levels of organization of living systems, there is not conception that could explain all diversity of the EHF-therapy effects from unified approach. In our opinion, the problem of determination of mechanisms of EHF EMR effects on living organism is divided into two basic tasks: first, determining subcellular structures which can receive radiation, and, second, studying physiological reactions of the organism which are caused by radiation. It is obviously, that investigation of functions of single cells and subcellular elements can not entirely explain therapeutic effects and mechanisms of EHF EMR influence on multicellular organism on the whole. Plenty of functional relationships between organs and systems of organs should be taken into account. In the present review, a realization of the EHF-therapy effects due to the influence on immune system functions and start of system mechanisms of maintenance of the homeostasis on the organism level is hypothesized. Potential targets for EHF EMR acception on the level of different systems of the organism are analysed. The material is formed so that functional relations between immune system and other regulatory systems (nervous and endocrine systems) are traced.

  2. [Suppression of nonspecific resistance of the body under the effect of extremely high frequency electromagnetic radiation of low intensity].

    PubMed

    Kolomytseva, M P; Gapeev, A B; Sadovnikov, V B; Chemeris, N K

    2002-01-01

    The dynamics of leukocyte number and functional activity of peripheral blood neutrophils under whole-body exposure of healthy mice to low-intensity extremely-high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.15 mW/cm2, 20 min daily) was studied. It was shown that the phagocytic activity of peripheral blood neutrophils was suppressed by about 50% (p < 0.01 as compared with the sham-exposed control) in 2-3 h after the single exposure to EHF EMR. The effect persisted for 1 day after the exposure, and then the phagocytic activity of neutrophils returned to the norm within 3 days. A significant modification of the leukocyte blood profile in mice exposed to EHF EMR for 5 days was observed after the cessation of exposures: the number of leukocytes increased by 44% (p < 0.05 as compared with sham-exposed animals), mostly due to an increase in the lymphocyte content. The supposition was made that EHF EMR effects can be mediated via the metabolic systems of arachidonic acid and the stimulation of adenylate cyclase activity, with subsequent increase in the intracellular cAMP level. The results indicated that the whole-body exposure of healthy mice to low-intensity EHF EMR has a profound effect on the indices of nonspecific immunity.

  3. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  4. [Dependence of anti-inflammatory effects of high peak-power pulsed electromagnetic radiation of extremely high frequency on exposure parameters].

    PubMed

    Gapeev, A B; Mikhaĭlik, E N; Rubanik, A V; Cheremis, N K

    2007-01-01

    A pronounced anti-inflammatory effect of high peak-power pulsed electromagnetic radiation of extremely high frequency was shown for the first time in a model of zymosan-induced footpad edema in mice. Exposure to radiation of specific parameters (35, 27 GHz, peak power 20 kW, pulse widths 400-600 ns, pulse repetition frequency 5-500 Hz) decreased the exudative edema and local hyperthermia by 20% compared to the control. The kinetics and the magnitude of the anti-inflammatory effect were comparable with those induced by sodium diclofenac at a dose of 3 mg/kg. It was found that the anti-inflammatory effect linearly increased with increasing pulse width at a fixed pulse repetition frequency and had threshold dependence on the average incident power density of the radiation at a fixed pulse width. When animals were whole-body exposed in the far-field zone of radiator, the optimal exposure duration was 20 min. Increasing the average incident power density upon local exposure of the inflamed paw accelerated both the development of the anti-inflammatory effect and the reactivation time. The results obtained will undoubtedly be of great importance in the hygienic standardization of pulsed electromagnetic radiation and in further studies of the mechanisms of its biological action.

  5. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  6. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  7. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  8. Field oriented control of an induction machine in a high frequency link power system

    NASA Technical Reports Server (NTRS)

    Sul, Seung K.; Lipo, Thomas A.

    1988-01-01

    A field-oriented controlled induction machine drive operating with a high-frequency single-phase sinusoidal voltage link is presented. System performance is investigated by computer simulation and is verified by a test on a prototype system. A novel control loop to minimize the link voltage fluctuation is proposed. The capability of rapid demagnetization of the induction machine by current regulation is investigated. A current-modulation technique termed mode control is proposed, and its performance is compared with that of the conventional delta-modulation technique.

  9. Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications

    NASA Astrophysics Data System (ADS)

    Fu, W.; El Abbassi, M.; Hasler, T.; Jung, M.; Steinacher, M.; Calame, M.; Schönenberger, C.; Puebla-Hellmann, G.; Hellmüller, S.; Ihn, T.; Wallraff, A.

    2014-01-01

    We performed radiofrequency (RF) reflectometry measurements at 2-4 GHz on electrolyte-gated graphene field-effect transistors, utilizing a tunable stub-matching circuit for impedance matching. We demonstrate that the gate voltage dependent RF resistivity of graphene can be deduced, even in the presence of the electrolyte which is in direct contact with the graphene layer. The RF resistivity is found to be consistent with its DC counterpart in the full gate voltage range. Furthermore, in order to access the potential of high-frequency sensing for applications, we demonstrate time-dependent gating in solution with nanosecond time resolution.

  10. Study on technology of high-frequency pulsed magnetic field strength measurement.

    PubMed

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  11. Generation of high-frequency electric field activity by turbulence in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Stawarz, J. E.; Ergun, R. E.; Goodrich, K. A.

    2015-03-01

    Bursty bulk flow (BBF) events, frequently observed in the magnetotail, carry significant energy and mass from the tail region at distances that are often greater than 20 RE into the near-Earth plasma sheet at ˜10 RE where the flow is slowed and/or diverted. This region at ˜10 RE is referred to as the BBF braking region. A number of possible channels are available for the transfer or dissipation of energy in BBF events including adiabatic heating of particles, the propagation of Alfvén waves out of the BBF braking region and into the auroral region, diverted flow out of the braking region, and energy dissipation within the braking region itself. This study investigates the generation of intense high-frequency electric field activity observed within the braking region. When present, these intense electric fields have power above the ion cyclotron frequency and almost always contain nonlinear structures such as electron phase space holes and double layers, which are often associated with field-aligned currents. A hypothesis in which the observed high-frequency electric field activity is generated by field-aligned currents resulting from turbulence in the BBF braking region is considered. Although linear Alfvén waves can generate field-aligned currents, based on theoretical calculations, the required currents are likely not the result of linear waves. Observations from the Time History of Events and Macroscale Interactions during Substorms satellites support the picture of a turbulent plasma leading to the generation of nonlinear kinetic structures. This work provides a possible mechanism for energy dissipation in turbulent plasmas.

  12. Acoustic effect of an electromagnetic pulsed UHF field

    SciTech Connect

    Kapyrin, Yu.V.; Moiseev, V.I.; Petrenko, V.V.

    1988-06-01

    During the course of studies on the Fakel linear accelerator it was found that the metal structures of the electrodynamic components of the accelerator are subjected to ultrasonic vibrations, the intensity and spectral composition of which depend on the operating regimes of its high-frequency system and on the conditions of resonance energy exchange between the electromagnetic field and the particle beam. From the results of calculations and measurements, the authors of this paper propose, without ruling out the contribution of other sources, that the ultrasonic signals observed in the irises and regular square waveguides of an accelerator can be attributed to the A ponderomotive effect of powerful pulses of the high-frequency electromagnetic field.

  13. Generation of High Frequency Electric Field Activity by Turbulence in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Stawarz, J. E.; Ergun, R.

    2013-12-01

    Bursty Bulk Flow (BBF) events, frequently observed in the magnetotail, carry significant energy and mass from the tail region at ~20 RE into the near-earth plasma sheet at ~10 RE, which is often referred to as the BBF 'braking region'. A number of possible channels are available for the transfer or dissipation of energy in BBF events including adiabatic heating of ions and electrons, the propagation of Alfvén waves out of the BBF braking region and into the auroral region, and energy dissipation within the braking region itself. This study investigates the generation of strong high frequency electric field activity observed within the braking region. A theory by which the large and small scales are coupled through a turbulent cascade of Alfvén waves, generated by the BBF braking event, is considered. At small kinetic spatial scales magnetic field aligned currents can be generated. These currents can be unstable to high frequency electrostatic waves, as well as, non-linear electrostatic structures such as double layers and electron phase space holes that are observed in the breaking region. The theoretical work is supported by observations from the THEMIS satellites. This work provides a possible mechanism for the dissipation of energy in turbulent plasma environments.

  14. High-frequency electric field and radiation characteristics of cellular microtubule network.

    PubMed

    Havelka, D; Cifra, M; Kučera, O; Pokorný, J; Vrba, J

    2011-10-07

    Microtubules are important structures in the cytoskeleton, which organizes the cell. Since microtubules are electrically polar, certain microtubule normal vibration modes efficiently generate oscillating electric field. This oscillating field may be important for the intracellular organization and intercellular interaction. There are experiments which indicate electrodynamic activity of variety of cells in the frequency region from kHz to GHz, expecting the microtubules to be the source of this activity. In this paper, results from the calculation of intensity of electric field and of radiated electromagnetic power from the whole cellular microtubule network are presented. The subunits of microtubule (tubulin heterodimers) are approximated by elementary electric dipoles. Mechanical oscillation of microtubule is represented by the spatial function which modulates the dipole moment of subunits. The field around oscillating microtubules is calculated as a vector superposition of contributions from all modulated elementary electric dipoles which comprise the cellular microtubule network. The electromagnetic radiation and field characteristics of the whole cellular microtubule network have not been theoretically analyzed before. For the perspective experimental studies, the results indicate that macroscopic detection system (antenna) is not suitable for measurement of cellular electrodynamic activity in the radiofrequency region since the radiation rate from single cells is very low (lower than 10⁻²⁰ W). Low noise nanoscopic detection methods with high spatial resolution which enable measurement in the cell vicinity are desirable in order to measure cellular electrodynamic activity reliably. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. High-frequency noise characterization of graphene field effect transistors on SiC substrates

    NASA Astrophysics Data System (ADS)

    Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.

    2017-07-01

    Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.

  16. Convection Induced by High Frequency Rotating Magnetic Field in Ionic Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Volz, Martin P.; Mazuruk, Konstantin

    2000-01-01

    Rotating magnetic fields (RMF) have found applications in modern metallurgy. Examples are casting and semiconductor crystal growth technology. Rotating convective flows can also be induced in ionic fluids. Due to optical transparency, these fluids offer a great opportunity to visualize convection. In this work, we investigate the dynamics of convection induced by a high frequency (100 kHz range) RMF. A dye injected into a cylindrical column of salty water serves as an indicator of the flow. The developed technique has been used to study mixing phenomena induced by a RMF both when the direc'tion of the field rotation is constant and when it is alternated. Optical recording has been used to analyze this process. A numerical model describing RMF mixing in the laminar regime will also be presented.

  17. The concept of a plasma centrifuge with a high frequency rotating magnetic field and axial circulation

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Potanin, E. P.

    2017-07-01

    The possibility of using a rotating magnetic field (RMF) in a plasma centrifuge (PC), with axial circulation to multiply the radial separation effect in an axial direction, is considered. For the first time, a traveling magnetic field (TMF) is proposed to drive an axial circulation flow in a PC. The longitudinal separation effect is calculated for a notional model, using specified operational parameters and the properties of a plasma, comprising an isotopic mixture of 20Ne-22Ne and generated by a high frequency discharge. The optimal intensity of a circulation flow, in which the longitudinal separation effect reaches its maximum value, is studied. The optimal parameters of the RMF and TMF for effective separation, as well as the centrifuge performance, are calculated.

  18. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  19. [Pharmacological analysis of anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation].

    PubMed

    Gapeev, A B; Lushnikov, K V; Shumilina, Iu V; Chemeris, N K

    2006-01-01

    The anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was compared with the action of the known anti-inflammatory drug sodium diclofenac and the antihistamine clemastine on acute inflammatory reaction in NMRI mice. The local inflammatory reaction was induced by intraplantar injection of zymosan into the left hind paw. Sodium diclofenac in doses of 2, 3, 5, 10, and 20 mg/kg or clemastine in doses of 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg were injected intraperitoneally 30 min after the initiation of inflammation. The animals were whole-body exposed to EHF EMR for 20 min at 1 h after the initiation of inflammation. The inflammatory reaction was assessed over 3 - 8 h after the initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac in doses of 5 - 20 mg/kg reduced the exudative edema on the average by 26% as compared to the control. Hyperthermia of the inflamed paw decreased to 60% as the dose of was increased diclofenac up to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by about 20%, which was comparable with the effect of a single therapeutic dose of diclofenac (3 - 5 mg/kg). The combined action of diclofenac and the exposure to the EHF EMR caused a partial additive effect. Clemastine in doses of 0.02-0.4 mg/kg it did not cause any significant effects on the exudative edema, but in a dose of 0.6 mg/kg it reduced edema by 14 - 22% by 5 - 8 h after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses of 0.02-0.2 mg/kg and did not affect the hyperthermia at doses of 0.4 and 0.6 mg/kg. The combined action of clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that both arachidonic acid metabolites and histamine are involved in the realization of anti-inflammatory effects of low-intensity

  20. A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing

    2017-09-01

    A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.

  1. Theoretical and practical aspects of application of a low-energy electromagnetic radiation of the extremely high-frequency range in medicine

    NASA Astrophysics Data System (ADS)

    Lyapina, Elena P.; Chesnokov, Igor A.; Bushuev, Nikolay A.; Kuzyutkina, Svetlana E.; Shuldjakov, Andrey A.

    2006-02-01

    The questions concerning the mechanism of action of a low-energy electromagnetic radiation of the extremely high frequency range (EMR EHF) are considered. Also the features of biological effects are considered in their application as therapeutic actions. As an example the advantages of EHF treatment of patients with chronic brucellosis are shown, the algorithm of a choice of the scheme of treatment using EMR EHF is offered.

  2. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  3. Efficient high-frequency body coil for high-field MRI.

    PubMed

    Vaughan, J T; Adriany, G; Snyder, C J; Tian, J; Thiel, T; Bolinger, L; Liu, H; DelaBarre, L; Ugurbil, K

    2004-10-01

    The use of body coils is favored for homogeneous excitation, and such coils are often paired with surface coils or arrays for sensitive reception in many MRI applications. While the body coil's physical size and resultant electrical length make this circuit difficult to design for any field strength, recent efforts to build efficient body coils for applications at 3T and above have been especially challenging. To meet this challenge, we developed an efficient new transverse electromagnetic (TEM) body coil and demonstrated its use in human studies at field strengths up to 4 T. Head, body, and breast images were acquired within peak power constraints of <8 kW. Bench studies indicate that these body coils are feasible to 8 T. RF shimming was used to remove a high-field-related cardiac imaging artifact in these preliminary studies. P41RR13230

  4. High-frequency performance of electric field sensors aboard the RESONANCE satellite

    NASA Astrophysics Data System (ADS)

    Sampl, M.; Macher, W.; Gruber, C.; Oswald, T.; Kapper, M.; Rucker, H. O.; Mogilevsky, M.

    2015-05-01

    We present the high-frequency properties of the eight electric field sensors as proposed to be launched on the spacecraft "RESONANCE" in the near future. Due to the close proximity of the conducting spacecraft body, the sensors (antennas) have complex receiving features and need to be well understood for an optimal mission and spacecraft design. An optimal configuration and precise understanding of the sensor and antenna characteristics is also vital for the proper performance of spaceborne scientific instrumentation and the corresponding data analysis. The provided results are particularly interesting with regard to the planned mutual impedance experiment for measuring plasma parameters. Our computational results describe the extreme dependency of the sensor system with regard to wave incident direction and frequency, and provides the full description of the sensor system as a multi-port scatterer. In particular, goniopolarimetry techniques like polarization analysis and direction finding depend crucially on the presented antenna characteristics.

  5. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    SciTech Connect

    Efthimion, P.C.; Helfritch, D.J.

    1989-11-28

    This paper describes an apparatus which creates a plasma for chemical processing of gaseous fluid. It comprises an electro-magnetic resonator cavity having first and second conductive walls and a resonant frequency; an electro-magnetic energy source which produces electro-magnetic energy having a frequency corresponding to the resonant frequency and a power level sufficient for breaking down the gaseous fluid and creating a plasma within the electro-magnetic resonator cavity; an electro-magnetic wave guiding structure connecting the electro-magnetic energy source to the first wall of the electro-magnetic cavity; the wave guiding structure having an intake port for introducing the gaseous fluid into the wave guiding structure; the second wall of the resonator cavity having an exhaust port for discharging processed gaseous fluid in the form of a plasma from the cavity; and plasma confinement means for causing the gaseous fluid to flow into the electro-magnetic resonator cavity through the aperture along with the electro-magnetic energy for confining and stabilizing the plasma within the electro-magnetic resonator cavity.

  6. Defibrillation success with high frequency electric fields is related to degree and location of conduction block.

    PubMed

    Weinberg, Seth H; Chang, Kelly C; Zhu, Renjun; Tandri, Harikrishna; Berger, Ronald D; Trayanova, Natalia A; Tung, Leslie

    2013-05-01

    We recently demonstrated that high frequency alternating current (HFAC) electric fields can reversibly block propagation in the heart by inducing an oscillating, elevated transmembrane potential (Vm) that maintains myocytes in a refractory state for the field duration and can terminate arrhythmias, including ventricular fibrillation (VF). To quantify and characterize conduction block (CB) induced by HFAC fields and to determine whether the degree of CB can be used to predict defibrillation success. Optical mapping was performed in adult guinea pig hearts (n = 14), and simulations were performed in an anatomically accurate rabbit ventricular model. HFAC fields (50-500 Hz) were applied to the ventricles. A novel power spectrum metric of CB-the loss of spectral power in the 1-30 Hz range, termed loss of conduction power (LCP)-was assessed during the HFAC field and compared with defibrillation success and VF vulnerability. LCP increased with field strength and decreased with frequency. Optical mapping experiments conducted on the epicardial surface showed that LCP and the size of CB regions were significantly correlated with VF initiation and termination. In simulations, subsurface myocardial LCP and CB sizes were more closely correlated with VF termination than surface values. Multilinear regression analysis of simulation results revealed that while CB on both the surface and the subsurface myocardium was predictive, subsurface myocardial CB was the better predictor of defibrillation success. HFAC fields induce a field-dependent state of CB, and defibrillation success is related to the degree and location of the CB. Copyright © 2013. Published by Elsevier Inc.

  7. Stability of Non-axisymmetric Electrolyte Jet in High-frequency AC Electric Field

    NASA Astrophysics Data System (ADS)

    Polyanskikh, Sergey Valer'evich; Demekhin, Evgeny A.

    2009-08-01

    In the present work linear instability of capillary non-axisymmetric micro-jets of electrolyte solutions in a high-frequency alternating axial electric field is investigated theoretically. The gravity affects are neglected. The problem is described by strongly coupled nonlinear system of PDEs for ion transport, electrical field and fluid flow. Viscous liquid is taken. The problem can be divided into outer and inner ones. Solution for the unsteady double ion layer is obtained in Debye-Huckel approximation provided that the oscillation frequency is sufficiently high while Pecklet number based on the Debye layer thickness is sufficiently small. The unsteady double ion layer produces additional normal and tangential stresses on the liquid-gas interface; the latter can either stabilize or destabilize the flow. It is shown that only axisymmetric mode is unstable while non-axisymmetric perturbations are always stable. It is also shown that in unstable case there is an essential dependence of the main stability characteristics on the parameter proportional to the frequency of external field. There are two threshold values of the parameter at which a bifurcation of stability parameters occurs. In particular, the size of the formed drops suffers a jump at increase of amplitude of fluctuation of an electric field. The problem is solved in a broad region of its parameters. There is a qualitative agreement of the theory developed with the available experimental data.

  8. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  9. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  10. Extremely low frequency electromagnetic fields

    SciTech Connect

    Wilson, B.W. . Chemical Sciences Dept.); Stevens, R.G. ); Anderson, L.E. . Life Sciences Center)

    1990-01-01

    The authors focus on that which seems to be the central scientific issue emerging from current ELF research in epidemiology and in the laboratory; namely, can ELF electromagnetic fields interact with biological systems in such a way as to increase cancer risk The authors examine how cancer risk might be related to two reproducible biological effects of ELF exposure: effects on the pineal gland and circadian biology, and effects on calcium homeostasis in cells. Because they are concerned with the possible biological mechanisms of carcinogenesis, epidemiological studies are only briefly reviewed.

  11. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... to Radiofrequency Electromagnetic Fields; Reassessment of Exposure to Radiofrequency Electromagnetic..., and 95 Human Exposure to Radiofrequency Electromagnetic Fields AGENCY: Federal Communications... electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references...

  12. Measurement, comparison, and transformation of dynamic magnetization in pulse field and high-frequency alternating field

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2015-12-01

    Dynamic magnetizations of selected natural samples (sediments and volcanic rocks) were measured in time domain as well as in frequency domain. The time domain measurements were performed in pulse fields with variable lengths (10 μs to 10 ms) and amplitudes (0.5 mT to 0.7 T). To measure hysteresis parameters for small loops, one cycle of positive and negative pulses with different rate of field variation were generated. In the frequency domain, low-field magnetic susceptibility was measured over the frequency rage (1 kHz to 500 kHz) corresponding to the pulse lengths in the time domain measurements. Results in the time domain were characterized by the transient magnetization-field curves that were broadly comparable to the corresponding portions of the hysteresis loops measured by a quasi-static method using a VSM. The dynamic coercivity that is defined as the intersect with the abscissa in the negative regime increased as the pulse length reduced and the pulse peak increased. In strong pulse fields (> 0.5 T), irrespective of the kinds of samples, the magnetization remained at the end of a pulse and decayed exponentially within a few ms, suggesting rapid magnetic relaxations. In weak pulse fields, no such relaxation was observed except for the sediments rich in superparamagnetic (SP) particles. These field dependencies suggest that the relaxations in the strong fields could be due to the dynamics of the domain walls in the MD particles, while those of the sediments in weak fields may be ascribed to the relaxation of the SP particles. Results in the frequency domain were obtained in terms of the frequency spectrum of the real and imaginary components of complex susceptibility. Comparisons and interpretations of the data in these different domains were made in terms of the distribution of relaxation times. Discussions on the numerical conversion and transformation of these data as well as their rock magnetic applications will be provided.

  13. Method for manufacturing compound semiconductor field-effect transistors with improved DC and high frequency performance

    DOEpatents

    Zolper, John C.; Sherwin, Marc E.; Baca, Albert G.

    2000-01-01

    A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is formed and a single anneal at moderate temperature is then performed. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions co-implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region of the Si-channel tail, but does not contribute substantially to the acceptor concentration in the buried p region. As a result, the invention provides for improved field effect semiconductor and related devices with enhancement of both DC and high-frequency performance.

  14. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  15. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  16. Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields.

    PubMed

    Kauer, Markus; Belova-Magri, Valentina; Cairós, Carlos; Schreier, Hans-Jürgen; Mettin, Robert

    2017-01-01

    Despite the increasing use of high frequency ultrasound in heterogeneous reactions, knowledge about the spatial distribution of cavitation bubbles at the irradiated solid surface is still lacking. This gap hinders controllable surface sonoreactions. Here we present an optimization study of the cavitation bubble distribution at a solid sample using sonoluminescence and sonochemiluminescence imaging. The experiments were performed at three ultrasound frequencies, namely 580, 860 and 1142kHz. We found that position and orientation of the sample to the transducer, as well as its material properties influence the distribution of active cavitation bubbles at the sample surface in the reactor. The reason is a significant modification of the acoustic field due to reflections and absorption of the ultrasonic wave by the solid. This is retraced by numerical simulations employing the Finite Element Method, yielding reasonable agreement of luminescent zones and high acoustic pressure amplitudes in 2D simulations. A homogeneous coverage of the test sample surface with cavitation is finally reached at nearly vertical inclination with respect to the incident wave.

  17. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Huang, Li-Ying; Yang, Ming-Chien; Liu, Ting-Yu; Tsai, Sung-Chen; Yang, Chih-Yung; Kuo, Chih-Yu; Chan, Tzu-Yi; Zou, Hui-Ming; Lian, Wei-Nan; Lin, Chi-Hung

    2014-09-01

    In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.

  18. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOEpatents

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  19. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    PubMed

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  20. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  1. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  2. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  3. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  4. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  5. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  6. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  7. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  8. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  9. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  10. Low and High-Frequency Field Potentials of Cortical Networks Exhibit Distinct Responses to Chemicals

    EPA Science Inventory

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between differ...

  11. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  12. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  13. [Effectiveness of ulcer treatment with electromagnetic radiation of extremely high frequency (EHF therapy) and some mechanism of its therapeutic action].

    PubMed

    Tsimmerman, Ia S; Teliaper, I I

    2002-01-01

    A clinical response to and some mechanisms of therapeutic action of extremely high frequency (EHF) therapy were studied in 132 patients with exacerbation of duodenal ulcer vs routine pharmacological treatment. EHF-therapy was used alone and in combination with famotidin (antisecretory drug) and norfloxacine (antibacterial drug). EHF monotherapy proved highly effective in duodenal ulcer exacerbation. It normalizes secretory and motor functions of the stomach, suppresses initially high activity of free radical lipid oxidation, corrects abnormal vegetative and psychoemotional status of the patients, moderately potentiates the antihelicobacter effect of antibacterial drugs. These effects are produced due to specific action of EHF therapy: mobilisation of sanogenesis mechanisms, correction of mechanisms of adaptive regulation and self regulation at different levels. Additional administration of antisecretory and antibacterial drugs improved immediate but deteriorates long-term response to EHF-therapy.

  14. [A study of absorption of energy of the extremely high frequency electromagnetic radiation in the rat skin by various dosimetric methods and approaches].

    PubMed

    Gapeev, A B; Sokolov, P A; Chemeris, N K

    2002-01-01

    Using experimental and theoretical methods of dosimetry, the energy absorption of extremely high-frequency electromagnetic radiation (EHF EMR) in the skin of laboratory rats was analyzed. Specific absorption rate (SAR) in the skin was determined on the basis of both microthermometric measurements of initial rates of temperature rise in rat skin induced by the exposure and microcalorimetric measurements of specific heat of the skin. Theoretical calculations of SAR in the skin were performed with consideration for dielectric parameters of rat skin obtained from the measurements of the standing wave ratio upon reflection of electromagnetic waves from the skin surface and for the effective area of stationary overheating measured by infrared thermography. A numerical method was developed to determine electromagnetic wave energy reflected, absorbed, and transmitted in the model of flat layers. The algorithm of the method was realized in a computer program and used to calculate SAR in the skin on the basis of the complex dielectric constant of rat skin. The SAR values obtained from experimental measurements, theoretical calculations and numerical analysis are in good mutual correspondence and make about 220-280 W/kg at a frequency of 42.25 GHz and a power of 20 mW at the radiator output. The results obtained can be used for dosimetric supply of biomedical experiments on studying the physicochemical mechanisms of the biological effects of EHF EMR.

  15. High Frequency Magnetic Field Direction Finding Using MGL-S9A B-dot Sensors

    DTIC Science & Technology

    2013-03-21

    9 2.1 Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 SQUID Sensor...electromagnetic SI structurally integrated AOA angle of arrival SQUID superconductive quantum interference device UAV unmanned aerial vehicles MUSIC...efficient isotropic detection capability for HFDF, structurally integrated monopole feeds and superconductive quantum interference device ( SQUID ) sensors

  16. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  17. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  18. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  19. Brownian parametric oscillator: analytical results for a high-frequency driving field

    NASA Astrophysics Data System (ADS)

    Brouard, S.; Plata, J.

    2001-12-01

    The dissipative dynamics of a classical parametric oscillator is studied analytically. For a generic functional form of the parametric driving, a simplified description of the system is obtained by performing a sequence of transformations set up from the deterministic Floquet solutions. In the high-frequency regime, the application of an averaging method leads to the description of the secular dynamics as an effective bidimensional Ornstein-Uhlenbeck process. The expressions obtained for the probability density and the correlation functions allow us to unravel the mechanisms responsible for the nontrivial dependence of the variances on the driving amplitude.

  20. High-frequency sound field and bubble formation in a rat decompression model.

    PubMed

    Shupak, Avi; Arieli, Yehuda; Bitterman, Haim; Brod, Vera; Arieli, Ran; Rosenhause, Giora

    2002-05-01

    High-frequency sound might cause bubble enlargement by rectified diffusion. The purpose of the present study was to investigate gas bubble formation in the immersed diving animal during exposure to high-frequency sound. Anaesthetised rats were subjected to a simulated diving profile while immersed inside a hyperbaric chamber. An acoustic beacon (pinger) was placed ventral to the animal's abdomen, transmitting at an intensity of 208.9 dB re 1 micro Pa and a frequency of 37 kHz. Six groups of eight animals were included in the study as in Table 1, breathing air (n = 4) or Nitrox 72/28 (n = 2), at a depth of 0 m, 30 m or 40 m. Immediately after decompression, the intestinal mesenterium was imaged, and frames were acquired digitally. The number of bubbles and their radii were analysed and compared among the groups. The mean bubble density for group 1 was 1.35 +/- 0.18 bubbles/mm(2), significantly higher when compared with the other groups (p < 0.0001). The average bubble radius for groups 1 and 2 was similar (12.57 +/- 4.1 and 10.63 +/- 1.8 microm, respectively), but significantly larger than in the other groups (p < 0.0002). The percentage of bubbles with a radius greater than 50 microm was significantly higher in group 1 (p < 0.0001). The results suggest that commercially available underwater pingers might enhance bubble growth during deep air diving.

  1. Investigation of urban atmospheric visibility by high-frequency extraction: Model development and field test

    NASA Astrophysics Data System (ADS)

    Luo, Chin-Hsiang; Wen, Che-Yen; Yuan, Chung-Shin; Liaw, Jiun-Jian; Lo, Cho-Ching; Chiu, Shih-Hsuan

    This work investigates atmospheric visibility by employing two statistical processes for high-frequency extraction: Sobel operator and fast Fourier transform (FFT). In replacing the traditional measurement methods for atmospheric visibility, the new approaches can provide accurate digital data urban visibility by establishing the numerical indices. The procedure is illustrated as follows. Digital images of urban areas in Kaohsiung, a city at the south of Taiwan, are analyzed according to brightness. High-frequency components of the image are extracted to calculate the index values by employing the Sobel operator and FFT. Finally, the correlation between each index and the visual range estimated by trained investigators are evaluated. A good correlation between two indices and the values obtained by visual investigation is affirmed by correlation coefficients ( R2), 0.8139 and 0.7797, respectively. Furthermore, both indices are highly correlated with each other ( R2=0.9173). Convenient transmission and the exchangeability of digital images of the real-time landscape facilitate the publication of results on the world wide web (WWW).

  2. Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at the High Frequency Active Auroral Research Program heating facility

    NASA Astrophysics Data System (ADS)

    Sergeev, Evgeny N.; Shindin, Alexey V.; Grach, Savely M.; Milikh, Gennady M.; Mishin, Evgeny V.; Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Michael J.

    2016-07-01

    We report on the features of the F region plasma perturbations during HF heating experiments at the High Frequency Active Auroral Research Program facility in March-April 2011 and May-June 2014. The diagnostics included multifrequency Doppler (phase) sounding (MDS) and stimulated electromagnetic emission (SEE). The results concern modification of the electron density profile near the reflection and upper hybrid heights, as well as correlation of the density modification with temporal behavior of narrow continuum, downshifted maximum, and broad continuum SEE spectral features. We reveal also a new SEE spectral feature which appears in the SEE spectra for the pump frequency f0 near the third and fourth electron gyroharmonics. It is located in the SEE spectrum well below the pump wave frequency, f - f0 -(40-220) kHz, occupies a wide frequency range till 100-150 kHz, and is termed the broad downshifted emission.

  3. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  4. [Effect of coherent extremely high-frequency and low-intensity electromagnetic radiation on the activity of membrane systems in Escherichia coli].

    PubMed

    Tadevosian, A; Trchunian, A

    2009-01-01

    It has been shown that the exposure of wild-type Escherichia coli K12 bacteria grown in anaerobic conditions upon fermentation of glucose to coherent extremely high-frequency (51.8 and 53 GHz) electromagnetic radiation (EMR) or millimeter waves (wavelength 5.8 to 6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) caused a marked decrease in energy-dependent and N,N'-dicyclohexylcarbodiimide- or azide-sensitive proton and potassium ions transport fluxes through the membrane, including proton fluxes via proton F0F1-ATPase and through the potassium uptake Trk system, correspondingly. K+ uptake was less for the E. coli mutant Trk 1110. The rate of molecular hydrogen production by formate hydrogen lyase 2 is strongly inhibited. The results indicate that the bacterial effect of coherent extremely high-frequency EMR includes changes in the activity of membrane transport and enzymatic systems in which the F0F1-ATPase plays a key role.

  5. Superdressed H+2 and H2+3 molecular ions in intense, high-frequency laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, T.; Bandrauk, A. D.

    1995-01-01

    We study the radiative distortion of the lowest two potential surfaces of H+2 and H2+3 molecular ions in a superintense (I>~1016 W/cm2), high-frequency, linearly polarized laser field, using the space-translation or acceleration representation of laser-matter interaction. The electron clouds undergo field-induced redistribution in the molecular ions due to the presence of field-induced ``dichotomous'' dressed Coulomb potentials. Such super-field-dressed systems have a greater tendency to transfer electronic charge into the region between the nuclei and hence become more ``stable'' than the field-free ones. For example, at the equilibrium nuclear separation the dissociation energy of the superdressed H+2 is found to increase by about 20% compared with the field-free H+2. More dramatically, the lowest two surfaces of H2+3 that are repulsive in zero field become attractive (bonding) in the presence of an intense, high-frequency field. The possibility of molecules becoming stabilized against both ionization and dissociation in superintense fields is discussed.

  6. Reversible cardiac conduction block and defibrillation with high-frequency electric field.

    PubMed

    Tandri, Harikrishna; Weinberg, Seth H; Chang, Kelly C; Zhu, Renjun; Trayanova, Natalia A; Tung, Leslie; Berger, Ronald D

    2011-09-28

    Electrical impulse propagation is an essential function in cardiac, skeletal muscle, and nervous tissue. Abnormalities in cardiac impulse propagation underlie lethal reentrant arrhythmias, including ventricular fibrillation. Temporary propagation block throughout the ventricular myocardium could possibly terminate these arrhythmias. Electrical stimulation has been applied to nervous tissue to cause reversible conduction block, but has not been explored sufficiently in cardiac tissue. We show that reversible propagation block can be achieved in cardiac tissue by holding myocardial cells in a refractory state for a designated period of time by applying a sustained sinusoidal high-frequency alternating current (HFAC); in doing so, reentrant arrhythmias are terminated. We demonstrate proof of concept using several models, including optically mapped monolayers of neonatal rat ventricular cardiomyocytes, Langendorff-perfused guinea pig and rabbit hearts, intact anesthetized adult rabbits, and computer simulations of whole-heart impulse propagation. HFAC may be an effective and potentially safer alternative to direct current application, currently used to treat ventricular fibrillation.

  7. Liquid-metal flow in a finite-length cylinder with a high-frequency rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Witkowski, L. Martin; Marty, P.; Walker, J. S.

    2001-06-01

    A liquid-metal flow driven by a rotating magnetic field in a finite-length cylinder is studied numerically as a function of the field frequency. In the high-frequency case, the magnetic field is expelled from the liquid-metal except in a skin-depth layer along the side and top walls of the cylinder. In the corner region, where the skin-depth layers intersect, the body force exhibits a large positive and negative azimuthal component as well as inward radial and axial components which are rotational. The flows for various frequencies are compared to the low-frequency flow.

  8. Program For Displaying Computed Electromagnetic Fields

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  9. [Responses of thymocytes and splenocytes to low-intensity extremely high-frequency electromagnetic radiation in normal mice and in mice with systemic inflammation].

    PubMed

    Gapeev, A B; Sirota, N P; Kudriavtsev, A A; Chemeris, N K

    2010-01-01

    Changes in T cell subsets and expression of cytokine genes in thymocytes and splenocytes after exposure of BAL/c mice to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, exposure duration 20 min) under normal conditions and in systemic inflammation were studied using flow cytometry and the methods of reverse transcription and real-time polymerase chain reaction. It was found that the number of CD4+ and CD8+ T cells statistically significantly increased in the thymus and considerably decreased in the spleen of exposed animals. Apparently, the exposure of animals leads to an intensification of the host defense, by activating the T-cellular immunity. As for effector functions, the increased expression of IL-1beta and IFNgamma genes in thymocytes and essentially enhanced expression of IL-1beta, IL-10, and TNFalpha genes in splenocytes were observed in mice exposed against the background of a progressive inflammatory process. The experimental data obtained specify that the directed (anti-inflammatory) response of an organism to a specific combination of effective exposure parameters of electromagnetic radiation can be realized by the activation of particular immunocompetent cells and changes in the cytokine profile.

  10. Controlling the Electromagnetic Field Confinement with Metamaterials

    PubMed Central

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-01-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained. PMID:27886230

  11. Controlling the Electromagnetic Field Confinement with Metamaterials

    NASA Astrophysics Data System (ADS)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  12. High frequency electromagnetic properties of interstitial-atom-modified Ce2Fe17NX and its composites

    NASA Astrophysics Data System (ADS)

    Li, L. Z.; Wei, J. Z.; Xia, Y. H.; Wu, R.; Yun, C.; Yang, Y. B.; Yang, W. Y.; Du, H. L.; Han, J. Z.; Liu, S. Q.; Yang, Y. C.; Wang, C. S.; Yang, J. B.

    2014-07-01

    The magnetic and microwave absorption properties of the interstitial atom modified intermetallic compound Ce2Fe17NX have been investigated. The Ce2Fe17NX compound shows a planar anisotropy with saturation magnetization of 1088 kA/m at room temperature. The Ce2Fe17NX paraffin composite with a mass ratio of 1:1 exhibits a permeability of μ ' = 2.7 at low frequency, together with a reflection loss of -26 dB at 6.9 GHz with a thickness of 1.5 mm and -60 dB at 2.2 GHz with a thickness of 4.0 mm. It was found that this composite increases the Snoek limit and exhibits both high working frequency and permeability due to its high saturation magnetization and high ratio of the c-axis anisotropy field to the basal plane anisotropy field. Hence, it is possible that this composite can be used as a high-performance thin layer microwave absorber.

  13. Nanomaterial-assisted PCR based on thermal generation from magnetic nanoparticles under high-frequency AC magnetic fields

    NASA Astrophysics Data System (ADS)

    Higashi, Toshiaki; Minegishi, Hiroaki; Echigo, Akinobu; Nagaoka, Yutaka; Fukuda, Takahiro; Usami, Ron; Maekawa, Toru; Hanajiri, Tatsuro

    2015-08-01

    Here the authors present a nanomaterial-assisted PCR technique based on the use of thermal generation from magnetic nanoparticles (MNPs) under AC magnetic fields. In this approach, MNPs work as internal nano thermal generators to realize PCR thermal cycling. In order to suppress the non-specific absorption of DNA synthetic enzymes, MNPs are decorated with bovine serum albumin (BSA), forming BSA/MNP complexes. Under high-frequency AC magnetic fields, these complexes work as internal nano thermal generators, thereby producing the typical temperature required for PCR thermal cycling, and perform all the reaction processes of PCR amplification in the place of conventional PCR thermal cyclers.

  14. Characterizing and Designing Localized Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Borzdov, Georgy N.

    2004-11-01

    An approach to characterizing and designing localized electromagnetic fields in complex media and free space, based on the use of differentiable manifolds, differentiable mappings, and the rotation group, is discussed. Families of exact time-harmonic solutions to Maxwell's equations -- standing waves defined by spherical harmonics, and localized fields defined by the rotation group -- are presented.

  15. Differential form representation of stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  16. [The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of bacteria Escherichia coli and the role of medium pH].

    PubMed

    Tadevosian, A; Kalantarian, V; Trchunian, A

    2007-01-01

    It has been shown that coherent electromagnetic irradiation (EMI) of extremely high frequency (45-53 GHz) or millimeter waves (wavelength 5.6-6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) of Escherichia coli K12, grown under anaerobic conditions during the fermentation of sugar (glucose) for 30 min or 1 h, caused a decrease in their growth rate, the maximum inhibitory effect being achieved at a frequency of 51.8 or 53 GHz. This effect depended on medium pH when the maximal action was determined at pH 7.5. In addition, separate 30-min of 1-h irradiation (frequency 51.8 or 53 GHz) of doubly distilled water or some inorganic ions contained in Tris-phosphate buffer where the cells were transferred induced oppositely directed changes in further growth of these bacteria under anaerobic conditions; irradiation of water caused a decrease in the growth rate of bacteria. A significant change in pH of water (0.5-1.5 unit) was induced by a 30-irradiation at a frequency of 49, 50.3, 51.8, or 53 GHz, when the initial pH value was 6.0 or 8.0, but not 7.5. These results indicate the changes in the properties of water and its role in the effects of EMI of extremely high frequency. The marked effect of EMI on bacteria disappeared upon repeated irradiation for 1 h at a frequency of 51.8 or 53 GHz with an interval of 2 hours. This result indicates some compensatory mechanisms in bacteria.

  17. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  18. Magnetic Field Generation and B-Dot Sensor Characterization in the High Frequency Band

    DTIC Science & Technology

    2012-03-01

    is the constant value given the parameters of an ideal Helmholtz coil (8.99x10−7). The derivative of the magnetic field with respect to r and N yields...resistance is negligible. An ideal design of an AC Helmholtz coil should have a relatively constant inductance, which is needed to keep the field in...B-field dependency on inductive reactance (ωL). In the case of the Helmholtz coil simulation, the inductance (L) is constant and the ω cancels out

  19. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

    PubMed

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V

    2013-08-01

    To test the participation of fatty acids (FA) in antitumor effects of extremely high-frequency electromagnetic radiation (EHF EMR), the changes in the FA composition in the thymus, liver, blood plasma, muscle tissue, and tumor tissue in mice with Ehrlich solid carcinoma exposed to EHF EMR were studied. Normal and tumor-bearing mice were exposed to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily during five consecutive days beginning the first day after the inoculation of tumor cells). Fatty acid composition of various organs and tissues of mice were determined using a gas chromatography. It was shown that the exposure of normal mice to EHF EMR or tumor growth significantly increased the content of monounsaturated FA (MUFA) and decreased the content of polyunsaturated FA (PUFA) in all tissues examined. Exposure of tumor-bearing mice to EHF EMR led to the recovery of FA composition in thymocytes to the state that is typical for normal animals. In other tissues of tumor-bearing mice, the exposure to EHF EMR did not induce considerable changes that would be significantly distinguished between disturbances caused by EHF EMR exposure or tumor growth separately. In tumor tissue which is characterized by elevated level of MUFA, the exposure to EHF EMR significantly decreased the summary content of MUFA and increased the summary content of PUFA. The recovery of the FA composition in thymocytes and the modification of the FA composition in the tumor under the influence of EHF EMR on tumor-bearing animals may have crucial importance for elucidating the mechanisms of antitumor effects of the electromagnetic radiation.

  20. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  1. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering

    NASA Astrophysics Data System (ADS)

    Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.

    2017-06-01

    An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.

  2. A novel high-performance high-frequency SOI MESFET by the damped electric field

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Khayatian, Ahmad; Keshavarzi, Parviz

    2016-06-01

    In this paper, we introduce a novel silicon-on-insulator (SOI) metal-semiconductor field-effect-transistor (MESFET) using the damped electric field (DEF). The proposed structure is geometrically symmetric and compatible with common SOI CMOS fabrication processes. It has two additional oxide regions under the side gates in order to improve DC and RF characteristics of the DEF structure due to changes in the electrical potential, the electrical field distributions, and rearrangement of the charge carriers. Improvement of device performance is investigated by two-dimensional and two-carrier simulation of fundamental parameters such as breakdown voltage (VBR), drain current (ID), output power density (Pmax), transconductance (gm), gate-drain and gate-source capacitances, cut-off frequency (fT), unilateral power gain (U), current gain (h21), maximum available gain (MAG), and minimum noise figure (Fmin). The results show that proposed structure operates with higher performances in comparison with the similar conventional SOI structure.

  3. Far-field momentum flux of high-frequency axisymmetric synthetic jets

    NASA Astrophysics Data System (ADS)

    Xia, X.; Mohseni, K.

    2015-11-01

    This study focuses on predicting the far-field momentum flux for axisymmetric synthetic jets, which is an important parameter that characterizes the performance of such jets in flow-control applications. Previous researchers have found that a negative pressure gradient near the jet orifice is responsible for the observed decrease in the momentum flux in the streamwise direction. As a result, prediction of the far field momentum flux of synthetic jets has encountered serious challenges. In this paper, the far-field momentum flux is modeled by calculating the hydrodynamic impulse of the vortical structure formed during one actuation cycle, under the assumption that the jet is fully developed and periodic. In this manner, the complex near-field effect of a synthetic jet is explicitly captured by the interactions between the vortices and the actuator. Furthermore, the impulse of these vortical structures is predicted using only the actuation parameters of the synthetic jet, namely, the stroke length, L, the orifice diameter, d, and the actuation frequency, f. For a synthetic jet with a stroke ratio, L/d, larger than the formation number, L∗/d, this model predicts that the normalized far-field momentum flux, K/Ks, decreases when L/d increases. This can be explained by an increasing circulation fraction of the trailing jet, which contains less impulse per unit circulation compared with the leading vortex. This model is validated using hot-wire anemometry measurement of a series of synthetic jets. Moreover, by comparing with experimental data that have large L/d, this model suggests that the contribution of trailing jet to the overall far-field momentum flux is not negligible.

  4. Stable Determination of a Scattered Wave from its Far-Field Pattern: The High Frequency Asymptotics

    NASA Astrophysics Data System (ADS)

    Rondi, Luca; Sini, Mourad

    2015-10-01

    We deal with the stability issue for the determination of outgoing time-harmonic acoustic waves from their far-field patterns. We are especially interested in keeping as explicit as possible the dependence of our stability estimates on the wavenumber of the corresponding Helmholtz equation and in understanding the high wavenumber, that is frequency, asymptotics. Applications include stability results for the determination from far-field data of solutions of direct scattering problems with sound-soft obstacles and an instability analysis for the corresponding inverse obstacle problem. The key tool consists of establishing precise estimates on the behavior of Hankel functions with large argument or order.

  5. Photon Propagation in Slowly Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  6. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  7. High-frequency alternating-crossed-field gel electrophoresis with neutral or slightly charged interpenetrating networks to improve DNA separation.

    PubMed

    Boyd, B M; Prausnitz, J M; Blanch, H W

    1998-12-01

    Toward improving DNA separations, this work reports the effects of high-frequency square-wave AC fields superimposed perpendicular to the direct current (DC) separation field on DNA migration in both polyacrylamide-based interpenetrating networks (IPNs) and in agarose networks. Compared to standard polyacrylamide gels, IPNs allow the separation of larger DNA (9000 bp vs. 5000 bp at 5 V/cm). In novel polyacrylamide-based IPNs, an alternating current (AC) field of 5 Hz increased the maximum DNA size separable. This effect was extended to larger DNA sizes with increasing electric-field strength up to and apparently beyond the power supply-limited maximum electric-field strength of 48 V/cm. The orthogonal AC field also increased mobility. These two results combine to yield a reduction in separation time of up to a factor of 20 in novel polyacrylamide-based IPNs. When negatively charged acrylic-acid groups were incorporated into the IPNs, the use of the AC field changed the DNA-network interaction, which altered the size dependence of DNA mobility. In agarose gels, an AC field of 50 Hz increased the size range separable; however, there was no increase in DNA mobility. There was no change in size dependence of mobility in an AC field when the number of charged groups in the agarose network was increased. Based on results in the literature, possible mechanisms were examined for the effects of the AC field on DNA separation.

  8. Electromagnetic fields and infant incubators.

    PubMed

    Bearer, C F

    1994-01-01

    Two models of infant incubators were studied to determine the strength of the magnetic field generated by the heater and fan motors. Measurements were taken at intervals along the center line of the incubator. The results show that fields greater than 100 milligauss and 25 milligauss were measured in the C-86 and C-100 model Isolettes, respectively.

  9. [Effects of low-intensity extremely high frequency electromagnetic radiation on chromatin structure of lymphoid cells in vivo and in vitro].

    PubMed

    Gapeev, A B; Lushnikov, K V; Shumilina, Iu V; Sirota, N P; Sadovnikov, V B; Chemeris, N K

    2003-01-01

    Using a comet assay technique, it was shown for the first time that low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) in vivo causes oppositely directed effects on spatial organization of chromatin in cells of lymphoid organs. In 3 hrs after single whole-body exposure of NMRI mice for 20 min at 42.0 GHz and 0.15 mW/cm2, an increase by 16% (p < 0.03 as compared with control) and a decrease by 16% (p < 0.001) in fluorescence intensity of nucleoids stained with ethidium bromide were found in thymocytes and splenocytes, respectively. The fluorescence intensity of stained nucleoids in peripheral blood leukocytes was not changed after the exposure. The exposure of cells of Raji hunan lymphoid line and peripheral blood leukocytes to the EHF EMR in vitro induced a decrease in fluorescence intensity by 23% (p < 0.001) and 18% (p < 0.05), respectively. These effects can be determined by changes in a number of physiological alkali-labile sites in DNA of exposed cells. We suggested that the effects of low-intensity EHF EMR on the immune system cells are realized with the participation of neuroendocrine and central nervous systems.

  10. The reason for synchronous disturbances in the atmospheric electric field and high-frequency geoacoustic emission during the seismotectonic process

    NASA Astrophysics Data System (ADS)

    Rulenko, O. P.; Marapulets, Yu. V.; Kuzmin, Yu. D.

    2015-03-01

    The atmospheric electric field, the geoacoustic emission at frequencies of 0.7-2.0 kHz at three points, the volumetric activity of radon and thoron in the surface ground layer, the atmospheric pressure, the velocity of wind, and the intensity of rain were synchronously measured from August 27 to October 17, 2012, at the interception zone of various faults 41 km southwest of the town of Petropavlovsk-Kamchatskiy. It was found for the first time that the increase in radon and thoron concentration in the surface ground layer is accompanied by a decrease in the atmospheric electric field and simultaneous disturbance of the high-frequency geoacoustic emission. The stronger emission of these gases into the atmosphere due to the increase in velocity of the extension of subsurface sedimentary rocks during seismotectonic process is the most likely reason for the decrease in the electric field, which occured along with a geoacoustic disturbance.

  11. Electromagnetic field parameters and instrumentation

    NASA Astrophysics Data System (ADS)

    Sheppard, A. R.; Jones, R. A.; Stell, M. E.; Adey, W. R.; Bawin, S.

    1986-07-01

    We studied the effects of the electric and magnetic components of a Loran-C type waveform on three biological systems. Neurochemical assays of brain neurotransmitter substances indicate field-related changes in the levels of norepinephrine in the hippocampus and in the number and affinities of the opiate receptors in the cortex. Behavioral data showed that rats trained in an operant conditioning task did not reliably detect any electric field strength used. Biochemical data demonstrated that the Loran-C field did not modify basal ornithine decarboxylase activity in primary bone cells.

  12. Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field

    DTIC Science & Technology

    2005-09-30

    raindrops) produces a loud peak in the sound field from 13-25 kHz. This is due to unique bubble formation mechanism for small raindrops ( Medwin et... Medwin , H., JA Nystuen, PW Jacobus, LH Ostwald and DE Synder. 1992: The anatomy of underwater rain noise. J. Acoust. Soc. Am. 92, 1613-1623. Mellinger...Using Underwater Sound to Determine Drop Size Distribution. Sounds in the Seas: Introduction to Acoustical Oceanography, editor, H. Medwin

  13. Localising rectus muscle insertions using high frequency wide-field ultrasound biomicroscopy.

    PubMed

    Khan, Hayat Ahmad; Smith, David R; Kraft, Stephen P

    2012-05-01

    The ultrasound biomicroscope (UBM) can accurately locate an extraocular muscle (EOM) insertion. The authors compared the accuracy of the Sonomed UBM (SUBM), a new 'wide-field ultrasound biomicroscope', with the older model Humphrey UBM (HUBM) in localising EOM insertions and compared their ranges of detection of muscle insertions. Prospective, double-masked, observational study of 27 patients undergoing primary (n=40 muscles) or repeat (n=10 muscles) horizontal or vertical rectus muscle surgery. EOM insertional distances were measured with SUBM, and then intraoperatively with callipers. A Bland-Altman analysis and intraclass correlation coefficient were used to compare the SUBM and surgical data. For all muscles, the differences between SUBM and surgery measurements were less than 1.0 mm. The mean of the SUBM insertion distances was 6.67 mm (SD 1.65 mm) versus 6.7 mm (SD 1.6 mm) at surgery. The intraclass correlation coefficient showed 'excellent' correlation between the two sets of data and was higher than that reported with HUBM. The image quality with the SUBM was superior to the HUBM, and its range of field was much larger (14×18 mm vs 5×6 mm). The SUBM with its smaller, more manoeuvrable probe handpiece and a wider scanning field was more accurate in detecting muscle insertions compared with HUBM.

  14. LEM—electromagnetic fields measurement laboratory

    NASA Astrophysics Data System (ADS)

    Annino, A.; Falciglia, F.; Musumeci, F.; Oliveri, M.; Privitera, G.; Triglia, A.

    2000-04-01

    The widespread presence of electromagnetic waves and the relative problems regarding them have favored the constitution of the LEM at the DMFCI in Catania University, where competence has been developing in this sector for about 10 years. Full operativeness has been reached as far as the electromagnetic field measurements in anthropized environments are concerned. Other research will be undertaken as soon as further funds are available. Some problems connected with the perfecting of measurements instruments and the results of emission measurements of cellular telephones are presented.

  15. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.

    2012-06-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.

  16. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  17. High-Frequency Alternating-Crossed-Field Gel Electrophoresis WithNeutral or Slightly Charged Interpenetrating Networks to Improve DNASeparation

    SciTech Connect

    Boyd, B.; Prausnitz, J.; Blanch, H.

    1998-07-01

    Toward improving DNA separations, this work reports theeffects of high-frequency square-wave AC fields superimposedperpendicular to the direct current (DC) separation field on DNAmigration in both polyacrylamide-based interpenetrating networks (IPNs)and in agarose networks. Compared to standard polyacrylamide gels, IPNsallow the separation of larger DNA (9000 bp vs. 5000 bp at 5 V/cm). Innovel polyacrylamide-based IPNs, an alternating current (AC) field of 5Hz increased the maximum DNA size separable. This effect was extended tolarger DNA sizes with increasing electric-field strength up to andapparently beyond the power supply-limited maximum electric-fieldstrength of 48 V/cm. The orthogonal AC field also increased mobility.These two results combine to yield a reduction in separation time of upto a factor of 20 in novel polyacrylamide-based IPNs. When negativelycharged acrylic-acid groups were incorporated into the IPNs, the use ofthe AC field changed the DNA-network interaction, which altered the sizedependence of DNA mobility. In agarose gels, an AC field of 50 Hzincreased the size range separable; however, there was no increase in DNAmobility. There was no change in size dependence of mobility in an ACfield when the number of charged groups in the agarose network wasincreased. Based on results in the literature, possible mechanisms wereexamined for the effects of the AC field on DNA separation.

  18. Numerical modeling of fringing fields and their use for complex permittivity measurements at high frequencies

    NASA Astrophysics Data System (ADS)

    Gabriel, Camelia

    1993-08-01

    An accurate technique to measure the complex permittivity of materials based on a rigorous theoretical formulation of the admittance of an open-ended coaxial probe has been achieved. The technique was tested by measurements on standard solutions. The new technique was used to perform a comprehensive study of ionic solutions. The extensive data obtained led to the development of models to predict the dielectric parameters of ionic solutions at a given temperature as a function of concentration. The theoretical study and numerical techniques were extended to treat the case of a thin sample backed by a metallic plane. The technique was tested with standard solutions. Further analysis led to the development of expressions for the field in the sample adjacent to the probe. This enabled the pattern of power deposition to be determined and improved our understanding of the sampled volume.

  19. Dielectrophoresis of Janus particles under high frequency ac-electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhu, Yingxi

    2010-04-01

    Janus polystyrene particles with gold and dielectric multilayer coatings on one hemisphere are shown to drastically alter the dielectrophoresis (DEP) behavior of homogeneous precursor particles under ac-electric fields. Alkanethiol coatings on the gold-coated hemisphere can effectively modify the DEP crossover frequency (ωc) with a negative (n) to positive (p) (p →n) DEP transition as increasing ac-frequency, in contrast to p →n DEP transition observed with precursor particles. All measured n →p DEP crossover frequencies with dependence on particle size, alkanethiol thickness, and medium conductivity are collapsed to yield a scaling with the resistance-capacitance (RC) time of the alkanethiol layer capacitance and the conductive medium resistance.

  20. Cross-correlation function of acoustic fields generated by random high-frequency sources.

    PubMed

    Godin, Oleg A

    2010-08-01

    Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.

  1. HEATING OF SIMPLE SOLUTIONS AND EMULSIONS EXPOSED TO HIGH FREQUENCY HIGH POTENTIAL ELECTROSTATIC FIELDS

    PubMed Central

    Marshall, W. H.

    1930-01-01

    1. It is shown that the absorption in liquid dielectrics is a function of potential gradient (field intensity) as well as frequency and that for values of potential gradient above, at least 70 volts per millimeter, the rate of rise of temperature-frequency curve increases rapidly with frequency. 2. The presence of ions in measurable quantity considerably changes the absorption characteristics and apparently causes the values to remain constant, whereas the values for water drop about 40 per cent, during exposure. The absorption also changes rapidly with the concentration of the electrolyte. 3. Very high absorption values are found for an emulsion of cotton-seed oil in 1 per cent sodium oleate. It is shown that the absorption is due to the colloidal structure (with the possibility that the energy is dissipated at the phase boundaries). PMID:19872553

  2. Quasi-classical model of electron rescattering in fields of intense infrared and weak high-frequency laser pulses

    NASA Astrophysics Data System (ADS)

    Flegel, A. V.; Frolov, M. V.; Zheltukhin, A. N.; Vvedenskii, N. V.

    2017-04-01

    We study the influence of a weak high-frequency [in the extreme ultraviolet (XUV) region] laser pulse on the mechanism of electron rescattering on the parent ion in the processes of high harmonic generation and above-threshold ionisation induced by an intense infrared (IR) laser field. Two scenarios of the three-step rescattering are discussed: with the absorption of the XUV photon at the ionisation step of an atom and with the absorption/emission of a XUV photon at the moment of recombination or scattering of the electron returned by the IR field to the parent ion. Estimates are obtained for the high-energy plateau cutoff positions in the spectra of harmonic generation and above-threshold ionisation.

  3. Note: A high-frequency signal generator based on direct digital synthesizer and field-programmable gate array.

    PubMed

    Du, Yuanbo; Li, Wenbing; Ge, Yapeng; Li, Hui; Deng, Ke; Lu, Zehuang

    2017-09-01

    A high-frequency signal generator based on direct digital synthesizer (DDS) and field-programmable gate array (FPGA) is presented. The FPGA provides the controlling time sequence for the DDS, which has a highest output frequency of 1.4 GHz and a frequency resolution of 190 pHz. At an output frequency of 1.2 GHz, the measured phase noise, including the contribution of the reference clock, is -65 dBc/Hz@1 Hz, while the intrinsic phase noise is -82 dBc/Hz@1 Hz. Time delay of the DDS is measured to be less than 150 ns. The signal generator is used to drive an acousto-optic modulator, and the rise time due to the whole link is 24 ns. The developed signal generator can be used in many precision measurement experiments in the fields of atomic, molecular, and optical physics.

  4. Note: A high-frequency signal generator based on direct digital synthesizer and field-programmable gate array

    NASA Astrophysics Data System (ADS)

    Du, Yuanbo; Li, Wenbing; Ge, Yapeng; Li, Hui; Deng, Ke; Lu, Zehuang

    2017-09-01

    A high-frequency signal generator based on direct digital synthesizer (DDS) and field-programmable gate array (FPGA) is presented. The FPGA provides the controlling time sequence for the DDS, which has a highest output frequency of 1.4 GHz and a frequency resolution of 190 pHz. At an output frequency of 1.2 GHz, the measured phase noise, including the contribution of the reference clock, is -65 dBc/Hz@1 Hz, while the intrinsic phase noise is -82 dBc/Hz@1 Hz. Time delay of the DDS is measured to be less than 150 ns. The signal generator is used to drive an acousto-optic modulator, and the rise time due to the whole link is 24 ns. The developed signal generator can be used in many precision measurement experiments in the fields of atomic, molecular, and optical physics.

  5. Numerical modelling of fringing fields and their use for complex permittivity measurements at high frequencies

    NASA Astrophysics Data System (ADS)

    Gabriel, Camelia

    1993-03-01

    A technique was developed to measure the complex permittivity of materials using an open-ended coaxial probe in contact with a semi-infinite sample. It is based on a rigorous theoretical formulation of the admittance of the probe and was tested by measurements on standard solutions at frequencies of up to 20 GHz. The technique was further used to perform measurements on aqueous ionic solutions. The data were analyzed and used to develop models to predict the dielectric parameters of NaCl and KCl solutions at a given temperature as a function of concentration with the concentration range extending from pure water to saturated salt solutions. The theoretical study and techniques were adapted to the measurement of thin samples in contact with the probe provided they are backed by a metallic plane. The success and range of applicability of the thin sample technique was tested with measurements on standard solutions. Expressions were derived for the electric field in the medium terminating the probe. These expressions were used to determine the pattern of power deposition in the medium terminating the probe. Examples are given to illustrate this statement.

  6. High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-03-01

    Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.

  7. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  8. Coherent polarization driven by external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Ganciu, M.

    2010-11-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  9. Electromagnetic field of a linear antenna

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  10. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  11. Basic Discoveries in Electromagnetic Field Visualization

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke

    2014-01-01

    Basic discoveries in the electromagnetic field visualization are presented, mentioning the late Dr. A. Tonomura's significant achievements in this field. First, the discovery of the electron biprism interferences by G. Möllenstedt and his colleagues was noted. Having studied Möllenstedt's interference experiments, A. Tonomura and his colleagues have extended the electron holography system to clearly prove the physical reality of vector potentials, the so-called Aharonov-Bohm effect. They also succeeded in observing the dynamic motions of magnetic flux quanta (fluxons) in a superconducting Nb film. In a joint research with A. Tonomura, we succeeded in visualizing a fluxon pinned by an insulating particle in a high-Tc Y-Ba-Cu-O superconductor by combining electron holography and scanning ion microscopy. As the study of a scalar potential, the visualization of the orbits of electron-induced secondary electrons around positively charged biological specimens was noted. Finally, although the electromagnetic field analysis using electron holography on the basis of Maxwell's equations seems to be promising, it is pointed out that there have been some controversies on the interpretation and treatment of electromagnetic field.

  12. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were

  13. Electromagnetic field radiation model for lightning strokes to tall structures

    SciTech Connect

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.; Chisholm, W.A.; Chang, J.S.; Rusan, R.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  14. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  15. Spectroscopic Measurement of High-Frequency Electric Fields in the Interaction of Explosive Debris Plasma with Ambient, Magnetized Background Plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton; Schaeffer, Derek; Everson, Erik; Clark, Eric; Vincena, Stephen; van Compernolle, Bart; Tripathi, Shreekrishna; Constantin, Carmen; Niemann, Chris

    2014-10-01

    The explosive expansion of dense, high-beta debris plasma into relatively tenuous, magnetized background plasma is relevant to a wide variety of astrophysical and space environments. Electric fields play a fundamental role in the coupling of momentum and energy from debris to background, and emission spectroscopy provides a powerful diagnostic for assessing electric fields via the Stark effect. A recent experiment utilizing a unique experimental platform at UCLA that combines the Large Plasma Device and the Raptor laser facility has investigated the super-Alfvénic, quasi-perpendicular expansion of a laser-produced carbon (C) debris plasma through a preformed, ambient, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line have been analyzed via single-mode and multi-mode time-dependent Stark broadening models for hydrogen-like ions, yielding large magnitude (~100 kV/cm), high-frequency (~100 GHz) electric fields. The measurements suggest the development of an electron beam-plasma instability, and a simple instability saturation model demonstrates that the measured electric field magnitudes are feasible under the experimental conditions.

  16. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    PubMed

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  17. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry.

    PubMed

    Telser, Joshua; Krzystek, J; Ozarowski, Andrew

    2014-03-01

    This minireview describes high-frequency and high-field electron paramagnetic resonance (HFEPR) spectroscopy in the context of its application to bioinorganic chemistry, specifically to metalloproteins and model compounds. HFEPR is defined as frequencies above ~100 GHz (i.e., above W-band) and a resonant field reaching 25 T and above. The ability of HFEPR to provide high-resolution determination of g values of S = 1/2 is shown; however, the main aim of the minireview is to demonstrate how HFEPR can extract spin Hamiltonian parameters [zero-field splitting (zfs) and g values] for species with S > 1/2 with an accuracy and precision unrivalled by other physical methods. Background theory on the nature of zfs in S = 1, 3/2, 2, and 5/2 systems is presented, along with selected examples of HFEPR spectroscopy of each that are relevant to bioinorganic chemistry. The minireview also provides some suggestions of specific systems in bioinorganic chemistry where HFEPR could be rewardingly applied, in the hope of inspiring workers in this area.

  18. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  19. A New Theory of the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  20. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  1. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  2. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge.

    PubMed

    Lewczuk, Bogdan; Redlarski, Grzegorz; Zak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  3. Multiple reflected beam synthesis of fields excited by a high-frequency oblique beam input in an elastic plate.

    PubMed

    Zeroug, S; Felsen, L B

    1992-04-01

    Transducer-excited beams provide important diagnostic tools for ultrasonic nondestructive evaluation (NDE) of elastic materials. For bonded multilayer elastic plates, an obliquely injected high-frequency compressional (P) beam creates interior dynamic fields that are sensitive to weak debonding between the layers. In an effort to clarify the wave phenomena that are operative under these conditions of excitation, a highly idealized model has been chosen wherein a lossless plate in vacuum is insonified by an internal oblique P-beam source. This problem was analyzed in a previous investigation [Lu, Felsen, and Klosner, J. Acoust. Soc. Am. 87, 42-53 (1990)] by expressing the total field in terms of a sum of P-S (vertically polarized or in-plane) coupled normal modes. While the resulting field assumed oscillatory modal patterns at interior cross sections far from the source region, the modally synthesized field near the source clearly outlined profiles interpretable as incident and singly or multiply reflected P-S coupled beams. The problem is therefore studied here directly by Gaussian beam tracing as implemented via our previously employed complex ray field algorithm. The results clarify the observed phenomena by revealing the successive buildup from initially well-resolved beams into oscillatory mode patterns synthesized by overlapping multiples. For the same idealized model, the beam algorithm has been applied elsewhere to the detection and identification of weak debonding in a layered plate [Felsen and Zeroug, J. Acoust. Soc. Am. 90, 1527-1538 (1991)]. With an understanding of the physical mechanisms that arise in the beam-to-mode conversion, one may now explore how their utility is affected under realistic NDE conditions.

  4. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays.

    PubMed

    Gapeyev, Andrew B; Aripovsky, Alexander V; Kulagina, Tatiana P

    2015-03-01

    The effects of extremely high-frequency electromagnetic radiation (EHF EMR) on thymus weight and its fatty acids (FA) content and FA composition in X-irradiated mice were studied to test the involvement of FA in possible protective effects of EHF EMR against ionizing radiation. Mice were exposed to low-intensity pulse-modulated EHF EMR (42.2 GHz, 0.1 mW/cm(2), 20 min exposure, 1 Hz modulation) and/or X-rays at a dose of 4 Gy with different sequences of the treatments. In 4-5 hours, 10, 30, and 40 days after the last exposure, the thymuses were weighed; total FA content and FA composition of the thymuses were determined on days 1, 10, and 30 using a gas chromatography. It was shown that after X-irradiation of mice the total FA content per mg of thymic tissue was significantly increased in 4-5 h and decreased in 10 and 30 days after the treatment. On days 30 and 40 after X-irradiation, the thymus weight remained significantly reduced. The first and tenth days after X-rays injury independently of the presence and sequence of EHF EMR exposure were characterized by an increased content of polyunsaturated FA (PUFA) and a decreased content of monounsaturated FA (MUFA) with unchanged content of saturated FA (SFA). Exposure of mice to EHF EMR before or after X-irradiation prevented changes in the total FA content in thymic tissue, returned the summary content of PUFA and MUFA to the control level and decreased the summary content of SFA on the 30th day after the treatments, and promoted the restoration of the thymus weight of X-irradiated mice to the 40th day of the observations. Changes in the content and composition of PUFA in the early period after treatments as well as at the restoration of the thymus weight under the combined action of EHF EMR and X-rays indicate to an active participation of FA in the acceleration of post-radiation recovery of the thymus by EHF EMR exposure.

  5. Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang-Joon

    2012-01-01

    This study aims to investigate the blood flow around the perivalvular area in a human superficial vein using high-frequency ultrasound (HFUS) speckle image velocimetry. HFUS B-mode images were captured from the superficial veins of human lower extremity with a 35-MHz transducer. To measure the instantaneous velocity fields of blood flow, a cross-correlation particle image velocimetry (PIV) algorithm was applied to two B-mode images that were captured consecutively. The echo speckles of red blood cells (RBCs) were used as flow tracers. In the vicinity of the venous valve, the opening and closing motions of valve cusps were simultaneously visualized with the phasic variation of velocity fields. Large-scale vortices were observed behind the sinus pockets while the main bloodstream was directed proximally. This measurement technique combining PIV algorithm and HFUS B-mode imaging was found to be unique and useful for investigating the hemodynamic characteristics of blood flow in the perivalvular area and for diagnosing venous insufficiency and valve abnormality in superficial blood vessels.

  6. Dual-Element Transducer with Phase-Inversion for Wide Depth of Field in High-Frequency Ultrasound Imaging

    PubMed Central

    Jeong, Jong Seob

    2014-01-01

    In high frequency ultrasound imaging (HFUI), the quality of focusing is deeply related to the length of the depth of field (DOF). In this paper, a phase-inversion technique implemented by a dual-element transducer is proposed to enlarge the DOF. The performance of the proposed method was numerically demonstrated by using the ultrasound simulation program called Field-II. A simulated dual-element transducer was composed of a disc- and an annular-type elements, and its aperture was concavely shaped to have a confocal point at 6 mm. The area of each element was identical in order to provide same intensity at the focal point. The outer diameters of the inner and the outer elements were 2.1 mm and 3 mm, respectively. The center frequency of each element was 40 MHz and the f-number (focal depth/aperture size) was two. When two input signals with 0° and 180° phases were applied to inner and outer elements simultaneously, a multi-focal zone was generated in the axial direction. The total −6 dB DOF, i.e., sum of two −6 dB DOFs in the near and far field lobes, was 40% longer than that of the conventional single element transducer. The signal to noise ratio (SNR) was increased by about two times, especially in the far field. The point and cyst phantom simulation were conducted and their results were identical to that of the beam pattern simulation. Thus, the proposed scheme may be a potential method to improve the DOF and SNR in HFUI. PMID:25098208

  7. Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.

    2011-02-01

    We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.

  8. An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing.

    PubMed

    Lee, Dong-Joon; Whitaker, John F

    2008-12-22

    A sub-millimeter-dimension electro-optic probe that provides enhanced scanning accessibility with significantly less intrusiveness than metal-based or even other dielectric probes during electromagnetic characterization of microwave devices is presented. The quantitative and qualitative relative invasiveness of the probe on the operation of an example antenna device-under-test is explored with respect to previously demonstrated fiber and wafer electro-optic sensors. We also demonstrate that the miniaturized probe, with a diameter of 125 microm, can be used to reconstruct the three orthogonal vector components of near-electric fields without the need for different probe crystals or multiple calibration procedures. Finally, the advantages of the reduced size and invasiveness of the new micro-scale probe are demonstrated through the enhanced resolution of detailed images extracted from planar antennas, as well as the capability of reaching into circuit locations heretofore inaccessible.

  9. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  10. Using Artificially Generated VLF Electromagnetic Signals, Produced by the High Frequency Active Auroral Research Program (HAARP) Full Transmitter Array, as Geophysical Probe Waves.

    NASA Astrophysics Data System (ADS)

    Krzykowski, M.; Solie, D.; Stevens, R.

    2008-12-01

    Field measurements were made to test the feasibility of using HAARP stimulated ionospheric emissions of Very Low Frequency (VLF) electromagnetic signals, as probe waves for geophysical studies. The test site chosen for the experiment was a mud volcano near Tolsona, Alaska on the Glenn Highway. Data acquisition was done with a Zonge GDP-32 Receiver. HAARP was run at full power and modulated at varying frequencies in the VLF range at frequencies of: 1, 4, 8, 16, 32, 96, 4096 and 6144 Hz. Both natural and induced VLF signals were recorded, with the intention of seeing a stronger signal at HAARP-generated frequencies upon examination of the data. Even though significant interference was caused by nearby power lines during the experiment, we measured correlated electric and magnetic field strengths significantly above the natural and artificial background for two frequencies (4096Hz and 6144Hz.). Our analysis indicates that given favorable ionospheric conditions, HAARP-generated VLF signals have the signal strength necessary for use as probe waves in geophysical field studies. This experiment was part of, and made possible by, the PARS 2007 Summer School.

  11. Giant field enhancement in electromagnetic Helmholtz nanoantenna

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Greffet, Jean-Jacques; Pelouard, Jean-Luc; Haïdar, Riad; Pardo, Fabrice

    2014-11-01

    Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design produces a giant electric field enhancement throughout the slit. The intensity enhancement reaches 104 in the visible range up to 108 in the THz range even with focused beams, thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as surface-enhanced infrared absorption, nonlinear optics, and biophotonics.

  12. Analyzing Exposures to Electromagnetic Fields in an Intensive Care Unit

    PubMed Central

    Gökmen, Necati; Erdem, Sabri; Toker, Kadir Atilla; Öçmen, Elvan; Gökmen, Başak Ilgım; Özkurt, Ahmet

    2016-01-01

    Objective In this study, we conducted a numerical analysis of exposure to electromagnetic fields (EMFs) in a hospital’s intensive care unit that is one of the most crucial one in terms of hazardous areas among all service units. This is a new study for measuring exposure to EMFs in an intensive care unit as well as other healthcare services in Turkey. Methods We measured the EMFs in the intensive care unit with a SRM-3006 (selective radiation metre), which was used for measurement of the absolute and the limit values of high frequency EMFs. The measurement points were chosen to represent the highest levels of exposure to which a person might be subjected. We obtained a dataset that included 5929 observations, with 96 extreme values, through measuring the magnetic field in terms of V/m. Results The measurements show the frequency varies from 47 MHz to 2.5 GHz as 17 frequency ranges at the measurement point as well. According to these findings, the referenced maximum safety limit was not exceeded. However, it was also found that mobile telecommunication was the most critical cause of magnetic fields. Conclusion Further studies need to be performed with different frequency antennas to assess the EMFs in intensive care units. PMID:27909603

  13. Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: A Brownian dynamics study.

    PubMed

    Tekieh, Tahereh; Sasanpour, Pezhman; Rafii-Tabar, Hashem

    2016-09-01

    A three-dimensional Brownian Dynamics (BD) in combination with electrostatic calculations is employed to specifically study the effects of radiation of high frequency electromagnetic fields on the conduction and concentration profile of calcium ions inside the voltage-gated calcium channels. The electrostatic calculations are performed using COMSOL Multiphysics by considering dielectric interfaces effectively. The simulations are performed for different frequencies and intensities. The simulation results show the variations of conductance, average number of ions and the concentration profiles of ions inside the channels in response to high frequency radiation. The ionic current inside the channel increases in response to high frequency electromagnetic field radiation, and the concentration profiles show that the residency of ions in the channel decreases accordingly.

  14. Biomarkers of induced electromagnetic field and cancer.

    PubMed

    Behari, J; Paulraj, R

    2007-01-01

    The present article delineates the epidemiological and experimental studies of electromagnetic field which affects various tissues of human body. These affects lead to cell proliferation, which may lead to cancer formation. Certain biomarkers have been identified which are one way or the other responsible for tumor promotion or co-promotion. These are (i) melatonin, a hormone secreted by pineal gland, (ii) Ca2+, which is essential in the regulation of the resting membrane potential and in the sequence of events in synaptic excitation and neurotransmitter, release are affected by electromagnetic field, (iii) ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines, considered as a useful biological marker; over expression of ODC can cause cell transformation and enhancement of tumor promotion. (iv) protein kinase is an enzyme, which transfers phosphate groups from ATP to hydroxyl groups in the amino acid chains of acceptor proteins, and (v) Na+-K+ ATPase, which transports sodium and potassium ions across the membrane has a critical role in living cells. The various possible mechanisms depending upon non equilibrium thermodynamics, co-operativism, stochastic and resonance are discussed as possible models of signal transduction in cytosol, thereby controlling the transcription phenomena. Finally a mechanism comprising the extremely low frequency and radio frequency (RF)/microwave (MW) modulated field is compared.

  15. Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Torre, Charles; Krongos, Dionisios

    2016-03-01

    The classical Rainich conditions are a system of geometric conditions, expressed purely in terms of the spacetime metric, which are necessary and sufficient for the metric to define a solution to the Einstein-Maxwell equations with a non-null electromagnetic field. We obtain analogous ``geometrization'' conditions for other matter sources. Specifically, we find geometric conditions which are necessary and sufficient for a metric to define a solution to the Einstein equations with a perfect fluid source, and to define a solution to the Einstein-scalar field equations. These conditions work in any dimension, allow for a cosmological constant, and allow for an arbitrary self-interaction potential in the scalar field case. We also generalize the classical Rainich conditions to include a cosmological constant and we obtain geometrization conditions which are applicable to the case of null electromagnetic fields. This work was supported in part by Grant No. OCI-1148331 from the National Science Foundation.

  16. Magnetic properties and electronic structure of manganese-based blue pigments: a high-frequency and -field EPR study.

    PubMed

    Krzystek, J; Telser, Joshua; Li, Jun; Subramanian, M A

    2015-09-21

    A variety of new oxide-based materials based on hexagonal phase of YInO3 have been recently described. In some of these materials, the In(III) ions are substituted by Mn(III), which finds itself in a trigonal-bipyramidal (TBP) coordination environment. While YInO3 is colorless and YMnO3 is black, mixed systems YIn1-xMnxO3 (0.02 < x < 0.25) display intense blue color and have been proposed as novel blue pigments. Since the Mn(III) ion is paramagnetic, its presence imparts distinct magnetic properties to the whole class of materials. These properties were investigated by electron paramagnetic resonance (EPR) in its high-frequency and -field version (HFEPR), a technique ideally suited for transition metal ions such as Mn(III) that, in contrast to, for example, Mn(II), are difficult to study by EPR at (conventional) low frequency and field. YIn1-xMnxO3 with 0.02 < x < 0.2 exhibited high-quality HFEPR spectra up to room temperature that could be interpreted as arising from isolated S = 2 paramagnets. A simple ligand-field model, based on the structure and optical spectra, explains the spin Hamiltonian parameters provided by HFEPR, which were D = +3.0 cm(-1), E = 0; g⊥ = 1.99, g∥ = 2.0. This study demonstrates the general applicability of a combined spectroscopic and classical theoretical approach to understanding the electronic structure of novel materials containing paramagnetic dopants. Moreover, HFEPR complements optical and other experimental methods as being a sensitive probe of dopant level.

  17. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  18. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    NASA Astrophysics Data System (ADS)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  19. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  20. Phytophthora infestans field isolates from Gansu province, China are genetically highly diverse and show a high frequency of self fertility.

    PubMed

    Han, Miao; Liu, Gang; Li, Ji-Ping; Govers, Francine; Zhu, Xiao-Qiong; Shen, Chong-Yao; Guo, Li-Yun

    2013-01-01

    The genetic diversity of 85 isolates of Phytophthora infestans collected in 2007 from Gansu province in China was determined and compared with 21 isolates collected before 2004. Among them, 70 belonged to the A1 mating type and 15 were self-fertile (SF). The mitochondrial DNA haplotypes revealed both Ia (25%) and IIa (75%) haplotypes. Metalaxyl resistance occurred with high frequency (54%) in Gansu. Simple sequence repeat (SSR) genotyping revealed 26 genotypes (13 from the Tianshui region) among the 85 isolates, and 18 genotypes among the 21 isolates collected before 2004, without overlap in genotypes detected in the two groups. Cluster analysis showed clear subdivisions within the different mating type isolates. Among Gansu's isolates, Nei's and Shannon's diversity indices were highest in isolates collected in Tianshui where both A1 and SF isolates were found. Analysis of molecular variance of isolates from Gansu indicated that 51% and 49% of the variance was explained by within-area and among-area variance, respectively. The results suggest that the occurrence of SF isolates increases the risk of sexual reproduction, the formation of oospore as initial inocula in the field, and affects the genotypic diversity in the population.

  1. Enhanced Hot Workability and Post-Hot Deformation Microstructure of the As-Cast Al-Zn-Cu-Mg Alloy Fabricated by Use of a High-Frequency Electromagnetic Casting with Electromagnetic Stirring

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Kim, W. J.

    2017-07-01

    The feasibility of producing an Al-Zn-Cu-Mg (7075) aluminum (Al) alloy using high-frequency electromagnetic casting (HFEMC) and electromagnetic stirring (EMS) was explored, and the microstructure, hot compressive deformation characteristics, and processing maps of the as-cast and homogenized EMS 7075 alloys were examined. The obtained results were compared with those of an alloy of the same composition, produced by direct chill casting (DCC). Application of the HFEMC/EMS technology resulted in grain refinement and suppression of dendritic growth. The grain size of the as-cast EMS 7075 alloy was smaller than that of the as-cast DCC 7075 alloy by more than half. This grain-size reduction increased the strain rate sensitivity and decreased the flow stress. The grain refinement also resulted in enhanced hot workability. Hot workability of the EMS 7075 alloy, however, considerably deteriorated after homogenization treatment. This resulted from the disappearance of the solute-segregated phases that play a role of accelerating dynamic recovery and continuous dynamic recrystallization during compressive deformation and the occurrence of considerable grain coarsening during homogenization treatment. The as-cast EMS 7075 alloy also showed a higher quality of post-hot working microstructure (after T6 heat treatment) compared to the homogenized EMS 7075 alloy. This resulted because the segregated phases in the as-cast microstructure served as the nucleation sites for new grains during static recrystallization by having created localized regions of high dislocation density around them during compressive deformation, especially at high strain rates. The current study showing that the as-cast EMS microstructure can yield a high hot workability as well as a high quality of post-hot working microstructure encourages the direct use of as-cast EMS 7075 alloy billets as feedstock for hot extrusion or forging.

  2. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  3. [Changes in physico-chemical parameters of homeopathic remedies ferrum metallicum CH6 and ferrum metallicum CH30 after exposure to high frequency electromagnetic radiation of low intensity].

    PubMed

    Mendez, N M

    2005-01-01

    It is considered the microwaves electromagnetic radiation do not affect the materials, alive or not, when used in low power. In high power, the interaction effects would be the material warming (thermal effect). However, in the last years, the studies about electromagnetic radiation with low power (non thermal effect) in the human being have been increasing. It was found out the electromagnetic radiation, even with low power, can affect the living organisms and biosubstratum. In the present work the influence of electromagnetic radiation (2.45 GHz 500 W/cm2), on physical and chemical parameters of the homeopathic pharmaceutics products in shown.

  4. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  5. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  6. Super strong electromagnetic fields and their applications

    SciTech Connect

    Bulanov, Sergei V.

    2007-07-11

    The progress in the ultra-intense laser technologies continues to open up new fields of physics. The laser accelerator development enters a new matured stage at which it becomes possible to manipulate in a controllable way the parameters of accelerated charged particle beams. In the electron acceleration the particle injection by breaking wake waves left by the laser pulse in underdense plasmas or by interacting two laser pulses results in the quasi-mono-energetic beam production. When the ions are accelerated during the laser-matter interaction the tailored multi-layer foil targets provide conditions for the high quality proton beam generation. When the laser pulse radiation pressure is dominant, the laser energy is transformed efficiently into the energy of fast ions. Ultrahigh intense electromagnetic fields can be generated due to the laser pulse compression, carrier frequency upshifting, and focusing by a counterpropagating breaking plasma wave, relativistic flying mirrors.

  7. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  8. Electromagnetic field patterning or crystal light

    NASA Astrophysics Data System (ADS)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  9. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    NAWCWD TP 8791 On Acceptable Exposures to Short Pulses of Electromagnetic Fields by Francis X. Canning, PhD Physics...prepared in response to a request to study the effects of exposure to short pulses of electromagnetic fields. The author is a physicist at the Naval... Exposures to Short Pulses of Electromagnetic Fields (U) 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  10. Evaluation of uncertainty in the measurement of environmental electromagnetic fields.

    PubMed

    Vulević, B; Osmokrović, P

    2010-09-01

    With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty.

  11. A uniform geometrical optics and an extended uniform geometrical theory of diffraction for evaluating high frequency EM fields near smooth caustics and composite shadow boundaries

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1994-01-01

    A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) are developed for evaluating high frequency electromagnetic (EM) fields within transition regions associated with a two and three dimensional smooth caustic of reflected rays and a composite shadow boundary formed by the caustic termination or the confluence of the caustic with the reflection shadow boundary (RSB). The UGO is a uniform version of the classic geometrical optics (GO). It retains the simple ray optical expressions of classic GO and employs a new set of uniform reflection coefficients. The UGO also includes a uniform version of the complex GO ray field that exists on the dark side of the smooth caustic. The EUTD is an extension of the classic uniform geometrical theory of diffraction (UTD) and accounts for the non-ray optical behavior of the UGO reflected field near caustics by using a two-variable transition function in the expressions for the edge diffraction coefficients. It also uniformly recovers the classic UTD behavior of the edge diffracted field outside the composite shadow boundary transition region. The approach employed for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the fields which is then reduced using uniform asymptotic procedures. The UGO/EUTD analysis is also employed to investigate the far-zone RCS problem of plane wave scattering from two and three dimensional polynomial defined surfaces, and uniform reflection, zero-curvature, and edge diffraction coefficients are derived. Numerical results for the scattering and diffraction from cubic and fourth order polynomial strips are also shown and the UGO/EUTD solution is validated by comparison to an independent moment method (MM) solution. The UGO/EUTD solution is also compared with the classic GO/UTD solution. The failure of the classic techniques near caustics and composite shadow boundaries is clearly

  12. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    NASA Astrophysics Data System (ADS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.

  13. A high-frequency and high-field EPR study of new azide and fluoride mononuclear Mn(III) complexes.

    PubMed

    Mantel, Claire; Hassan, Alia K; Pécaut, Jacques; Deronzier, Alain; Collomb, Marie-Noëlle; Duboc-Toia, Carole

    2003-10-08

    The isolation, structural characterization and electronic properties of three new six-coordinated Mn(III) complexes, [Mn(bpea)(F)(3)] (1), [Mn(bpea)(N(3))(3)] (2), and [Mn(terpy)(F)(3)] (3) are reported (bpea = N,N-bis(2-pyridylmethyl)-ethylamine; terpy = 2,2':6',2' '-terpyridine). As for [Mn(terpy)(N(3))(3)] (4) (previously described by Limburg J.; Vrettos J. S.; Crabtree R. H.; Brudvig G. W.; de Paula J. C.; Hassan A.; Barra A-L.; Duboc-Toia C.; Collomb M-N. Inorg. Chem. 2001, 40, 1698), all these complexes exhibit a Jahn-Teller distortion of the octahedron characteristic of high-spin Mn(III) (S = 2). The analysis of the crystallographic data shows an elongation along the tetragonal axis of the octahedron for complexes 1 and 3, while complex 2 presents an unexpected compression. The electronic properties were investigated using a high-field and high-frequency EPR study performed between 5 and 15 K (190-575 GHz). The spin Hamiltonian parameters determined in solid state are in agreement with the geometry of the complexes observed in the crystal structures. A negative D value found for 1 and 3 is related to the elongated tetragonal distortion, whereas the positive D value determined for 2 is in accordance with a compressed octahedron. The high E/D values, in the range of 0.103 to 0.230 for all complexes, are correlated with the highly distorted geometry present around the Mn(III) ion. HF-EPR experiments were also performed on complex 1 in solution and show that the D value is the only spin Hamiltonian parameter which is slightly modified compared to the solid state (D = -3.67 cm(-1) in solid state; D = -3.95 cm(-1) in solution).

  14. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  15. Properties of electromagnetic field focusing probe.

    PubMed

    Yamanashi, W S; Yassa, N A; Hill, D L; Patil, A A; Lester, P D

    1988-11-01

    The electromagnetic field focusing (EFF) apparatus consists of a radio frequency generator, solenoidal coil, and a hand-held or catheter probe. Applications such as aneurysm treatment, angioplasty, and neurosurgery in various models have been reported. The probe is operated in the near field (within one wavelength of an electromagnetic field source) of a coil inducing eddy currents in biological tissues, producing maximal convergence of the induced current at the probe tip. The probe produces very high temperatures depending on the wattage selected for the given radio frequency of output power. The high temperature can be used in cutting, cauterizing, or vaporizing. The EFF probe is comparable to different types of lasers and to bipolar and monopolar cautery. The EFF probe can be used with catheters or endoscopes. Objectives of this study were to determine what the thermal properties of the EFF probe are and how instrument parameters can be varied to obtain different temperatures in the tissue near the probe tip. In this study an F2 catheter was used as an insulated sheath and the tip of the guide wire was used as the probe tip. Different powers, wave forms, coil-to-probe distances, and probe-tip lengths were tested on a phantom that simulates tissue electrical properties. Some of the experiments were conducted under normal saline to simulate treatment of tissue with body fluids such as blood vessels or brain tissue under normal physiologic conditions. It is concluded that the EFF probe has the advantages of easy manipulation, relative safety, cost effectiveness, and a high degree of spatial control.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The electromagnetic field equations for moving media

    NASA Astrophysics Data System (ADS)

    Ivezić, T.

    2017-05-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F (x) and ℳ(x) are presented and then these equations are written with the 4D vectors E(x), B(x), P (x) and M(x). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime

  17. Visualizing electromagnetic fields in metals by MRI

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Chandrika Sefcikova; Shellikeri, Annadanesh; Chandrashekar, S.; Taylor, Erika A.; Taylor, Deanne M.

    2017-02-01

    Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels) of identical size (=Δ x Δ y Δ z ). By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels) from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.

  18. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  19. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    SciTech Connect

    Komar, A.; Pokol, G. I.; Fueloep, T.

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  20. Mortality in workers exposed to electromagnetic fields.

    PubMed Central

    Milham, S

    1985-01-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia [International Classification of Diseases (ICD), seventh revision 204] and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic. PMID:4085433

  1. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  2. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  3. Electromagnetic fields and male breast cancer.

    PubMed

    Tynes, T

    1993-01-01

    The aetiology of male breast cancer is still considered to be rather unclear. Epidemiological studies have recently shown an excess risk of male breast cancer in "electrical workers" with potential exposure to electromagnetic (EM) fields. Interest on the possible association between pineal function and breast cancer has come into focus. The pineal hormone melatonin has been shown to reduce the incidence of experimentally-induced breast cancer in rats, the hormone is oncostatic and cytotoxic to breast, ovarian, and bladder cancer cell lines in vitro. Treatment of cancer patients with orally administered melatonin has been tried. Pineal function in humans is suppressed by light-at-night (LAN). Animal studies have shown that exposure to 60-Hz electric fields may also suppress the nocturnal rise in pineal melatonin production in adult rats. Breast cancer is the leading cause of cancer death among women in industrialised world. No good explanation has so far been provided for the increased incidence of this site during the last decades, although changes in fertility factors have had some effect. If new epidemiological and experimental data give support to the hypothesis that exposure to LAN and EM fields may increase breast cancer risk, this may have regulatory and political consequences for future use of electric power.

  4. Electromagnetic field at finite temperature: A first order approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  5. Electromagnetically induced transparency in modulated laser fields

    NASA Astrophysics Data System (ADS)

    Jiao, Yuechun; Yang, Zhiwei; Zhang, Hao; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2017-02-01

    We study electromagnetically induced transparency (EIT) in a room-temperature cesium vapor cell using wavelength-modulated probe laser light. In the utilized cascade level scheme, the probe laser drives the lower transition 6S {}1/2(F = 4) → 6P {}3/2 (F’ = 5), while the coupling laser drives the Rydberg transition 6P {}3/2 → 57S {}1/2. The probe laser has a fixed average frequency and is modulated at a frequency of a few kHz, with a variable modulation amplitude in the range of tens of MHz. The probe transmission is measured as a function of the detuning of the coupling laser from the Rydberg resonance. The first-harmonic demodulated EIT signal has two peaks that are, in the case of large modulation amplitude, separated by the peak-to-peak modulation amplitude of the probe laser times a scaling factor {λ }{{p}}/{λ }{{c}}, where {λ }{{p}} and {λ }{{c}} are the probe- and coupling-laser wavelengths. The scaling factor is due to Doppler shifts in the EIT geometry. Second-harmonic demodulated EIT signals, obtained with small modulation amplitudes, yield spectral lines that are much narrower than corresponding lines in the modulation-free EIT spectra. The resultant spectroscopic resolution enhancement is conducive to improved measurements of radio-frequency (RF) fields based on Rydberg-atom EIT, an approach in which the response of Rydberg atoms to RF fields is exploited to characterize RF fields. Here, we employ wavelength modulation spectroscopy to reduce the uncertainty of atom-based frequency and field measurement of an RF field in the VHF radio band.

  6. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  7. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  8. Fluxes of electromagnetic field energy in HTSC transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2016-12-01

    The transfer of electric power in an HTSC electromagnetic system is considered using the Poynting vector. An analysis of the process of transfer of electromagnetic field energy in HTSC transformers with and without an iron core is given. It is shown that the power of an HTSC transformer increases when its magnetic core is made from amorphous electrical steel. Schemes of HTSC transformers with a localized magnetic field are given with cylindrical and disk symmetrical interleaved windings providing the cost-saving process of transfer of large electromagnetic energy at a high degree of its uniformity and improve the factor of nonuniformity of electromagnetic flux density.

  9. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  10. High Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gatteschi, D.

    EPR has traditionally been used in order to obtain structural information on transition metal compounds, with exciting frequencies in the range 9-35 GHz.The recent availability of high magnetic field has prompted the use of higher frequencies. In this contribution the advantages of using High-Field-High-Frequency EPR (HF EPR) experiments are reviewed. After a brief introduction aiming to recall the fundamentals of EPR spectroscopy, a short description of the experimental apparatus needed to perform HF EPR measurements is provided. The remaining sections report selected examples showing how much information can be obtained by HF EPR spectra. They range from individual ions with integer spin to molecular clusters. Particular attention is devoted to the so called Single Molecule Magnets, SMM, i.e. to molecular clusters which show slow relaxation of the magnetization at low temperature. This effect is due to Ising type magnetic anisotropy which has been efficiently monitored through HF EPR s pectroscopy.

  11. Electromagnetic field of a charge moving in a chiral isotropic medium.

    PubMed

    Galyamin, Sergey N; Peshkov, Anton A; Tyukhtin, Andrey V

    2013-07-01

    We analyze the electromagnetic field generated by a point charge moving with a constant velocity in an isotropic chiral medium. We work in the frame of the Condon dispersion model for the weak chirality and ultrarelativistic motion of the charge. We show that the field of a moving charge contains two low-frequency wave processes with right- and left-hand circular polarizations and a high-frequency wave process with a right-hand polarization. The low-frequency wave field exists at an arbitrary charge velocity and oscillates at a frequency of the order of the resonant frequency of the medium. This effect is of most importance near the charge trajectory. The high-frequency wave field arises at an ultrahigh velocity and is essential near the plane of charge dislocation for a sufficiently large offset from the trajectory. This wave field oscillates at a frequency that is considerably greater (up to several orders) than the resonant frequency of the medium. Intriguingly, both of these phenomena exist in the domain in front of the charge, thus producing the low- and high-frequency wave forerunners correspondingly.

  12. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Electromagnetic Fields Limits and Policies AGENCY: Federal Communications Commission. ACTION: Proposed rule... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will...

  13. Proposal of High-Frequency Magnetic Field Immunity Test for Medical Devices, and Design and Development of Coil for the Test

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiko; Koshiji, Kohji

    Medical devices have been obliged to satisfy electromagnetic compatibility by revision of the pharmaceutical affairs law. However, even if the medical devices satisfy the electromagnetic compatibility based on the law, it is not necessarily safe. Sometimes, malfunctions of cardiac pacemaker are caused by the magnetic field leaked from an induction heating cooker. In this paper, a new method of electromagnetic susceptability (EMS) evaluation is proposed, and a loop coil for the magnetic field immunity test in the frequency range from 10kHz to 3MHz is designed and developed. As a result, the loop coil made on an experimental basis generated uniform magnetic field with a fluctuation within 3.3dB in the loop coil pane and 5.6dB along the coil axis.

  14. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  15. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  16. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  17. Interpreting marine controlled source electromagnetic field behaviour with streamlines

    NASA Astrophysics Data System (ADS)

    Pethick, A. M.; Harris, B. D.

    2013-10-01

    Streamlines represent particle motion within a vector field as a single line structure and have been used in many areas of geophysics. We extend the concept of streamlines to interactive three dimensional representations of the coupled vector fields generated during marine controlled source electromagnetic surveys. These vector fields have measurable amplitudes throughout many hundreds of cubic kilometres. Electromagnetic streamline representation makes electromagnetic interactions within complex geo-electrical setting comprehensible. We develop an interface to rapidly compute and interactively visualise the electric and magnetic fields as streamlines for 3D marine controlled source electromagnetic surveys. Several examples highlighting how interactive use has value in marine controlled source electromagnetic survey design, interpretation and teaching are provided. The first videos of electric, magnetic and Poynting vector field streamlines are provided along with the first published example of the airwave represented as streamlines. We demonstrate that the electric field airwave is a circulating vortex moving down and out from the air-water interface towards the ocean floor. The use of interactive streamlines is not limited to marine controlled source electromagnetic methods. Streamlines provides a high level visualisation tool for interpreting the electric and magnetic field behaviour generated by a wide range of electromagnetic survey configurations for complex 3D geo-electrical settings.

  18. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  19. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  20. An experiment to study strong electromagnetic fields at RHIC

    SciTech Connect

    Fatyga, M. ); Norbury, J.W. . Dept. of Physics)

    1990-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e{sup +}e{sup {minus}} pairs in the elastic scattering of two heavy ions at RHIC. A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  1. The van Cittert-Zernike theorem for electromagnetic fields.

    PubMed

    Ostrovsky, Andrey S; Martínez-Niconoff, Gabriel; Martínez-Vara, Patricia; Olvera-Santamaría, Miguel A

    2009-02-02

    The van Cittert-Zernike theorem, well known for the scalar optical fields, is generalized for the case of vector electromagnetic fields. The deduced theorem shows that the degree of coherence of the electromagnetic field produced by the completely incoherent vector source increases on propagation whereas the degree of polarization remains unchanged. The possible application of the deduced theorem is illustrated by an example of optical simulation of partially coherent and partially polarized secondary source with the controlled statistical properties.

  2. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  3. Self-localized and self-constricted electromagnetic field in plasma and atmosphere

    SciTech Connect

    Alanakyan, Yu. R.

    2016-05-15

    A possibility of creation of a super-high-frequency electromagnetic-field clot in the plasma is shown. Two cases of the field self-localization in the plasma are considered. In the first case, a super-high-frequency electric field creates an annular channel by displacing the plasma and induces a curl-like magnetic field inside. In the second case, the electric field creates a toroidal channel where different field structures are possible. For example, the magnetic lines of the force are aligned along the big circle of the torus, while the curl-like electric lines are aligned along the small circle. Otherwise, the magnetic field is curl-like and the electric-field lines are aligned along the big circle. We evaluate the electric field energy that is required for a curl-like structure of about 3 cm in size to exist during 10 s in the atmospheric air. This energy sustains plasma in the vicinity of the curl-like area.

  4. Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Pitts, F. L.

    1982-01-01

    Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.

  5. Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Pitts, F. L.

    1982-01-01

    Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.

  6. Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields.

    PubMed

    Jinapang, Peeraya; Prakob, Panida; Wongwattananard, Pongtorn; Islam, Naz E; Kirawanich, Phumin

    2010-10-01

    Effects of high-frequency, continuous wave (CW) electromagnetic fields on mung beans (Vigna radiata L.) and water convolvuluses (Ipomoea aquatica Forssk.) were studied at different growth stages (pre-sown seed and early seedling). Specifically, the effects of the electromagnetic source's power and duration (defined as power-duration level) on the growth of the two species were studied. Mung beans and water convolvuluses were exposed to electromagnetic fields inside a specially designed chamber for optimum field absorption, and the responses of the seeds to a constant frequency at various power levels and durations of exposure were monitored. The frequency used in the experiments was 425 MHz, the field strengths were 1 mW, 100 mW, and 10 W, and the exposure durations were 1, 2, and 4 h. Results show that germination enhancement is optimum for the mung beans at 100 mW/1 h power-duration level, while for water convolvuluses the optimum germination power-duration level was 1 mW/2 h. When both seed types were exposed at the early sprouting phase with their respective optimum power-duration levels for optimum seed growth, water convolvuluses showed growth enhancement while mung bean sprouts showed no effects. Water content analysis of the seeds suggests thermal effects only at higher field strength.

  7. [Electromagnetic fields in melting divisions of nickel production].

    PubMed

    Nikitina, V N; Liashko, G G; Nikanov, A N; Nikitina, N Iu

    2004-01-01

    The authors evaluated electromagnetic situation in melting divisions, on transformer substation. Studies covered alternating electric and magnetic fields of industrial frequencies and direct magnetic fields in fire mode of nickel production on workplaces during working shifts. Results proved that induction of the magnetic fields varies widely. Magnetic fields influence is accidental and remains additional factor affecting human body.

  8. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  9. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  10. [Pulsed electromagnetic fields (PEMF)--results in evidence based medicine].

    PubMed

    Pieber, Karin; Schuhfried, Othmar; Fialka-Moser, Veronika

    2007-01-01

    Therapy with electromagnetic fields has a very old tradition in medicine. The indications are widespread, whereas little is known about the effects. Controlled randomizied studies with positive results for pulsed electromagnetic fields (PEMF) are available for osteotomies, the healing of skin wounds, and osteoarthritis. Comparison of the studies is difficult because of the different doses applied and intervals of therapy. Therefore recommendations regarding an optimal dosis and interval are, depending on the disease, quite variable.

  11. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  12. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band.

    PubMed

    Wainwright, P R

    2003-10-07

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.

  13. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  14. Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow

    SciTech Connect

    Schweigert, I. V.

    2012-08-15

    The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

  15. Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III. 50 Hz electromagnetic fields.

    PubMed

    Zecca, L; Mantegazza, C; Margonato, V; Cerretelli, P; Caniatti, M; Piva, F; Dondi, D; Hagino, N

    1998-01-01

    Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5microT - 1kV/m and 100microT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions.

  16. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  17. [Bioeffects of electromagnetic fields--safety limits of each frequency band, especially less than radio one].

    PubMed

    Nakagawa, M

    1996-01-01

    Since Wertheimer and Leeper reported in 1979 that children living near power distribution lines have as high as twice or three times the incidence of cancer, the relation of leukemia or cancer to extremely-low-frequency (ELF) electromagnetic field (EMF) has been a subject of repeated argument. We cannot sum up the bioeffects of EMF in a few words, for these are attributed to frequency difference. This review discusses the bioeffects of EMF ranging from frequency of microwave to static magnetic field with main stress on the socalled non-thermal effects below radiofrequency band. Non-thermal effects are rather weak compared with those of high frequency band and have been treated as unknown matter for a long period. However, as the EMF energy has come to be increasingly used at high levels, we can now clearly detect the bioeffects of induced eddy currents. On the other hand, some findings about low level ELF electromagnetic field suspected as a cancer-promoting factor are mainly gained by epidemiological method. Cancer researchers concerned with recent powerline issues are coming up with many reports on oncological effects of very low-level (0.1 microT order) ELF electromagnetic fields. More data, however, should be collected to reach appropriate conclusion about the possibility of low level ELF electromagnetic fields have an effect of cancer promotion. As for the safety standards of static magnetic field it should be noted that in 1993 National Radiation Protection Board (UK) and International Radiation Protection Association published the highest values ever recommended. These announcements would agree with our assumption that biological processes require high flux density of ELF-EMF proportional to 1/f, where frequency and flux density are indicated with a logarithmic function.

  18. [In the consumers' interest: precautionary principles for protection against electromagnetic fields].

    PubMed

    Dehos, A; Weiss, W

    2002-12-01

    The considerable increase in using mobile communication which will increase when new technologies, such as UMTS, are introduced has resulted in further public interest concerning the possible health risks from electromagnetic fields of cellular phone networks. In view of evaluating the scientific state-of-the art, it has been shown that based on the available scientific results, the individual risk in view of proved health consequences is considered low. There are, however, indications of biological effects of high-frequency electromagnetic fields, even at intensities below the currently applied limit values or recommendations for limit values. Although the health relevance of these effects is still unclear, they give reason to precautionary measures with the object to minimise possible health risks which might affect a large number of persons. The precautionary measures recommended by the Federal Office for Radiation Protection include three principles: 1. Exposure of the general public to electromagnetic fields should be as low as possible. This applies for both the fixed parts of cellular phone networks and for mobile phones. 2. The population should be informed of risks in an objective and comprehensive way and be involved in the decisions on the construction and operation of cellular phone networks. 3. Scientific uncertainties should be reduced by means of well-directed research programmes. These precautionary measures and the significance of limit values are explained below.

  19. Basic Materials for Electromagnetic Field Standards

    DTIC Science & Technology

    2003-03-04

    choliner- gic processes // Labor Hygiene and Biological Effects of electromagnetic waves of ra- diofrequencies. Proceedings of 3rd All-Union Symposium...Microwave on Blood asparthate Amine transferase Enzymatic System. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2001. Vol. 41. No.1...under Increased Temperature. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2002. Vol. 42. No.1, pp. 191–193. 13. T.P. Semenova

  20. MESA: a new configuration for measuring electromagnetic field fluctuations.

    PubMed

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  1. High frequency variations of the main magnetic field: convergence of observations and theory (Petrus Peregrinus Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Jault, Dominique

    2013-04-01

    Understanding the main magnetic field variations has been hindered by the discrepancy between the periods (from months to years) of the simplest linear wave phenomena and the relatively long time intervals (10 to 100 years) over which magnetic field changes can be confidently monitored. A theoretical description of short-period waves within the Earth's fluid core is at hand. Quasi-geostrophic inertial waves (akin to Rossby waves in the atmosphere) are slightly modified in the presence of magnetic fields and torsional oscillations consist of differential motion between coaxial rigid cylindrical annuli. Torsional oscillations are sensitive to the whole magnetic field that they shear in the course of their propagation. From their modelling, we have thus gained an estimate for the magnetic field strength in the core interior. There is now ongoing work to extend the theoretical framework to longer times. Furthermore, data collected from the Swarm constellation of three satellites to be launched this year by ESA will permit to better separate the internal and external magnetic signals. We may thus dream to detect quasi-geostrophic inertial waves. As the spectral ranges of theoretical models and observations begin to overlap, we can now go beyond the understanding of the magnetic field variations as the juxtaposition of partial models, arranged as a set of nested Matryoshka dolls. This talk will give illustrations for this statement, among which the question of induction in the lower mantle.

  2. Detection of flashing areas attributed to the frog cardiac function in the vagosympathetic trunk placed into a high frequency electric field.

    PubMed

    Pokrovskii, V M; Abushkevich, V G; Perova, Yu Yu; Perova, M Yu; Pokhotko, A G; Ardelyan, A N

    2016-05-01

    In a high frequency electric field, two flashing areas were observed during each contraction of the heart in the vagosympathetic trunk of a paralyzed frog with an intact brain. One area with a higher diameter was moving along the nerve from the heart at a speed of 16.6 ± 0.2 m/s. It was identified as afferent. Another area with a smaller diameter was spreading along the nerve towards the venous sinus of the frog heart at a speed of 5.6 ± 0.3 m/s, and it was efferent.

  3. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  4. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    NASA Astrophysics Data System (ADS)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  5. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  6. Electromagnetic Fields Produced by Inclined Return Stroke Channel

    NASA Astrophysics Data System (ADS)

    Nemamcha, Abdelmalek; Houabes, Mourad

    2014-05-01

    In this paper further theoretical investigations to understand and elucidate recently raised questions on the characteristics of lightning return-strokes curried out. Using Antenna Theory (AT) model, which is extended to take into account the channel inclination, the electromagnetic fields expressions for vertical dipole are completed, and an inclined channel is properly modeled, vertical electric and azimuthally magnetic fields are computed at different distances (close, intermediate and far distance ranges). The computations show that amplitudes and wave forms of the electromagnetic fields at close and intermediate lightning environment are considerably affected by the channel inclination.

  7. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  8. A model for the scattering of high-frequency electromagnetic fields from dielectrics exhibiting thermally-activated electrical losses

    NASA Technical Reports Server (NTRS)

    Hann, Raiford E.

    1991-01-01

    An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.

  9. Implementation of the Numerical Electromagnetic Code (NEC-2) for Modeling the VOR (Very-High-Frequency Omni-Directional Range) Navigation System in the Presence of Parasitic Scatterers

    DTIC Science & Technology

    1986-06-13

    TIME FROM 0 TO 1/30 SECONDS IN 256 STEPS C DO 20 INC = 1,256 T = DFLOAT(INC-1)/(256.DO*30.D0) CREF = DCMPLX(O.DO,2.DO) C C CALCULATE RECEIVED FIELD... STEPS C DO 20 INC =1,256 T = FLOAT(INC-1)/(2156.D0*30.D0) CBIAS =CMPLX(0.DO,2.DO) C C CALCULATE RECEIVED FIELD FOR GIVEN TIME AND POSITION C CREC(INC...FAZR) AIMVLT(I,N)=VLTSPM(I,N)*DSIN(FAZR) 55 CONTINUE C C OUTSIDE LOOP INCREMENTS AZIMUTH ANGLE IN 5 DEGREE STEPS C 1 00 30 IAZ = 1,7.3 AZ = DFLOAT(IAZ

  10. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  11. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  12. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  13. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  14. Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma

    SciTech Connect

    Bondarenko, A. S. Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Constantin, C. G.; Niemann, C.

    2014-12-15

    The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicular expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered.

  15. High frequency electromagnetic properties of interstitial-atom-modified Ce{sub 2}Fe{sub 17}N{sub X} and its composites

    SciTech Connect

    Li, L. Z.; Wei, J. Z.; Xia, Y. H.; Wu, R.; Yun, C.; Yang, Y. B.; Yang, W. Y.; Du, H. L.; Han, J. Z.; Liu, S. Q.; Yang, Y. C.; Wang, C. S. E-mail: jbyang@pku.edu.cn; Yang, J. B. E-mail: jbyang@pku.edu.cn

    2014-07-14

    The magnetic and microwave absorption properties of the interstitial atom modified intermetallic compound Ce{sub 2}Fe{sub 17}N{sub X} have been investigated. The Ce{sub 2}Fe{sub 17}N{sub X} compound shows a planar anisotropy with saturation magnetization of 1088 kA/m at room temperature. The Ce{sub 2}Fe{sub 17}N{sub X} paraffin composite with a mass ratio of 1:1 exhibits a permeability of μ′ = 2.7 at low frequency, together with a reflection loss of −26 dB at 6.9 GHz with a thickness of 1.5 mm and −60 dB at 2.2 GHz with a thickness of 4.0 mm. It was found that this composite increases the Snoek limit and exhibits both high working frequency and permeability due to its high saturation magnetization and high ratio of the c-axis anisotropy field to the basal plane anisotropy field. Hence, it is possible that this composite can be used as a high-performance thin layer microwave absorber.

  16. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  17. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted.

  18. Quantum processes in short and intensive electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  19. Electromagnetic Propulsion System for Spacecraft using Geomagnetic fields and Superconductors

    NASA Astrophysics Data System (ADS)

    Dadhich, Anang

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

  20. The electromagnetic bio-field: clinical experiments and interferences

    PubMed Central

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-01-01

    Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878

  1. The electromagnetic bio-field: clinical experiments and interferences.

    PubMed

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  2. The influence of interface traps on the high frequency and high temperature performance of SiC field effect transistors

    SciTech Connect

    Aydin, H.; Dryfuse, M.W.; Tabib-Azar, M.

    1996-12-31

    Fast and slow interface traps can considerably deteriorate the performance of field effect transistors. Slow interface traps, by slowly changing their charge occupancy, contribute to a drift in the quiescent operation point of the transistor, while fast traps deteriorate the device performance by contributing to both amplitude and phase current noise. They also result in a non-equilibrium surface depletion layer between gate and source which increases the gate-to-source parasitic resistance and deteriorates the device transconductance. The authors examine these different effects and present some preliminary data regarding interface traps in boron-doped 6H-SiC.

  3. On electromagnetic fields and their applications in the early universe

    NASA Astrophysics Data System (ADS)

    Ahonen, Jarkko Tapani

    1998-07-01

    The field equations of the electromagnetic field, combined with models of the early universe, make it possible to study electromagnetic phenomena at the early stages of the universe. Electromagnetic fields provide us with a tool to estimate electrical conductivity and transport coefficients (heat conductivity and viscosity) in the primordial plasma of the hot early universe. Electrical conductivity plays an important role, for example, in the dissipation of the axion field (a weakly interacting dark matter candidate) and in the creation and dissipation of the primordial magnetic field. On the other hand, heat conductivity and shear viscosity are important, for example, in connection with primordial density perturbations, i.e., galaxy formation, early phase transitions, and primordial magnetic fields. First, in paper I, we derived the equations of motion for the axion field coupled with an electromagnetic field. It was found that energy from the axion field can be transferred to the electromagnetic field. Therefore the damping of the axion field depends on electrical conductivity but that the electromagnetic dissipation cannot, however, significantly damp the axion field. In paper II we developed the tools with which to estimate electrical conductivity in the primordial plasma. We used the Boltzmann collision equation to study how a beam of charged particles will be scattered in the early hot universe. We integrated the collision integral numerically by a simple Monte Carlo integration routine. We discovered that the charged leptons give the largest contribution to the electrical conductivity; the quark contribution was found to be negligible. In Paper III, we estimated with an Abelian Higgs model what kind of a primordial magnetic field can be created in first order phase transition bubble collisions. Assuming that the Abelian model reflects the properties of the full electroweak case, we found that the seed field created is of the right order of magnitude in order

  4. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme.

  5. New Performance Indicators of Metal-Oxide-Semiconductor Field-Effect Transistors for High-Frequency Power-Conscious Design

    NASA Astrophysics Data System (ADS)

    Katayama, Kosuke; Fujishima, Minoru

    2012-02-01

    With the progress of complementary metal-oxide-semiconductor (CMOS) process technology, it is possible to apply CMOS devices to millimeter-wave amplifier design. However, the power consumption of the system becomes higher in proportion to its target frequency. Moreover, CMOS devices are biased at a point where the device achieves the highest gain and consumes much power. In order to reduce the power consumption without any compromise, we introduce two types of indicator. One works towards achieving the highest gain with the lowest power consumption. The other works towards achieving the highest linearity with consideration of the power consumption. In this work, we have shown the effectiveness of those indicators by applying measured data of the fabricated metal-oxide-semiconductor field-effect transistors (MOSFETs) to cascade common-source amplifiers.

  6. Kinetic theory of plasma equilibrium in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gorbunov, L. M.; Gradov, O. M.; Ziunder, D.; Ramazashvili, R. R.

    1981-04-01

    The present study examines the equilibrium of a direct-current-carrying plasma in an electromagnetic field under the assumption that the particles escaping from the plasma have a Maxwellian distribution. It is shown that an equilibrium state is possible only in the case of a definite relationship between the amplitude of the incident wave and the concentration of escaping particles. Attention is given to spatial variations of the electromagnetic field, and of the plasma density and flow velocity. The application of these effects in microwave devices is discussed.

  7. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  8. Effects of an intense, high-frequency laser field on bound states in Ga1 - xInxNyAs1 - y/GaAs double quantum well.

    PubMed

    Ungan, Fatih; Yesilgul, Unal; Sakiroğlu, Serpil; Kasapoglu, Esin; Erol, Ayse; Arikan, Mehmet Cetin; Sarı, Huseyin; Sökmen, Ismail

    2012-10-31

    Within the envelope function approach and the effective-mass approximation, we have investigated theoretically the effect of an intense, high-frequency laser field on the bound states in a GaxIn1 - xNyAs1 - y/GaAs double quantum well for different nitrogen and indium mole concentrations. The laser-dressed potential, bound states, and squared wave functions related to these bound states in Ga1 - xInxNyAs1 - y/GaAs double quantum well are investigated as a function of the position and laser-dressing parameter. Our numerical results show that both intense laser field and nitrogen (indium) incorporation into the GaInNAs have strong influences on carrier localization.

  9. Electromagnetic field optimisation procedure for the microwave oven

    NASA Astrophysics Data System (ADS)

    Xiaowei, G.; Lin, M.; Yiqin, S.

    2010-03-01

    This article introduces one method for optimising a microwave oven using microwave CAD technology. The precision model of a microwave oven cavity is created by high-frequency electromagnetic simulation software, and the electric characteristic parameter of the materials are set in the cavity so the simulation model is very close to a practical oven cavity. A new experimental set-up consisting of a multimode microwave cavity, a dielectric parametric test system, a vector network analyser, a microwave power source (magnetron) and a thermo-graphic camera has been built and tested. Comparing the simulation result with the experimental measures (phase polar and power loss), their total properties are consistent. It is proved that the method presented here is practical and useful. So optimisation of the oven design is easily done by modifying the cavity model.

  10. High frequency inductive measurements of organic conductors with the application of high magnetic fields and low temperatures

    NASA Astrophysics Data System (ADS)

    Winter, Laurel E.

    Organic conductors are interesting to study due to their low dimensionality that leads to a number of competing low temperature ground states. Comprised of a number of different molecules that can be varied by the substitution of one atom for another, organic systems also provide a large number of similar compounds that lend themselves to comparison studies. Two such low-dimensional organic conductors, Per2[Pt(mnt)2] and (TMTSF)2ClO4, which are members of large families of compounds, are the topic of this dissertation. Both materials are considered quasi-one-dimensional and have a number of low temperature transitions, some of which can be studied via changes in the magnetic properties of the systems. The Per2[M(mnt)2] family of compounds provides a system for exploring the similarities and differences of the system's properties when the metal M has a localized spin (M = Pt, Ni, and Fe) versus when the metal is diamagnetic (M = Au, Cu, and Co). In the case of Per2[Pt(mnt)2] - one of the compounds of focus in this dissertation - the metallic perylene chains undergo a metal- insulator transition due to the formation of a charge density wave at Tc ~ 8 K, which also occurs in Per2[Au(mnt)2] at 12 K. However, unlike in the M = Au compound, an additional transition occurs in the M = Pt compound due to the localized Pt spins (S = 1/2) on the insulating Pt(mnt)2 chains - the spin chains of Per2[Pt(mnt)2] undergo a spin-Peierls transition at 8 K. One focus of the experimental work of this dissertation focuses on the magnetic properties of the spin chains in Per2[Pt(mnt)2], via inductive susceptibility measurements at temperatures down to 0.5 K and fields up to 60 T. The experimental results show a coupling of the spin-Peierls and charge density wave states below 8 K and 20 T, above which both states are suppressed. Further measurements show a second spin state transition occurs above 20 T that coincides with a field induced insulating state in the perylene chains. These

  11. High frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma

    NASA Astrophysics Data System (ADS)

    Bickford, C. P.; McDowell, N. G.; Erhardt, E. B.; Hanson, D. T.

    2008-12-01

    We present field observations of leaf gas exchange, carbon isotope discrimination (Δ) and internal conductance of CO2 to the sites of carboxylation (gi) collected during summer 2006 using tunable diode laser spectroscopy (TDL). Δ ranged from 27.4‰ to 12.6‰ over diurnal periods with daily means of 16.3 ± 0.2‰ during drought to 19.0 ± 0.5‰ during monsoon conditions. We observed a large range in gi, from 0.03-2.03 μmol m-2 s-1 Pa-1 among measured leaves. We tested the comprehensive Farquhar, OLeary & Berry (1982) model of Δ (Δcomp), a simplified form of Δcomp (Δsimple), and recently suggested amendments (Δrevised; Wingate et al. 2007). Sensitivity analyses demonstrated that incorporating variable gi had a substantial effect on Δcomp, resulting in mean differences between observed Δ (Δobs) and Δcomp predictions as low as 0.04‰ and as high as 9.6‰. We found first order linear models adequately described the relationship between Δ and the ratio of substomatal to atmospheric CO2 partial pressure (pi/pa) on all three days, but curvilinear second order models best described the relationship in July and August, potentially due to the dominance of respiration and associated isotopic signatures at high pi/pa. There was good agreement between Δobs and predictions from all models, with Δsimple producing the best fit of Δobs in June, Δcomp producing the best fit in July, and Δrevised producing the best fit in August.

  12. Optimal control of electromagnetic field using metallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  13. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  14. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  15. Drivers of nitrogen dynamics in ecologically based agriculture revealed by long-term, high-frequency field measurements.

    PubMed

    Finney, Denise M; Eckert, Sara E; Kaye, Jason P

    2015-12-01

    Nitrogen (N) loss from agriculture impacts ecosystems worldwide. One strategy to mitigate these losses, ecologically based nutrient management (ENM), seeks to recouple carbon (C) and N cycles to reduce environmental losses and supply N to cash crops. However, our capacity to apply ENM is limited by a lack of field-based high-resolution data on N dynamics in actual production contexts. We used data from a five-year study of organic cropping systems to investigate soil inorganic N (SIN) variability and nitrate (NO3-) leaching in ENM. Four production systems initiated in 2007 and 2008 in central Pennsylvania varied in crop rotation, timing and intensity of tillage, inclusion of fallow periods, and N inputs. Extractable SIN was measured fortnightly from March through November throughout the experiment, and NO3- N concentration below the rooting zone was sampled with lysimeters during the first year of the 2008 start. We used recursive partitioning models to assess the importance of management and environmental factors to SIN variability and NO3- leaching and identify interactions between influential variables. Air temperature and tillage were the most important drivers of SIN across systems. The highest SIN concentrations occurred when the average air temperature three weeks prior to measurement was above 21 degrees C. Above this temperature and within 109 days of moldboard plowing, average SIN concentrations were 22.1 mg N/kg soil; 109 days or more past plowing average SIN dropped to 7.7 mg N/kg soil. Other drivers of SIN dynamics were N available from manure and cover crops. Highest average leachate NO3- N concentrations (15.2 ppm) occurred in fall and winter when SIN was above 4.9 mg/kg six weeks prior to leachate collection. Late season tillage operations leading to elevated SIN and leachate NO3- N concentrations were a strategy to reduce weeds while meeting consumer demand for organic products. Thus, while tillage that incorporates organic N inputs preceding cash

  16. Deformation methods in modelling of the inner magnetospheric electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.

    2007-12-01

    Various deformation methods have been widely used in animation image processing. In common terms, they are mathematical presentations of deformations of an image drawn on an elastic material under stretching or compression of the material. Such a method has also been used in modelling of the magnetospheric magnetic fields, and recently been generalized to include also the electric fields. In this presentations, the theory of the deformation method and an application in a form of a new global magnetospheric electromagnetic field model are previewed. The main focus of the presentation is on the inner magnetospheric current systems and associated electromagnetic fields during quiet and disturbed periods. Finally, a short look at the modern deformation methods in image processing is taken. These methods include the Free Form Deformations and Moving Least Squares Deformations, and their future applications in magnetospheric field modelling are discussed.

  17. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  18. High frequency power distribution system

    NASA Astrophysics Data System (ADS)

    Patel, Mikund R.

    1986-04-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  19. Ionization of atoms in strong low-frequency electromagnetic field

    SciTech Connect

    Krainov, V. P.

    2010-08-15

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  20. Electromagnetic time reversal focusing of near field waves in metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  1. Relativistic Particle in Electromagnetic Fields with a Generalized Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Merad, M.; Zeroual, F.; Falek, M.

    2012-05-01

    In this paper, we propose to solve the relativistic Klein-Gordon and Dirac equations subjected to the action of a uniform electromagnetic field with a generalized uncertainty principle in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limit case is then deduced for a small parameter of deformation.

  2. Transducer measures temperature differentials in presence of strong electromagnetic fields

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of temperature rise of cooling water under pressure and in strong electromagnetic fields is accomplished by a transducer using a magnetically shielded thermocouple arrangement. The thermocouple junctions are immersed in oil to isolate them from electric currents in the water.

  3. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  4. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  5. Electromagnetic Field in Lyra Manifold: A First Order Approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; de Melo, C. A. M.; Pimentel, B. M.

    2005-12-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  6. Oscillator strength sum rules with an external electromagnetic field

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Sabin, John R.; Öhrn, Yngve; Oddershede, J.

    1998-04-01

    We demonstrate that the Bethe, and therefore the Thomas-Reiche-Kuhn, sum rule is unaffected by the presence of an applied external electromagnetic field in the exact case. We use the consequence that the first-order perturbation contribution must also vanish to derive a necessary condition for the completeness of computational one-electron basis sets.

  7. Does three-dimensional electromagnetic field inherit the spacetime symmetries?

    NASA Astrophysics Data System (ADS)

    Cvitan, M.; Dominis Prester, P.; Smolić, I.

    2016-04-01

    We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.

  8. High Frequency Electromagnetic Propagation/Scattering Codes

    DTIC Science & Technology

    2000-09-01

    Journal of Mathematical Analysis and Applications , 77...Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [12] Y.T. Lo, S.W. Lee, editors, Antenna Handbook, Theory...Widom, Eigenvalue Distribution of Time and Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [20] D.

  9. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    PubMed

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  10. Measurement of radiated electromagnetic field levels before and after a changeover to energy-efficient lighting.

    PubMed

    Kerr, L N; Boivin, W S; Boyd, S M; Coletta, J N

    2001-01-01

    An energy-efficient lighting retrofit at the Food and Drug Administration (FDA) Winchester Engineering and Analytical Center (WEAC) presented the opportunity to measure the electromagnetic (EM) environments in several rooms before and after changing the fluorescent lighting systems and to compare the changes in EM fields with the proposed standard EM immunity levels. Three rooms, representing the types of work areas in the laboratory, were selected and measured before and after the lighting changeover. Electric and magnetic field measurements were taken in the extremely low frequency (ELF), very low frequency (VLF), and radio frequency (RF) ranges of the EM spectrum. In 2 rooms, ELF electric fields were reduced and VLF and RF electric fields were increased as a result of the changeover to high-frequency fixtures. A third room received low-frequency, energy-efficient fixtures during this changeover, and this change resulted in only a slight increase of the ELF electric fields. The ELF magnetic fields were greatly reduced in 2 but only slightly reduced in the third room. No significant change was seen in VLF or RF magnetic fields for any of these rooms. Some field-strength measurements exceeded the proposed immunity levels recommended in the draft International Electrotechnical Commission standard IEC 60601-1-2 (rev. 2). The data show that increasing the separation distance from the fluorescent light fixtures greatly reduces the field-strength levels, limiting the potential for EM interference.

  11. QED effective action in magnetic field backgrounds and electromagnetic duality

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2011-09-01

    In the in-out formalism we advance a method of the inverse scattering matrix for calculating effective actions in pure magnetic field backgrounds. The one-loop effective actions are found in a localized magnetic field of Sauter type and approximately in a general magnetic field by applying the uniform semiclassical approximation. The effective actions exhibit the electromagnetic duality between a constant electric field and a constant magnetic field and between E(x)=Esech2(x/L) and B(x)=Bsech2(x/L).

  12. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  13. [Clinical monitoring in areas of exposure to radiofrequency electromagnetic fields].

    PubMed

    Suvorov, I M

    2013-01-01

    Clinical syndromes induced by high intensity radiofrequency electromagnetic field chronic exposure are described. Persons injured by occupational exposure have been observed central nervous system changes in diencephalic syndrome form, cardio-vascular system changes revealed in atherosclerosis, isch(a)emic heart disease and coronary insufficiency rapid progressive expansion. General public living in territory of radar station exposure zone different functional disorders have been identified: vegetative dystonia (asthenovegetative syndrome), thrombocytopenia, decrease of blood coagulation index, and thyroid gland function changes. Observed diseases clinical variability may be determined by electromagnetic exposure characteristics.

  14. [Cellular radio systems. Problems faced in assessing exposure to electromagnetic fields].

    PubMed

    Zmyślony, M

    2000-01-01

    Over twenty years of its existence, cellular radio systems have become one of the major sources of human exposure to electromagnetic field (EMF) of high frequency. With the increasing number of cellular phones, the interest in health effects of exposure to EMF emitted by them continues to grow. At present, there is a general opinion that thermal effect (change of electromagnetic energy into thermal energy) is an essential mechanism of possible biological effects. The majority of world standards for exposure to EMF are based on this effect. The author presents Polish standards and those of the International Commission on Nonionizing Radiation Protection (ICNIRP) for EMF of frequencies used in cellular radio systems, both basic that limits SAR (Specific Absorption Rate), and derived that limits the power density, as well as intensity of electric and magnetic fields. Attention was also turned to the problems concerning the application of cellular phones and those resulting from the character of the field emitted by them to which their users are exposed. Bearing in mind the results of the laboratory analyses of SAR values occurring in the user's head, and measurements of power density in the vicinity of the base station antennas, it can be stated that, in view of binding and recommended standards, cellular phones do not present any hazard to their users (private or professional). However, it should be stressed that standards adopted protect the user's head against the thermal effect, whereas the question on whether they also protect against non-thermal effects still remains without answer.

  15. Electromagnetic field and dispersion characteristic analysis of absorbing onion-like carbon tube waveguides

    NASA Astrophysics Data System (ADS)

    Nickelson, Liudmila; Bubnelis, Arturas; Martavicius, Romanas; Asmontas, Steponas

    2014-08-01

    Here, we present our calculation results of the electromagnetic field distributions and the dispersion characteristics of open cylindrical tube waveguides. The analyzed waveguides are made of the onion-like carbon (OLC) material. The solution of the boundary problem was fulfilled by the partial area method (Nickelson et al. in electrodynamical analysis of open lossy metamaterial waveguide and scattering structures. InTech, UK, pp 27-58 [1]). We have determined the complex roots of the dispersion equation using of the Muller method. It discovered the very complicated dependencies of the phase and attenuation constants on the waveguide radii. Such dependencies arise because the OLC material is the highly dispersive and absorbing one. We have investigated the high-frequency cutoff frequency of the propagating hybrid modes HE11 and HE12 dependent on the tube waveguide external and internal radii. We found that it is possible to reach the one-mode regime of OLC tube waveguide.

  16. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Fang, Guang-You; Ji, Yi-Cai

    2015-04-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603

  17. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    SciTech Connect

    Kirichok, A. V. Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-15

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  18. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    NASA Astrophysics Data System (ADS)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  19. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  20. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  1. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  2. The Study of Electron Coherence Effects in Metallic Systems with High Frequency AC Electric Fields: Weak Localization and Mesoscopic Photovoltaic Effects.

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    We have studied the effect of a high-frequency microwave electric field on electron phase coherence in thin Sb films and wires. The phase coherence is monitored through the effect of weak localization on the conductance. Through careful experimental design, we were able to calibrate the high frequency electric field. The ac effect was separated from the Joule heating with either dc measurements or the application of a magnetic field. This has made it possible to make a detailed, quantitative comparison with the theory with no free parameters. We have found good agreements between the experiments and the theory for both one and two dimensional cases. We have used the simple dc heating experiment to study the electron heating effects in Sb films. The electron temperature was reflected in the resistance, as an especially striking manner, to be quite different from the lattice temperature. This experiment was also used to study the electron-phonon scattering time in thin Sb films in the temperature range 1-4K. The magnitude of the scattering time is in reasonable accord with the theory, while the temperature dependence is of the form tau_{E_{ph}} ~ T^{-alpha }, with alpha ~ 1.4. The value of alpha appears to be significantly smaller than predicted by the theory, and is not understood. We have also studied the high frequency heating effects of thin AuPd, AuFe, and Au films at low temperatures. The analysis of the experiments yield consistent results with the theory for AuPd films with high values of the sheet resistance. However, for low-sheet-resistance films of AuPd, AuFe, and Au, the analysis suggests either that Joule heating is suppressed at microwave frequencies (as compared with that found for the same field strength at lower frequencies), or that a microwave field enhances the contribution of electron-electron interactions to the resistance. Either of these results would be at odds with current theories. Another experiment in which we were involved was the

  3. High frequency properties of a CNT-based nanorelay

    NASA Astrophysics Data System (ADS)

    Jonsson, L. M.; Axelsson, S.; Nord, T.; Viefers, S.; Kinaret, J. M.

    2004-11-01

    We have theoretically investigated the high frequency properties of a carbon-nanotube-based three-terminal nanoelectromechanical relay. The intrinsic mechanical frequency of the relay is in the GHz regime, and the electromechanical coupling shows a non-linear resonant behaviour in this frequency range. We discuss how these resonances may be detected and show that the resonance frequencies can be tuned by the bias voltage. Also, we show that the influence of external electromagnetic fields on the relay is negligible at all frequencies.

  4. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  5. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  6. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    SciTech Connect

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  7. Momentum of the electromagnetic field in transparent dielectric media

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2007-09-01

    We present arguments in favor of the proposition that the momentum of light inside a transparent dielectric medium is the arithmetic average of the Minkowski and Abraham momenta. Using the Lorentz transformation of the fields (and of the coordinates) from a stationary to a moving reference frame, we show the consistent transformation of electromagnetic energy and momentum between the two frames. We also examine the momentum of static (i.e., time-independent) electromagnetic fields, and show that the close connection that exists between the Poynting vector and the momentum density extends all the way across the frequency spectrum to this zero-frequency limit. In the specific example presented in this paper, the static field inside a non-absorbing dielectric material turns out to have the Minkowski momentum.

  8. A boundary-element method using broadband vibrating-wall sources to predict high-frequency interior sound fields produced by wall vibration

    NASA Astrophysics Data System (ADS)

    Franzoni, Linda P.; Duvall, Tracy A.

    2005-09-01

    In the high-frequency limit, vibrating panels subject to spatially random, temporally broadband forcing are shown to have broadband power and directivity properties than can be characterized by a limited set of parameters, based on numerical simulations. The radiated pressure field is parametrized in terms of direction, wave speed ratio, panel damping, and dimensionless frequency. A source directivity equation dependent on these variables is presented. The radiation properties of this equation are incorporated to simulate vibrating wall panels in an energy/intensity-based boundary-element method (BEM) developed for the prediction of steady-state, broadband, reverberant sound fields in enclosures having either diffusely or specularly reflecting boundaries. The BEM method uses uncorrelated broadband directional intensity sources to construct the source and reflection sound fields and predict mean-square pressure distributions in enclosures. Because uncorrelated broadband directional intensity sources are used, the system does not require a frequency-by-frequency-based solution, thereby reducing computational expense. Simulations are compared to exact solutions obtained by computationally expensive frequency-by-frequency modal methods. When fully developed, the directed application of this method is aircraft interior noise caused by exterior boundary layer excitation on fuselage panels.

  9. [Theoretical and experimental dosimetry in evaluation of biological effects of electromagnetic field for portable radio transmitters. Report 1. Flat phantoms].

    PubMed

    Perov, S Iu; Bogacheva, E V

    2014-01-01

    Results of the theoretical (numerical) and experimental dosimetry approach for portable radio transmitters are considered. The simulation and measurement results are shown. A generic type of a portable radio transmitter operating in a very high frequency range was tested as an electromagnetic field source. The analysis of specific absorption rate distribution in the flat homogeneous phantom was carried out on the basis of a portable radio transmitter. The results have shown the admissible divergence between measurements and simulation. According to these results, the authors have come to the conclusion about using the complex dosimetry approach including experimental and numerical dosimetry.

  10. Controlling Electromagnetic Field by Graded Meta-materials

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Metamaterials , i.e. artificial materials with electromagnetic properties not readily available in nature, have become a major research topic in both scientific and engineering communities. Being different from conventional materials, metamaterials possess peculiar electromagnetic properties, e.g. negative refractive index, depending on their structures. In particular, metamaterials form a basis for achieving cloaking device that makes an object invisible or transparency to the probing electromagnetic wave. This topic has significant impact on various fields ranging from optics, medicine, biology to nanotechnology. Several cloaking techniques have been proposed by different research groups, namely, anomalous localized resonance, transformation optics, and scattering cancellation, etc. Each of them has its own advantages and disadvantages. For instance, the limitation in working frequency is a primary disadvantage of them. This thesis is concentrated on controlling electromagnetic field by graded metamaterials, i.e, metamaterials with graded structures, with the objective to realize the broadband electromagnetic transparency by extending the working frequency. Regarding the limitations of existing cloaking techniques, we propose the graded model based on the scattering cancellation technique, because it does not rely on resonant phenomena, and is fairly robust to relatively high variations of the shape and electromagnetic properties of the cloaked object. We modify the original Mie theory and Rayleigh scattering theory to deal with the graded metamaterial structures, and calculate the scattering cross section of graded isotropic and anisotropic spherical structures, an alytically and numerically. For the graded isotropic spherical structure, we achieve the exact analytic expressions for both full-wave and Rayleigh scattering cross sections, within our modified Mie theory and Rayleigh scattering theory. The numerical studies on the scattering cross sections clearly

  11. Consequences of Coupled Electromagnetic-Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Smalley, Larry

    2002-01-01

    In the late 1980s there was a flurry of activities involving the newly discovered high Tc superconductors in the development of new devices such as more efficient current transmission, transformers, generators, and motors. One such developmental project by Podkletnov in 1992 noted some small, anomalous gravitational behaviors. A following unpublished paper by Podkletnov 1995 provided data with larger effects using a larger (approx. 25 cm) superconducting disk. Unfortunately this disk was extremely fragile and was broken beyond repair. To date, these experiments have not been successfully repeated because of the difficulties of producing stable, durable (and fired) superconducting disks. This problem with firing these disks has been solved by Li. What remains is to install the disk in "motor", at superconducting temperatures in the presence of appropriately tailored magnetic fields.

  12. Designing localized electromagnetic fields in a source-free space.

    PubMed

    Borzdov, George N

    2002-06-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space--localized fields defined by the rotation group--are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated.

  13. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik; Collins, Ken

    2009-07-15

    Capacitively coupled plasma (CCP) discharges using high frequency (HF) and very high frequency (VHF) sources are widely used for dielectric etching in the semiconductor industry. A two-dimensional fluid plasma model is used to investigate the effects of interelectrode gap on plasma spatial characteristics of both HF and VHF CCPs. The plasma model includes the full set of Maxwell's equations in their potential formulation. The peak in plasma density is close to the electrode edge at 13.5 MHz for a small interelectrode gap. This is due to electric field enhancement at the electrode edge. As the gap is increased, the plasma produced at the electrode edge diffuses to the chamber center and the plasma becomes more uniform. At 180 MHz, where electromagnetic standing wave effects are strong, the plasma density peaks at the chamber center at large interelectrode gap. As the interelectrode gap is decreased, the electron density increases near the electrode edge due to inductive heating and electrostatic electron heating, which makes the plasma more uniform in the interelectrode region.

  14. Radiotelephone with reduced electromagnetic field in human head

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    The quarter-wave monopole base driven over a circular ground plane with a finite radius has applications in over-the-horizon radar and on surveillance aircraft. A new use, for which the analysis is given in this paper, is as an over-the-head-mounted antenna for cellular telephones. With this design, the electromagnetic field in the head and the associated specific absorption rate of electromagnetic energy are greatly reduced when compared with the conventional hand-held transceiver. A complete analysis is carried out of the electromagnetic field on the surface of the head and throughout its interior when the head is modeled as a cylinder with the electrical properties of the brain enclosed in a wall with the thickness and electrical properties of the skull. Graphs and tables are provided that give the field in the air on the surface of the head and in the skull and brain. The far field is also determined. The results are compared with those obtained with the hand-held radiotelephone (King, 1995).

  15. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    DOE PAGES

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; ...

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 inmore » 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.« less

  16. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  17. Broad-band acceleration time histories synthesis by coupling low-frequency ambient seismic field and high-frequency stochastic modelling

    NASA Astrophysics Data System (ADS)

    Viens, L.; Laurendeau, A.; Bonilla, L. F.; Shapiro, N. M.

    2014-12-01

    In this study, information carried by the ambient seismic field is exploited to extract impulse response functions between two seismic stations using one as a `virtual' source. Interferometry by deconvolution method is used and validated by comparing the extracted ambient noise impulse response waveforms with records of moderate magnitude earthquakes (from Mw 4 to 5.8) that occurred close to the virtual source station in Japan. As the information is only available at low frequencies (less than 0.25 Hz), the ambient seismic field approach is coupled to a non-stationary stochastic model to simulate time domain accelerograms up to 50 Hz. This coupling allows the predicted ground motion to have both the deterministic part at low frequencies coming from the source and the crust structure and the high-frequency random contribution from the seismic waves scattering. The resulting combined accelerograms for an Mw 5.8 event show a good agreement with observed ground motions from a real earthquake.

  18. [New mechanisms of biological effects of electromagnetic fields].

    PubMed

    Buchachenko, A L; Kuznetsov, D A; Berdinskiĭ, V L

    2006-01-01

    The production of ATP in mitochondria depends on the magnesium nuclear spin and magnetic moment of a Mg2+ ion in creatine kinase and ATPase. This suggests that enzymatic synthesis of ATP is an ion-radical process and thus depends on the external magnetic field (magnetobiology originates from this fact) and microwave fields, which control the spin states of ion-radical pairs and affect the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.

  19. Invariant superoscillatory electromagnetic fields in 3D-space

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.

    2017-01-01

    We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.

  20. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  1. Soft hairs on isolated horizon implanted by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mao, Pujian; Wu, Xiaoning; Zhang, Hongbao

    2017-03-01

    Inspired by the recent proposal of soft hair on black holes in Hawking et al (2016 Phys. Rev. Lett. 116 231301), we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of Einstein–Maxwell theory have been worked out explicitly near the isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated with the asymptotic U(1) symmetry near the horizon, which indicates the fact that the isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic U(1) charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  2. Asseleration of ions in turbulent electromagnetic field during dipolarization events

    NASA Astrophysics Data System (ADS)

    Zhukova, Elena; Popov, Victor

    2017-04-01

    In spite of the long time interest for the acceleration of hight energetic ions in the Earth's magnetotail, considerable uncertainty remains as to the quantitative influence of different acceleration mechanism and their modifications. Both theoretical and numerical studies predict a hardening of the energy spectra of the particles wandering into the current sheet. Such energetic ion fluxes in the near-Earth tail were usually observed during magnetic dipolarizations or presence of turbulent electromagnetic field in the central region of current sheet that can effectively interact with the charged particles and energize them. The results demonstrate particle acceleration by separate two mechanisms and by their joint action. Both acceleration mechanisms lead to the formation of powered tails in proton distribution functions. Generally acceleration on magnetic dipolarization can be more effective in comparison with turbulent electromagnetic field.

  3. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  4. Immunorehabilitating effect of ultrahigh frequency electromagnetic fields in immunocompromised animals.

    PubMed

    Pershin, S B; Bobkova, A S; Derevnina, N A; Sidorov, V D

    2013-06-01

    We observed immunorehabilitation effects of ultrahigh frequency electromagnetic fields (microwaves) in immunocompromised animals. It was shown that microwave irradiation of the thyroid gland area could abolish actinomycin D- and colchicine-induced immunosuppression and did not affect immunosuppression caused by 5-fluorouracil. These findings suggest that changes in the hormonal profile of the organism during microwave exposure can stimulate the processes of transcription and mitotic activity of lymphoid cells.

  5. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  6. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  7. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  8. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  9. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  10. Effects of chronic exposure to 950 MHz ultra-high-frequency electromagnetic radiation on reactive oxygen species metabolism in the right and left cerebral cortex of young rats of different ages.

    PubMed

    Furtado-Filho, Orlando V; Borba, Juliana B; Maraschin, Tatiana; Souza, Larissa M; Henriques, João A P; Moreira, José C F; Saffi, Jenifer

    2015-01-01

    To assess the effect of 950 MHz ultra-high-frequency electromagnetic radiation (UHF-EMR) on biomarkers of oxidative damage to DNA, proteins and lipids in the left cerebral cortex (LCC) and right cerebral cortex (RCC) of neonate and 6-day-old rats. Twelve rats were equally divided into two groups as controls (CR) and exposed (ER), for each age (0 and 6 days). The LCC and RCC were examined in ER and CR after exposure. Radiation exposure lasted 30 min per day for up to 27 days (throughout pregnancy and 6 days postnatal). The specific absorption rate ranged from 1.32-1.14 W/kg. The damage to lipids, proteins and DNA was verified by thiobarbituric acid reactive substances, carbonylated proteins (CP) and comets, respectively. The concentration of glucose in the peripheral blood of the rats was measured by the Accu-Chek Active Kit due to increased CP in RCC. In neonates, no modification of the biomarkers tested was detected. On the other hand, there was an increase in the levels of CP in the RCC of the 6-day-old ER. Interestingly, the concentration of blood glucose was decreased in this group. Our results indicate that there is no genotoxicity and oxidative stress in neonates and 6 days rats. However, the RCC had the highest concentration of CP that do not seem to be a consequence of oxidative stress. This study is the first to demonstrate the use of UHF-EMR causes different damage responses to proteins in the LCC and RCC.

  11. Electromagnetic field interacting with a semi-infinite plasma.

    PubMed

    Apostol, M; Vaman, G

    2009-07-01

    Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general, unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials. Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electromagnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are computed, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence angle and polarization. Bulk and surface plasmon-polariton modes are identified. As is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

  12. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.

  13. Electromagnetic fields in medicine - The state of art.

    PubMed

    Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander

    2016-01-01

    Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.

  14. High-frequency and -field EPR and FDMRS study of the [Fe(H 2 O) 6 ] 2+ ion in ferrous fluorosilicate

    NASA Astrophysics Data System (ADS)

    Krzystek, J.; Smirnov, D.; Schlegel, Christoph; van Slageren, Joris; Telser, Joshua; Ozarowski, Andrew

    2011-12-01

    The complex [Fe(H 2O) 6]SiF 6 is one of the most stable and best characterized high-spin Fe(II) salts and as such, is a paradigm for the study of this important transition metal ion. We describe high-frequency and -field electron paramagnetic resonance studies of both pure [Fe(H 2O) 6]SiF 6 and [Zn(H 2O) 6]SiF 6 doped with 8% of Fe(II). In addition, frequency domain magnetic resonance spectroscopy was applied to these samples. High signal-to-noise, high resolution spectra were recorded which allowed an accurate determination of spin Hamiltonian parameters for Fe(II) in each of these two, related, environments. For pure [Fe(H 2O) 6]SiF 6, the following parameters were obtained: D = +11.95(1) cm -1, E = 0.658(4) cm -1, g = [2.099(4), 2.151(5), 1.997(3)], along with fourth-order zero-field splitting parameters: B40=17(1)×10-4 cm and B44=18(4)×10-4 cm, which are rarely obtainable by any technique. For the doped complex, D = +13.42(1) cm -1, E = 0.05(1) cm -1, g = [2.25(1), 2.22(1), 2.23(1)]. These parameters are in good agreement with those obtained using other techniques. Ligand-field theory was used to analyze the electronic absorption data for [Fe(H 2O) 6]SiF 6 and suggests that the ground state is 5A 1, which allows successful use of a spin Hamiltonian model. Density functional theory and unrestricted Hartree-Fock calculations were performed which, in the case of latter, reproduced the spin Hamiltonian parameters very well for the doped complex.

  15. Reconstruction of velocity fields in electromagnetic flow tomography

    PubMed Central

    Lehtikangas, Ossi; Karhunen, Kimmo

    2016-01-01

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185961

  16. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  17. Measurement of high frequency conductivity of oxide-doped anti-ferromagnetic thin film with a near-field scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Souza, A. D.; Peng, B.; Sun, W. Q.; Xu, S. Y.; Ong, C. K.

    2014-04-01

    In this manuscript, we describe how the map of high frequency conductivity distribution of an oxide-doped anti-ferromagnetic 200 nm thin film can be obtained from the quality factor (Q) measured by a near-field scanning microwave microscope (NSMM). Finite element analysis (FEA) is employed to simulate the NSMM tip-sample interaction and obtain a curve related between the simulated quality factor (Q) and conductivity. The curve is calibrated by a standard Cu thin film with thickness of 200 nm, together with NSMM measured Q of Ag, Au, Fe, Cr and Ti thin films. The experimental conductivity obtained by the NSMM for IrMn thin films with various doped concentrations of Al2O3 is found consistent with conventional voltammetry measurement in the same tendency. That conductivity decreases as the content of doped Al2O3 increases. The results and images obtained demonstrate that NSMM can be employed in thin film analysis for characterization of local electrical properties of materials in a non-destructive manner and for obtaining a map of conductivity distribution on the same film.

  18. High-Frequency Gravitational Wave (HFGW) Generation by Means of X-ray Lasers and Detection by Coupling Linearized GW to EM Fields

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Li, Fang-Yu

    2005-02-01

    An experiment is described for the generation and detection of High-Frequency Gravitational Waves (HFGWs) in the laboratory utilizing a pair of tabletop X-ray lasers for generation and a coupling system of semi-transparent, beam-splitting membranes with a pulsed Gaussian beam passing through a static magnetic field for detection. The laser axes are coplanar, their pulses are synchronized, and they are aligned in exactly opposite directions. They produce equal and opposite impulsive forces at the laser targets. Essentially, the X-ray lasers emulate a double-star orbit. Photons striking a target will produce a jerk (time rate of change of acceleration) and together with a computer controlled logic system will generate a HFGW spike each time the laser pulses are repeated. Specifications are tabulated for several different X-ray lasers. The focus or concentration point of the gravitational radiation generated by the X-ray laser pairs is located at the midpoint between the laser targets. The HFGW detecting system, proposed by Chongqing University, is situated at the HFGW focus. A High-Temperature Superconductor (HTSC) could might possibly concentrate the peak HFGW flux, potentially up to 4.93×1024 Wm-2 (over a very small detection area). Such large HFGW fluxes may be suitable for future aerospace applications.

  19. High-frequency conductivity of photoionized plasma

    SciTech Connect

    Anakhov, M. V.; Uryupin, S. A.

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  20. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  1. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  2. Electromagnetic field redistribution in hybridized plasmonic particle-film system

    NASA Astrophysics Data System (ADS)

    Fang, Yurui; Huang, Yingzhou

    2013-04-01

    Combining simulation and experiment, we demonstrate that a metal nanoparticle dimer on a gold film substrate can confine more energy in the particle/film gap because of the hybridization of the dimer resonant lever and the continuous state of the film. The hybridization may even make the electric field enhancement in the dimer/film gap stronger than in the gap between particles. The resonant peak can be tuned by varying the size of the particles and the film thickness. This electromagnetic field redistribution has tremendous applications in sensor, photocatalysis and solar cell, etc., especially considering ultrasensitive detection of tracing molecule on substrates.

  3. Electromagnetic Field Quantization in Time-Dependent Linear Media

    SciTech Connect

    Pedrosa, I. A.; Rosas, Alexandre

    2009-07-03

    We present a quantization scheme for the electromagnetic field in time-dependent homogeneous nondispersive conducting and nonconducting linear media without sources. Using the Coulomb gauge, we demonstrate this quantization can be mapped into a damped (attenuated) time-dependent quantum harmonic oscillator. Remarkably, we find that the time dependence of the permittivity, for epsilon>0, gives rise to an attenuation of the radiation field. Afterwards, we obtain the exact wave functions for this problem and consider an exponential time accretion of the permittivity as a particular case.

  4. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  5. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    PubMed

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  6. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  7. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Ettehadi-Abari, Mehdi; Sedaghat, Mahsa

    2016-03-01

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range I{λ^2} ˜eq 10^{14}{-}10^{16}{{W}}{{{cm}}^{-2}} \\upmu{{{m}}2} . The collisionless effect is found to be significant when the incident laser intensity is less than 10^{16}{{W}}{{{cm}}^{-2}}\\upmu{{{m}}2} . In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.

  8. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    PubMed

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  9. Plasma effects in electromagnetic field interaction with biological tissue

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  10. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    PubMed

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  11. Work and energy for particles in electromagnetic field

    NASA Astrophysics Data System (ADS)

    Babajanyan, S. G.

    2017-07-01

    Defining the energy and work for particles interacting with electromagnetic field (EMF) is an open problem, because—due to the gauge-freedom—there exist various non-equivalent possibilities. It is argued that a consistent definition can be provided via the Lorenz gauge. To this end, I work out a system of two electromagnetically coupled classical particles. One of them is much heavier and models the source of work. The definition of energy in the Lorenz gauge is causal and consistent, because it leads to an approximate conservation law due to which the work done by the heavy particle (source of work) can be defined either via the kinetic energy of the heavy particle, or via the full time-dependent energy (kinetic + potential in the Lorenz gauge) of the light particle.

  12. Biological effects from electromagnetic field exposure and public exposure standards.

    PubMed

    Hardell, Lennart; Sage, Cindy

    2008-02-01

    During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to

  13. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  14. Zero-field detection of spin dependent recombination with direct observation of electron nuclear hyperfine interactions in the absence of an oscillating electromagnetic field

    NASA Astrophysics Data System (ADS)

    Cochrane, C. J.; Lenahan, P. M.

    2012-12-01

    Electrically detected magnetic resonance (EDMR) involves the electron paramagnetic resonance (EPR) study of spin dependent transport mechanisms such as spin dependent tunneling and spin dependent recombination (SDR) in solid state electronics. Conventional EPR measurements generally require strong static magnetic fields, typically 3 kG or greater, and high frequency oscillating electromagnetic fields, typically 9 GHz or higher. In this study, we directly demonstrate that, in the absence of the oscillating electromagnetic field, a very large SDR response (≈1%) can be detected at zero magnetic field with associated hyperfine interactions at extremely low magnetic fields in a silicon carbide (SiC) diode at room temperature. The zero-field SDR (ZFSDR) response that we detect is unexpected in the conventional detection scheme of SDR via EDMR. We believe that our observations provide fundamental physical understanding of other recently reported zero-field phenomena such as singlet triplet mixing in double quantum dots and low-field giant magnetoresistance in organic semiconductors. Our work provides an unambiguous demonstration that the zero-field phenomenon we observe involves SDR. Measurements reported herein indicate that extremely useful low-field SDR and ZFSDR results can be acquired simply and inexpensively in systems of technological importance. This work also suggests the potential use of this new physics in applications including absolute magnetometry with self-calibration, spin based memories, quantum computation, and inexpensive low-field EDMR spectrometers for wafer/probing stations.

  15. Etna_NETVIS: A dedicated tool for automatically pre-processing high frequency data useful to extract geometrical parameters and track the evolution of the lava field

    NASA Astrophysics Data System (ADS)

    Marsella, Maria; Junior Valentino D'Aranno, Peppe; De Bonis, Roberto; Nardinocchi, Carla; Scifoni, Silvia; Scutti, Marianna; Sonnessa, Alberico; Wahbeh, Wissam; Biale, Emilio; Coltelli, Mauro; Pecora, Emilio; Prestifilippo, Michele; Proietti, Cristina

    2016-04-01

    In volcanic areas, where it could be difficult to gain access to the most critical zones for carrying out direct surveys, digital photogrammetry techniques are rarely experimented, although in many cases they proved to have remarkable potentialities, as the possibility to follow the evolution of volcanic (fracturing, vent positions, lava fields, lava front positions) and deformation processes (inflation/deflation and instability phenomena induced by volcanic activity). These results can be obtained, in the framework of standard surveillance activities, by acquiring multi-temporal datasets including Digital Orthophotos (DO) and Digital Elevation Models (DEM) to be used for implementing a quantitative and comparative analysis. The frequency of the surveys can be intensified during emergency phases to implement a quasi real-time monitoring for supporting civil protection actions. The high level of accuracy and the short time required for image processing make digital photogrammetry a suitable tool for controlling the evolution of volcanic processes which are usually characterized by large and rapid mass displacements. In order to optimize and extend the existing permanent ground NEtwork of Thermal and VIsible Sensors located on Mt. Etna (Etna_NETVIS) and to improve the observation of the most active areas, an approach for monitoring surface sin-eruptive processes was implemented. A dedicated tool for automatically pre-processing high frequency data, useful to extract geometrical parameters as well as to track the evolution of the lava field, was developed and tested both in simulated and real scenarios. The tool allows to extract a coherent multi-temporal dataset of orthophotos useful to evaluate active flow area and to estimate effusion rates. Furthermore, Etna_NETVIS data were used to downscale the information derived from satellite data and/or to integrate the satellite datasets in case of incomplete coverage or missing acquisitions. This work was developed in the

  16. Effects of electromagnetic fields on fecundity in the chicken.

    PubMed

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  17. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    SciTech Connect

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; Hunter, Seth C.; Zhang, Yi-Quan; Chen, Xue-Tai; Sun, Yi-Chen; Wang, Zhenxing; Song, You; Podlesnyak, Andrey A.; Ouyang, Zhong-Wen; Xue, Zi-Ling

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 in 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.

  18. Amplifying High Frequency Acoustic Signals

    SciTech Connect

    Kunz, C

    2004-02-05

    In search of the hypothetical Higgs boson, a prototype electron accelerator structure has been developed for use in the Next Linear Collider (NLC), SLAC's proposed version of the machine necessary to create the predicted particle. The Next Linear Test Accelerator (NLCTA), designed to provide O.5GeV-lTeV center-of-mass collision energy, generates electromagnetic breakdowns inside its copper structure while the beam is running. The sparks vaporize the surface of the copper, and will eventually ruin the accelerator. They also create high-frequency (hf) acoustic signals (100 kHz-1 MHz). Acoustic sensors have been placed on the structure, however current knowledge regarding sound propagation in copper limits spark location to within one centimeter. A system was needed that simulates the sparks so further study of acoustic propagation can be pursued; the goal is locate them to within one millimeter. Various tests were done in order to identify an appropriate hf signal source, and to identify appropriate acoustic sensors to use. A high-voltage spark generator and the same sensors used on the actual structure proved most useful for the system. Two high-pass filters were also fabricated in order to measure signals that might be created above 2MHz. The 11-gain filter was used on the acoustic simulation system that was developed, and the 100-gain filter will be used on the NLCTA.

  19. Electromagnetic field of a charge traveling into an anisotropic medium.

    PubMed

    Galyamin, Sergey N; Tyukhtin, Andrey V

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called "plasma trace" is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  20. Electromagnetic field of a charge traveling into an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called “plasma trace” is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  1. Electromagnetic field of a charge traveling into an anisotropic medium

    SciTech Connect

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-15

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called 'plasma trace' is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  2. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.

    PubMed Central

    Engelhardt, H; Sackmann, E

    1988-01-01

    We present a new method to measure the shear elastic moduli and viscosities of erythrocyte membranes which is based on the fixation and transient deformation of cells in a high-frequency electric field. A frequency domain of constant force (arising by Maxwell Wagner polarization) is selected to minimize dissipative effects. The electric force is thus calculated by electrostatic principles by considering the cell as a conducting body in a dielectric fluid and neglecting membrane polarization effects. The elongation A of the cells perpendicular to their rotational axis exhibits a linear regime (A proportional to Maxwell tension or to square of the electric field E2) at small, and a nonlinear regime (A proportional to square root of Maxwell tension or to the electric field E) at large extensions with a cross-over at A approximately 0.5 micron. The nonlinearity leads to amplitude-dependent response times and to differences of the viscoelastic response and relaxation functions. The cells exhibit pronounced yet completely reversible tip formations at large extensions. Absolute values of the shear elastic modulus, mu, and membrane viscosity, eta, are determined by assuming that field-induced stretching of the biconcave cell may be approximately described in terms of a sphere to ellipsoid deformation. The (nonlinear) elongation-vs.-force relationship calculated by the elastic theory of shells agress well with the experimentally observed curves and the values of mu = 6.1 x 10(-6) N/m and eta = 3.4 x 10(-7) Ns/m are in good agreement with the micropipette results of Evans and co-workers. The effect of physical, biochemical, and disease-induced structural changes on the viscoelastic parameters is studied. The variability of mu and eta of a cell population of a healthy donor is +/- 45%, which is mainly due to differences in the cell age. The average mu value of cells of different healthy donors scatters by +/- 18%. Osmotic deflation of the cells leads to a fivefold increase of

  3. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  4. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  5. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  6. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  7. Fluid Modeling of a Very High Frequency Capacitively Coupled Reactor

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rochan; Raja, Laxminarayan; Ventzek, Peter; Iwao, Toshihiko; Ishibashi, Kiyotaka; Esgee Technologies Inc. Collaboration; University of Texas at Austin Collaboration; Tokyo Electron Ltd. Collaboration

    2016-09-01

    Very High Frequency Capacitively Coupled Plasma (VHF-CCP) discharges have been studied extensively for semiconductor manufacturing applications for well over a decade. Modeling of these discharges however poses significant challenges owing to complexity associated with simulation of multiple coupled phenomena (electro-static/magnetic fields and plasma physics) over different scales and the representation of these phenomena in a computational framework. We present 2D simulations of a self-consistent plasma with the electromagnetic field represented using vector and scalar potentials. For a range of operating conditions, the ratio of capacitive and inductive power, calculated using empirical correlations available in the literature, are matched by adjusting both the electrostatic and electromagnetic fields in a decoupled manner. We present results using this model that demonstrate most of the important VHF-CCP discharge phenomena reported in the literature, such as electromagnetic wave versus electrostatic heating and its impact on plasma non-uniformity, wave resonances, etc. while realizing a practically feasible computational model.

  8. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  9. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  10. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  11. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  12. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  13. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  14. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  15. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    PubMed

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  16. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  17. Electromagnetic generation of sound in metals in a magnetic field

    NASA Astrophysics Data System (ADS)

    Aronov, I. E.; Fal'ko, V. L.

    1992-11-01

    A wide range of phenomena of the electromagnetic generation of sound in metals in a magnetic field is reviewed. All phenomena of mutual conversion of waves and of sound generation are due to the interaction of conduction electrons with phonons. A wide variety of resonance effects in a magnetic field determines numerous mechanisms for direct sound generation by an external microwave. The basic equations and boundary conditions for the problem of electron-phonon interaction in metals are presented in the quasiclassical approximation. In the low-temperature region under the conditions of the anomalous skin effect the wave conversion is caused, besides by inductive interaction, also by electron-phonon interaction via the deformation potential. The major conversion mechanism of an electromagnetic wave into sound results in various resonance effects in a magnetic field in conditions of strong spatial dispersion. We present an exact solution of the problem for an alkali metal in a magnetic field normal to the surface. We analyze the asymptotic approximations related with the skin-effect anomaly, the coupling of electromagnetic and acoustic waves in metals, and the role of surface scattering. We study the effect of resonance renormalization of electron-phonon interaction in metals with a complex dispersion law, which results in a partial compensation of resonance singularities and appears in Doppler-shifted cyclotron resonances. The doppleron-phonon resonance and its polarization effects are investigated. The electromagnetic generation of sound in metals in a magnetic field parallel to the surface is due to the additional mechanism of selecting “effective” electrons, where resonance effects are observed. We study geometric and cyclotron resonances, and the resonance coupling of a sound wave with a cyclotron wave. The amplitude and phase of the generated sound depend on the character of electron scattering on the metal boundary because in specular scattering a group of

  18. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers.

    PubMed

    Semenenko, Mykola O; Babichuk, Ivan S; Kyriienko, Oleksandr; Bodnar, Ivan V; Caballero, Raquel; Leon, Maximo

    2017-12-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  19. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  20. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    NASA Astrophysics Data System (ADS)

    Semenenko, Mykola O.; Babichuk, Ivan S.; Kyriienko, Oleksandr; Bodnar, Ivan V.; Caballero, Raquel; Leon, Maximo

    2017-06-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  1. Phenomenological local field enhancement factor distributions around electromagnetic hot spots

    NASA Astrophysics Data System (ADS)

    Le Ru, E. C.; Etchegoin, P. G.

    2009-05-01

    We propose a general phenomenological description of the enhancement factor distribution for surface-enhanced Raman scattering (SERS) and other related phenomena exploiting large local field enhancements at hot spots. This description extends naturally the particular case of a single (fixed) hot spot, and it is expected to be "universal" for many classes of common SERS substrates containing a collection of electromagnetic hot spots with varying geometrical parameters. We further justify it from calculations with generalized Mie theory. The description studied here provides a useful starting point for a qualitative (and semiquantitative) understanding of experimental data and, in particular, the analysis of the statistics of single-molecule SERS events.

  2. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  3. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  4. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  5. Conserved currents for electromagnetic fields in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Grant, Alexander; Flanagan, Eanna

    2017-01-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure can generate the conserved currents given by Andersson, Bäckdahl, and Blue, as well as two new conserved currents. These currents reduce to the sum of (positive powers of) the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter. We furthermore show that the fluxes of these new currents through null infinity and the horizon are finite.

  6. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  7. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  8. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    NASA Astrophysics Data System (ADS)

    Andosca, Ryan; Singleton, Douglas

    2016-11-01

    Stokes' theorem is central to many aspects of physics—electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals (e.g., ∮ A . d x ) and purely spatial area integrals (e.g., ∫ ( ∇ × A ) . d a = ∫ B . d a ). Here, we address this gap by giving some explicit examples of how Stokes' theorem plays out with time-dependent fields in a full 4-dimensional spacetime context. We also discuss some unusual features of Stokes' theorem with time-dependent fields related to gauge transformations and non-simply connected topology.

  9. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum

  10. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  11. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  12. Microwave electromagnetic field regulates gene expression in T-lymphoblastoid leukemia CCRF-CEM cell line exposed to 900 MHz.

    PubMed

    Trivino Pardo, Juan Carlos; Grimaldi, Settimio; Taranta, Monia; Naldi, Ilaria; Cinti, Caterina

    2012-03-01

    Electric, magnetic, and electromagnetic fields are ubiquitous in our society, and concerns have been expressed regarding possible adverse effects of these exposures. Research on Extremely Low-Frequency (ELF) magnetic fields has been performed for more than two decades, and the methodology and quality of studies have improved over time. Studies have consistently shown increased risk for childhood leukemia associated with ELF magnetic fields. There are still inadequate data for other outcomes. More recently, focus has shifted toward Radio Frequencies (RF) exposures from mobile telephony. There are no persuasive data suggesting a health risk, but this research field is still immature with regard to the quantity and quality of available data. This technology is constantly changing and there is a need for continued research on this issue. To investigate whether exposure to high-frequency electromagnetic fields (EMF) could induce adverse health effects, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of 900 MHz MW-EMF generated by a transverse electromagnetic (TEM) cell at short and long exposure times. We evaluated the effect of high-frequency EMF on gene expression and we identified functional pathways influenced by 900 MHz MW-EMF exposure.

  13. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    PubMed

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  14. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  15. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  16. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  17. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  18. Comparison of the Effects of Manual Acupuncture, Laser Acupuncture, and Electromagnetic Field Stimulation at Acupuncture Point BL15 on Heart Rate Variability.

    PubMed

    Lee, Na Ra; Kim, Soo Byeong; Heo, Hyun; Lee, Yong Heum

    2016-10-01

    The aim of this study was to compare the influences of manual acupuncture, laser acupuncture, and electromagnetic field stimulation on the autonomic nervous system. We monitored the heart rate variability before and after stimulation to check the influence on the autonomic nervous system. The heart rate variabilities at low frequency (LF; 0.04-0.15 Hz) and high frequency (HF; 0.15-0.4 Hz) were analyzed to acquire LF/HF ratio. Xinshu (BL15) was selected as the stimulation point. Methods included manual acupuncture with a 1-cm depth and laser acupuncture at a wavelength of 660 nm and output power of 50 mW. An electromagnetic field of 2 Hz and 460 gauss (46 mT) was chosen. The LF and the LF/HF ratio were found to be lower in the manual acupuncture and the electromagnetic field groups, but to be higher in the laser acupuncture group. The HF was found to be lower in the laser acupuncture group, but higher in the manual acupuncture and the electromagnetic field groups. In conclusion, we found that manual acupuncture and electromagnetic field stimulation at BL15 activated the parasympathetic nervous system, whereas laser acupuncture at BL15 activated the sympathetic nervous system. Copyright © 2016. Published by Elsevier B.V.

  19. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  20. The dielectric response to the magnetic field of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light-matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  1. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  2. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  3. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  4. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  5. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  6. Near-field electromagnetic theory for thin solar cells.

    PubMed

    Niv, A; Gharghi, M; Gladden, C; Miller, O D; Zhang, X

    2012-09-28

    Current methods for evaluating solar cell efficiencies cannot be applied to low-dimensional structures where phenomena from the realm of near-field optics prevail. We present a theoretical approach to analyze solar cell performance by allowing rigorous electromagnetic calculations of the emission rate using the fluctuation-dissipation theorem. Our approach shows the direct quantification of the voltage, current, and efficiency of low-dimensional solar cells. This approach is demonstrated by calculating the voltage and the efficiency of a GaAs slab solar cell for thicknesses from several microns down to a few nanometers. This example highlights the ability of the proposed approach to capture the role of optical near-field effects in solar cell performance.

  7. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  8. Interaction of extremely-low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1991-07-01

    At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs.

  9. Relativistic particle acceleration by obliquely propagating electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Villalón, Elena; Burke, William J.

    1987-12-01

    The relativistic equations of motion are analyzed for charged particles in a magnetized plasma and externally imposed electromagnetic fields (ω, k), which have wave vectors k that are at arbitrary angles. The particle energy is obtained from a set of nonlinear differential equations, as a function of time, initial conditions, and cyclotron harmonic numbers. For a given cyclotron resonance, the energy oscillates in time within the limits of a potential well; stochastic acceleration occurs if the widths of different Hamiltonian potentials overlap. The net energy gain for a given harmonic increase with the angle of propagation, and decreases as the magnitude of the wave magnetic field increases. Potential applications of these results to the acceleration of ionsopheric electrons are presented.

  10. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  11. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  12. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  13. Trends in residential exposure to electromagnetic fields from 2006 to 2009.

    PubMed

    Tomitsch, J; Dechant, E

    2012-05-01

    After measuring extremely low frequency electric and magnetic fields (ELF-EFs, ELF-MFs) and radio frequency electromagnetic fields (RF-EMFs) in 2006, a follow-up investigation was done in 2009. Overall, 130 measurements in bedrooms at identical and 83 at changed locations within the same or a neighbouring building were performed. The median of ELF-EFs decreased from 25.15 to 17.35 V m(-1) from 2006 to 2009. The median of all-night ELF-MFs from power supply decreased from 16.86 to 12.76 nT, whereas the arithmetic mean was almost unchanged (+0.1%). No difference in the medians of all-night ELF-MFs of railway current was observed. RF-EMFs increased from 41.35 to 59.56 µW m(-2). Increases primarily occurred in the frequency ranges of Global System for Mobile 900 MHz, Universal Mobile Telecommunications System and Wireless Local Area Network. Television changeover from analogue to digital resulted in a reduction within the Ultra-high Frequency-band from 0.47 to 0.35 µW m(-2). The base stations of the recently established terrestrial trunked radio system caused a median of 0.05 µW m(-2).

  14. High-frequency isotopic analysis of liquid water samples in the field - initial results from continuous water sampling and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James

    2016-04-01

    Studying rapidly changing hydrochemical signals in catchments can help to improve our mechanistic understanding of their water flow pathways and travel times. For these purposes, stable water isotopes (18O and 2H) are commonly used as natural tracers. However, high-frequency isotopic analyses of liquid water samples are challenging. One must capture highly dynamic behavior with high precision and accuracy, but the lab workload (and sample storage artifacts) involved in collecting and analyzing thousands of bottled samples should also be avoided. Therefore, we have tested Picarro, Inc.'s newly developed Continuous Water Sampler Module (CoWS), which is coupled to their L2130-i Cavity Ring-Down Spectrometer to enable real-time on-line measurements of 18O and 2H in liquid water samples. We coupled this isotope analysis system to a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as a UV-Vis spectroscopy system (s::can Messtechnik GmbH, Vienna, Austria) and electrochemical probes for characterization of basic water quality parameters. The system was run unattended for up to a week at a time in the laboratory and at a small catchment. At the field site, stream-water and precipitation samples were analyzed, alternating at sub-hourly intervals. We observed that measured isotope ratios were highly sensitive to the liquid water flow rate in the CoWS, and thus to the hydraulic head difference between the CoWS and the samples from which water was drawn. We used a programmable high-precision dosing pump to control the injection flow rate and eliminate this flow-rate artifact. Our experiments showed that the precision of the CoWS-L2130-i-system for 2-minute average values was typically better than 0.06‰ for δ18O and 0.16‰ for δ2H. Carryover effects were 1% or less between isotopically contrasting water samples for 30-minute sampling intervals. Instrument drift could be minimized through periodic analysis of

  15. [Sister chromatid exchange (SCE)and high-frequency cells in workers professionally exposed to extremely low-frequency magnetic fields (ELF)].

    PubMed

    Gobba, F; Roccatto, L; Sinigaglia, Barbara; Temperani, Paola

    2003-01-01

    Up now no firm conclusions can be drawn on the genotoxicity of Extremely Low Frequency (ELF) Magnetic Fields (MF) in exposed workers: both an increase in chromosomal aberrations (CA) and micronuclei (MN) or no effects were observed in substation workers, while a slight increase in CA, but not in sister chromatid exchanges (SCE) or MN was reported in linesman; an increase in CA was observed in cable splicers and, more recently, in train engine drivers, but results have not been replicated. Objective of the study was an evaluation of possible genotoxicity of occupational exposure to ELF-MF. SCE, high-frequency cells (HFC) and SCE in HFC were measured in peripheral blood lymphocytes from 70 workers exposed to various levels of ELF-MF in different occupations, not involving exposure to known mutagens or carcinogens. In all participants, individual ELF-MF exposure was measured throughout the whole work-shift for 3 consecutive days by personal monitoring. Time Weighted Average (TWA) values of ELF-MF in the whole group ranged from 0.01 to 3.48 microT; the geometric mean was 0.19 mT, and only 3 subjects exceeded 2 microT. According to the individual TWA exposure, subjects were divided into two groups: low exposed (< or = 0.2 microT) and highly exposed (> 0.2 microT). The mean values of SCE, HFC and SCE in HFC were compared between low and highly exposed: no significant differences were observed. The result was further tested by selection and comparison of workers exposed up to 0.1 microT vs. exposed > 0.4 microT only, i.e. excluding intermediate exposures: again no difference in genotoxicity indices was observed. Also multivariate analysis did not show any correlation between individual ELF-MF exposure and genotoxicity indices. The results of our study do not give any support to the hypothesis that occupational exposure to ELF-MF up to about 2 microT, i.e. at the levels currently found in most workplaces, can exert a genotoxic effect in workers.

  16. Effects of pulsed electromagnetic field on intervertebral disc cell apoptosis in rats.

    PubMed

    Reihani Kermani, Hamed; Pourghazi, Mehdi; Mahani, Saeed Esmaeili

    2014-09-01

    Despite numerous studies on pulsed electromagnetic field (PEMF) application, its effects of PEMF on intervertebral disc (IVD) have not yet been investigated in vivo. Accordingly, the effects of PEMF upon IVD in rats were evaluated through molecular surveys. Rats were divided into six groups: Group I and II were exposed to low and high frequency of PEMF (LF and HF, respectively). Group III and IV underwent induced disc degeneration and were exposed to low and high frequency of PEMF (LF/IDD and HF/IDD, respectively). Group V underwent induced disc degeneration (IDD), and group VI was control. The values of caspase 3, Bax, Bcl-2 and β-actin band density, as cell apoptotic markers, were obtained from band densitometry. Our results showed that the value of cleaved caspase-3 of cells and Bax/Bcl-2 ratio in IDD group increased significantly compared to the control group (p < 0.001). The value of cleaved caspase-3 and Bax/Bcl-2 ratio decreased significantly in LF/IDD and HF/IDD groups compared to IDD group (p < 0.05). No significant increase was seen in the cell apoptotic markers in the groups just exposed to PEMF compared to the control group. There was also no significant decrease in the Bax/Bcl-2 ratio in HF/IDD and LF/IDD groups compared to the control group. These data suggest that PEMF attenuates degenerative processes in rat's intervertebral discs and has no effect on normal discs. Regulations of the expression of apoptotic proteins may be one of the mechanisms by which PEMF is effective in reduce disc degeneration.

  17. Effects on auditory function of chronic exposure to electromagnetic fields from mobile phones.

    PubMed

    Bhagat, Sanjeev; Varshney, Saurabh; Bist, Sampan Singh; Goel, Deepak; Mishra, Sarita; Jha, Vivek Kumar

    2016-08-01

    The widespread use of mobile phones has given rise to apprehension regarding the possible hazardous health effects of high-frequency electromagnetic fields (EMFs) on auditory function. We conducted a study to investigate the effects of long-term (>4 yr) exposure to EMFs emitted by mobile phones on auditory function. Our study population was made up of 40 healthy medical students-31 men and 9 women, aged 20 to 30 years (mean 22.7). Of this group, 31 subjects typically held their phone to the right ear and 9 to the left ear; the non-phone-using ear served as each subject's control ear. The phone-using subjects were also split into two groups of 20 based on the duration of their daily phone use (≤60 min vs. >60 min). All subjects underwent pure-tone audiometry, speech audiometry, impedance audiometry, and brainstem evoked response audiometry (BERA), and comparisons were made between the phone-using ear and the control ear and between the shorter and longer duration of daily use. We found no statistically significant differences in high-frequency pure-tone average between the phone-using ears and the control ears (p = 0.69) or between the shorter- and longer-duration phone-using ears (p = 0.85). Moreover, statistical analysis of BERA findings revealed no significant differences between the phone-using ears and the control ears in terms of wave I-III, III-V, and I-V interpeak latencies (p = 0.59, 0.74 and 0.44, respectively). None of the subjects reported any subjective symptoms, such as headache, tinnitus, or sensations of burning or warmth behind, around, or on the phone-using ear. We conclude that the long-term exposure to EMFs from mobile phones does not affect auditory function.

  18. Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

    DTIC Science & Technology

    2003-06-01

    the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Dr... Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields (EMFs) (From 1 June 2002 to 31 May 2003 for 12 months) Nikolai Konstantinovich Chemeris...International Science and Technology Center (ISTC), Moscow. 2 ISTC 2350 Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

  19. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  20. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.