Search for a high frequency stochastic background of gravitational waves
NASA Astrophysics Data System (ADS)
Giampanis, Stefanos
Over the past decades significant efforts have been made worldwide in the search for gravitational waves. Ground-based interferometry, primarily with the LIGO detectors, has reached a crucial point and it is believed that over the next few years a detection will take place. LIGO interferometers have recently completed collecting data from the longest science run that has been attempted so far. This thesis describes the search for a stochastic gravitational wave background radiation at high frequencies using data from the LIGO detectors located in Hanford, Washington USA. This is the first ever search for a stochastic signal at high frequencies by using data from two co-located interferometers. Chapter 1 provides a brief introduction to gravitational radiation as predicted by the general theory of relativity and the expected sources of gravitational waves with an emphasis on the stochastic background. Chapter 2 discusses the basic principles of laser interferometry and the experimental techniques used in modern ground-based interferometers such as the LIGO interferometers. Chapter 3 discusses in more detail the configuration, validation and characterization of the set of channels, "Fast Channels", that are used in the search for a high frequency stochastic background radiation. Chapter 4 is an introduction to the LIGO calibration and a more formal discussion on the calibration of the "Fast Channels". Chapter 5 introduces the cross-correlation analysis technique used in the search for a stochastic background and gives a thorough description of the data selection and analysis in searching for a high frequency stochastic signal with data from LIGO's fifth science run (S5). Chapter 6 concludes with the results obtained from the stochastic high frequency S5 analysis, discusses upper limits set at low and high frequencies from other searches and makes connection with Chapter 1 and the theoretical predictions and experimental bounds set within LIGO's frequency band of
Gravitational Wave Astronomy:The High Frequency Window
NASA Astrophysics Data System (ADS)
Andersson, Nils; Kokkotas, Kostas D.
As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.
Gravitational wave detection with high frequency phonon trapping acoustic cavities
NASA Astrophysics Data System (ADS)
Goryachev, Maxim; Tobar, Michael E.
2014-11-01
There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency (1 06-1 09 Hz ) gravitation waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at 20 mK. We show that spectral strain sensitivities reaching 1 0-22 per √{Hz } per mode is possible, which in principle can cover the frequency range with multiple (>100 ) modes with quality factors varying between 1 06 and 1 010 allowing wide bandwidth detection. Due to its compactness and well-established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.
Applications of High-Frequency Gravitational Waves (HFGWs)
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2005-02-01
Applications to space technology of High-Frequency Gravitational Waves, (HFGWs), defined as having frequencies in excess of 100 kHz, are discussed. The applications to be specifically addressed include: providing (1) multi-channel communications (both point to point and point to multipoint through all normal material things - the ultimate wireless system) (2) a remote means for causing perturbations to the motion of objects such as missiles (bullets to ICBMs), spacecraft, land or water vehicles or craft; (3) remote coalescing of clouds of hazardous vapors, radioactive dust, etc. by changing the gravitational field in their vicinity; (4) the potential for through-earth or through-water ``X-rays'' in order to observe subterranean structures, geological formations, create a transparent ocean, view three-dimensional building interiors, buried devices, etc.; and (5) the potential for remotely disrupting the gravitational field in a specific region of space. The utilization of a possible HFGW telescope as a navigational aid by viewing the anisotropic or patterned HFGW relic cosmic background above, on, or under the ground without reliance on GPS satellite signals is also noted. Many of the applications are discussed in the context of space technology and several approaches to the generation and possible focusing of HFGWs are referenced. A derivation of the ``jerk'' formulation of the quadrupole approximation for HFGW power is included in an appendix.
Surveillance Applications of High-Frequency Gravitational Waves
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2007-01-01
This paper explores the possibility of utilizing a novel means of imaging to establish a system of surveillance — a system that may allow for the observation in three-dimensions of activities within and below structures and within the Earth and its oceans. High-Frequency Gravitational Waves (HFGWs) pass through most material with little or no attenuation; but although they are not absorbed their polarization, phase velocity (causing refraction or bending of GWs) and/or other characteristics can be modified by a material object's texture and internal structure. For example, the change in polarization of a GW passing through a material object is discussed in Misner, Thorne, and Wheeler (1973). Specifically, "If the wave is a pulse, then the backscatter will cause its shape and polarization to keep changing …" Such an assertion will need to be verified both theoretically and experimentally, but the potential payoffs are enormous. Applications of this technology include satellite-based surveillance systems to image subterranean weapons of mass destruction or WMDs, personnel of interest inside and behind buildings, deeply submerged submarines, hidden missiles and rockets, oil and mineral deposits, etc. as well as acoustical surveillance. The Laser Interferometer Gravitational Observatory or LIGO and other interferometer detectors cannot detect HFGWs due to the HFGW's short wavelengths as discussed by Shawhan (2004). Long-wavelength gravitational waves having thousand and million meter wavelengths, which can be detected by LIGO, are of no practical surveillance value due to their diffraction and resulting poor resolution. Short HFGW wavelengths of a few meters to fractions of a millimeter and the sensitivity of the HFGW generator-detector system to polarization angle changes of yoctoradians to 10-40 radians could afford suitable resolution for practical surveillance systems.
The Influence of High-Frequency Gravitational Waves Upon Muscles
NASA Astrophysics Data System (ADS)
Moy, Lawrence S.; Baker, Robert M. L.
2007-01-01
The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.
The Influence of High-Frequency Gravitational Waves Upon Muscles
Moy, Lawrence S.; Baker, Robert M. L. Jr
2007-01-30
The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.
High-Frequency Gravitational Wave Induced Nuclear Fusion
Fontana, Giorgio; Baker, Robert M. L. Jr.
2007-01-30
Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.
Detecting high-frequency gravitational waves with optically levitated sensors.
Arvanitaki, Asimina; Geraci, Andrew A
2013-02-15
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect. PMID:25166367
The potential for very high-frequency gravitational wave detection
NASA Astrophysics Data System (ADS)
Cruise, A. M.
2012-05-01
The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies.
Signal photon flux generated by high-frequency relic gravitational waves
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Sai; Wen, Hao
2016-08-01
The power spectrum of primordial tensor perturbations increases rapidly in the high frequency region if the spectral index n t > 0. It is shown that the amplitude of relic gravitational waves h t(5 × 109 Hz) varies from 10‑36 to 10‑25 while n t varies from ‑6.25 × 10‑3 to 0.87. A high frequency gravitational wave detector proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux (5 × 109 Hz) varies from 1.40 × 10‑4 s‑1 to 2.85 × 107 s‑1 while n t varies from ‑6.25 × 10‑3 to 0.87. Correspondingly, the ratio of the transverse perturbative photon flux to the background photon flux varies from 10‑28 to 10‑16. Supported by National Natural Science Foundation of China (11305181,11322545,11335012) and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)
NASA Astrophysics Data System (ADS)
Li, Jin; Zhang, Lu; Wen, Hao
2016-03-01
For the relic gravitational waves in high frequency band, we survey the electromagnetic resonance effect generated from the high frequency gravitational waves, which can be described in the transverse perturbative photon fluxes. Under the fixed tensor-scalar ratio r = 0.2, spectral index n t = 0 and running index α t = 0.01, we discuss several properties and quantity changes of the transverse perturbative photon fluxes, which can be improved significantly through setting the longitudinal magnetic component of background EM field in the standard gaussian form, and wave impedance analysis on the transverse direction. Through the theoretical calculation, the transverse perturbative photon fluxes can reach up to 103 s -1 with some optimal parameters such as waist of EM field W 0 = 0.05m, initial stochastic phase of gravitational waves δ = (0.21 + n) π( n = 0,1,2...). Furthermore the interference of the background transverse photon fluxes can be removed completely through establishing a suitable wave impedance function.
Characterization of the high frequency response of LASER interferometer gravitational wave detectors
NASA Astrophysics Data System (ADS)
Butler, William E.
This thesis describes a search for a stochastic background of gravitational waves at high frequency, 37.52 kHz. At this frequency the separation between the available instruments excludes the use of a correlation technique. Instead I rely on the spectral response of the LASER interferometer to isolate a possible signal from the underlying noise. This research was carried out at the LIGO (LASER Interferometer Gravitational Observatory) located in Hanford, WA and within the LIGO Scientific Collaboration (LSC). Chapter 1 serves as a general introduction to the present state of the search for gravitational waves (GW). I discuss the indirect observation of gravitational radiation as well as the expected sources for GW and their characteristics. I also discuss possible future developments, in particular the Advanced LIGO instruments and the LASER Interferometer Space Antenna (LISA). The characteristics of the large LASER interferometers, layout, terminology and necessary formulae are developed in Chapter 2. To carry out the proposed search it is essential that the frequency response of the interferometer be thoroughly understood, including possible noise sources. This was the subject of a series of experimental investigations using sideband injection and mirror excitations to characterize the IFO response in the region of the first free spectral range, which is at 37.52 kHz. The results of these experiments as well as their theoretical model are presented in Chapter 3. Contributions to the spectrum from mechanical noise are investigated in Chapter 4, and compared to the expected contribution thermal excitation. The results of my search are based on data obtained during the third science run of LIGO (S3) and are presented in Chapter 5. I show that a signal such as expected from a stochastic gravitational wave background is manifest in the data and compare it to the expected noise signal. This allows me to postulate a limit on a possible stochastic background. I also
Resonance of Gaussian Electromagnetic Field to the High Frequency Gravitational Waves
NASA Astrophysics Data System (ADS)
Li, Jin; Zhang, Lu; Lin, Kai; Wen, Hao
2016-08-01
We consider a Gaussian Beam (GB) resonant system for high frequency gravitational waves (HFGWs) detection. At present, we find the optimal signal strength in theory through setting the magnetic component of GB in a standard gaussian form. Under the synchro-resonance condition, we study the signal strength (i.e., transverse perturbative photon fluxes) from the relic HFGWs (predicted by ordinary inflationary model) and the braneworld HFGWs (from braneworld scenarios). Both of them would generate potentially detectable transverse perturbative photon fluxes (PPFs). Furthermore we find optimal system parameters and the relationship between frequency and effective width of energy fluxes accumulation.
Resonance of Gaussian Electromagnetic Field to the High Frequency Gravitational Waves
NASA Astrophysics Data System (ADS)
Li, Jin; Zhang, Lu; Lin, Kai; Wen, Hao
2016-04-01
We consider a Gaussian Beam (GB) resonant system for high frequency gravitational waves (HFGWs) detection. At present, we find the optimal signal strength in theory through setting the magnetic component of GB in a standard gaussian form. Under the synchro-resonance condition, we study the signal strength (i.e., transverse perturbative photon fluxes) from the relic HFGWs (predicted by ordinary inflationary model) and the braneworld HFGWs (from braneworld scenarios). Both of them would generate potentially detectable transverse perturbative photon fluxes (PPFs). Furthermore we find optimal system parameters and the relationship between frequency and effective width of energy fluxes accumulation.
The Peoples Republic of China High-Frequency Gravitational Wave Research Program
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2009-03-01
For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.
Kocsis, Bence
2013-02-15
It is commonly assumed that ground-based gravitational wave (GW) instruments will not be sensitive to supermassive black holes (SMBHs) because the characteristic GW frequencies are far below the {approx}10-1000 Hz sensitivity bands of terrestrial detectors. Here, however, we explore the possibility of SMBH GWs to leak to higher frequencies. In particular, if the high-frequency spectral tail asymptotes to h-tilde (f){proportional_to}f{sup -{alpha}}, where {alpha} {<=} 2, then the spectral amplitude is a constant or increasing function of the mass M at a fixed frequency f >> c {sup 3}/GM. This will happen if the time-domain waveform or its derivative exhibits a discontinuity. Ground-based instruments could search for these universal spectral tails to detect or rule out such features irrespective of their origin. We identify the following processes which may generate high-frequency signals: (1) gravitational bremsstrahlung of ultrarelativistic objects in the vicinity of an SMBH, (2) ringdown modes excited by an external process that has a high-frequency component or terminates abruptly, and (3) gravitational lensing echoes and diffraction. We estimate the order of magnitude of the detection signal-to-noise ratio for each mechanism (1, 2, and 3) as a function of the waveform parameters. In particular for (3), SMBHs produce GW echoes of inspiraling stellar mass binaries in galactic nuclei with a delay of a few minutes to hours. The lensed primary signal and GW echo are both amplified if the binary is within a {approx}10 deg (r/100M){sup -1/2} cone behind the SMBH relative to the line of sight at a distance r from the SMBH. For the rest of the binaries near SMBHs, the amplitude of the GW echo is {approx}0.1(r/100M){sup -1} of the primary signal on average.
Squeezed light for the interferometric detection of high-frequency gravitational waves
NASA Astrophysics Data System (ADS)
Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.
2004-03-01
The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu
2006-01-01
Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2004-02-01
High-Frequency Gravitational Wave (HFGW) generators are separated into three general categories. Precursor, component-validation, laboratory experiments for each category except, possibly, the third are identified in general terms. The categories are: (1) The electromechanical category includes micro- and nano-element, piezoelectric crystal, and multi-dielectric film HFGW generators. (2) The high-temperature superconductor category includes gasers, impressed magnetic fields, and transformation of electromagnetic radiation into gravitational waves (Gertsenshtein effect) HFGW generators. (3)The laser/plasma category includes laser-energized mirrors, synchrotron light, nuclear fusion, plasma toroid, and nonlinear optical-acoustical, molecular-level HFGW generators. A perusal of HFGW literature reveals that since the 1960s many authors have contributed designs of mechanisms and devices that relate to the terrestrial generation of gravitational waves. Only in the last few years, however, have any researchers demonstrated that their proposed devices were practical HFGW generators, capable of producing kilowatts of power, that were operational in a laboratory setting. These recent devices make use of new technology and generate high-frequency (GHz and above) gravitational waves using non-gravitational forces. Most of the generators considered in this paper have been recently discussed at the May, 2003, Gravitational Wave Conference at The MITRE Corporation, McLean, VA, which was the very first International Conference dedicated to HFGW and attracted twenty-five research papers from nine countries. Although no detailed experimental tasks are discussed, experimental test objectives in the form of a roadmap are proposed for each category.
Applications of High-Frequency Gravitational Waves to the Global War on Terror
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2010-01-01
Applications of high-frequency gravitational waves or HFGWs to the global war on terror are now realistic because technology developed by GravWave® LLC and other institutions overseas can lead to devices, some already constructed, that can generate and detect HFGWs. In fact, three HFGW detectors have been built outside the United States and an ultra high-sensitive Li-Baker HFGW Detector has been proposed. HFGW generators have been proposed theoretically by the Russians, Germans, Italians and Chinese. Because of their unique characteristics, such as their ability to pass through all material without attenuation, HFGWs could be utilized for uninterruptible, very low-probability-of-intercept (LPI), high-bandwidth communications among and between anti-terrorist assets. One such communications system, which can be constructed from off-the-shelf elements, is discussed. The HFGW generation device or transmitter alternative selected is based upon bands of piezoelectric crystal, film-bulk acoustic resonators or FBARs energized by conventional Magnetrons. The system is theoretically capable of transmitting and detecting, through use of the Li-Baker HFGW detector, a signal generated on the opposite side of the Earth. Although HFGWs do not interact with and are not absorbed by ordinary matter, their presence can be detected by their distortion of spacetime as measured by the Laser Interferometer Gravitational Observatory (LIGO), Virgo, GEO600, et al., by detection photons generated from electromagnetic beams having the same frequency, direction and phase as the HFGWs in a superimposed magnetic field (Li-Baker HFGW Detector), by the change in polarization HFGWs produce in a microwave guide (Birmingham University Detector) and by other such instruments. Potential theoretical applications, which may or may not be practical yet theoretically possible, are propulsion, including "moving" space objects such as missiles, anti-missiles and warheads in flight; surveillance through
Relic gravitational waves with a running spectral index and its constraints at high frequencies
Tong, M. L.; Zhang, Y.
2009-10-15
We study the impact of a running index {alpha}{sub t} on the spectrum of relic gravitational waves (RGWs) over the whole range of frequency (10{sup -18}{approx}10{sup 10}) Hz and reveal its implications in RGWs detections and in cosmology. Analytical calculations show that, although the spectrum of RGWs on low frequencies is less affected by {alpha}{sub t}{ne}0, on high frequencies, the spectrum is modified substantially. Investigations are made toward potential detections of the {alpha}{sub t}-modified RGWs for several kinds of current and planned detectors. The Advanced LIGO will likely be able to detect RGWs with {alpha}{sub t}{>=}0 for inflationary models with the inflation index {beta}=-1.956 and the tensor-scalar ratio r=0.55. The future LISA can detect RGWs for a much broader range of ({alpha}{sub t},{beta},r), and will have a better chance to break a degeneracy between them. Constraints on {alpha}{sub t} are estimated from several detections and cosmological observations. Among them, the most stringent one is from the bound of the big bang nucleosynthesis, and requires {alpha}{sub t}<0.008 rather conservatively for any reasonable ({beta},r), preferring a nearly power-law spectrum of RGWs. In light of this result, one would expect the scalar running index {alpha}{sub s} to be of the same magnitude as {alpha}{sub t}, if both RGWs and scalar perturbations are generated by the same scalar inflation.
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.; Davis, Eric W.; Woods, R. C.
2005-02-01
The Gravitational Wave (GW) radiation pattern is derived that results from a rod rotating about a pivot, a dumbbell rotating about its central axis, a pair of stars rotating about their orbital focus, or a stationary circular asymmetrical-array of tangentially jerking elements. The three-dimensional shape of the GW radiation pattern is like a dumbbell cross-section having its long axis perpendicular to the plane of motion or along the central axis of the stationary ring of sequentially jerking elements. The center of the radiation pattern is situated at the pivot, orbital-focus, or center of the stationary array. Knowledge of the GW radiation pattern allows for optimum placement of a detector. In the case of High-Frequency Gravitational Waves (HFGWs), in which the diffraction of the GW radiation is less than the dimensions of the ring of jerking elements, the radiation pattern is situated at the center of the ring and represents a focus or concentration point of the HFGWs, The concentration point extends over a diffraction-limited spot having a radius of λGW/π, where λGW is the wavelength of the HFGW. In the case of a superconductor, prior research, although speculative has shown that the GW wavelength is foreshortened by a factor of about 300. Thus there could be a much more concentrated diffraction-limited flux of HFGW at the focus. It is shown that the efficiency of a HFGW communications link could be approximately proportional to the sixth power of the HFGW frequency. Applications to space technology, involving aerospace communications, and Astronomy are discussed.
NASA Astrophysics Data System (ADS)
Li, Fangyu; Yang, Nan; Fang, Zhenyun; Baker, Robert M. L., Jr.; Stephenson, Gary V.; Wen, Hao
2009-09-01
A coupling system among Gaussian-type microwave photon flux, a static magnetic field, and fractal membranes (or other equivalent microwave lenses) can be used to detect high-frequency gravitational waves (HFGWs) in the microwave band. We study the signal photon flux, background photon flux, and the requisite minimal accumulation time of the signal in the coupling system. Unlike the pure inverse Gertsenshtein effect (G effect) caused by the HFGWs in the gigahertz band, the electromagnetic (EM) detecting scheme proposed by China and the U.S. HFGW groups is based on the composite effect of the synchroresonance effect and the inverse G effect. The key parameter in the scheme is the first-order perturbative photon flux (PPF) and not the second-order PPF; the distinguishable signal is the transverse first-order PPF and not the longitudinal PPF; the photon flux focused by the fractal membranes or other equivalent microwave lenses is not only the transverse first-order PPF but the total transverse photon flux, and these photon fluxes have different signal-to-noise ratios at the different receiving surfaces. Theoretical analysis and numerical estimation show that the requisite minimal accumulation time of the signal at the special receiving surfaces and in the background noise fluctuation would be ˜103-105 seconds for the typical laboratory condition and parameters of hrms˜10-26-10-30/Hz at 5 GHz with bandwidth ˜1Hz. In addition, we review the inverse G effect in the EM detection of the HFGWs, and it is shown that the EM detecting scheme based only on the pure inverse G effect in the laboratory condition would not be useful to detect HFGWs in the microwave band.
NASA Astrophysics Data System (ADS)
Conklin, John
2016-03-01
With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.
Gravitational wave astronomy and cosmology
NASA Astrophysics Data System (ADS)
Hughes, Scott A.
2014-09-01
The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.
Gravitational waves from gravitational collapse
Fryer, Christopher L; New, Kimberly C
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Detectors of gravitational waves
NASA Astrophysics Data System (ADS)
Pizzella, G.
Gravitational waves Motion of test bodies in a g.w. field Energy carried by gravitational waves Gravitational-wave sources Spinning star Double-star systems Fall into a Schwarzschild black hole Radiation from gravitational collapse Gravitational-wave detectors The nonresonant detectors The resonant detectors Electromechnical transducers Piezoelectric ceramic The capacitor The inductor Data analysis The Brownian noise The back-action The wide-band noise, data analysis and optimization The resonant transducer The Wiener-Kolmogoroff filter The cross-section and the effective temperature The antenna bandwidth The gravitational-wave experiments in the world The laser interferometers The resonant detectors
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.
NASA Astrophysics Data System (ADS)
Fontana, Giorgio
2005-02-01
There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
A new era in time-domain astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multimessenger astronomy across the gravitational wave spectrum.
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years) as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves) these signals carry direct information about their sources - such as masses) spins) luminosity distances) and orbital parameters - through dense) obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers) highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.
Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.
2012-02-01
Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.
Those Elusive Gravitational Waves
ERIC Educational Resources Information Center
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Progress in gravitational wave detection
NASA Astrophysics Data System (ADS)
Cheng, Jing-Quan; Yang, De-Hua
2005-09-01
General theory of Einstein's relativity predicts the existence of gravitational wave when mass is accelerated. However, no material has direct effect when the gravitational wave passes. Therefore, gravitational wave can only be detected indirectly. The effort in gravitational wave detection was started in the 60s of last century by using a huge cylinder of aluminum. This paper introduced all the relevant projects in the gravitational wave detection. These projects include Weber's bar, Laser interferometer Gravitational wave Detector (LGD), Laser Interferometer Gravitational wave Observatory (LIGO), GEO600, VIRGO, TAMA300, Advanced LIGO, Large scale Cryogenic Gravitational wave Telescope (LCGO), and Laser Interferometer Space Antenna (LISA).
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
High frequency single mode traveling wave structure for particle acceleration
NASA Astrophysics Data System (ADS)
Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.
2016-09-01
The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.
NASA Astrophysics Data System (ADS)
seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi
2016-03-01
In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).
Observation of Gravitational Waves
NASA Astrophysics Data System (ADS)
Gonzalez, Gabriela
2016-06-01
On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.
Gravitational lens time delays and gravitational waves
Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )
1994-10-15
Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.
NASA Astrophysics Data System (ADS)
Finn, Lee Samuel
2012-03-01
If two black holes collide in a vacuum, can they be observed? Until recently, the answer would have to be "no." After all, how would we observe them? Black holes are "naked" mass: pure mass, simple mass, mass devoid of any matter whose interactions might lead to the emission of photons or neutrinos, or any electromagnetic fields that might accelerate cosmic rays or leave some other signature that we could observe in our most sensitive astronomical instruments. Still, black holes do have mass. As such, they interact—like all mass—gravitationally. And the influence of gravity, like all influences, propagates no faster than that universal speed we first came to know as the speed of light. The effort to detect that propagating influence, which we term as gravitational radiation or gravitational waves, was initiated just over 50 years ago with the pioneering work of Joe Weber [1] and has been the object of increasingly intense experimental effort ever since. Have we, as yet, detected gravitational waves? The answer is still "no." Nevertheless, the accumulation of the experimental efforts begun fifty years ago has brought us to the point where we can confidently say that gravitational waves will soon be detected and, with that first detection, the era of gravitational wave astronomy—the observational use of gravitational waves, emitted by heavenly bodies—will begin. Data analysis for gravitational wave astronomy is, today, in its infancy and its practitioners have much to learn from allied fields, including machine learning. Machine learning tools and techniques have not yet been applied in any extensive or substantial way to the study or analysis of gravitational wave data. It is fair to say that this owes principally to the fields relative youth and not to any intrinsic unsuitability of machine learning tools to the analysis problems the field faces. Indeed, the nature of many of the analysis problems faced by the field today cry-out for the application of
High-frequency waves generated by auroral electrons
NASA Technical Reports Server (NTRS)
Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.
1986-01-01
Measurements of marginally unstable electron distribution functions and high-frequency plasma waves were made on a sounding rocket flight through a quiet auroral arc. The waves appeared near the electron plasma frequency and had a large parallel electric field component such that k-parallel is greater than k-perpendicular. The appearance of these waves was correlated with the presence of marginally unstable parallel electron distributions. Analysis has shown that the waves were produced by parallel electron distribution function greater than 0 rather than the small perpendicular electron distribution function greater than 0 features. Wave levels and growth rates inside the arc were small, and nonlinear wave-wave and wave-particle interactions appear to have been minimal.
NASA Astrophysics Data System (ADS)
Mottola, Emil
2016-03-01
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.
Gravitational Waves and Time Domain Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
High Frequency Elastic Wave Propagation in Media with a Microstructure
NASA Astrophysics Data System (ADS)
Tie, B.; Aubry, D.; Mouronval, A.-S.; Solas, D.; Thébault, J.; Tian, B.-Y.
2010-05-01
This contribution deals with the theoretical analysis and numerical modeling of elastic wave propagation in media with a microstructure. Two kinds of media are considered: polycrystalline material and honeycomb core sandwich shells, in which elastic waves are triggered by transient signals that result in large frequency ranges including high frequencies. Our theoretical and numerical investigations aim at understanding and simulating the interactions between the microstructure of those media and the wave propagation phenomena, when the characteristic lengths of the microstructure and the involved shortest wavelengths have roughly the same scale. In this paper, some key mechanisms of interaction between the considered microstructures and the elastic waves are highlighted. In polycrystalline superalloys, the misorientation distribution and the average grain size are considered, as they can alter pressure/shear wave propagation and also the permeability to ultrasonic waves monitored to perform non-destructive testing. For the flexure behavior of honeycomb core sandwich shells, the fundamental role played by the honeycomb cells, especially in high frequency domain, is analyzed. Relevant numerical modeling that provides a promising way to quantify micro-structure/wave interactions is presented. The important issue of how to take into account these micro-scale interactions in a homogenized macro-scale modeling is also discussed.
Sources of gravitational waves
NASA Technical Reports Server (NTRS)
Schutz, Bernard F.
1989-01-01
Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.
Gravitational Waves: The Evidence Mounts
ERIC Educational Resources Information Center
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2014-03-11
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
Corrosion monitoring using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, Paul
2014-02-01
Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Corrosion monitoring using high-frequency guided waves
NASA Astrophysics Data System (ADS)
Fromme, P.
2016-04-01
Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Generation of sheet currents by high frequency fast MHD waves
NASA Astrophysics Data System (ADS)
Núñez, Manuel
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.
The gravitational wave experiment
NASA Technical Reports Server (NTRS)
Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.
1992-01-01
Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Gaussian beam decomposition of high frequency wave fields
Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard
2009-12-10
In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.
High-frequency wave normals in the solar wind
Herbert, F.; Smith, L.D.; Sonett, C.P.
1984-05-01
High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.
Transformation ray method: controlling high frequency elastic waves (L).
Chang, Zheng; Liu, Xiaoning; Hu, Gengkai; Hu, Jin
2012-10-01
Elastic ray theory is a high frequency asymptotic approximation of solution of elastodynamic equation, and is widely used in seismology. In this paper, the form invariance under a general spatial mapping and high frequency wave control have been examined by transformation method. It is showed that with the constraint of major and minor symmetry of the transformed elastic tensor, the eikonal equation keeps its form under a general mapping, however, the transport equation loses its form except for conformal mapping. Therefore, the elastic ray path can be controlled in an exact manner by a transformation method, whereas energy distribution along the ray is only approximately controlled. An elastic rotator based on ray tracing method is also provided to illustrate the method and to access the approximation. PMID:23039561
Gravitational wave bursts from cosmic strings
Damour; Vilenkin
2000-10-30
Cusps of cosmic strings emit strong beams of high-frequency gravitational waves (GW). As a consequence of these beams, the stochastic ensemble of gravitational waves generated by a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that stand above the rms GW background. These bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for string tensions as small as G&mgr; approximately 10(-13). The GW bursts discussed here might be accompanied by gamma ray bursts. PMID:11041921
NASA Astrophysics Data System (ADS)
Finn, L. S.
Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.
High frequency seismic waves and slab structures beneath Italy
NASA Astrophysics Data System (ADS)
Sun, Daoyuan; Miller, Meghan S.; Piana Agostinetti, Nicola; Asimow, Paul D.; Li, Dunzhu
2014-04-01
Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in
High-Frequency Wave Propagation by the Segment Projection Method
NASA Astrophysics Data System (ADS)
Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin
2002-05-01
Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.
High-frequency electrostatic waves in the magnetosphere.
NASA Technical Reports Server (NTRS)
Young, T. S. T.
1973-01-01
High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.
Scattering of high-frequency surface waves in Scotland
NASA Astrophysics Data System (ADS)
MacBeth, Colin; Snieder, Roel
1989-02-01
High-frequency (≤5 Hz) coda waves for velocities of arrival less than 3 km/s, recorded on vertical component instruments and generated from a local earthquake in Scotland, are analyzed to ascertain their cause. The adaption of existing velocity models and scattering from near-surface irregularities in Scotland such as mountains and lochs are considered as possible causes of the observed behavior. The former mechanism is not feasible, as it implies a significant alteration of the velocities in the upper 2 km crust, contradicting previous seismic surveys in the area. An analysis of the effects of scattering is performed using a formalism derived from the Born approximation. The scattered wave field is computed for interactions between first six Rayleigh and Love modes. The general character of the synthetic seismograms for these scattered waves agrees with the observations on a qualitative basis. The apparent absence of the fundamental mode energy from the records is also explained by the synthetic seismograms. The calculations imply that scatterers with a scale length of less than 300 m are applicable to these data from the northernmost stations but around 2 km for the more southern areas. It is thought that the scale length relates to the size of a region on the slopes of the mountains or lochs where there is a sharp gradient. This study emphasises the effectiveness of linear scattering theory in accounting, on a qualitative basis for many of the observed features of the apparently complex coda waves.
Quantum Emulation of Gravitational Waves
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Fault-zone attenuation of high-frequency seismic waves
Blakeslee, S.; Malin, P.; Alvarez, M. )
1989-11-01
The authors have developed a technique to measure seismic attenuation within an active fault-zone at seismogenic depths. Utilizing a pair of stations and pairs of earthquakes, spectral ratios are performed to isolate attenuation produced by wave-propagation within the fault-zone. The empirical approach eliminates common source, propagation, instrument and near-surface site effects. The technique was applied to a cluster of 19 earthquakes recorded by a pair of downhole instruments located within the San Andreas fault-zone, at instruments located within the San Andreas fault-zone, at Parkfield, California. Over the 1-40 Hz bandwidth used in this analysis, amplitudes are found to decrease exponentially with frequency. Furthermore, the fault-zone propagation distance correlates with severity of attenuation. Assuming a constant Q attenuation operator, the S-wave quality factor within the fault-zone at a depth of 5-6 kilometers is 31 (+7,{minus}5). If fault-zones are low-Q environments, then near-source attenuation of high-frequency seismic waves may help to explain phenomenon such as f{sub max}. Fault-zone Q may prove to be a valuable indicator of the mechanical behavior and rheology of fault-zones. Specific asperities can be monitored for precursory changes associated with the evolving stress-field within the fault-zone. The spatial and temporal resolution of the technique is fundamentally limited by the uncertainty in earthquake location and the interval time between earthquakes.
LISA in the gravitational wave decade
NASA Astrophysics Data System (ADS)
Conklin, John; Cornish, Neil
2015-04-01
With the expected direct detection of gravitational waves in the second half of this decade by Advanced LIGO and pulsar timing arrays, and with the launch of LISA Pathfinder in the summer of this year, this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. Recently, NASA has decided to join with ESA on the L3 mission as a junior partner. Both agencies formed a committee to advise them on the scientific and technological approaches for a space based gravitational wave observatory. The leading mission design, Evolved LISA or eLISA, is a slightly de-scoped version of the earlier LISA design. This talk will describe activities of the Gravitational Wave Science Interest Group (GWSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG), focusing on LISA technology development in both the U.S. and Europe, including the LISA Pathfinder mission.
Thomas, Edward Jr.; Fisher, Ross; Merlino, Robert L.
2007-12-15
An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies (f>100 Hz), extending the range of previous work. In this study, two previously unreported phenomena are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves, and the observation of finite dust temperature effects on the dispersion relation.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
NASA Astrophysics Data System (ADS)
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical
Quantum Opportunities in Gravitational Wave Detectors
Mavalvala, Negris
2012-03-14
Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.
Gravitational-wave sensitivity curves
NASA Astrophysics Data System (ADS)
Moore, C. J.; Cole, R. H.; Berry, C. P. L.
2015-01-01
There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.
Geometrical versus wave optics under gravitational waves
NASA Astrophysics Data System (ADS)
Angélil, Raymond; Saha, Prasenjit
2015-06-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell's equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics—rather than solving Maxwell's equations directly for the fields, as in most previous approaches—we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
Multibaseline gravitational wave radiometry
Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit
2011-03-15
We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Testing local Lorentz invariance with gravitational waves
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2016-06-01
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Utilization of high-frequency Rayleigh waves in near-surface geophysics
Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.
2004-01-01
Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.
Conformal Gravity and Gravitational Waves
NASA Astrophysics Data System (ADS)
Fabbri, Luca; Paranjape, M. B.
We consider monochromatic, plane gravitational waves in a conformally invariant theory of general relativity. We show that the simple, standard ansatz for the metric, usually that which is taken for the linearized theory of these waves, is reducible to the metric of Minkowski spacetime via a sequence of conformal and coordinate transformations. This implies that we have in fact, exact plane wave solutions. However they are simply coordinate/conformal artifacts. As a consequence, they carry no energy.
GRAVITATIONAL WAVES FROM STELLAR COLLAPSE
C. L. FRYER
2001-01-01
Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.
High-frequency acoustic waves are not sufficient to heat the solar chromosphere.
Fossum, Astrid; Carlsson, Mats
2005-06-16
One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere. PMID:15959510
High-frequency electrostatic waves near earth's bow shock
NASA Technical Reports Server (NTRS)
Onsager, T. G.; Holzworth, R. H.; Koons, H. C.; Bauer, O. H.; Gurnett, D. A.
1989-01-01
Electrostatic wave measurements from the Active Magnetospheric Particle Tracer Explorer Ion Release Module have been used to investigate the wave modes and their possible generation mechanisms in the earth's bow shock and magnetosheath. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler-shifted ion acoustic waves, yet below the plasma frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. Data from 45 bow shock crossings are then used to investigate possible correlations between the electrostatic wave properties and the near-shock plasma parameters. The most significant relationships found are anticorrelations with Alfven Mach number and electron beta. Mechanisms which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results. These mechanisms include acceleration by the cross-shock electric field and by lower hybrid frequency waves. A magnetosheath 'time of flight' mechanism, in analogy to the electron foreshock region, is introduced as another possible beam generation mechanism.
Gravitational Waves from Neutron Stars
NASA Astrophysics Data System (ADS)
Kokkotas, Konstantinos
2016-03-01
Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Braccini, Stefano; Fidecaro, Francesco
The detection of gravitational waves is challenging researchers since half a century. The relative precision required, 10^{-21}, is difficult to imagine, this is 10^{-5} the diameter of a proton over several kilometres, using masses of tens of kilograms, or picometres over millions of kilometres. A theoretical description of gravitational radiation and its effects on matter, all consequence of the general theory of relativity, is given. Then the astrophysical phenomena that are candidates of gravitational wave emission are discussed, considering also amplitudes and rates. The binary neutron star system PSR1913+16, which provided the first evidence for energy loss by gravitational radiation in 1975, is briefly discussed. Then comes a description of the experimental developments, starting with ground-based interferometers, their working principles and their most important sources of noise. The earth-wide network that is being built describes how these instruments will be used in the observation era. Several other detection techniques, such as space interferometry, pulsar timing arrays and resonant detectors, covering different bands of the gravitational wave frequency spectrum complete these lectures.
Gravitational waves and multimessenger astronomy
NASA Astrophysics Data System (ADS)
Ricci, Fulvio
2016-07-01
It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.
Gravitational waves carrying orbital angular momentum
NASA Astrophysics Data System (ADS)
Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia
2016-02-01
Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.
Theory and detection of gravitational waves
NASA Astrophysics Data System (ADS)
Pizzella, G.
The role of gravitational waves in general relativity is examined. It is found that the gravitational waves are a particular solution of the Einstein equations. The computation of the energy flux emitted by moving bodies as gravitational waves is very similar to that for electromagnetic waves. A description of gravitational wave sources is presented, taking into account a spinning star, double star systems, the fall into a Schwarzschild black hole, and radiation from gravitational collapse. Questions regarding the interaction of gravitational waves with matter are explored, and the interaction of a gravitational wave with oscillators and an elastic cylinder is considered. Electromechanical transducers are discussed, giving attention to the piezoelectric ceramic, the capacitor, the inductor, the Brownian noise of the bar, the backreaction, the wide band noise, and data analysis. The design of a gravitational wave antenna is also described.
Merging Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2009-01-01
This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.
Hunting gravitational waves using pulsars
NASA Astrophysics Data System (ADS)
Mayor, Louise
2014-10-01
With the first direct detection of gravitational waves at the top of many physicists' wish list, Louise Mayor describes how radio astronomers are hoping to reveal these ripples in space-time by pointing their telescopes at an array of distant pulsars.
Effect of near-surface topography on high-frequency Rayleigh-wave propagation
NASA Astrophysics Data System (ADS)
Wang, Limin; Xu, Yixian; Xia, Jianghai; Luo, Yinhe
2015-05-01
Rayleigh waves, which are formed due to interference of P- and Sv-waves near the free surface, propagate along the free surface and vanish exponentially in the vertical direction. Their propagation is strongly influenced by surface topography. Due to the high resolution and precision requirements of near-surface investigations, the high-frequency Rayleigh waves are usually used for near-surface structural detecting. Although there are some numerical studies on high-frequency Rayleigh-wave propagation on topographic free surface, detailed analysis of characters of high-frequency Rayleigh-wave propagation on topographic free surface remains untouched. Hence, research of propagation of Rayleigh waves on complex topographic surface becomes critical for Rayleigh-wave methods in near-surface applications. To study the propagation of high-frequency Rayleigh waves on topographic free surface, two main topographic models are designed in this study. One of the models contains a depressed topographic surface, and another contains an uplifted topographic surface. We numerically simulate the propagation of high-frequency Rayleigh waves on these two topographic surfaces by finite-difference method. Soon afterwards, we analyze the propagation character of high-frequency Rayleigh waves on such topographic models, and compare the variations on its energy and frequency before and after passing the topographic region. At last, we discuss the relationship between the variations and topographical steepness of each model. Our numerical results indicate that influence of depressed topography for high-frequency Rayleigh waves is more distinct than influence of uplifted topography. Rayleigh waves produce new scattering body waves during passing the depressed topography with reduction of amplitude and loss of high-frequency components. Moreover, the steeper the depressed topography is, the more energy of Rayleigh waves is lost. The uplifted topography with gentle slope produces similar
On the role of high frequency waves in ocean altimetry
NASA Astrophysics Data System (ADS)
Vandemark, Douglas C.
This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.
High frequency fast wave current drive for DEMO
Koch, R.; Lerche, E.; Van Eester, D.
2011-12-23
A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n{sub ||} is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n{sub ||} can be upshifted along the wave propagation path, allowing low n{sub ||} launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n{sub ||}. Note however that the n{sub ||} upshift is a self-organized feature, that electron absorption is in competition with {alpha}-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n{sub ||} slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596
Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
The Japanese space gravitational wave antenna - DECIGO
NASA Astrophysics Data System (ADS)
Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, Koh-Suke; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M.-K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F.-L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K.-i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S.-i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K.-i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C.-M.; Yoshida, S.; Yoshino, T.
2008-07-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies.
Listening to the low-frequency gravitational-wave band
NASA Astrophysics Data System (ADS)
Hughes, Scott
2016-03-01
Ground-based gravitational-wave detectors are beginning to explore the high-frequency band of roughly 10 to 1000 Hz. These three decades in frequency represent one of several astrophysically important wavebands. In this talk, I will focus on the astrophysics of the low-frequency band, from roughly 30 microhertz to 0.1 Hz. This band is expected to be particularly rich with very loud sources. I will survey what we expect to be important sources of low-frequency gravitational waves, and review the scientific payoff that would come from measuring them.
MHz gravitational waves from short-term anisotropic inflation
NASA Astrophysics Data System (ADS)
Ito, Asuka; Soda, Jiro
2016-04-01
We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10-26~ 10-27 are copiously produced in high-frequency bands 10 MHz~100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.
Radiation from highly relativistic geodesics. [gravitational wave generation
NASA Technical Reports Server (NTRS)
Misner, C. W.
1974-01-01
A number of recent works are reviewed concerning the generation and emission of gravitational waves. It is shown that at high frequencies, the generation of gravitational radiation is a local phenomenon. Two examples are described illustrating this generation when a high-energy particle collides against the space-time curvature. One, after Matzner and Nutku, uses a method of virtual photons; the other, after Chrzanowski and Misner, is based on the W.K.B. approximation, corresponding to geometric optics, for the inhomogeneous wave equation. This method uses a factorized integral representation of the Green function which is valid asymptotically to infinity in space.
Attenuation of High-Frequency Seismic Waves in Eastern Iran
NASA Astrophysics Data System (ADS)
Mahood, M.
2014-09-01
We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5-25 km. We estimated the quality factor of coda waves ( Q c) and body waves ( Q p and Q s) in the frequency band of 1.5-24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships ( Q = Q o f n ) estimated for the region are Q c = (108 ± 10) f (0.96±0.01), Q p = (50 ± 5) f (1.01±0.04), and Q s = (75 ± 6) f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.
Accumulative coupling between magnetized tenuous plasma and gravitational waves
NASA Astrophysics Data System (ADS)
Zhang, Fan
2016-07-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high-frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves that are generated directly by the latter as a second-order phenomenon.
Gravitational waves from perturbed stars
NASA Astrophysics Data System (ADS)
Ferrari, V.
2011-12-01
Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance, in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.
Gravitational waves from perturbed stars
NASA Astrophysics Data System (ADS)
Ferrari, V.
2011-03-01
Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.
Gravitational wave science from space
NASA Astrophysics Data System (ADS)
Gair, Jonathan R.
2016-05-01
The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.
First test of high frequency Gravity Waves from inflation using Advanced LIGO
Lopez, Alejandro; Freese, Katherine E-mail: ktfreese@umich.edu
2015-01-01
Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 10{sup 7} GeV∼< ε{sup 1/4} ∼< 10{sup 10} GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.
Primordial gravitational waves and cosmology.
Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan
2010-05-21
The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale. PMID:20489015
Gravitational Waves from Neutron Stars: A Review
NASA Astrophysics Data System (ADS)
Lasky, Paul D.
2015-09-01
Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.
Gravitational Waves in Effective Quantum Gravity
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Kuntz, Iberê; Mohapatra, Sonali
2016-08-01
In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration.
Self-adaptive method for high frequency multi-channel analysis of surface wave method
Technology Transfer Automated Retrieval System (TEKTRAN)
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Gravitational-wave generation in hybrid quintessential inflationary models
Sa, Paulo M.; Henriques, Alfredo B.
2010-06-15
We investigate the generation of gravitational waves in the hybrid quintessential inflationary model. The full gravitational-wave energy spectrum is calculated using the method of continuous Bogoliubov coefficients. The postinflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a peak at high frequencies. The maximum of the peak is firmly located at the megahertz-gigahertz region of the spectrum and corresponds to {Omega}{sub GW{approx_equal}}10{sup -12}. This peak is substantially smaller than the one appearing in the gravitational-wave energy spectrum of the original quintessential inflationary model, therefore avoiding any conflict with the nucleosynthesis constraint on {Omega}{sub GW}.
Suppression of the Primordial Gravitational Waves
NASA Astrophysics Data System (ADS)
Tumurtushaa, Gansukh; Koh, Seoktae; Lee, Bum-Hoon
2016-07-01
We study the primordial gravitational waves induced by space-space condensate inflation model. For modes that cross the comoving horizon during matter dominated era, we calculate the energy spectrum of gravitational waves. The energy spectrum of gravitational waves for our model has significantly suppressed in the low frequency range. The suppression occurs due to the phase transition during the early evolution of the Universe and depends on model parameter.
Wave extraction with portable high-frequency surface wave radar OSMAR-S
NASA Astrophysics Data System (ADS)
Zhou, Hao; Roarty, Hugh; Wen, Biyang
2014-12-01
High frequency surface wave radar (HFSWR) has now gained more and more attention in real-time monitoring of sea surface states such as current, waves and wind. Normally a small-aperture antenna array is preferred to a large-aperture one due to the easiness and low cost to set up. However, the large beam-width and the corresponding incorrect division of the first- and second-order Doppler spectral regions often lead to big errors in wave height and period estimations. Therefore, for the HFSWR with a compact cross-loop/monopole antenna (CMA), a new algorithm involving improved beam-forming (BF) and spectral division techniques is proposed. On one hand, the cross-spectrum of the output sequence by the conventional beam-forming (CBF) with all the three elements and the output with only the two loops is used in place of the CMA output self-spectrum to achieve a decreased beam-width; on the other hand, the better null seeking process is included to improve the division accuracy of the first- and second-order regions. The algorithm is used to reprocess the data collected by the portable HFSWR OSMAR-S during the Sailing Competition of the 16th Asian Games held in Shanwei in November 2010, and the improvements of both the correlation coefficients and root-mean-square (RMS) errors between the wave height and period estimations and in situ buoy measurements are obvious. The algorithm has greatly enhanced the capabilities of OSMAR-S in wave measurements.
NASA Technical Reports Server (NTRS)
Jensen, Eric J.
2016-01-01
Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.
Gravitational waves in bimetric MOND
NASA Astrophysics Data System (ADS)
Milgrom, Mordehai
2014-01-01
I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian dynamics (BIMOND)—the lowest order in the small departures hμν=gμν-ημν, h stretchy="false">^μν=g stretchy="false">^μν-ημν from double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of BIMOND. The WFL splits into two sectors for two linear combinations, hμν±, of hμν and h stretchy="false">^μν. The hμν+ sector is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum gravitational waves. The hμν- sector is fully nonlinear even for the weakest hμν-, and inherits none of the coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave packets of hμν and h stretchy="false">^μν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.
NASA Astrophysics Data System (ADS)
Ervin, Benjamin L.; Bernhard, Jennifer T.; Kuchma, Daniel A.; Reis, Henrique
2007-04-01
High-frequency guided mechanical waves were used to ultrasonically monitor reinforced mortar specimens undergoing accelerated general corrosion damage. Waves were invoked, using both single-cycle and high-cycle tonebursts, at frequencies where the attenuation is at a local minimum. Results show that the high-frequency waves were sensitive to irregularities in the reinforcing rebar profile caused by corrosion. The sensitivity is thought to be due to scattering, reflections, and mode conversion at the irregularities. Certain frequencies show promise for being insensitive to the surrounding mortar, ingress of water, presence of additional rebar, stirrups, and rust product accumulation. This lack of sensitivity allows for changes in guided wave behavior from bar profile deterioration to be isolated from the effects of other surrounding interfaces.
Masserey, Bernard; Raemy, Christian; Fromme, Paul
2014-09-01
Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. PMID:24856653
Gravitational-wave Mission Study
NASA Technical Reports Server (NTRS)
Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.
2014-01-01
In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies
The Millikan shaking experiments and high-frequency seismic wave propagation in Southern California
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Okamoto, Taro
2014-08-01
In order to study high-frequency seismic wave propagation, seismic wavefields generated by resonant-shaking experiments of the Millikan Library, on the campus of California Institute Technology (Pasadena, California, USA), were analysed. Because the resonant shaking frequencies are 1.12 Hz (the east-west direction) and 1.64 Hz (the north-south direction), this active-source experiment can provide opportunities for studying high-frequency seismic wave propagation in Southern California. Because they are very narrow frequency band data, the analyses must be quite different from ordinary time-domain analyses. We show, theoretically, that the signals must be dominated by surface waves. Adopting this surface wave assumption, we proceed to make two separate analyses, one on spectral amplitude and the other on phase. We present a new method to derive group velocity from phase based on the cross correlations between the station in the Millikan Library (MIK) and stations in the regional network. Our results support that an active-source experiment by resonant shaking of a building is a feasible approach for high-frequency seismic wave studies.
Monitoring of corrosion damage using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Chew, D.; Fromme, P.
2014-03-01
Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Monitoring of corrosion damage using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Chew, D.; Fromme, P.
2015-03-01
Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Noncontact monitoring of fatigue crack growth using high frequency guided waves
NASA Astrophysics Data System (ADS)
Masserey, B.; Fromme, P.
2014-03-01
The development of fatigue cracks at fastener holes due to stress concentration is a common problem in aircraft maintenance. This contribution investigates the use of high frequency guided waves for the non-contact monitoring of fatigue crack growth in tensile, aluminium specimens. High frequency guided ultrasonic waves have a good sensitivity for defect detection and can propagate along the structure, thus having the potential for the inspection of difficult to access parts by means of non-contact measurements. Experimentally the required guided wave modes are excited using standard wedge transducers and measured using a laser interferometer. The growth of fatigue cracks during cyclic loading was monitored optically and the resulting changes in the signal caused by crack growth are quantified. Full three-dimensional simulation of the scattering of the high frequency guided ultrasonic waves at the fastener hole and crack has been implemented using the Finite Difference (FD) method. The comparison of the results shows a good agreement of the measured and predicted scattered field of the guided wave at quarter-elliptical and through-thickness fatigue cracks. The measurements show a good sensitivity for the early detection of fatigue damage and for the monitoring of fatigue crack growth at a fastener hole. The sensitivity and repeatability are ascertained, and the robustness of the methodology for practical in-situ ultrasonic monitoring of fatigue crack growth is discussed.
Heating of ions by high frequency electromagnetic waves in magnetized plasmas
Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.
2013-07-15
The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be
Relic Gravitational Waves and Their Detection
NASA Astrophysics Data System (ADS)
Grishchuk, Leonid P.
The range of expected amplitudes and spectral slopes of relic (squeezed) gravitational waves, predicted by theory and partially supported by observations, is within the reach of sensitive gravity-wave detectors. In the most favorable case, the detection of relic gravitational waves can be achieved by the cross-correlation of outputs of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advanced ground-based and space-based laser interferometers will be needed. The specific statistical signature of relic gravitational waves, associated with the phenomenon of squeezing, is a potential reserve for further improvement of the signal to noise ratio.
Gravitaton Wave and Gravitational-Photon Interaction
NASA Astrophysics Data System (ADS)
Khasanov, Kholmurad
2013-06-01
Gravitation waves and gravitational-photon interaction with high energy photons emission is found experimentally. Super-compressibility phenomenon was studied. Spectral investigations of supersonic jets and incandescent nichrome thread and wolfram spiral were studied. The shifting of the emission spectrum was detected depending on vector of gravity. The increasing frequency of light emitted against gravity vector is measured. Uneven along the spectrum character of intensity increasing is found. Generation of short-wavelength component of the spectrum is observed in case of more power of heating. The measurements show that presented interactions have resonance nature. Our experiments demonstrate the existence resonance nature. Our experiments demonstrate the gravitation wave and generation and existence of gravitational-photon interactions. From left to right: Fig. 1-2. Visualization of the gravitation wave. Fig. 3-5. Gravitational-photon interaction in HF field.
NASA Astrophysics Data System (ADS)
Vargas, Fabio; Swenson, Gary; Liu, Alan
2015-11-01
Data of high frequency gravity wave propagation direction from globally distributed stations indicate a meridional preference of mesospheric gravity waves to be globally oriented toward the summer pole. This orientation is opposite to the mean residual circulation (from summer to winter pole) at mesospheric altitudes. We discuss here a number of dynamic mechanisms including filtering that may be responsible for the preferential wave orientation, and the effects of the gravity wave forcing imposed on the meridional flow due to dissipative waves. Using nightglow image data recorded in three distinct latitude stations, we have estimated the meridional wave drag (i.e, deceleration) of about - 4.6 ± 0.2 m/s/day during the summer, and 3.8 ± 0.2 m/s/day during the winter, which is significant because the meridional flow has small magnitude. This is a component of dynamic forcing in the mesopause region, not heretofore recognized.
Optics in a nonlinear gravitational plane wave
NASA Astrophysics Data System (ADS)
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Gravitational wave emission from oscillating millisecond pulsars
NASA Astrophysics Data System (ADS)
Alford, Mark G.; Schwenzer, Kai
2015-02-01
Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2006-01-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.
High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus
NASA Astrophysics Data System (ADS)
Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.
2016-06-01
The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.
ON THE FLARE INDUCED HIGH-FREQUENCY GLOBAL WAVES IN THE SUN
Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; GarcIa, R. A. E-mail: pvk@prl.res.in E-mail: rafael.garcia@cea.fr
2010-03-01
Recently, Karoff and Kjeldsen presented evidence of strong correlation between the energy in the high-frequency part (5.3 < {nu} < 8.3 mHz) of the acoustic spectrum of the Sun and the solar X-ray flux. They have used disk-integrated intensity observations of the Sun obtained from the Variability of solar IRradiance and Gravity Oscillations instrument on board Solar and Heliospheric Observatory (SOHO) spacecraft. Similar signature of flares in velocity observations has not been confirmed till now. The study of low-degree high-frequency waves in the Sun is important for our understanding of the dynamics of the deeper solar layers. In this Letter, we present the analysis of the velocity observations of the Sun obtained from the Michelson and Doppler Imager (MDI) and the Global Oscillations at Low Frequencies (GOLF) instruments on board SOHO for some major flare events of the solar cycle 23. Application of wavelet techniques to the time series of disk-integrated velocity signals from the solar surface using the full-disk Dopplergrams obtained from the MDI clearly indicates that there is enhancement of high-frequency global waves in the Sun during the flares. This signature of flares is also visible in the Fourier Power Spectrum of these velocity oscillations. On the other hand, the analysis of disk-integrated velocity observations obtained from the GOLF shows only marginal evidence of effects of flares on high-frequency oscillations.
Gravitational lensing of gravitational waves from merging neutron star binaries
Wang, Yun; Stebbins, Albert; Turner, Edwin L.
1996-05-01
We discuss the gravitational lensing of gravitational waves from merging neutron star binaries, in the context of advanced LIGO type gravitational wave detectors. We consider properties of the expected observational data with cut on the signal-to-noise ratio \\rho, i.e., \\rho>\\rho_0. An advanced LIGO should see unlensed inspiral events with a redshift distribution with cut-off at a redshift z_{\\rm max} < 1 for h \\leq 0.8. Any inspiral events detected at z>z_{\\rm max} should be lensed. We compute the expected total number of events which are present due to gravitational lensing and their redshift distribution for an advanced LIGO in a flat Universe. If the matter fraction in compact lenses is close to 10\\%, an advanced LIGO should see a few strongly lensed events per year with \\rho >5.
Transient multimessenger astronomy with gravitational waves
NASA Astrophysics Data System (ADS)
Márka, S.; LIGO Scientific Collaboration; Virgo Collaboration
2011-06-01
Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.
Astrophysically Triggered Searches for Gravitational Waves
NASA Astrophysics Data System (ADS)
Marka, Zsuzsa
2010-02-01
Many expected sources of gravitational waves are observable in more traditional channels, via gamma rays, X-rays, optical, radio, or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new or planned searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The observation of electromagnetic or neutrino emission simultaneously with gravitational waves could be crucial for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitude close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. We will discuss the status for astrophysically triggered searches with the LIGO-GEO600-Virgo network and the science goals and outlook for the second and third generation gravitational wave detector era. )
Reheating and primordial gravitational waves in generalized Galilean genesis
NASA Astrophysics Data System (ADS)
Nishi, Sakine; Kobayashi, Tsutomu
2016-04-01
Galilean genesis is an alternative to inflation, in which the universe starts expanding from Minkowski with the stable violation of the null energy condition. In this paper, we discuss how the early universe is reheated through the gravitational particle production at the transition from the genesis phase to the subsequent phase where the kinetic energy of the scalar field is dominant. We then study the consequences of gravitational reheating after Galilean genesis on the spectrum of primordial gravitational waves. The resultant spectrum is strongly blue, and at high frequencies Ωgwpropto f3 in terms of the energy density per unit logarithmic frequency. Though this cannot be detected in existing detectors, the amplitude can be as large as Ωgw~ 10‑12 at f~ 100 MHz, providing a future test of the genesis scenario. The analysis is performed within the framework of generalized Galilean genesis based on the Horndeski theory, which enables us to derive generic formulas.
High-frequency programmable acoustic wave device realized through ferroelectric domain engineering
Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk
2014-03-31
Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.
Liu, Yong-Xin; Gao, Fei; Liu, Jia; Wang, You-Nian
2014-07-28
Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased, in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.
The Japanese space gravitational wave antenna; DECIGO
NASA Astrophysics Data System (ADS)
Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, K.-s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M.-K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F.-L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K.-i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S.-i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K.-i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C.-M.; Yoshida, S.; Yoshino, T.
2008-07-01
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.
Binary Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.
On the estimation of gravitational wave spectrum from cosmic domain walls
Hiramatsu, Takashi; Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: kawasaki@icrr.u-tokyo.ac.jp
2014-02-01
We revisit the production of gravitational waves from unstable domain walls analyzing their spectrum by the use of field theoretic lattice simulations with grid size 1024{sup 3}, which is larger than the previous study. We have recognized that there exists an error in the code used in the previous study, and the correction of the error leads to the suppression of the spectrum of gravitational waves at high frequencies. The peak of the spectrum is located at the scale corresponding to the Hubble radius at the time of the decay of domain walls, and its amplitude is consistent with the naive estimation based on the quadrupole formula. Using the numerical results, the magnitude and the peak frequency of gravitational waves at the present time are estimated. It is shown that for some choices of parameters the signal of gravitational waves is strong enough to be probed in the future gravitational wave experiments.
Relations among low ionosphere parameters and high frequency radio wave absorption
NASA Technical Reports Server (NTRS)
Cipriano, J. P.
1973-01-01
Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.
High-frequency sound wave propagation in binary gas mixtures flowing through microchannels
NASA Astrophysics Data System (ADS)
Bisi, M.; Lorenzani, S.
2016-05-01
The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.
Gravitational wave astronomy: the current status
NASA Astrophysics Data System (ADS)
Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Chu, Qi; Fang, Qi; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Reitze, David H.; Arai, Koji; Zhang, Fan; Flaminio, Raffaele; Zhu, XingJiang; Hobbs, George; Manchester, Richard N.; Shannon, Ryan M.; Baccigalupi, Carlo; Gao, Wei; Xu, Peng; Bian, Xing; Cao, ZhouJian; Chang, ZiJing; Dong, Peng; Gong, XueFei; Huang, ShuangLin; Ju, Peng; Luo, ZiRen; Qiang, Li'E.; Tang, WenLin; Wan, XiaoYun; Wang, Yue; Xu, ShengNian; Zang, YunLong; Zhang, HaiPeng; Lau, Yun-Kau; Ni, Wei-Tou
2015-12-01
In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.
The possible role of high-frequency waves in heating solar coronal loops
NASA Technical Reports Server (NTRS)
Porter, Lisa J.; Klimchuk, James A.; Sturrock, Peter A.
1994-01-01
We investigate the role of high-frequency waves in the heating of solar active region coronal loops. We assume a uniform background magnetic field, and we introduce a density stratification in a direction perpendicular to this field. We focus on ion compressive viscosity as the damping mechanism of the waves. We incorporate viscosity self-consistently into the equations, and we derive a dispersion relation by adopting a slab model, where the density inside the slab is greater than that outside. Such a configuration supports two types of modes: surface waves and trapped body waves. In order to determine under what conditions these waves may contribute to the heating of active regions, we solve our dispersion relation for a range of densities, temperatures, magnetic field strengths, density ratios, wavevector magnitudes, wavevector ratios, and slab widths. We find that surface waves exhibit very small damping, but body waves can potentially damp at rates needed to balance radiative losses. However, the required frequencies of these body waves are very high. For example, the wave frequency must be at least 5.0/s for a slab density of 10(exp 9,5)/cc, a slab temperature of 10(exp 6,5) K, a field strength of 100 G, and a density ratio of 5. For a slab density of 10(exp 10)/cc, this frequency increases to 8.8/s. Although these frequencies are very high, there in no observational evidence to rule out their existence, and they may be generated both below the corona and at magnetic reconnection sites in the corona. However, we do find that, for slab densities of 10(exp 10)/cc or less, the dissipation of high-frequency waves will be insufficient to balance the radiative losses if the magnetic field strength exceeds roughly 200 G. Because the magnetic field is known to exceed 200 G in many active region loops, particularly low-lying loops and loops emanating from sunspots, it is unlikely that high-frequency waves can provide sufficient heating in these regions.
The Loudest Gravitational Wave Events
NASA Astrophysics Data System (ADS)
Chen, Hsin-Yu; Holz, Daniel
2014-03-01
Compact binary coalescences are likely to be the source of the first gravitational wave (GW) detections. While most Advanced LIGO-Virgo detections are expected to have signal-to-noise ratios (SNR) near the detection threshold, there will be a distribution of events to higher SNR. Assuming the space density of the sources is uniform in the nearby Universe, we derive the universal distribution of SNR in an arbitrary GW network, as well as the SNR distribution of the loudest event. These distributions only depend on the detection threshold and the number of detections; they are independent of the detector network, sensitivity, and the distribution of source variables such as the binary masses and spins. We also derive the SNR distribution for each individual detector within a network as a function of the detector orientation. We find that, in 90% of cases, the loudest event out of the first four Advanced LIGO-Virgo detections should be louder than SNR of 15.8 (for a threshold of 12), increasing to an SNR of 31 for 40 detections. We expect these loudest events to provide the best constraints on their source parameters, and therefore play an important role in extracting astrophysics from GW sources.
Gravitational Waves: A New Observational Window
NASA Technical Reports Server (NTRS)
Camp, Jordan B.
2010-01-01
The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.
Building a Galactic Scale Gravitational Wave Observatory
NASA Astrophysics Data System (ADS)
McLaughlin, Maura
2016-03-01
Pulsars are rapidly rotating neutron stars with phenomenal rotational stability that can be used as celestial clocks in a variety of fundamental physics experiences. One of these experiments involves using a pulsar timing array of precisely timed millisecond pulsars to detect perturbations due to gravitational waves. The low frequency gravitational waves detectable through pulsar timing will most likely result from an ensemble of supermassive black hole binaries. I will introduce the efforts of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), a collaboration that monitors over 50 millisecond pulsars with the Green Bank Telescope and the Arecibo Observatory, with a focus on our observation and data analysis methods. I will also describe how NANOGrav has joined international partners through the International Pulsar Timing Array to form a low-frequency gravitational wave detector of unprecedented sensitivity.
Gravitational Wave Physics with Binary Love Relations
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolas
2016-03-01
Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.
Polarized gravitational waves from cosmological phase transitions
NASA Astrophysics Data System (ADS)
Kisslinger, Leonard; Kahniashvili, Tina
2015-08-01
We estimate the degree of circular polarization for the gravitational waves generated during the electroweak and QCD phase transitions from the kinetic and magnetic helicity generated by bubble collisions during those cosmological phase transitions.
LISA: Detecting Gravitational Waves from Space
NASA Technical Reports Server (NTRS)
Livas, Jeff
2009-01-01
The laser interferometer space antenna (LISA), a joint NASA/ESA mission, will be the first dedicated gravitational wave detector in space. This presentation will provide a tutorial of the LISA measurement concept.
Gravitational waves from collapsing domain walls
Hiramatsu, Takashi; Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: kawasaki@icrr.u-tokyo.ac.jp
2010-05-01
We study the production of gravitational waves from cosmic domain walls created during phase transition in the early universe. We investigate the process of formation and evolution of domain walls by running three dimensional lattice simulations. If we introduce an approximate discrete symmetry, walls become metastable and finally disappear. This process might occur by a pressure difference between two vacua if a quantum tunneling is neglected. We calculate the spectrum of gravitational waves produced by collapsing metastable domain walls. Extrapolating the numerical results, we find that the signal of gravitational waves produced by domain walls whose energy scale is around 10{sup 10}-10{sup 12}GeV will be observable in the next generation gravitational wave interferometers.
Gravitational Wave Detection with Atom Interferometry
Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.
2008-01-23
We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.
The pregalactic cosmic gravitational wave background
NASA Technical Reports Server (NTRS)
Matzner, Richard A.
1989-01-01
An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).
Gravitational wave detection in the laboratory.
NASA Astrophysics Data System (ADS)
Chen, Y. T.; Kawashima, N.; Othman, M.; Chia, S. P.; Karim, M.; Sanugi, B.; Lim, B. H.; Chong, K. K.
1998-09-01
After reviewing the research work of gravitational wave detection in the laboratory, particularly long base laser interferometer detectors, the authors report on the recent progress of gravitational wave detection using laser interferometer (Tianyin-100) in Malaysia. The authors also outline the brief plan for Tianyin-500 in the future as a full-scale observatory competitive to other projects such as Ligo, Geo600, etc.
Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing
NASA Astrophysics Data System (ADS)
Loubeau, Alexandra
Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models
Time Evolution of Pure Gravitational Waves
NASA Astrophysics Data System (ADS)
Miyama, S. M.
1981-03-01
Numerical solutions to the Einstein equations in the case of pure gravitational waves are given. The system is assumed to be axially symmetric and non-rotating. The time symmetric initial data and the conformally flat initial data are obtained by solving the constraint equations at t=0. The time evolution of these initial data depends strongly on the initial amplitude of the gravitational waves. In the case of the low initial amplitude, waves only disperse to null infinity. By comparing the initial gravitational energy with the total energy loss through an r=constant surface, it is concluded that the Newman-Penrose method and the Gibbon-Hawking method are the most desirable for measuring the energy flux of gravitational radiation numerically. In the case that the initial ratio of the spatial extent of the gravitational waves to the Schwarzschild radius (M/2) is smaller than about 300, the waves collapse by themselves, leading to formation of a black hole. The analytic solutions of the linearized Einstein equations for the pure gravitational waves are also shown.
High-frequency electromagnetic surface waves in a semi-bounded weakly ionized plasma
Moaied, M.; Tyshetskiy, Yu.; Vladimirov, S. V.
2013-02-15
High-frequency electromagnetic surface waves (SWs) in a weakly ionized plasma half-space with Maxwellian electrons are studied taking into account elastic electron-neutral collisions. The SWs spectrum and damping rate are obtained numerically for a wide range of wavelengths, and the asymptotes of damping rate are analytically calculated in some limits. It is shown that the high-frequency SWs become strongly damped at wavelengths {lambda}<{lambda}{sub Min}, where {lambda}{sub Min} significantly depends on plasma parameters (e.g., electron temperature and electron and neutral atom density). The relative importance of collisional and Cherenkov (collisionless) damping of SWs is investigated and is graphically shown for a range of plasma parameters and SW wavelengths. The behavior of weakly ionized plasma with respect to the SW propagation has been recovered for the collisional parameter {eta}.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Joint inversion of high-frequency surface waves with fundamental and higher modes
Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.
2007-01-01
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.
Joint inversion of high-frequency surface waves with fundamental and higher modes
NASA Astrophysics Data System (ADS)
Luo, Yinhe; Xia, Jianghai; Liu, Jiangping; Liu, Qingsheng; Xu, Shunfang
2007-08-01
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.
Gravitational Waves from a Dark Phase Transition.
Schwaller, Pedro
2015-10-30
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios. PMID:26565451
Strong gravitational lensing of gravitational waves in Einstein Telescope
Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl
2013-10-01
Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.
Dissipation of modified entropic gravitational energy through gravitational waves
NASA Astrophysics Data System (ADS)
de Matos, Clovis Jacinto
2012-01-01
The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature tau=15/16 Λ^{1/2}hbar G/c4˜9.27×10^{-105} seconds, which is much smaller than the Planck time t P =( ħG/ c 5)1/2˜5.38×10-44 seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter Fg=32/30c7/Λ hbar G2˜ 3.84× 10^{165} Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length F gP = c 4/ G˜1.21×1044 Newtons.
How to test gravitation theories by means of gravitational-wave measurements
NASA Technical Reports Server (NTRS)
Thorne, K. S.
1974-01-01
Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.
External control of ion waves in a plasma by high frequency fields
Kaw, P.K.; Dawson, J.M.
1973-12-18
An apparatus and method are described for stabilizing plasma instabilities, in a magnetically confined plasma column by transmitting into the plasma high frequency electromagnetic waves at a frequency close to the electron plasma frequency. The said frequencies, e.g., are between the plasma frequency and 1.5 times the plasma frequency at a power level below the level for producing parametric instabilities in a plasma having temperatures from below 10 eV to about 10 keV or more, at densities from below 10/sup 13/ to above 10/sup 18/ particles/cm/sup 3/. (Official Gazette)
Long range aircraft detection using high-frequency surface-wave radar
NASA Astrophysics Data System (ADS)
Leong, Hank
1994-12-01
Experimental data from a high-frequency surface-wave radar (HFSWR) operating at 1.95 MHz at Cape Bonavista, Newfoundland are analyzed to assess the capability of the radar to detect aircraft over an ocean surface. The results of the analysis show that the HFSWR could easily detect and track a low-flying CP-140 Aurora aircraft at ranges between 11 and 56 km. The radar's coverage area coincides with a trans-Atlantic international flight route, and the radar was also able to detect and track some commercial aircraft in range as far as 280 km.
Nearby Stars as Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Lopes, Ilídio; Silk, Joseph
2015-07-01
Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main-sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from {10}-7 to {10}-2 Hz. In particular, these stars can probe the {10}-6-{10}-4 Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as the Square Kilometre Array and Evolved Laser Interferometer Space Antenna. The Planetary Transits and Oscillations of State (PLATO) stellar seismic mission will achieve photospheric velocity amplitude accuracy of {cm} {{{s}}}-1. For a gravitational wave search, we will need to achieve accuracies of the order of {10}-2 {cm} {{{s}}}-1, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.
High frequency calibration of MEMS microphones using spherical N-waves
NASA Astrophysics Data System (ADS)
Ollivier, S.; Desjouy, C.; Yuldashev, P. Y.; Koumela, A.; Salze, E.; Karzova, M.; Rufer, L.; Blanc-Benon, Ph.
2015-10-01
In the context of the scientific program SIMMIC supported by the French National Agency for Research (SIMI 9, ANR 2010 BLANC 0905 03), new wide band MEMS piezoresistive microphones have been designed and fabricated for weak shock wave measurements. The fabricated microphones have a high frequency resonance between 300 to 800 kHz depending on the membrane size. In order to characterize the frequency response of the fabricated sensors up to 1 MHz, new calibration methods based on an N-wave source were designed and tested. Short duration spherical N-waves can be generated by an electric spark source. To estimated a constant sensitivity coefficient, a known method is based on the estimation of the peak pressure from the lengthening of N-waves induced by non linear propagation. However, to obtain the sensitivity as a function of frequency, the output voltage must be compared to the incident pressure waveform, which must be accurately characterized. Taking advantage of recent works on the characterization of pressure N-waves generated by an electric spark source by means of optical methods, two calibration methods have been designed to obtain the frequency response. A method based on the comparison with pressure waveforms deduced from the analysis of schlieren images allowed to estimate the frequency response. A second method, based on a Mach-Zender optical interferometer, was found to be the best method to estimate the sensitivity of microphones up to 1 MHz. The methods were first tested by calibrating standard 1/8 inch condenser microphones. Then, frequency responses of different MEMS microphones prototypes were characterized to test different sensor designs. Results show that using a spark source and optical methods it is possible to calibrate sensors in the frequency range 10 kHz-1 MHz. The new calibration methods were used to improve the design of new high frequency MEMS pressure sensors.
Gravitational waves in fourth order gravity
NASA Astrophysics Data System (ADS)
Capozziello, S.; Stabile, A.
2015-08-01
In the post-Minkowskian limit approximation, we study gravitational wave solutions for general fourth-order theories of gravity. Specifically, we consider a Lagrangian with a generic function of curvature invariants . It is well known that when dealing with General Relativity such an approach provides massless spin-two waves as propagating degree of freedom of the gravitational field while this theory implies other additional propagating modes in the gravity spectra. We show that, in general, fourth order gravity, besides the standard massless graviton is characterized by two further massive modes with a finite-distance interaction. We find out the most general gravitational wave solutions in terms of Green functions in vacuum and in presence of matter sources. If an electromagnetic source is chosen, only the modes induced by are present, otherwise, for any gravity model, we have the complete analogy with tensor modes of General Relativity. Polarizations and helicity states are classified in the hypothesis of plane wave.
Orientational atom interferometers sensitive to gravitational waves
Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas
2010-02-15
We present an atom interferometer that differs from common atom interferometers as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom interferometer based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom interferometer based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom interferometers in 1 s.
NASA Astrophysics Data System (ADS)
PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.
2016-09-01
We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.
Binary Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.
NASA Astrophysics Data System (ADS)
Caplinger, J.; Sotnikov, V. I.; Wallerstein, A. J.
2014-12-01
A three dimensional numerical ray-tracing algorithm based on a Hamilton-Jacobi geometric optics approximation is used to analyze propagation of high frequency (HF) electromagnetic waves through a plasma with randomly distributed vortex structures having a spatial dependence in the plane perpendicular to earth's magnetic field. This spatial dependence in density is elongated and uniform along the magnetic field lines. Similar vortex structures may appear in the equatorial spread F region and in the Auroral zone of the ionosphere. The diffusion coefficient associated with wave vector deflection from a propagation path can be approximated by measuring the average deflection angle of the beam of rays. Then, the beam broadening can be described statistically using the Fokker-Planck equation. Visualizations of the ray propagation through generated density structures along with estimated and analytically calculated diffusion coefficients will be presented.
Phase transition dynamics and gravitational waves
Megevand, Ariel
2009-04-20
During a first-order phase transition, gravitational radiation is generated either by bubble collisions or by turbulence. For phase transitions which took place at the electroweak scale and beyond, the signal is expected to be within the sensitivity range of planned interferometers such as LISA or BBO. We review the generation of gravitational waves in a first-order phase transition and discuss the dependence of the spectrum on the dynamics of the phase transition.
Photonic generation of high frequency millimeter-wave and transmission over optical fiber.
Kumar, Amitesh; Priye, Vishnu
2016-08-01
A novel technique of photonic generation of millimeter-waves beyond the presently reported 120 GHz and with a wider tunability (∼240 GHz) is proposed and demonstrated through a simulation experiment. The scheme consists of generating 24 times the frequency of a conventional low frequency microwave source using a combination of a LiNbO_{3} Mach-Zehnder modulator and four-wave mixing in a semiconductor optical amplifier. The filtering of a high frequency sideband and the suppression of a carrier are achieved by incorporating an optical band pass and fiber Bragg grating filters, respectively. Next, the spectral purity of the generated millimeter-wave parameters is evaluated after propagation through a conventional fiber of different lengths by digitally modulating it at 2.5 Gbps and generating an eye diagram. The constraints on the selection of the frequency of the millimeter-wave and length of fiber are discussed. The present method of millimeter-wave generation and distribution will find applications in photonic up/down conversion, phase-array antennas, photonic sensors, radars, and terahertz applications. PMID:27505360
Modeling and simulation of high-frequency surface waves in bounded plasmas
NASA Astrophysics Data System (ADS)
Cooperberg, David Jeffrey
In the work presented here, we shall make a careful examination of an intrinsic property of bounded plasmas. Specifically, we will be studying a set of high frequency (electron) waves which propagate at the boundary of metal bounded plasmas. This study relies heavily on particle- in-cell simulation wit;h Monte-Carlo collisions (PIC-MCC) (1-3). Among the benefits of the PIC-MCC scheme are an adherence to first-principles, which allows a wide range of kinetic behavior to be accurately modeled including the electron energy probability function which is known to depart from Maxwellian in low pressure discharges (58) (85). This work has two main objectives. The first is to clarify the structure of these waves. It is also hoped that this use of simulation in the study of electron surface waves will further our general understanding of these waves in both metal and dielectric bound plasmas. Our second objective is to study how these natural modes may be used to sustain a plasma discharge suitable for plasma processing. Current 'surface wave plasmas' are produced in glass tubes (42). Our analysis of surface waves in planar metal bounded plasma slabs enables us to simulate new types of surface wave sustained discharges which may operate at low pressures with low sheath potentials and may be scalable to large areas without compromising plasma uniformity. An outline of this work follows. Chapter 1 presents an overview of past and current work on electron surface oscillations and waves in bounded plasmas. In Chapter 2 we initiate our study of waves in the metal bound slab using a matrix sheath model. Next a more realistic model for the plasma and sheath is developed in Chapter 3. The result is the identification of a new set of surface modes which exist only in the non-uniform, thermal, bounded plasma. We then move from the study of surface wave characteristics to a study of surface wave sustained discharges. In Chapter 4 we consider the 1d3v plasma which is sustained at the
Gravitational wave background from Standard Model physics: qualitative features
Ghiglieri, J.; Laine, M.
2015-07-16
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T>160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Parametric resonance and cosmological gravitational waves
Sa, Paulo M.; Henriques, Alfredo B.
2008-03-15
We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.
Gravitational wave experiments and early universe cosmology
NASA Astrophysics Data System (ADS)
Maggiore, M.
2000-07-01
Gravitational-wave experiments with interferometers and with resonant masses can search for stochastic backgrounds of gravitational waves of cosmological origin. We review both experimental and theoretical aspects of the search for these backgrounds. We give a pedagogical derivation of the various relations that characterize the response of a detector to a stochastic background. We discuss the sensitivities of the large interferometers under constructions (LIGO, VIRGO, GEO600, TAMA300, AIGO) or planned (Avdanced LIGO, LISA) and of the presently operating resonant bars, and we give the sensitivities for various two-detectors correlations. We examine the existing limits on the energy density in gravitational waves from nucleosynthesis, COBE and pulsars, and their effects on theoretical predictions. We discuss general theoretical principles for order-of-magnitude estimates of cosmological production mechanisms, and then we turn to specific theoretical predictions from inflation, string cosmology, phase transitions, cosmic strings and other mechanisms. We finally compare with the stochastic backgrounds of astrophysical origin.
Exploring Gravitational Waves in the Classroom
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, Kevin M.; Peruta, Carolyn; Simonnet, Aurore
2016-04-01
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first confirmed gravitational wave signals. Now known as GW150914 (for the date on which the signals were received), the event represents the coalescence of two black holes that were previously in mutual orbit. LIGO’s exciting discovery provides direct evidence of what is arguably the last major unconfirmed prediction of Einstein’s General Theory of Relativity. The Education and Public Outreach group at Sonoma State University has created an educator's guide that provides a brief introduction to LIGO and to gravitational waves, along with two simple demonstration activities that can be done in the classroom to engage students in understanding LIGO’s discovery. Additional resources have also been provided to extend student explorations of Einstein’s Universe.
General-relativistic astrophysics. [gravitational wave astronomy
NASA Technical Reports Server (NTRS)
Thorne, K. S.
1978-01-01
The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
Hough transform search for continuous gravitational waves
Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano
2004-10-15
This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities.
Gravitational waves induced by spinor fields
NASA Astrophysics Data System (ADS)
Feng, Kaixi; Piao, Yun-Song
2015-07-01
In realistic model building, spinor fields with various masses are present. During inflation, a spinor field may induce gravitational waves as a second order effect. In this paper, we calculate the contribution of a single massive spinor field to the power spectrum of primordial gravitational wave by using a retarded Green propagator. We find that the correction is scale invariant and of order H4/MP4 for arbitrary spinor mass mψ. Additionally, we also observe that when mψ≳H , the dependence of correction on mψ/H is nontrivial.
Gravitational Wave Detection: A Historical Perspective
NASA Astrophysics Data System (ADS)
Saulson, Peter
2015-04-01
The search for gravitational waves began at the Chapel Hill Conference in January 1957, and will reach a successful conclusion at a set of observatories around the globe about sixty years later. This talk will review the history of the early thought experiments, the program of resonant mass detectors (``Weber bars''), and the development of the large interferometric detectors like Advanced LIGO and Advanced Virgo that are, it is hoped, about to make the first detections of gravitational wave signals. I am pleased to acknowledge the support of the National Science Foundation for my research, most recently under NSF Grant PHY-1205835.
Gravitational waves in a de Sitter universe
NASA Astrophysics Data System (ADS)
Bishop, Nigel T.
2016-02-01
The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, leading to a determination of the energy measured by such observers. It is found that gravitational wave energy conservation does not normally apply to inertial observers but that it can be formulated for a class of accelerated observers, i.e., with worldlines that are timelike but not geodesic.
Gravitational Waves and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.
Inversion to estimate ocean wave directional spectrum from high-frequency radar
NASA Astrophysics Data System (ADS)
Hisaki, Yukiharu
2015-04-01
An high-frequency (HF) radar observes ocean surface currents and waves by radiating HF radio waves to the sea surface and analyzing the backscattered signals. Ocean wave spectrum is estimated from the first- and the second-order scattering of Doppler spectra by the inversion. The estimation of ocean surface currents is robust, because the surface currents can be derived from the peak Doppler frequency of the first-order scattering in the Doppler spectrum. The method to estimate ocean wave spectra is complicated and the second-order scattering in the Doppler spectrum is fragile, which is affected by the noise in the Doppler spectrum. A new method to estimate ocean wave spectra from HF radar is developed. This method is the extension of Hisaki (1996, 2005, 2006, 2009, 2014). The new method can be applied to both the single radar and dual radar array case, while the previous methods can be applied only the single radar case (Hisaki, 2005, 2006, 2009, 2014) or dual radar case (Hisaki, 1996). Ocean wave spectra are estimated in the regular grid cells, while wave spectra are estimated on the polar grids points with the origin of the radar position in the previous method for single radar case. The governing equations for wave estimation are the integral equations which relate the wave spectrum to the Doppler spectrum, and the energy balance equation under the assumption of stationarity. The regularization constraints in the horizontal space and the wave frequency-direction space are also used for the estimation. The unknowns, which are spectral values, surface wind speeds and directions, are estimated by seeking the minimum of the objective function, which is defined as the sum of weighted squares of the equations. The signal to noise ratio in the Doppler spectrum for wave estimation must be high. We selected the Doppler spectra using the SOM (Self organization map ) analysis method. The method will be demonstrated by comparing with in-situ observed data, in which only
Gravitational waves from dark matter collapse in a star
NASA Astrophysics Data System (ADS)
Kurita, Yasunari; Nakano, Hiroyuki
2016-01-01
We investigate the collapse of clusters of weakly interacting massive particles (WIMPs) in the core of a Sun-like star and the possible formation of mini-black holes and the emission of gravitational waves. When the number of WIMPs is small, thermal pressure balances the WIMP cluster's self gravity. If the number of WIMPs is larger than a critical number, thermal pressure cannot balance gravity and the cluster contracts. If WIMPs are collisionless and bosonic, the cluster collapses directly to form a mini-black hole. For fermionic WIMPs, the cluster contracts until it is sustained by Fermi pressure, forming a small compact object. If the fermionic WIMP mass is smaller than 4 ×102 GeV , the radius of the compact object is larger than its Schwarzschild radius and Fermi pressure temporally sustains its self-gravity, halting the formation of a black hole. If the fermionic WIMP mass is larger than 4 ×102 GeV , the radius is smaller than its Schwarzschild radius and the compact object becomes a mini-black hole. If the WIMP mass is 1 TeV, the size of the black hole will be approximately 2.5 cm and ultra high frequency gravitational waves will be emitted during black hole formation. The central frequency fc of ringdown gravitational waves emitted from the black hole will be approximately 2 GHz. To detect the ringdown gravitational waves, the detector's noise must be below √{Sh(fc) }≈1 0-30/√{Hz }.
Gravitational wave detection using atom interferometry
NASA Astrophysics Data System (ADS)
Hogan, Jason
2016-05-01
The advent of gravitational wave astronomy promises to provide a new window into the universe. Low frequency gravitational waves below 10 Hz are expected to offer rich science opportunities both in astrophysics and cosmology, complementary to signals in LIGO's band. Detector designs based on atom interferometry have a number of advantages over traditional approaches in this band, including the possibility of substantially reduced antenna baseline length in space and high isolation from seismic noise for a terrestrial detector. In particular, atom interferometry based on the clock transition in group II atoms offers tantalizing new possibilities. Such a design is expected to be highly immune to laser frequency noise because the signal arises strictly from the light propagation time between two ensembles of atoms. This would allow for a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry in a 10-meter drop tower has enabled observation of matter wave interference with atomic wavepacket separations exceeding 50 cm and interferometer durations of more than 2 seconds. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.
Relic gravitational waves produced after preheating
Khlebnikov, S.; Tkachev, I. |
1997-07-01
We show that gravitational radiation is produced quite efficiently in interactions of classical waves created by resonant decay of a coherently oscillating field. As an important example we consider simple models of chaotic inflation, where we find that today{close_quote}s ratio of energy density in gravitational waves per octave to the critical density of the Universe can be as large as 10{sup {minus}12} at the maximal wavelength of order 10{sup 5} cm. In the pure {lambda}{phi}{sup 4}/4 model with inflaton self-coupling {lambda}=10{sup {minus}13}, the maximal today{close_quote}s wavelength of gravitational waves produced by this mechanism is of order 10{sup 6} cm, close to the upper bound of operational LIGO and TIGA frequencies. The energy density of waves in this model, though, is likely to be well below the sensitivity of LIGO or TIGA at such frequencies. We discuss the possibility that in other models the interaction of classical waves can lead to an even stronger gravitational radiation background. {copyright} {ital 1997} {ital The American Physical Society}
Shilton, Richie J.; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco
2014-08-18
Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754 MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w ≳ 10 λ, where λ is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.
Collins, David J; Neild, Adrian; Ai, Ye
2016-02-01
High-speed sorting is an essential process in a number of clinical and research applications, where single cells, droplets and particles are segregated based on their properties in a continuous flow. With recent developments in the field of microscale actuation, there is increasing interest in replicating the functions available to conventional fluorescence activated cell sorting (FACS) flow cytometry in integrated on-chip systems, which have substantial advantages in cost and portability. Surface acoustic wave (SAW) devices are ideal for many acoustofluidic applications, and have been used to perform such sorting at rates on the order of kHz. Essential to the accuracy of this sorting, however, is the dimensions of the region over which sorting occurs, where a smaller sorting region can largely avoid inaccurate sorting across a range of sample concentrations. Here we demonstrate the use of flow focusing and a highly focused SAW generated by a high-frequency (386 MHz), 10 μm wavelength set of focused interdigital transducers (FIDTs) on a piezoelectric lithium niobate substrate, yielding an effective sorting region only ~25 μm wide, with sub-millisecond pulses generated at up to kHz rates. Furthermore, because of the use of high frequencies, actuation of particles as small as 2 μm can be realized. Such devices represent a substantial step forward in the evolution of highly localized forces for lab-on-a-chip microfluidic applications. PMID:26646200
Environmental Effects for Gravitational-wave Astrophysics
NASA Astrophysics Data System (ADS)
Barausse, Enrico; Cardoso, Vitor; Pani, Paolo
2015-05-01
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.
Outlook for Detecting Gravitational Waves with Pulsars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic
NASA Astrophysics Data System (ADS)
Maslovsky, Dmitry; Galayda, S.; Mauel, M.; Socrates, A.; Steinvurzel, P.; Leong, P.
1998-11-01
A broad-band antenna with m = 3 symmetry installed at one magnetic pole of the Collisionless Terrella Experiment(H. P. Warren and M. E. Mauel, Phys. Plasmas), 2 (1995) 4185. (CTX) is used to excite waves with frequencies between the ion and electron cyclotron frequencies (10-1000 MHz). Typically, waves are launched using a 100 W amplifier and a coherent signal generator capable of linear frequency sweeping. Launched waves are detected using movable electric and magnetic probes. In CTX, a population of energetic electrons is created using electron cyclotron resonance heating. We have focused on the the excitation of waves bounce-resonant with the energetic electrons which might change the saturation of lower-frequency hot electron interchange instabilities. For example, the inward propagation of ``phase-space holes'' associated with natural frequency sweeping should be arrested by the application of sufficiently intense waves. We report results of plasma wave spectroscopy between 10 MHz - 1 GHz and the identification of natural frequencies of the dipole-confined plasma.
NASA Astrophysics Data System (ADS)
Chunping, Zhang; Wei, Liu; Zhichun, Yang; Zhengyu, Li; Xiaoqing, Zhang; Feng, Wu
2012-05-01
A small size standing wave thermoacoustic refrigerator driven by a high frequency loudspeaker has been experimentally studied. Instead of water cooling, the cold heat exchanger of the refrigerator was cooled by air through fins on it. By working at 600-700 Hz and adjusting the position of the thermoacoustic core components including the stack and adjacent exchangers, the influences of it on the capability of refrigeration were experimentally investigated. The lowest temperature of 4.1 °C in the cold heat exchanger with the highest temperature difference of 21.5 °C between two heat exchangers were obtained. And the maximum cooling power of 9.7 W has been achieved.
Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai
2015-09-01
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. PMID:25637292
Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation
Namai, Asuka; Yoshikiyo, Marie; Yamada, Kana; Sakurai, Shunsuke; Goto, Takashi; Yoshida, Takayuki; Miyazaki, Tatsuro; Nakajima, Makoto; Suemoto, Tohru; Tokoro, Hiroko; Ohkoshi, Shin-ichi
2012-01-01
Magnetic ferrites such as Fe3O4 and Fe2O3 are extensively used in a range of applications because they are inexpensive and chemically stable. Here we show that rhodium-substituted ε-Fe2O3, ε-RhxFe2−xO3 nanomagnets prepared by a nanoscale chemical synthesis using mesoporous silica as a template, exhibit a huge coercive field (Hc) of 27 kOe at room temperature. Furthermore, a crystallographically oriented sample recorded an Hc value of 31 kOe, which is the largest value among metal-oxide-based magnets and is comparable to those of rare-earth magnets. In addition, ε-RhxFe2−xO3 shows high frequency millimetre wave absorption up to 209 GHz. ε-Rh0.14Fe1.86O3 exhibits a rotation of the polarization plane of the propagated millimetre wave at 220 GHz, which is one of the promising carrier frequencies (the window of air) for millimetre wave wireless communications. PMID:22948817
Gravitational waves in ghost free bimetric gravity
Mohseni, Morteza
2012-11-01
We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extension of the theory admits similar solutions but in general is plagued with ghost instabilities.
Space Based Gravitational Wave Observatories (SGOs)
NASA Technical Reports Server (NTRS)
Livas, Jeff
2014-01-01
Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.
Bayesian analysis on gravitational waves and exoplanets
NASA Astrophysics Data System (ADS)
Deng, Xihao
Attempts to detect gravitational waves using a pulsar timing array (PTA), i.e., a collection of pulsars in our Galaxy, have become more organized over the last several years. PTAs act to detect gravitational waves generated from very distant sources by observing the small and correlated effect the waves have on pulse arrival times at the Earth. In this thesis, I present advanced Bayesian analysis methods that can be used to search for gravitational waves in pulsar timing data. These methods were also applied to analyze a set of radial velocity (RV) data collected by the Hobby- Eberly Telescope on observing a K0 giant star. They confirmed the presence of two Jupiter mass planets around a K0 giant star and also characterized the stellar p-mode oscillation. The first part of the thesis investigates the effect of wavefront curvature on a pulsar's response to a gravitational wave. In it we show that we can assume the gravitational wave phasefront is planar across the array only if the source luminosity distance " 2piL2/lambda, where L is the pulsar distance to the Earth (˜ kpc) and lambda is the radiation wavelength (˜ pc) in the PTA waveband. Correspondingly, for a point gravitational wave source closer than ˜ 100 Mpc, we should take into account the effect of wavefront curvature across the pulsar-Earth line of sight, which depends on the luminosity distance to the source, when evaluating the pulsar timing response. As a consequence, if a PTA can detect a gravitational wave from a source closer than ˜ 100 Mpc, the effects of wavefront curvature on the response allows us to determine the source luminosity distance. The second and third parts of the thesis propose a new analysis method based on Bayesian nonparametric regression to search for gravitational wave bursts and a gravitational wave background in PTA data. Unlike the conventional Bayesian analysis that introduces a signal model with a fixed number of parameters, Bayesian nonparametric regression sets
Gravitational wave astronomy using spaceborne detectors
NASA Astrophysics Data System (ADS)
Rubbo, Louis Joseph, IV
This dissertation explores the use of spaceborne gravitational wave detectors as observatories for studying sources of gravitational radiation. The next decade will see the launch of the first space-based gravitational wave detector. Planning for several follow on missions is already underway. Before these observatories are constructed, extensive studies into their responses, expected output, and data analysis techniques must be completed. In this dissertation these issues are addressed using the proposed Laser Interferometer Space Antenna as an exemplary model. The first original work presented here is a complete description of the response of a spaceborne detector to arbitrary gravitational wave signals. Previous analyses worked either in the static or low frequency limits. Part of this investigation is a coordinate free derivation of the response of a general detector valid for all frequencies and for arbitrary motion. Following directly from this result is The LISA Simulator, a virtual model of the LISA detector, in addition to an adiabatic approximation that extends the low frequency limit by two decades in the frequency domain. Unlike most electromagnetic telescopes, gravitational wave observatories do not return an image of a particular source. Instead they return a set of time series. Encoded within these time series are all of the sources whose gravitational radiation passes through the detector during its observational run. The second original work presented here is the extraction of multiple monochromatic, binary sources using data from multiple time series. For binaries isolated in frequency space and with a large signal to noise ratio, it is shown that these sources can be removed to a level that is below the local effective noise. A concern for the LISA mission is the large number of gravitational wave sources located within the Milky Way galaxy. The superposition of these sources will form a confusion limited background in the output of the detector
Search for Gravitational Wave Trains with the Spacecraft Ulysses
NASA Technical Reports Server (NTRS)
Bertotti, B.; Ambrosini, R.; Armstrong, J.; Asmar, S.; Comoretto, G.; Giampieri, G.; Iess, L.; Koyama, Y.; Messeri, A.; Vecchio, A.; Wahlquist, H.
1994-01-01
We report on the search for periodic gravitational wave in the mHz band conducted with the spacecraft ULYSSES. Gravitational wave signals generally provide information about the distance of the source; ULYSSES' data have a.
The Dawn of Gravitational-Wave Astrophysics
NASA Astrophysics Data System (ADS)
Kalogera, Vassiliki; LIGO - Virgo Collaborations
2016-06-01
With the detection of GW150914 and its identification as the binary merger of two heavy black holes LIGO has launched the era of gravitational-wave astrophysics. I will review what this implies for our understanding of binary compact object formation and how we can use it to constrain current models.
Quantum nondemolition measurements. [by gravitational wave antennas
NASA Technical Reports Server (NTRS)
Braginskii, V. B.; Vorontsov, Iu. I.; Thorne, K. S.
1980-01-01
The article describes new electronic techniques required for quantum nondemolition measurements and the theory underlying them. Consideration is given to resonant-bar gravitational-wave antennas. Position measurements are discussed along with energy measurements and back-action-evading measurements. Thermal noise in oscillators and amplifiers is outlined. Prospects for stroboscopic measurements are emphasized.
CCSNMultivar: Core-Collapse Supernova Gravitational Waves
NASA Astrophysics Data System (ADS)
Engels, Bill; Gossan, Sarah
2016-04-01
CCSNMultivar aids the analysis of core-collapse supernova gravitational waves. It includes multivariate regression of Fourier transformed or time domain waveforms, hypothesis testing for measuring the influence of physical parameters, and the Abdikamalov et. al. catalog for example use. CCSNMultivar can optionally incorporate additional uncertainty due to detector noise and approximate waveforms from anywhere within the parameter space.
Ground-based gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Kuroda, Kazuaki
2015-01-01
Gravitational wave is predicted by Einstein’s general relativity, which conveys the information of source objects in the universe. The detection of the gravitational wave is the direct test of the theory and will be used as new tool to investigate dynamical nature of the universe. However, the effect of the gravitational wave is too tiny to be easily detected. From the first attempt utilizing resonant antenna in the 1960s, efforts of improving antenna sensitivity were continued by applying cryogenic techniques until approaching the quantum limit of sensitivity. However, by the year 2000, resonant antenna had given the way to interferometers. Large projects involving interferometers started in the 1990s, and achieved successful operations by 2010 with an accumulated extensive number of technical inventions and improvements. In this memorial year 2015, we enter the new phase of gravitational-wave detection by the forthcoming operation of the second-generation interferometers. The main focus in this paper is on how advanced techniques have been developed step by step according to scaling the arm length of the interferometer up and the history of fighting against technical noise, thermal noise, and quantum noise is presented along with the current projects, LIGO, Virgo, GEO-HF and KAGRA.
Gravitational wave detector with cosmological reach
NASA Astrophysics Data System (ADS)
Dwyer, Sheila; Sigg, Daniel; Ballmer, Stefan W.; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew
2015-04-01
Twenty years ago, construction began on the Laser Interferometer Gravitational-wave Observatory (LIGO). Advanced LIGO, with a factor of 10 better design sensitivity than Initial LIGO, will begin taking data this year, and should soon make detections a monthly occurrence. While Advanced LIGO promises to make first detections of gravitational waves from the nearby universe, an additional factor of 10 increase in sensitivity would put exciting science targets within reach by providing observations of binary black hole inspirals throughout most of the history of star formation, and high signal to noise observations of nearby events. Design studies for future detectors to date rely on significant technological advances that are futuristic and risky. In this paper we propose a different direction. We resurrect the idea of using longer arm lengths coupled with largely proven technologies. Since the major noise sources that limit gravitational wave detectors do not scale trivially with the length of the detector, we study their impact and find that 40 km arm lengths are nearly optimal, and can incorporate currently available technologies to detect gravitational wave sources at cosmological distances (z ≳7 ) .
NASA Astrophysics Data System (ADS)
Song, Xianhai; Li, Lei; Zhang, Xueqiang; Huang, Jianquan; Shi, Xinchun; Jin, Si; Bai, Yiming
2014-10-01
to nonlinear inversion of high-frequency surface wave data should be considered good not only in terms of the accuracy but also in terms of the convergence speed.
Chiral primordial gravitational waves from a Lifshitz point.
Takahashi, Tomohiro; Soda, Jiro
2009-06-12
We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves. PMID:19658921
High-frequency electron resonances and surface waves in unmagnetized bounded plasmas
NASA Astrophysics Data System (ADS)
Bowers, Kevin James
2001-10-01
As all laboratory and industrial plasma devices have boundaries, understanding the plasma-wall interaction is critical. This thesis explores high frequency (beyond the ion plasma frequency) resonances and surface waves in unmagnetized bounded plasmas. Special emphasis is placed on low-temperature plasmas in planar systems as such are useful for materials processing. Chapter 1, Chapter 2 and Chapter 3 conduct simulation studies of electron series resonance sustained discharges with comparisons to theory and experiment. These plasmas have many desirable characteristics (resistive V-I phase, frequency tunable density, low-temperature, low- pressure). Surface wave plasmas are the natural extension to resonant plasmas and are promising for use in large-area plasma sources. Appropriate for large-area device modeling, an electromagnetic theory of surface wave propagation in a warm non-uniform plasma is developed and compared to previous theoretical work (Chapter 4 and Chapter 5). In Chapter 6, several PIC simulations are conducted to validate the electromagnetic theory. In Chapter 7, numerical techniques suitable for computing the wave dispersion and impedance in a large-area low- temperature plasma are developed. Utilizing much of the research conducted here, Chapter 8 demonstrates a novel application of surface waves. Through a resonant wave-particle interaction (``Landau resonant heating''), the electron velocity distribution function is controllably modified by a standing surface wave excited with a distributed periodic electrode. Simulation results indicate this Landau resonant heating can be used to dramatically enhance important reactions in low-temperature low- pressure plasmas including electron-impact excitation and electron-impact ionization. In conducting this research, an algorithm to effectively eliminate cache thrashing in a particle-in-cell simulation was developed, resulting in a 40 to 70 percent performance gain on typical workstations. The algorithm is
Plane gravitational waves in real connection variables
Hinterleitner, Franz; Major, Seth
2011-02-15
We investigate using plane-fronted gravitational wave space-times as model systems to study loop quantization techniques and dispersion relations. In this classical analysis we start with planar symmetric space-times in the real connection formulation. We reduce via Dirac constraint analysis to a final form with one canonical pair and one constraint, equivalent to the metric and Einstein equations of plane-fronted-with-parallel-rays waves. Because of the symmetries and use of special coordinates, general covariance is broken. However, this allows us to simply express the constraints of the consistent system. A recursive construction of Dirac brackets results in nonlocal brackets, analogous to those of self-dual fields, for the triad variables. Not surprisingly, this classical analysis produces no evidence for dispersion, i.e. a variable propagation speed of gravitational plane-fronted-with-parallel-rays waves.
Spherical resonant-mass gravitational wave detectors
NASA Astrophysics Data System (ADS)
Zhou, Carl Z.; Michelson, Peter F.
1995-03-01
A spherical gravitational wave antenna is a very promising detector for gravitational wave astronomy because it has a large cross section, isotropic sky coverage, and can provide the capability of determining the wave direction. In this paper we discuss several aspects of spherical detectors, including the eigenfunctions and eigenfrequencies of the normal modes of an elastic sphere, the energy cross section, and the response functions that are used to obtain the noise-free solution to the inverse problem. Using the maximum likelihood estimation method the inverse problem in the presence of noise is solved. We also determine the false-alarm probability and the detection probability for a network of spherical detectors and estimate the detectable event rates for supernova collapses and binary coalescences.
Gravitational waves from an early matter era
Assadullahi, Hooshyar; Wands, David
2009-04-15
We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as laser interferometer gravitational wave observatory (LIGO) and laser interferometer space antenna (LISA). We use relativistic perturbation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational-wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for advanced LIGO or 0.005 for LISA; otherwise numerical calculations of the nonlinear evolution on sub-Hubble scales are required.
Testing gravity with gravitational wave source counts
NASA Astrophysics Data System (ADS)
Calabrese, Erminia; Battaglia, Nicholas; Spergel, David N.
2016-08-01
We show that the gravitational wave source counts distribution can test how gravitational radiation propagates on cosmological scales. This test does not require obtaining redshifts for the sources. If the signal-to-noise ratio (ρ) from a gravitational wave source is proportional to the strain then it falls as {R}-1, thus we expect the source counts to follow {{d}}{N}/{{d}}ρ \\propto {ρ }-4. However, if gravitational waves decay as they propagate or propagate into other dimensions, then there can be deviations from this generic prediction. We consider the possibility that the strain falls as {R}-γ , where γ =1 recovers the expected predictions in a Euclidean uniformly-filled Universe, and forecast the sensitivity of future observations to deviations from standard General Relativity. We first consider the case of few objects, seven sources, with a signal-to-noise from 8 to 24, and impose a lower limit on γ, finding γ \\gt 0.33 at 95% confidence level. The distribution of our simulated sample is very consistent with the distribution of the trigger events reported by Advanced LIGO. Future measurements will improve these constraints: with 100 events, we estimate that γ can be measured with an uncertainty of 15%. We generalize the formalism to account for a range of chirp masses and the possibility that the signal falls as {exp}(-R/{R}0)/{R}γ .
New window into stochastic gravitational wave background.
Rotti, Aditya; Souradeep, Tarun
2012-11-30
A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We correct the results provided in existing literature for modifications to the CMB polarization power spectra due to lensing by gravitational waves. Weak lensing by gravitational waves distorts all four CMB power spectra; however, its effect is most striking in the mixing of power between the E mode and B mode of CMB polarization. This suggests the possibility of using measurements of the CMB angular power spectra to constrain the energy density (Ω(GW)) of the SGWB. Using current data sets (QUAD, WMAP, and ACT), we find that the most stringent constraints on the present Ω(GW) come from measurements of the angular power spectra of CMB temperature anisotropies. In the near future, more stringent bounds on Ω(GW) can be expected with improved upper limits on the B modes of CMB polarization. Any detection of B modes of CMB polarization above the expected signal from large scale structure lensing could be a signal for a SGWB. PMID:23368112
Identifying the inflaton with primordial gravitational waves.
Easson, Damien A; Powell, Brian A
2011-05-13
We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves. PMID:21668140
Standing gravitational waves from domain walls
Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas
2009-07-15
We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.
Superconducting Antenna Concept for Gravitational Waves
NASA Astrophysics Data System (ADS)
Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.
The most advanced contemporary efforts and concepts for registering gravitational waves are focused on measuring tiny deviations in large arm (kilometers in case of LIGO and thousands of kilometers in case of LISA) interferometers via photons. In this report we discuss a concept for the detection of gravitational waves using an antenna comprised of superconducting electrons (Cooper pairs) moving in an ionic lattice. The major challenge in this approach is that the tidal action of the gravitational waves is extremely weak compared with electromagnetic forces. Any motion caused by gravitational waves, which violates charge neutrality, will be impeded by Coulomb forces acting on the charge carriers (Coulomb blockade) in metals, as well as in superconductors. We discuss a design, which avoids the effects of Coulomb blockade. It exploits two different superconducting materials used in a form of thin wires -"spaghetti." The spaghetti will have a diameter comparable to the London penetration depth, and length of about 1-10 meters. To achieve competitive sensitivity, the antenna would require billions of spaghettis, which calls for a challenging manufacturing technology. If successfully materialized, the response of the antenna to the known highly periodic sources of gravitational radiation, such as the Pulsar in Crab Nebula will result in an output current, detectable by superconducting electronics. The antenna will require deep (0.3K) cryogenic cooling and magnetic shielding. This design may be a viable successor to LISA and LIGO concepts, having the prospect of higher sensitivity, much smaller size and directional selectivity. This concept of compact antenna may benefit also terrestrial gradiometry.
Seto, Naoki
2009-11-15
Gravitational waves (GWs) from cosmological double neutron star binaries (NS+NS) can be significantly demagnified by the strong gravitational lensing effect, and the proposed future missions such as the Big Bang Observer or Deci-hertz Interferometer Gravitational Wave Observatory might miss some of the demagnified GW signals below a detection threshold. The undetectable binaries would form a GW foreground, which might hamper detection of a very weak primordial GW signal. We discuss the outlook of this potential problem, using a simple model based on the singular isothermal sphere lens profile. Fortunately, it is expected that, for a presumable merger rate of NS+NSs, the residual foreground would be below the detection limit {omega}{sub GW,lim}{approx}10{sup -16} realized with the Big Bang Observer/Deci-hertz Interferometer Gravitational Wave Observatory by correlation analysis.
Gravitational waves: Perspectives of detection
NASA Astrophysics Data System (ADS)
Cerdonio, Massimo
2015-01-01
With Giovanni Losurdo, the PI of Advanced Virgo, we recently dwelled on this subject in an invited review paper [#!ncc10890bib1!#]. Here I first give a short introduction by answering in brief to a few basic and relevant questions, which I was often asked by colleagues not specifically working on gravitation. Then I highlight the main considerations discussed in [#!ncc10890bib1!#], in a sort of guide for the reader, where more details and an extensive reference list can be found. For more complete info, I call the attention to a number of beautiful pictures, kindly provided by my colleagues, which I put on the IFAE website, but are not given here nor in [#!ncc10890bib1!#]. After publication of [#!ncc10890bib1!#], a few relevant developments occurred, especially in the long-term planning of experiments, on which I report here. To update the references would have resulted in adding some sort of ten percent more than those in [#!ncc10890bib1!#], so I have added only a few, which I rate most recent and particularly relevant to the relative issue.
Gravitational wave searches using the DSN (Deep Space Network)
NASA Technical Reports Server (NTRS)
Nelson, S. J.; Armstrong, J. W.
1988-01-01
The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.
Breaking a dark degeneracy with gravitational waves
NASA Astrophysics Data System (ADS)
Lombriser, Lucas; Taylor, Andy
2016-03-01
We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self-acceleration of the model implies a present cosmological tensor mode propagation at lesssim95 % of the speed of light with a damping of the wave amplitude that is gtrsim5 % less efficient than in general relativity. We show that these discrepancies are endemic to self-accelerated Horndeski theories with degenerate large-scale structure and are tested with measurements of gravitational waves emitted by events at cosmological distances. Hence, gravitational-wave cosmology breaks the dark degeneracy in observations of the large-scale structure between two fundamentally different explanations of cosmic acceleration—a cosmological constant and a scalar-tensor modification of gravity. The gravitational wave event GW150914 recently detected with the aLIGO instruments and its potential association with a weak short gamma-ray burst observed with the Fermi GBM experiment may have provided this crucial measurement.
Simulating Responses of Gravitational-Wave Instrumentation
NASA Technical Reports Server (NTRS)
Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele
2006-01-01
Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.
Pseudospectral method for gravitational wave collapse
NASA Astrophysics Data System (ADS)
Hilditch, David; Weyhausen, Andreas; Brügmann, Bernd
2016-03-01
We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first-order generalized harmonic gauge formulation. The relevant theory is reviewed, and the numerical method is critically examined and specialized for the task at hand. In particular, we investigate formulation parameters—gauge- and constraint-preserving boundary conditions well suited to nonvanishing gauge source functions. Different types of axisymmetric twist-free moment-of-time-symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong-field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We employ the Cartoon method to efficiently evolve axisymmetric data in our 3 +1 -dimensional code. We perform test evolutions of the Schwarzschild spacetime perturbed by gravitational waves and by gauge pulses, both to demonstrate the use of our black-hole excision scheme and for comparison with earlier results. Finally, numerical evolutions of supercritical Brill waves are presented to demonstrate durability of the excision scheme for the dynamical formation of a black hole.
Studying cosmological sources of gravitational waves
NASA Astrophysics Data System (ADS)
Corbin, Vincent Dominique Andre
This dissertation presents two aspects of the study of cosmology through gravitational waves. The first aspect involves direct observation of past eras of the Universe's formation. The detection of the Cosmic Microwave Background Radiation was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect its gravitational equivalent in this century. The Cosmic Gravitational Background is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the gravitational background can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. We apply our results to the detector design described in the Big Bang Observer mission concept study and find that it could detect a background with Ogw > 2.2 x 10 --17. The second aspect consists in studying astrophysical sources that detain crucial information on the Universe's evolution. We focus our attention on black holes binary sytems. These systems contain information on the rate of merger between galaxies, which in turn is key to unlock the mystery of inflation. Pulsar timing is a promising technique for detecting low frequency sources of gravitational waves, such as massive and supermassive black hole binaries. Here we show that the timing data from an array of pulsars can be used to recover the physical parameters describing an individual black hole binary to good accuracy, even for moderately strong signals. A novel aspect of our analysis is that we include the distance to each pulsar as a search parameter, which allows us to utilize the full
Garfinkle, David; Pretorius, Frans; Yunes, Nicolas
2010-08-15
We perform a linear stability analysis of dynamical Chern-Simons modified gravity in the geometric optics approximation and find that it is linearly stable on the backgrounds considered. Our analysis also reveals that gravitational waves in the modified theory travel at the speed of light in Minkowski spacetime. However, on a Schwarzschild background the characteristic speed of propagation along a given direction splits into two modes, one subluminal and one superluminal. The width of the splitting depends on the azimuthal components of the propagation vector, is linearly proportional to the mass of the black hole, and decreases with the third inverse power of the distance from the black hole. Radial propagation is unaffected, implying that as probed by gravitational waves the location of the event horizon of the spacetime is unaltered. The analysis further reveals that when a high frequency, pure gravitational wave is scattered from a black hole, a scalar wave of comparable amplitude is excited, and vice versa.
Remote sensing of surface currents with single shipborne high-frequency surface wave radar
NASA Astrophysics Data System (ADS)
Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan
2016-01-01
High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.
Gravitational wave memory in an expanding universe
NASA Astrophysics Data System (ADS)
Tolish, Alexander; Wald, Robert
2016-03-01
We investigate the gravitational wave memory effect in an expanding FLRW spacetime. We find that if the gravitational field is decomposed into gauge-invariant scalar, vector, and tensor modes after the fashion of Bardeen, only the tensor mode gives rise to memory, and this memory can be calculated using the retarded Green's function associated with the tensor wave equation. If locally similar radiation source events occur on flat and FLRW backgrounds, we find that the resulting memories will differ only by a redshift factor, and we explore whether or not this factor depends on the expansion history of the FLRW universe. We compare our results to related work by Bieri, Garfinkle, and Yau.
Gravitational waves from the first stars
Sandick, Pearl; Olive, Keith A.; Daigne, Frederic; Vangioni, Elisabeth
2006-05-15
We consider the stochastic background of gravitational waves produced by an early generation of Population III stars coupled with a normal mode of star formation at lower redshift. The computation is performed in the framework of hierarchical structure formation and is based on cosmic star formation histories constrained to reproduce the observed star formation rate at redshift z < or approx. 6, the observed chemical abundances in damped Lyman alpha absorbers and in the intergalactic medium, and to allow for an early reionization of the Universe at z{approx}11 as indicated by the third year results released by WMAP. We find that the normal mode of star formation produces a gravitational wave background which peaks at 300-500 Hz and is within LIGO III sensitivity. The Population III component peaks at lower frequencies (30-100 Hz depending on the model), and could be detected by LIGO III as well as the planned BBO and DECIGO interferometers.
Gravitational Waves from Core Collapse Supernovae
Yakunin, Konstantin; Marronetti, Pedro; Mezzacappa, Anthony; Bruenn, S. W.; Lee, Ching-Tsai; Chertkow, Merek A; Hix, William Raphael; Blondin, J. M.; Lentz, Eric J; Messer, Bronson; Yoshida, S.
2010-01-01
We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitor masses between 12 and 25 M{sub odot}. These models are distinguished by the fact that they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete waveforms (i.e. through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models.
Listening to the Universe with gravitational waves
NASA Astrophysics Data System (ADS)
Sathyaprakash, B. S.
2016-07-01
The discovery of gravitational waves by the twin LIGO detectors in September 2015 has opened a new window for observational astronomy. The coming years will witness the emergence of other detectors such as Advanced Virgo, KAGRA and LIGO-India. The worldwide network of these detectors will not only observe binary black holes, which we now know will be the dominant sources, but other sources such as binary neutron stars, neutron star-black hole binaries, supernovae, stochastic backgrounds and unknown sources that we do not know yet. In my talk I will describe how gravitational wave observations will help us gain deeper insights into fundamental physics, astrophysics and cosmology in the coming years and decades.
CMB μ distortion from primordial gravitational waves
Ota, Atsuhisa; Yamaguchi, Masahide; Takahashi, Tomo; Tashiro, Hiroyuki E-mail: tomot@cc.saga-u.ac.jp E-mail: gucci@phys.titech.ac.jp
2014-10-01
We propose a new mechanism of generating the μ distortion in cosmic microwave background (CMB) originated from primordial gravitational waves. Such μ distortion is generated by the damping of the temperature anisotropies through the Thomson scattering, even on scales larger than that of Silk damping. This mechanism is in sharp contrast with that from the primordial curvature (scalar) perturbations, in which the temperature anisotropies mainly decay by Silk damping effects. We estimate the size of the μ distortion from the new mechanism, which can be used to constrain the amplitude of primordial gravitational waves on smaller scales independently from the CMB anisotropies, giving more wide-range constraint on their spectral index by combining the amplitude from the CMB anisotropies.
Attenuation of High Frequency P and S Waves in the Gujarat Region, India
NASA Astrophysics Data System (ADS)
Chopra, Sumer; Kumar, Dinesh; Rastogi, B. K.
2011-05-01
The local earthquake waveforms recorded on broadband seismograph network of Institute of Seismological Research in Gujarat, India have been analyzed to understand the attenuation of high frequency (2-25 Hz) P and S waves in the region. The frequency dependent relationships for quality factors for P ( Q P) and S ( Q S) waves have been obtained using the spectral ratio method for three regions namely, Kachchh, Saurashtra and Mainland Gujarat. The earthquakes recorded at nine stations of Kachchh, five stations of Saurashtra and one station in mainland Gujarat have been used for this analysis. The estimated relations for average Q P and Q S are: Q P = (105 ± 2) f 0.82 ± 0.01, Q S = (74 ± 2) f 1.06 ± 0.01 for Kachchh region; Q P = (148 ± 2) f 0.92 ± 0.01, Q S = (149 ± 14) f 1.43 ± 0.05 for Saurashtra region and Q P = (163 ± 7) f 0.77 ± 0.03, Q S = (118 ± 34) f 0.65 ± 0.14 for mainland Gujarat region. The low Q (<200) and high exponent of f (>0.5) as obtained from present analysis indicate the predominant seismic activities in the region. The lowest Q values obtained for the Kachchh region implies that the area is relatively more attenuative and heterogeneous than other two regions. A comparison between Q S estimated in this study and coda Q ( Qc) previously reported by others for Kachchh region shows that Q C > Q S for the frequency range of interest showing the enrichment of coda waves and the importance of scattering attenuation to the attenuation of S waves in the Kachchh region infested with faults and fractures. The Q S/ Q P ratio is found to be less than 1 for Kachchh and Mainland Gujarat regions and close to unity for Saurashtra region. This reflects the difference in the geological composition of rocks in the regions. The frequency dependent relations developed in this study could be used for the estimation of earthquake source parameters as well as for simulating the strong earthquake ground motions in the region.
Tsujimura, Shinichi; Yamagishi, Hiroto; Sankai, Yoshiyuki
2009-01-01
In order to minimize infection risks of patients with artificial hearts, wireless data transmission methods with electromagnetic induction or light have been developed. However, these methods tend to become difficult to transmit data if the external data transmission unit moves from its proper position. To resolve this serious problem, the purpose of this study is to develop a prototype wireless data communication system with ultra high frequency radio wave and confirm its performance. Due to its high-speed communication rate, low power consumption, high tolerance to electromagnetic disturbances, and secure wireless communication, we adopted Bluetooth radio wave technology for our system. The system consists of an internal data transmission unit and an external data transmission unit (53 by 64 by 16 mm, each), and each has a Bluetooth module (radio field intensity: 4 dBm, receiver sensitivity: -80 dBm). The internal unit also has a micro controller with an 8-channel 10-bit A/D converter, and the external unit also has a RS-232C converter. We experimented with the internal unit implanted into pig meat, and carried out data transmission tests to evaluate the performance of this system in tissue thickness of up to 3 mm. As a result, data transfer speeds of about 20 kbps were achieved within the communication distance of 10 m. In conclusion, we confirmed that the system can wirelessly transmit the data from the inside of the body to the outside, and it promises to resolve unstable data transmission due to accidental movements of an external data transmission unit. PMID:19964616
Relic gravitational waves and extended inflation
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Wilczek, Frank
1990-01-01
In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated universe is accomplished by bubble nucleation, bubble collisions supply a potent - and potentially detectable - source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 0.00005 of closure density. Their characteristic wavelength depends on the reheating temperature. If black holes are produced by bubble collisions, they will evaporate, producing shorter-wavelength gravitons.
"Spaghetti" design for gravitational wave superconducting antenna
NASA Astrophysics Data System (ADS)
Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.
2014-05-01
A new concept for detectors of gravitational wave radiation is discussed. Estimates suggest that strain sensitivity essentially better than that of the existing devices can be achieved in the wide frequency range. Such sensitivity could be obtained with devices about one meter long. Suggested device consists of multi-billion bimetallic superconducting wires ("spaghettis") and requires cryogenic operational temperatures (~0.3K in the case considered).
The GEO 600 gravitational wave detector
NASA Astrophysics Data System (ADS)
Willke, B.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Barr, B. W.; Berukoff, S.; Bose, S.; Cagnoli, G.; Casey, M. M.; Churches, D.; Clubley, D.; Colacino, C. N.; Crooks, D. R. M.; Cutler, C.; Danzmann, K.; Davies, R.; Dupuis, R.; Elliffe, E.; Fallnich, C.; Freise, A.; Goßler, S.; Grant, A.; Grote, H.; Heinzel, G.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hough, J.; Jennrich, O.; Kawabe, K.; Kötter, K.; Leonhardt, V.; Lück, H.; Malec, M.; McNamara, P. W.; McIntosh, S. A.; Mossavi, K.; Mohanty, S.; Mukherjee, S.; Nagano, S.; Newton, G. P.; Owen, B. J.; Palmer, D.; Papa, M. A.; Plissi, M. V.; Quetschke, V.; Robertson, D. I.; Robertson, N. A.; Rowan, S.; Rüdiger, A.; Sathyaprakash, B. S.; Schilling, R.; Schutz, B. F.; Senior, R.; Sintes, A. M.; Skeldon, K. D.; Sneddon, P.; Stief, F.; Strain, K. A.; Taylor, I.; Torrie, C. I.; Vecchio, A.; Ward, H.; Weiland, U.; Welling, H.; Williams, P.; Winkler, W.; Woan, G.; Zawischa, I.
2002-04-01
The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.
Kinks, extra dimensions, and gravitational waves
O'Callaghan, Eimear; Gregory, Ruth
2011-03-01
We investigate in detail the gravitational wave signal from kinks on cosmic (super)strings, including the kinematical effects from the internal extra dimensions. We find that the signal is suppressed, however, the effect is less significant that that for cusps. Combined with the greater incidence of kinks on (super)strings, it is likely that the kink signal offers the better chance for detection of cosmic (super)strings.
Testing Gravitational Physics with Space-based Gravitational-wave Observations
NASA Technical Reports Server (NTRS)
Baker, John G.
2011-01-01
Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.
Astrophysical calibration of gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Pitkin, M.; Messenger, C.; Wright, L.
2016-03-01
We investigate a method to assess the validity of gravitational-wave detector calibration through the use of gamma-ray bursts as standard sirens. Such signals, as measured via gravitational-wave observations, provide an estimated luminosity distance that is subject to uncertainties in the calibration of the data. If a host galaxy is identified for a given source then its redshift can be combined with current knowledge of the cosmological parameters yielding the true luminosity distance. This will then allow a direct comparison with the estimated value and can validate the accuracy of the original calibration. We use simulations of individual detectable gravitational-wave signals from binary neutron star (BNS) or neutron star-black hole systems, which we assume to be found in coincidence with short gamma-ray bursts, to estimate any discrepancy in the overall scaling of the calibration for detectors in the Advanced LIGO and Advanced Virgo network. We find that the amplitude scaling of the calibration for the LIGO instruments could on average be confirmed to within ˜10 % for a BNS source within 100 Mpc. This result is largely independent of the current detector calibration method and gives an uncertainty that is competitive with that expected in the current calibration procedure. Confirmation of the calibration accuracy to within ˜20 % can be found with BNS sources out to ˜500 Mpc .
Separating Gravitational Wave Signals from Instrument Artifacts
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.; Cornish, Neil J.
2010-01-01
Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or "glitches" complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic "glitch fitting" using wavelets as "glitch templates", the number of which is determined by a trans-dimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black hole systems, and simulated non-stationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.
Separating gravitational wave signals from instrument artifacts
Littenberg, Tyson B.; Cornish, Neil J.
2010-11-15
Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or ''glitches'' complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic glitch fitting using wavelets as glitch templates, the number of which is determined by a transdimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black-hole systems, and simulated nonstationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.
Gravitational waves from the big bounce
Mielczarek, Jakub
2008-11-15
In this paper we investigate gravitational wave production during the big bounce phase, inspired by loop quantum cosmology. We consider the influence of the holonomy corrections to the equation for tensor modes. We show that they act like additional effective graviton mass, suppressing gravitational wave creation. However, such effects can be treated perturbatively. We investigate a simplified model without holonomy corrections to the equation for modes and find its exact analytical solution. Assuming the form for matter {rho}{proportional_to}a{sup -2} we calculate the full spectrum of the gravitational waves from the big bounce phase. The spectrum obtained decreases to zero for the low energy modes. On the basis of this observation we infer that this effect can lead to low cosmic microwave background (CMB) multipole suppression and gives a potential way for testing loop quantum cosmology models. We also consider a scenario with a post-bounce inflationary phase. The power spectrum obtained gives a qualitative explanation of the CMB spectra, including low multipole suppression.
LIGO and the Search for Gravitational Waves
Robertson, Norna A.
2006-10-16
Gravitational waves, predicted to exist by Einstein's General Theory of Relativity but as yet undetected, are expected to be emitted during violent astrophysical events such as supernovae, black hole interactions and the coalescence of compact binary systems. Their detection and study should lead to a new branch of astronomy. However the experimental challenge is formidable: ground-based detection relies on sensing displacements of order 10{sup -18} m over a frequency range of tens of hertz to a few kHz. There is currently a large international effort to commission and operate long baseline interferometric detectors including those that comprise LIGO - the Laser Interferometer Gravitational-Wave Observatory - in the USA. In this talk I will give an introduction to the topic of gravitational wave detection and in particular review the status of the LIGO project which is currently taking data at its design sensitivity. I will also look to the future to consider planned improvements in sensitivity for such detectors, focusing on Advanced LIGO, the proposed upgrade to the LIGO project.
Gravitational Waves from Black Hole Mergers
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.
The Next Generation of Ground-based Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Losurdo, Giovanni; LIGO Scientific Collaboration; Virgo Collaboration
2007-12-01
LIGO, Virgo and GEO600, the first generation long-baseline interferometric detectors of gravitational waves, were taking data up until last fall. The analysis of the data collected is in progress and the first detection might be possible with these instruments. But, more sensitive detectors will be needed to start the field of gravitational wave astronomy. Advanced interferometers will improve the sensitivity by a factor of ten, thus enabling the exploration of a universe volume that is 1000 times larger than the present. The technology is almost ready and the construction of Advanced LIGO and Advanced Virgo is planned to start at the beginning of the next decade. With an expected event rate of 1/week-1/day these detectors will be powerful instruments that will provide a new way of observing the universe. As an intermediate step, in 2008 LIGO and Virgo will start the upgrade of the current detectors, working towards Enhanced LIGO and Virgo+. GEO600 has also planned a set of incremental upgrades (GEO HF) in order to enhance sensitivity in the high frequency range. In this talk the path towards the advanced detectors will be reviewed and the perspectives of the so-called 2nd generation long-baseline interferometers will be outlined.
Relic gravitational waves and extended inflation
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Wilczek, Frank
1990-01-01
In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV).
Gravitational wave detection with the solar probe: I. Motivation
NASA Technical Reports Server (NTRS)
Thorne, K. S.
1978-01-01
Questions are posed and answered through discussion of gravitational wave detection with the Solar Probe. Discussed are: (1) what a gravitational wave is; (2) why wave detection is important; (3) what astrophysical information might be learned from these waves; (4) status of attempts to detect these waves; (5) why the Solar Probe is a special mission for detecting these waves; (6) how the Solar Probe's expected sensitivity compares with the strength of predicted gravitational waves; and (7) what gravity wave searchers will do after the Solar Probe.
Atomization off thin water films generated by high-frequency substrate wave vibrations
NASA Astrophysics Data System (ADS)
Collins, David J.; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R.; Yeo, Leslie Y.
2012-11-01
Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).
Gravitational waves: Some less discussed intriguing issues
NASA Astrophysics Data System (ADS)
Sivaram, C.
2015-11-01
Attempts to detect gravitational waves is actively in progress with sophisticated devices like LIGO setup across continents. Despite being predicted almost 100 years ago, there has so far been no direct detection of these waves. In this work, we draw attention to some of the less discussed but subtle aspects arising, for example, from high orbital eccentricities, where emission near periastron could be millions of times more than that in the distant parts of the orbit. The strong field nonlinear effects close to the compact objects can substantially slow down and deflect the waves in the last (few) orbit(s) where much of the intensity is expected. Spin-orbit and other forces could be significant. There would also be plasma like resonant absorption (of kilohertz radiation) during the collapse. Recent observation of supermassive black holes at high redshift implies cluster collapse, where the gravitational wave intensity depends on very high powers of the mass. Any unambiguous claim of detection should perhaps consider several of these effects.
Gravitational waves from the electroweak phase transition
Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar
2012-10-01
We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.
Gravitational waves from the electroweak phase transition
NASA Astrophysics Data System (ADS)
Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.
2012-10-01
We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ~ 10-4 Hz, and give intensities as high as h2ΩGW ~ 10-8.
Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing
Yamamoto, Kazuhiro
2005-05-15
A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.
Gravitational waves from a curvaton model with blue spectrum
Kawasaki, Masahiro; Kitajima, Naoya; Yokoyama, Shuichiro E-mail: nk610@icrr.u-tokyo.ac.jp
2013-08-01
We investigate the gravitational wave background induced by the first order scalar perturbations in the curvaton models. We consider the quadratic and axion-like curvaton potential which can generate the blue-tilted power spectrum of curvature perturbations on small scales and derive the maximal amount of gravitational wave background today. We find the power spectrum of the induced gravitational wave background has a characteristic peak at the frequency corresponding to the scale reentering the horizon at the curvaton decay, in the case where the curvaton does not dominate the energy density of the Universe. We also find the enhancement of the amount of the gravitational waves in the case where the curvaton dominates the energy density of the Universe. Such induced gravitational waves would be detectable by the future space-based gravitational wave detectors or pulsar timing observations.
Doppler-cancelled response to VLF gravitational waves
NASA Technical Reports Server (NTRS)
Caporali, A.
1981-01-01
The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.
NASA Technical Reports Server (NTRS)
Kojima, H.; Matsumoto, H.; Omura, Y.; Tsurutani, B. T.
1989-01-01
An ion beam resonates with R-mode waves at a high-frequency RH mode and a low-frequency RL mode. The nonlinear evolution of ion beam-generated RH waves is studied here by one-dimensional hybrid computer experiments. Both wave-particle and subsequent wave-wave interactions are examined. The competing process among coexisting RH and RL mode beam instabilities and repeated decay instabilities triggered by the beam-excited RH mode waves is clarified. It is found that the quenching of the RH instability is not caused by a thermal spreading of the ion beam, but by the nonlinear wave-wave coupling process. The growing RH waves become unstable against the decay instability. This instability involves a backward-traveling RH electromagnetic wave and a forward-traveling longitudinal sound wave. The inverse cascading process is found to occur faster than the growth of the RL mode. Wave spectra decaying from the RH waves weaken as time elapses and the RL mode waves become dominant at the end of the computer experiment.
Gravitational Wave Search with the Clock Mission
NASA Technical Reports Server (NTRS)
Armstrong, J. W.
1997-01-01
Doppler tracking of distant spacecraft is the only method currently available to search for gravitational waves in the low-frequency (approx. 0.0001-0.1 Hz) band. In this technique the Doppler system measures the relative dimensionless velocity 2(delta)v/c = (delta)f/f(sub o) between the earth and the spacecraft as a function of time, where (delta)f is the frequency perturbation and f(sub o) is the nominal frequency of the radio link. A gravitational wave of amplitude h incident on this system causes small frequency perturbations, of order h in (delta)f/f(sub o), replicated three times in the observed record (Estabrook and Wahlquist 1975). All experiments to date and those planned for the near future involve only 'two-way' Doppler-i.e., uplink signal coherently transponded by the spacecraft with Doppler measured using a frequency standard common to the transmit and receive chains of the ground station. If, as on the proposed Clock Mission, there is an additional frequency standard on the spacecraft and a suitable earth-spacecraft radio system, some noise sources can be isolated and removed from the data (Vessot and Levine 1978). Supposing that the Clock Mission spacecraft is transferred into a suitable interplanetary orbit, I discuss here how the on-board frequency standard could be employed with an all-Ka-band radio system using the very high stability Deep Space Network station DSS 25 being instrumented for Cassini. With this configuration, the Clock Mission could search for gravitational waves at a sensitivity limited by the frequency standards, rather than plasma or tropospheric scintillation effects, whenever the sun-earth-spacecraft angle is greater than 90 degrees.
An heuristic introduction to gravitational waves
NASA Astrophysics Data System (ADS)
Sandberg, Vernon D.
1983-03-01
We describe in physical terms the phenomenon of gravitational waves. The philosophy of William Gilbert is used.1 ``Since in the discovery of secret things and in the investigation of hidden causes, stronger reasons are obtained from sure experiments and demonstrated arguments than from probable conjectures and the opinions of philosophical speculators of the common sort; therefore to the end that the noble substance of that great loadstone, our common mother (the earth), still quite unknown, and also the forces extraordinary and exalted of this globe may the better be understood...''
Detecting gravitational wave bursts with Pulsar Timing
NASA Astrophysics Data System (ADS)
Cornish, Neil; Ellis, Justin
2016-03-01
The history of astronomy has shown that the Universe is full of suprises. One of the great hopes for gravitational wave astronomy is the discovery of unanticipated phenomena. To accomplish this we need to develop flexible analysis techniques that are able to detect signals with arbitrary waveform morphology. Here I will describe a multi-wavelet approach for the analysis of timing residuals from a pulsar timing array. Please schedule my talk immediately after the related talk by my co-author Justin Ellis.
Building an International Gravitational Wave Network
NASA Astrophysics Data System (ADS)
Ballmer, Stefan; LSC; Virgo Collaboration
2007-12-01
The international network of ground-based gravitational wave detectors has reached an astrophysically interesting sensitivity and has recently completed its first extended Science run. The network consists of the three LIGO interferometers in the United States, the VIRGO interferometer in Italy, as well as the GEO600 instrument in Germany. I will review the performance of the detectors during the latest run and describe the currently limiting sources of noise, showing that it is possible to further improve the sensitivity with the ongoing upgrades.
Detecting Gravitational Waves using Pade Approximants
NASA Astrophysics Data System (ADS)
Porter, E. K.; Sathyaprakash, B. S.
1998-12-01
We look at the use of Pade Approximants in defining a metric tensor for the inspiral waveform template manifold. By using this method we investigate the curvature of the template manifold and the number of templates needed to carry out a realistic search for a Gravitational Wave signal. By comparing this method with the normal use of Taylor Approximant waveforms we hope to show that (a) Pade Approximants are a superior method for calculating the inspiral waveform, and (b) the number of search templates needed, and hence computing power, is reduced.
Gravitational waves from self-ordering scalar fields
Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan E-mail: daniel.figueroa@uam.es E-mail: juan.garciabellido@uam.es
2009-10-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω{sub GW}(f) ∝ f{sup 3} with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη{sub *} << 1), enters the horizon, for kη ∼> 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information.
Primordial gravitational waves from the space-condensate inflation model
NASA Astrophysics Data System (ADS)
Koh, Seoktae; Lee, Bum-Hoon; Tumurtushaa, Gansukh
2016-04-01
We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for the full frequency range with the assumption that the phase transition between two consecutive regimes is abrupt during the evolution of the Universe. The suppression of the energy spectrum is found in our model for the decreasing frequency of gravitational waves depending on the model parameter. To realize the suppression of the energy spectrum of the primordial gravitational waves, we study the existence of the early phase transition during inflation for the space-condensate inflation model.
Gravitational-wave stochastic background from cosmic strings.
Siemens, Xavier; Mandic, Vuk; Creighton, Jolien
2007-03-16
We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space. PMID:17501038
NASA Astrophysics Data System (ADS)
Nose, T.; Ito, Y.; Iisaka, Takuya; Chien, L.-C.; Catanescu, O.; Golvin, A.; Isota, Y.; Sasamori, T.; Ito, R.; Honma, M.
2013-03-01
Various liquid crystal (LC) phase shifters that operate in the super-high-frequency electromagnetic-wave regions have been investigated using planar-type excellent waveguides such as the microstrip line (MSL) and coplanar waveguide (CPW). First planar-type LC phase shifters were constructed using MSL, which was developed as an excellent planar waveguide for super-high-frequency electromagnetic waves. CPW-type LC phase shifters have attracted continued attention, because when they are used, all the signal and ground electrodes are at the same surface, which leads to ease in integration for constructing various functional devices. However, they suffer from an essential drawback of degradation in the phase shift magnitude, which is because the propagating electromagnetic waves encounter the permittivity of both the substrate and the LC materials, which reduces the modulation effect of the LC materials to less than half. In this work, a novel MSL-type LC phase shifter is investigated to achieve excellent phase shifting performance while maintaining ease in integration, as offered by the CPW-type phase shifter. Several device structural parameters are investigated to improve the transmission and phase shifting properties. Some LC materials are also tested for further improvement in the high-frequency operation extended to the millimeter-wave region.
Inflationary gravitational waves in collapse scheme models
NASA Astrophysics Data System (ADS)
Mariani, Mauro; Bengochea, Gabriel R.; León, Gabriel
2016-01-01
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Gravitational waves and short gamma ray bursts
NASA Astrophysics Data System (ADS)
Predoi, Valeriu
2012-07-01
Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched{filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW{GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis
The next detectors for gravitational wave astronomy
NASA Astrophysics Data System (ADS)
Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael
2015-12-01
This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.
Transformations of asymptotic gravitational-wave data
NASA Astrophysics Data System (ADS)
Boyle, Michael
2016-04-01
Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data may be expressed, there will still be an infinite-dimensional group of transformations allowed while remaining in this class, and almost as many different—though physically equivalent—waveforms as there are transformations. This paper presents a method for calculating the effects of the most important transformation group, the Bondi-Metzner-Sachs (BMS) group, consisting of rotations, boosts, and supertranslations (which include time and space translations as special cases). To a reasonable approximation, these transformations result in simple coupling between the modes in a spin-weighted spherical-harmonic decomposition of the waveform. It is shown that waveforms from simulated compact binaries in the publicly available SXS waveform catalog contain unmodeled effects due to displacement and drift of the center of mass, accounting for mode mixing at typical levels of 1%. However, these effects can be mitigated by measuring the average motion of the system's center of mass for a portion of the inspiral, and applying the opposite transformation to the waveform data. More generally, controlling the BMS transformations will be necessary to eliminate the gauge ambiguity inherent in gravitational-wave data for both numerical and analytical waveforms. Open-source code implementing BMS transformations of waveforms is supplied along with this paper in the supplemental materials.
Astrophysical Model Selection in Gravitational Wave Astronomy
NASA Technical Reports Server (NTRS)
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Gravitational waves and the scale of inflation
NASA Astrophysics Data System (ADS)
Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias
2015-03-01
We revisit alternative mechanisms of gravitational wave production during inflation and argue that they generically emit a non-negligible amount of scalar fluctuations. We find the scalar power is larger than the tensor power by a factor of order 1 /ɛ2. For an appreciable tensor contribution, the associated scalar emission completely dominates the zero-point fluctuations of the inflaton, resulting in a tensor-to-scalar ratio r ˜ɛ2. A more quantitative result can be obtained if one further assumes that gravitational waves are emitted by localized subhorizon processes, giving rmax≃0.3 ɛ2 . However, ɛ is generally time dependent, and this result for r depends on its instantaneous value during the production of the sources, rather than just its average value, somewhat relaxing constraints from the tilt ns. We calculate the scalar 3-point correlation function in the same class of models and show that non-Gaussianity cannot be made arbitrarily small, i.e. fN L≳1 , independently of the value of r . Possible exceptions in multifield scenarios are discussed.
An Atomic Gravitational Wave Interferometric Sensor (AGIS)
Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.
2008-08-01
We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.
Gravitational wave astronomy: needle in a haystack.
Cornish, Neil J
2013-02-13
A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain. PMID:23277598
Transmission of high frequency sound waves through a slug flow jet
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Vijayaraghavan, A.
1980-01-01
An analysis has been performed of sound waves which propagate in a pipe with gas flow. At the pipe exit these waves are partially reflected and the remainder are diffracted. The analysis is carried out by resolving the sound at the exit into its Fourier components and then continuing the solution, which is a combination of elementary plane waves, beyond the exit. These waves are of two types: homogeneous waves which propagate to infinity, and inhomogeneous waves with complex wave numbers which decay. The reflected waves are evaluated from the inhomogeneous waves. At the boundary of the jet, refraction of the elementary plane waves is accounted for and the far field sound is evaluated by the method of stationary phase. Comparisons of the theoretical calculations are made with experimental results and with calculations of other theories.
BOOK REVIEW Analysis of Gravitational-Wave Data Analysis of Gravitational-Wave Data
NASA Astrophysics Data System (ADS)
Fairhurst, Stephen
2010-12-01
The field of gravitational-wave data analysis has expanded greatly over the past decade and significant developments have been made in methods of analyzing the data taken by resonant bar and interferometric detectors, as well as analysis of mock LISA data. This book introduces much of the required theoretical background in gravitational physics, statistics and time series analysis before moving on to a discussion of gravitational-wave data analysis techniques themselves. The book opens with an overview of the theory of gravitational radiation, providing a comprehensive discussion of various introductory topics: linearized gravity, transverse traceless gauge, the effects of gravitational waves (via geodesic deviation), energy and momentum carried by the waves, and generation of gravitational waves. The second chapter provides an introduction to the various sources of gravitational waves, followed by more detailed expositions on some of the primary sources. For example, the description of compact binary coalescence is thorough and includes a brief exposition of the post-Newtonian formalism and the effective one body method. There also follows extended derivations of gravitational waves from distorted neutron stars, supernovae and a stochastic background. Chapter three provides an introduction to the statistical theory of signal detection, including a discussion of parameter estimation via the Fisher matrix formalism. This is presented from a very mathematical, postulate based, standpoint and I expect that even established gravitational-wave data analysts will find the derivations here more formal than they are used to. The discussion of likelihood ratio tests and the importance of prior probabilities are presented particularly clearly. The fourth chapter covers time series analysis, with power spectrum estimation, extraction of periodic signals and goodness of fit tests. Chapter five switches topics and gives the details of the response of gravitational-wave
Gravitational waves from preheating in M-flation
Ashoorioon, Amjad; Fung, Brandon; Mann, Robert B.; Oltean, Marius; Sheikh-Jabbari, M.M. E-mail: b6fung@uwaterloo.ca E-mail: moltean@physics.mcgill.ca
2014-03-01
Matrix inflation, or M-flation, is a string theory motivated inflationary model with three scalar field matrices and gauge fields in the adjoint representation of the U(N) gauge group. One of these 3N{sup 2} scalars appears as the effective inflaton while the rest of the fields (scalar and gauge fields) can play the role of isocurvature fields during inflation and preheat fields afterwards. There is a region in parameter space and initial field values, ''the hilltop region'', where predictions of the model are quite compatible with the recent Planck data. We show that in this hilltop region, if the inflaton ends up in the supersymmetric vacuum, the model can have an embedded preheating mechanism. Couplings of the preheat modes are related to the inflaton self-couplings and therefore are known from the CMB data. Through lattice simulations performed using a symplectic integrator, we numerically compute the power spectra of gravitational waves produced during the preheating stage following M-flation. The preliminary numerical simulation of the spectrum from multi-preheat fields peaks in the GHz band with an amplitude Ω{sub gw}h{sup 2}∝10{sup −16}, suggesting that the model has concrete predictions for the ultra-high frequency gravity-wave probes. This signature could be used to distinguish the model from rival inflationary models.
Comparative analysis on penetrating depth of high-frequency Rayleigh and Love waves
NASA Astrophysics Data System (ADS)
Yin, Xiaofei; Xia, Jianghai; Shen, Chao; Xu, Hongrui
2014-12-01
A particular mode of surface waves possesses a unique phase velocity for each wavelength. Different wavelengths primarily reflect geological information at different depths. In practice, knowledge on penetrating depth of surface wave data is extremely important to define an earth model for inverting their phase velocities. For a layered model, we use the Jacobian matrix to investigate the relationship between wavelength and penetrating depth. The results show that a different mode of surface waves is sensitive to a different depth range. No matter for Rayleigh or Love waves, higher mode waves can penetrate deeper than fundamental mode waves do. For a normal model (S-wave velocity increases with depth) and given the same wavelength, the fundamental mode Rayleigh-wave data can 'see' 1.3-1.4 times deeper than that of Love waves. In addition, the higher-mode components of the two waves can penetrate the same depth. Our numerical studies based on sensitivity analysis of fundamental mode waves of two kinds of irregular models, HVL (high-velocity-layer model) and LVL (low-velocity-layer model), suggest that both Rayleigh and Love waves are insensitive to the layers beneath an HVL or LVL and the HVL itself. Therefore, wavelengths required for estimating S-wave velocity of these layers are much longer than the normal model.
Gravitational wave astronomy - astronomy of the 21st century
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.
2011-03-01
An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front - the IndIGO project -, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.
Gravitational wave astronomy-- astronomy of the 21st century
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.
2011-12-01
An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or are being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front-- the IndIGO project --, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.
Optimizing Vetoes for Gravitational-wave Transient Searches
NASA Technical Reports Server (NTRS)
Essick, R.; Blackburn, Lindy L.; Katsavounidis, E.
2014-01-01
Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo record a surplus of information above and beyond possible gravitational-wave events. These auxiliary channels capture information about the state of the detector and its surroundings which can be used to infer potential terrestrial noise sources of some gravitational-wave-like events. We present an algorithm addressing the ordering (or equivalently optimizing) of such information from auxiliary systems in gravitational-wave detectors to establish veto conditions in searches for gravitational-wave transients. The procedure was used to identify vetoes for searches for unmodelled transients by the LIGO and Virgo collaborations during their science runs from 2005 through 2007. In this work we present the details of the algorithm; we also use a limited amount of data from LIGO's past runs in order to examine the method, compare it with other methods, and identify its potential to characterize the instruments themselves. We examine the dependence of Receiver Operating Characteristic curves on the various parameters of the veto method and the implementation on real data. We find that the method robustly determines important auxiliary channels, ordering them by the apparent strength of their correlations to the gravitational-wave channel. This list can substantially reduce the background of noise events in the gravitational-wave data. In this way it can identify the source of glitches in the detector as well as assist in establishing confidence in the detection of gravitational-wave transients.
Optimizing vetoes for gravitational-wave transient searches
NASA Astrophysics Data System (ADS)
Essick, R.; Blackburn, L.; Katsavounidis, E.
2013-08-01
Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo record a surplus of information above and beyond possible gravitational-wave events. These auxiliary channels capture information about the state of the detector and its surroundings which can be used to infer potential terrestrial noise sources of some gravitational-wave-like events. We present an algorithm addressing the ordering (or equivalently optimizing) of such information from auxiliary systems in gravitational-wave detectors to establish veto conditions in searches for gravitational-wave transients. The procedure was used to identify vetoes for searches for unmodeled transients by the LIGO and Virgo collaborations during their science runs from 2005 through 2007. In this work we present the details of the algorithm; we also use a limited amount of data from LIGO's past runs in order to examine the method, compare it with other methods, and identify its potential to characterize the instruments themselves. We examine the dependence of receiver operating characteristic curves on the various parameters of the veto method and the implementation on real data. We find that the method robustly determines important auxiliary channels, ordering them by the apparent strength of their correlations to the gravitational-wave channel. This list can substantially reduce the background of noise events in the gravitational-wave data. In this way it can identify the source of glitches in the detector as well as assist in establishing confidence in the detection of gravitational-wave transients.
Searches for continuous gravitational waves with LIGO and GEO600
NASA Astrophysics Data System (ADS)
Landry, M.
2008-02-01
Current searches for astrophysically generated gravitational waves include the ground-based interferometers GEO600 and LIGO. The sensitive band of the detectors is at audio frequencies, from a few tens of Hz to several kHz. We report on efforts to search the data from these detectors for gravitational waves from spinning compact objects such as neutron or quark stars.
NASA Astrophysics Data System (ADS)
Chen, Hsin-Liang; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain; Leou, Keh-Chyang
2014-09-01
With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.
Gravitational-wave detection using redshifted 21-cm observations
Bharadwaj, Somnath; Guha Sarkar, Tapomoy
2009-06-15
A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.
Directed search for continuous gravitational waves from the Galactic center
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.
2013-11-01
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
NASA Astrophysics Data System (ADS)
Poppeliers, C.; Mallinson, D. J.
2015-12-01
Breaking waves in the near-shore are known to generate a significant amount of high frequency (f>5 Hz) energy. We investigate the correlation between the spectrum of seismic energy and the local sea states. We deployed a single three-component broadband seismometer approximately 50 m from the sea shore and recorded continuously for approximately 10 days. Our observations show that during elevated sea states, and presumably larger breaking waves in the surf zone, the power spectral density of the wave-generated seismic energy shifts to lower frequencies and higher spectral amplitudes. The correlation of the seismic spectral power to the height and period of ocean waves suggests that seismic observations can be used as a proxy for local sea states, which may have implications for sea shore sediment transport.
NASA Astrophysics Data System (ADS)
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu
2015-04-01
We investigate source locations of P wave microseisms within a narrow frequency band (0.67-1.33 Hz) that is significantly higher than the classic microseism band (~0.05-0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement with previous observations in the double-frequency (DF) microseism band (~0.1-0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.
NASA Astrophysics Data System (ADS)
Dajun, Wang; Chunyan, Zhou; Li, Junbao; Shen, Song; Li, Min; Liu, Xijun
2013-07-01
This paper presents an experimental investigation on nonlinear low frequency gravity water waves in a partially filled cylindrical shell subjected to high frequency horizontal excitations. The characteristics of natural frequencies and mode shapes of the water-shell coupled system are discussed. The boundaries for onset of gravity waves are measured and plotted by curves of critical excitation force magnitude with respect to excitation frequency. For nonlinear water waves, the time history signals and their spectrums of motion on both water surface and shell are recorded. The shapes of water surface are also measured using scanning laser vibrometer. In particular, the phenomenon of transitions between different gravity wave patterns is observed and expressed by the waterfall graphs. These results exhibit pronounced nonlinear properties of shell-fluid coupled system.
DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING
Cordes, J. M.; Jenet, F. A. E-mail: merlyn@phys.utb.edu
2012-06-10
We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T Almost-Equal-To 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.
Gravitational waves from the cosmological QCD transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.
2014-09-01
We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.
Constraining the braneworld with gravitational wave observations.
McWilliams, Sean T
2010-04-01
Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm. PMID:20481929
Searching for gravitational waves from binary coalescence
NASA Astrophysics Data System (ADS)
Babak, S.; Biswas, R.; Brady, P. R.; Brown, D. A.; Cannon, K.; Capano, C. D.; Clayton, J. H.; Cokelaer, T.; Creighton, J. D. E.; Dent, T.; Dietz, A.; Fairhurst, S.; Fotopoulos, N.; González, G.; Hanna, C.; Harry, I. W.; Jones, G.; Keppel, D.; McKechan, D. J. A.; Pekowsky, L.; Privitera, S.; Robinson, C.; Rodriguez, A. C.; Sathyaprakash, B. S.; Sengupta, A. S.; Vallisneri, M.; Vaulin, R.; Weinstein, A. J.
2013-01-01
We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.
Gravitational waves in open de Sitter space
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hertog, Thomas; Turok, Neil
2000-09-01
We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The background spacetime is taken to be the continuation of an O(5) symmetric instanton saddle point of the Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclidean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work, the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the spectrum.
Gravitational wave: gamma-ray burst connections.
Hough, Jim
2007-05-15
After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation.A promising source of GWs is the coalescence of compact binary systems, events which are now believed to be the origin of short gamma-ray bursts (GRBs). In this paper, a brief review of the state of the art in detector development and exploitation will be given, with particular relevance to a search for signals associated with GRBs, and plans for the future will be discussed. PMID:17293333
Beyond LISA: Exploring future gravitational wave missions
NASA Astrophysics Data System (ADS)
Crowder, Jeff; Cornish, Neil J.
2005-10-01
The Advanced Laser Interferometer Antenna (ALIA) and the Big Bang Observer (BBO) have been proposed as follow on missions to the Laser Interferometer Space Antenna (LISA). Here we study the capabilities of these observatories, and how they relate to the science goals of the missions. We find that the Advanced Laser Interferometer Antenna in Stereo (ALIAS), our proposed extension to the ALIA mission, will go considerably further toward meeting ALIA’s main scientific goal of studying intermediate mass black holes. We also compare the capabilities of LISA to a related extension of the LISA mission, the Laser Interferometer Space Antenna in Stereo (LISAS). Additionally, we find that the initial deployment phase of the BBO would be sufficient to address the BBO’s key scientific goal of detecting the Gravitational Wave Background, while still providing detailed information about foreground sources.
Gravitational wave triggered searches for failed supernovae
NASA Astrophysics Data System (ADS)
Annis, James; Dark Energy Survey Collaboration
2016-03-01
Stellar core collapses occur to all stars of sufficiently high mass and often result in supernovae. A small fraction of supergiant stars, however, are thought to collapse directly into black holes without producing supernovae. A survey of such ``failed'' supernovae would require monitoring millions of supergiants for several years. That is very challenging even for current surveys. With the start of the Advanced LIGO science run, we investigate the possibility of detecting failed supernovae by looking for missing supergiants associated with gravitational wave triggers. We use the Dark Energy Camera (DECam). Our project is a joint effort between the community and the Dark Energy Survey (DES) collaboration. In this talk we report on our ongoing efforts and discuss prospects for future searches.
Broadband Resonant Mass Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Aguiar, Odylio D.; Barroso, Joaquim J.; Marinho, Rubens M.; Pimentel, Guilherme L.; Tobar, Michael E.
By changing from a resonant multimode paradigm to a free mass paradigm for transducers in resonant mass gravitational wave detection, an array of six spheres can achieve a sensitivity response curve competitive with interferometers, being as sensitive as GEO600 and TAMA300 in the 3-6 kHz band and more sensitive than LIGO for 50% of the 6-10 kHz band. This approach has additional benefits. First, due to the relatively inexpensive nature of this technology (~US$1 million), it is accessible to a broader part of the world's scientific community. Additionally, spherical resonant mass detectors have the ability to discern both the direction and polarization resolutions.
Optimal directed searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Ming, Jing; Krishnan, Badri; Papa, Maria Alessandra; Aulbert, Carsten; Fehrmann, Henning
2016-03-01
Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.
Black Holes, Gravitational Waves, and LISA
NASA Technical Reports Server (NTRS)
Baker, John
2009-01-01
Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.
Interaction of gravitational waves with magnetic and electric fields
Barrabes, C.; Hogan, P. A.
2010-03-15
The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.
Improving horizontal resolution of high-frequency surface-wave methods using travel-time tomography
NASA Astrophysics Data System (ADS)
Yin, Xiaofei; Xu, Hongrui; Wang, Limin; Hu, Yue; Shen, Chao; Sun, Shida
2016-03-01
In surface-wave methods, horizontal resolution can be defined as the ability to distinguish anomalous objects that are laterally displaced from each other. The horizontal length of a recognizable geological anomalous body is measured by the lateral variation of shear (S)-wave velocity. Multichannel analysis of surface waves (MASW) is an efficient tool to determine near-surface S-wave velocities. The acquisition of the MASW method involves the same source-receiver configuration moved successively by a fixed distance interval (a few to several stations) along a linear survey line, which is called a roll-along acquisition geometry. A pseudo-2D S-wave velocity section is constructed by aligning 1D models, and each inverted 1D S-wave velocity model reflects the vertical S-wave velocity variation at the midpoint of each geophone spread. Although the MASW method can improve the horizontal resolution of S-wave velocity sections to some degree, the amount of fieldwork is increased by the roll-along acquisition geometry. We propose surface-wave tomography method to investigate horizontal resolution of surface-wave exploration. Phase-velocity dispersion curves are calculated by a pair of traces within a multichannel record through cross-correlation combined with a phase-shift scanning method. Then with the utilization of travel-time tomography, we can obtain high resolution pure-path dispersion curves with diverse sizes of grids at different frequencies. Finally, the pseudo-2D S-wave velocity structure is reconstructed by inverting the pure-path dispersion curves. Travel-time tomography of surface waves can extract accurate dispersion curves from a record with a short receiver spacing, and it can effectively enhance the ability of random noise immunity. Synthetic tests and a real-world example have indicated that travel-time tomography has a great potential for improving the horizontal resolution of surface waves using multi-channel analysis.
Pop, L.; Muresan, M.; Comorosan, S.; Paslaru, L. )
1989-01-01
The effects of a high frequency electromagnetic field, generated by a Diapulse instrument (Diapulse Corporation of America) on rat liver has been investigated. Ultrastructural aspects are described and quantitative determinations of mitochondrial enzymes MAO, CyT-Ox, MDH, SDH and ATP-ase recorded. The standard therapeutic parameters generally used with the Diapulse instrument in medicine were found to induce a stimulation effect at the investigated level, without apparent degenerative modifications. A concordance between the qualitative ultrastructural data and quantitative subcellular enzymic determinations has been observed.
Topics in gravitational-wave astronomy
NASA Astrophysics Data System (ADS)
O'Shaughnessy, R.
2004-09-01
Both the Laser Interferometer Gravitational Wave Observatory (LIGO) the Laser Interferometer Space Antenna (LISA) will over the next decade detect gravitational waves emitted by the motion of compact objects (e.g. black hole and neutron star binaries). This thesis presents methods to improve (i)LIGO detector quality, (ii)our knowledge of waveforms for certain LIGO and LISA sources, and (iii)models for the rate of detectability of a particular LISA source. (1)Plunge of compact object into a supermassive black hole: LISA should detect many inspirals of compact objects into supermassive black holes (˜105 107 M⊙ ). Since the inspiral of each compact object terminates shortly after the inspiralling object reaches its last stable orbit, the late-stage inspiral waveform provides insight into the location of the last stable orbit and strong-field relativity. I discovered that while LISA will easily see the overall inspiral (consisting of many cycles before plunge), the present LISA design will just miss detecting the waves emitted from the transition from inspiral to plunge. (2)Scheme to reduce thermoelastic noise in advanced LIGO: After its first upgrade, LIGO will have its sensitivity limited by thermoelastic noise. [Thermoelastic noise occurs because milimeter-scale thermal fluctuations in the mirror bulk expand and contract, causing the mirror surface to shimmer.] The interferometer's sensitivity could be enhanced substantially by reducing thermoelastic noise. In collaboration with Kip Thorne, Erika d'Ambrosio, Sergey Vyatchanin, and Sergey Strigin, I developed a proposal to reduce thermoelastic noise in advanced-LIGO by switching the LIGO cavity optics from simple spherical mirrors to a new, Mexican-hat shape. (3)Geometric-optics-based analysis of stability of symmetric-hyperbolic formulations of Einstein's equations : Einstein's equations must be evolved numerically to predict accurate waveforms for the late stages of binary black hole inspiral and merger. But no
Modeling of high frequency radio wave absorption on oblique soundings during a solar X-ray flare
NASA Astrophysics Data System (ADS)
Rogov, D. D.; Moskaleva, E. V.; Zaalov, N. Y.
2015-01-01
High frequency radio wave absorption induced by Solar Ultra-Violet (UV) and X-ray flux is investigated. The influence of the solar flare observed on 11 April 2013 on the structure of oblique sounding ionograms in the Arctic region of Russia is considered. An adjustable model of the ionosphere developed for high frequency (HF) propagation problems was employed for this purpose. The simulation algorithm has been designed to accept a large variety of ionospheric conditions. On the basis of the SWPC D-region Absorption model the absorption effects in the ionosphere at sub-auroral latitudes of the Earth were calculated. This approach does not require knowledge of the electron density and electron collision frequency profiles of the D-region ionosphere. The oblique ionograms simulated with the absorption effect and ionograms provided by Russian network of ionospheric observations deployed in Arctic region exhibit quite a good resemblance.
Demorest, P. B.; Ransom, S.; Ferdman, R. D.; Kaspi, V. M.; Gonzalez, M. E.; Stairs, I. H.; Nice, D.; Arzoumanian, Z.; Brazier, A.; Cordes, J. M.; Burke-Spolaor, S.; Lazio, J.; Chamberlin, S. J.; Ellis, J.; Giampanis, S.; Finn, L. S.; Freire, P.; Jenet, F.; Lommen, A. N.; McLaughlin, M.; and others
2013-01-10
We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are {approx}30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h{sub c} (1 yr{sup -1}) < 7 Multiplication-Sign 10{sup -15} (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.
Searching for gravitational waves from neutron stars
NASA Astrophysics Data System (ADS)
Idrisy, Ashikuzzaman
In this dissertation we discuss gravitational waves (GWs) and their neutron star (NS) sources. We begin with a general discussion of the motivation for searching for GWs and the indirect experimental evidence of their existence. Then we discuss the various mechanisms through which NS can emit GWs, paying special attention the r-mode oscillations. Finally we end with discussion of GW detection. In Chapter 2 we describe research into the frequencies of r-mode oscillations. Knowing these frequencies can be useful for guiding and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various corrections. After making simple estimates of the relative strengths of these corrections we conclude that relativistic corrections are the most important. For this reason we extend the formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)], who consider relativistic polytropes, to the case of realistic equations of state. This formulation results in perturbation equations which are solved using a spectral method. We find that for realistic equations of state the r-mode frequency ranges from 1.39--1.57 times the spin frequency of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically motivated interval 0.110--0.310. Following a successful r-mode detection our results can help constrain the high density equation of state. In Chapter 3 we present a technical introduction to the data analysis tools used in GW searches. Starting from the plane-wave solutions derived in Chapter 1 we develop the F-statistic used in the matched filtering technique. This technique relies on coherently integrating the GW detector's data stream with a theoretically modeled wave signal. The statistic is used to test the null hypothesis that the data contains no signal. In this chapter we also discuss how to
Stochastic gravitational wave background from light cosmic strings
DePies, Matthew R.; Hogan, Craig J.
2007-06-15
Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radius {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.
Polnarev, A. G.; Baskaran, D.
2008-06-15
In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with the simple case of an electromagnetic wave traveling in the field of a plane monochromatic gravitational wave, we introduce the concept of the surfing effect and analyze its physical consequences. We then generalize these results to an arbitrary gravitational wave field. We show that, due to the transverse nature of gravitational waves, the surfing effect leads to significant observable consequences only if the velocity of gravitational waves deviates from the speed of light. This fact can help to place an upper limit on the deviation of gravitational wave velocity from the speed of light. The microarcsecond resolution promised by the upcoming precision interferometry experiments allow one to place stringent upper limits on {epsilon}=(v{sub gw}-c)/c as a function of the energy density parameter for gravitational waves {omega}{sub gw}. For {omega}{sub gw}{approx_equal}10{sup -10} this limit amounts to {epsilon} < or approx. 2{center_dot}10{sup -2}.
Magnetar asteroseismology with long-term gravitational waves
Kashiyama, Kazumi; Ioka, Kunihito
2011-04-15
Magnetic flares and induced oscillations of magnetars (supermagnetized neutron stars) are promising sources of gravitational waves (GWs). We suggest that the GW emission, if any, would last longer than the observed x-ray quasiperiodic oscillations (X-QPOs), calling for longer-term GW analyses lasting a day to months, compared to current searches' durations. Like the pulsar timing, the oscillation frequency would also evolve with time because of the decay or reconfiguration of the magnetic field, which is crucial for the GW detection. With the observed GW frequency and its time-derivatives, we can probe the interior magnetic field strength of {approx}10{sup 16} G and its evolution to open a new GW asteroseismology with the next generation interferometers like the advanced laser interferometer gravitational wave observatory, the advanced Virgo gravitational wave detector at the European Gravitational Observatory, the Large-scale cryogenic gravitational wave telescope, and the Einstein telescope.
The LIGO Gravitational Wave Observatories:. Recent Results and Future Plans
NASA Astrophysics Data System (ADS)
Harry, G. M.; Adhikari, R.; Ballmer, S.; Bayer, K.; Betzwieser, J.; Bochner, B.; Burgess, R.; Cadonati, L.; Chatterji, S.; Corbitt, T.; Csatorday, P.; Fritschel, P.; Goda, K.; Hefetz, Y.; Katsavounidis, E.; Lawrence, R.; Macinnis, M.; Marin, A.; Mason, K.; Mavalvala, N.; Mittleman, R.; Ottaway, D. J.; Pratt, M.; Regimbau, T.; Richman, S.; Rollins, J.; Shoemaker, D. H.; Smith, M.; van Putten, M.; Weiss, R.; Aulbert, C.; Berukoff, S. J.; Cutler, C.; Grunewald, S.; Itoh, Y.; Krishnan, B.; Machenschalk, B.; Mohanty, S.; Mukherjee, S.; Naundorf, H.; Papa, M. A.; Schutz, B. F.; Sintes, A. M.; Williams, P. R.; Colacino, C.; Danzmann, K.; Freise, A.; Grote, H.; Heinzel, G.; Kawabe, K.; Kloevekorn, P.; Lück, H.; Mossavi, K.; Nagano, S.; Rüdiger, A.; Schilling, R.; Smith, J. R.; Weidner, A.; Willke, B.; Winkler, W.; Cusack, B. J.; McClelland, D. E.; Scott, S. M.; Searle, A. C.; Drever, R. W. P.; Tinto, M.; Williams, R.; Buonanno, A.; Chen, Y.; Thorne, K. S.; Vallisneri, M.; Abbott, B.; Anderson, S. B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B. C.; Barnes, M.; Barton, M. A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.; Coyne, D.; Creighton, T. D.; D'Ambrosio, E.; Desalvo, R.; Ding, H.; Edlund, J.; Ehrens, P.; Etzel, T.; Evans, M.; Farnham, D.; Fine, M.; Gillespie, A.; Grimmett, D.; Hartunian, A.; Heefner, J.; Hoang, P.; Hrynevych, M.; Ivanov, A.; Jones, L.; Jungwirth, D.; Kells, W.; King, C.; King, P.; Kozak, D.; Lazzarini, A.; Lei, M.; Libbrecht, K.; Lindquist, P.; Liu, S.; Logan, J.; Lyons, T. T.; Mageswaran, M.; Mailand, K.; Majid, W.; Mann, F.; Márka, S.; Maros, E.; Mason, J.; Meshkov, S.; Miyakawa, O.; Miyoki, S.; Mours, B.; Nocera, F.; Ouimette, D.; Pedraza, M.; Rao, S. R.; Redding, D.; Regehr, M. W.; Reilly, K. T.; Reithmaier, K.; Robison, L.; Romie, J.; Rose, D.; Russell, P.; Salzman, I.; Sanders, G. H.; Sannibale, V.; Schmidt, V.; Sears, B.; Seel, S.; Shawhan, P.; Sievers, L.; Smith, M. R.; Spero, R.; Sumner, M. C.; Sylvestre, J.; Takamori, A.; Tariq, H.; Taylor, R.; Tilav, S.; Torrie, C.; Tyler, W.; Vass, S.; Wallace, L.; Ware, B.; Webber, D.; Weinstein, A.; Wen, L.; Whitcomb, S. E.; Willems, P. A.; Wilson, A.; Yamamoto, H.; Zhang, L.; Zweizig, J.; Ganezer, K. S.; Babak, S.; Balasubramanian, R.; Churches, D.; Davies, R.; Sathyaprakash, B.; Taylor, I.; Christensen, N.; Ebeling, C.; Flanagan, É.; Nash, T.; Penn, S.; Dhurandar, S.; Nayak, R.; Sengupta, A. S.; Barker, D.; Barker-Patton, C.; Bland-Weaver, B.; Cook, D.; Gray, C.; Guenther, M.; Hindman, N.; Landry, M.; Lubiński, M.; Matherny, O.; Matone, L.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, J.; Parameswariah, V.; Raab, F.; Radkins, H.; Ryan, K.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Worden, J.; Abbott, R.; Carter, K.; Coles, M.; Evans, T.; Frolov, V.; Fyffe, M.; Gretarsson, A. M.; Hammond, M.; Hanson, J.; Kern, J.; Khan, A.; Kovalik, J.; Langdale, J.; Lormand, M.; O'Reilly, B.; Overmier, H.; Parameswariah, C.; Riesen, R.; Rizzi, A.; Roddy, S.; Sibley, A.; Stapfer, G.; Traylor, G.; Watts, K.; Wooley, R.; Yakushin, I.; Zucker, M.; Chickarmane, V.; Daw, E.; Giaime, J. A.; González, G.; Hamilton, W. O.; Johnson, W. W.; Wen, S.; Zotov, N.; McHugh, M.; Whelan, J. T.; Walther, H.; Ageev, A.; Bilenko, I. A.; Braginsky, V. B.; Mitrofanov, V. P.; Tokmakov, K. V.; Vyachanin, S. P.; Camp, J. B.; Kawamura, S.; Belczynski, K.; Grandclément, P.; Kalogera, V.; Kim, C.; Nutzman, P.; Olson, T.; Yoshida, S.; Beausoleil, R.; Bullington, A.; Byer, R. L.; Debra, D.; Fejer, M. M.; Gustafson, E.; Hardham, C.; Hennessy, M.; Hua, W.; Lantz, B.; Robertson, N. A.; Saulson, P. R.; Finn, L. S.; Hepler, N.; Owen, B. J.; Rotthoff, E.; Schlaufman, K.; Shapiro, C. A.; Stuver, A.; Summerscales, T.; Sutton, P. J.; Tibbits, M.; Winjum, B. J.; Anderson, W. G.; Díaz, M.; Johnston, W.; Romano, J. D.; Torres, C.; Ugolini, D.; Aufmuth, P.; Brozek, S.; Fallnich, C.; Goßler, S.; Heng, I. S.; Heurs, M.; Kötter, K.; Leonhardt, V.; Malec, M.; Quetschke, V.; Schrempel, M.; Traeger, S.; Weiland, U.; Welling, H.; Zawischa, I.; Ingley, R.; Messenger, C.; Vecchio, A.; Amin, R.; Castiglione, J.; Coldwell, R.; Delker, T.; Klimenko, S.; Mitselmakher, G.; Mueller, G.; Rakhmanov, M.; Reitze, D. H.; Rong, H.; Sazonov, A.; Shu, Q. Z.; Tanner, D. B.; Whiting, B. F.; Wise, S.; Barr, B.; Bennett, R.; Cagnoli, G.; Cantley, C. A.; Casey, M. M.; Crooks, D. R. M.; Dupuis, R. J.; Elliffe, E. J.; Grant, A.; Heptonstall, A.; Hewitson, M.; Hough, J.; Jennrich, O.; Killbourn, S.; Killow, C. J.; McNamara, P.; Newton, G.; Pitkin, M.; Plissi, M.; Robertson, D. I.; Rowan, S.; Skeldon, K.; Sneddon, P.; Strain, K. A.; Ward, H.; Woan, G.; Chin, D.; Gustafson, R.; Riles, K.; Brau, J. E.; Frey, R.; Ito, M.; Leonor, I.
2006-02-01
The LIGO interferometers are operating as gravitational wave observatories, with a noise level near an order of magnitude of the goal and the first scientific data recently taken. This data has been analyzed for four different categories of gravitational wave sources; millisecond bursts, inspiralling binary neutron stars, periodic waves from a known pulsar, and stochastic background. Research and development is also underway for the next generation LIGO detector, Advanced LIGO.
Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon
2010-09-15
Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.
Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.
2011-01-01
The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.
Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A
2000-10-01
The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879
Gaussian beam decomposition of high frequency wave fields using expectation-maximization
Ariel, Gil; Engquist, Bjoern; Tanushev, Nicolay M.; Tsai, Richard
2011-03-20
A new numerical method for approximating highly oscillatory wave fields as a superposition of Gaussian beams is presented. The method estimates the number of beams and their parameters automatically. This is achieved by an expectation-maximization algorithm that fits real, positive Gaussians to the energy of the highly oscillatory wave fields and its Fourier transform. Beam parameters are further refined by an optimization procedure that minimizes the difference between the Gaussian beam superposition and the highly oscillatory wave field in the energy norm.
Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.
2009-03-02
We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.
High-frequency sound waves to eliminate a horizon in the mixmaster universe.
NASA Technical Reports Server (NTRS)
Chitre, D. M.
1972-01-01
From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.
Gravitational waves from spinning eccentric binaries
NASA Astrophysics Data System (ADS)
Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás
2012-12-01
This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.
Estimating gravity wave parameters from oblique high-frequency backscatter: Modeling and analysis
Bristow, W.A.; Greenwald, R.A.
1995-03-01
A new technique for estimating electron density perturbation amplitudes of traveling ionospheric disturbances (TIDs), using HF radar data, is presented. TIDs are observed in HF radar data as enhancements of the ground-scattered power which propagate through the radar`s field of view. These TIDs are the ionospheric manifestation of atmospheric acoustic-gravity waves. TID electron density perturbation amplitudes were estimated by simulating the radar returns, using HF ray tracing through a model ionosphere perturbed by a model gravity wave. The simulation determined the return power in the ground-scattered portion of the signal as a function of range, and this was compared to HF radar data from the Goose Bay HF radar at a time when evidence of gravity waves was present in the data. By varying the amplitude of the electron density perturbation in the model it was possible to estimate the perturbation of the actual wave. It was found that the perturbations that are observed by the Goose Bay HF radar are of the order of 20% to 35%. It was also found that the number of observable power enhancements, and the relative amplitudes of these enhancements, depended on the vertical thickness of the gravity wave`s source region. From the simulations and observations it was estimated that the source region for the case presented here was approximately 20 km thick. In addition, the energy in the wave packet was calculated and compared to an estimate of the available energy in the source region. It was found that the wave energy was about 0.2% of the estimated available source region energy. 20 refs., 12 figs.
Precision Ephemerides for Gravitational Wave Searches. II. Cyg X-2
NASA Astrophysics Data System (ADS)
Premachandra, Sammanani S.; Galloway, Duncan K.; Casares, Jorge; Steeghs, Danny T.; Marsh, Thomas R.
2016-06-01
Accreting neutron stars in low-mass X-ray binaries are candidate high-frequency persistent gravitational wave sources. These may be detectable with next-generation interferometers such as Advanced LIGO/VIRGO within this decade. However, the search sensitivity is expected to be limited principally by the uncertainty in the binary system parameters. We combine new optical spectroscopy of Cyg X-2 obtained with the Liverpool Telescope with available historical radial velocity data, which gives us improved orbital parameter uncertainties based on a 44 year baseline. We obtained an improvement of a factor of 2.6 in the orbital period precision and a factor of 2 in the epoch of inferior conjunction T 0. The updated orbital parameters imply a mass function of 0.65 ± 0.01 M ⊙, leading to a primary mass (M 1) of 1.67 ± 0.22 M ⊙ (for i = 62.{}^\\circ 5+/- 4^\\circ ). In addition, we estimate the likely orbital parameter precision through to the expected Advanced LIGO and VIRGO detector observing period and quantify the corresponding improvement in sensitivity via the required number of templates.
Origins of high-frequency scattered waves near PKKP from large aperture seismic array data
Earle, P.S.
2002-01-01
This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.
Aseeva, N. V. Gromov, E. M.; Tyutin, V. V.
2015-12-15
The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.
Finite beta effects on low- and high-frequency magnetosonic waves in a two-ion-species plasma
Toida, Mieko; Aota, Yukio
2013-08-15
A magnetosonic wave propagating perpendicular to a magnetic field in a two-ion-species plasma has two branches, high-frequency and low-frequency modes. The finite beta effects on these modes are analyzed theoretically on the basis of the three-fluid model with finite ion and electron pressures. First, it is shown that the Korteweg-de Vries (KdV) equation for the low-frequency mode is valid for amplitudes ε<ε{sub max}, where the upper limit of the amplitude ε{sub max} is given as a function of β (β is the ratio of the kinetic and magnetic energy densities), the density ratio, and the cyclotron frequency ratio of two ion species. Next, the linear dispersion relation and KdV equation for the high-frequency mode are derived, including β as a factor. In addition, the theory for heavy ion acceleration by the high-frequency mode pulse and the pulse damping due to this energy transfer in a finite beta plasma are presented.
Earth-orbiting resonant-mass gravitational wave detectors
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1989-01-01
Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).
Estimating gravity wave parameters from oblique high-frequency backscatter: Modeling and analysis
NASA Technical Reports Server (NTRS)
Bristow, W. A.; Greenwald, R. A.
1995-01-01
A new technique for estimating electron density perturbation amplitudes of traveling ionospheric disturbances (TIDs), using HF radar data, is presented. TIDs are observed in HF radar data as enhancements of the ground-scattered power which propagate through the radar's field of view. These TIDs are the ionospheric manifestation of atmospheric acoustic-gravity waves. TID electron density perturbation amplitudes were estimated by simulating the radar returns, using HF ray tracing through a model ionosphere perturbed by a model gravity wave. The simulation determined the return power in the ground-scattered portion of the signal as a function of range, and this was compared to HF radar data from the Goose Bay HF radar at a time when evidence of gravity waves was present in the data. By varying the amplitude of the electron density perturbation in the model it was possible to estimate the perturbation of the actual wave. It was found that the perturbations that are observed by the Goose Bay HF radar are of the order of 20% to 35%. It was also found that the number of observable power enhancements, and the relative amplitudes of these enhancements, depended on the vertical thickness of the gravity wave's source region. From the simulations and observations it was estimated that the source region for the case presented here was approximately 20 km thick. In addition, the energy in the wave packet was calculated and compared to an estimate of the available energy in the source region. It was found that the wave energy was about 0.2% of the estimated available source region energy.
Observable induced gravitational waves from an early matter phase
Alabidi, Laila; Sasaki, Misao; Kohri, Kazunori; Sendouda, Yuuiti E-mail: kohri@post.kek.jp E-mail: sendouda@cc.hirosaki-u.ac.jp
2013-05-01
Assuming that inflation is succeeded by a phase of matter domination, which corresponds to a low temperature of reheating T{sub r} < 10{sup 9}GeV, we evaluate the spectra of gravitational waves induced in the post-inflationary universe. We work with models of hilltop-inflation with an enhanced primordial scalar spectrum on small scales, which can potentially lead to the formation of primordial black holes. We find that a lower reheat temperature leads to the production of gravitational waves with energy densities within the ranges of both space and earth based gravitational wave detectors.
Composite gravitational-wave detection of compact binary coalescence
Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.
2011-04-15
The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.
Interferometric Gravitational-Wave Detectors: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Ando, Masaki
2008-08-01
Constructions of the first-generation interferometric gravitational-wave detectors, such as LIGO, VIRGO, GEO600, and TAMA300, have been finished, and long-term observation runs have been carried out as a global network. These data are analyzed in searches for gravitational-wave signals, and are starting to produce scientific results. In addition, next-generation detectors, which will have sufficient sensitivity to directly detect gravitational waves, are being proposed. In this article, the status of the current detectors, scientific results obtained form observation data, and future interferometric detector plans are reviewed.
Optical frequency standards for gravitational wave detection using satellite velocimetry
NASA Astrophysics Data System (ADS)
Vutha, Amar
2015-04-01
Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.
Gravitational waves from kinks on infinite cosmic strings
Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori
2010-05-15
Gravitational waves emitted by kinks on infinite strings are investigated using detailed estimations of the kink distribution on infinite strings. We find that gravitational waves from kinks can be detected by future pulsar timing experiments such as SKA for an appropriate value of the string tension, if the typical size of string loops is much smaller than the horizon at their formation. Moreover, the gravitational wave spectrum depends on the thermal history of the Universe and hence it can be used as a probe into the early evolution of the Universe.
NASA Astrophysics Data System (ADS)
Chan, Henry; Masserey, Bernard; Fromme, Paul
2015-02-01
Especially for ageing aircraft the development of fatigue cracks at fastener holes due to stress concentration and varying loading conditions constitutes a significant maintenance problem. High frequency guided waves offer a potential compromise between the capabilities of local bulk ultrasonic measurements with proven defect detection sensitivity and the large area coverage of lower frequency guided ultrasonic waves. High frequency guided waves have energy distributed through all layers of the specimen thickness, allowing in principle hidden (2nd layer) fatigue damage monitoring. For the integration into structural health monitoring systems the sensitivity for the detection of hidden fatigue damage in inaccessible locations of the multi-layered components from a stand-off distance has to be ascertained. The multi-layered model structure investigated consists of two aluminium plate-strips with an epoxy sealant layer. During cyclic loading fatigue crack growth at a fastener hole was monitored. Specific guided wave modes (combination of fundamental A0 and S0 Lamb modes) were selectively excited above the cut-off frequencies of higher modes using a standard ultrasonic wedge transducer. Non-contact laser measurements close to the defect were performed to qualify the influence of a fatigue crack in one aluminium layer on the guided wave scattering. Fatigue crack growth monitoring using laser interferometry showed good sensitivity and repeatability for the reliable detection of small, quarter-elliptical cracks. Standard ultrasonic pulse-echo equipment was employed to monitor hidden fatigue damage from a stand-off distance without access to the damaged specimen layer. Sufficient sensitivity for the detection of fatigue cracks located in the inaccessible aluminium layer was verified, allowing in principle practical in situ ultrasonic monitoring of fatigue crack growth.
Intensity statistics of very high frequency sound scattered from wind-driven waves.
Walstead, Sean P; Deane, Grant B
2016-05-01
The interaction of vhf 100-1000 kHz underwater sound with the ocean surface is explored. The bistatic forward scatter of 300 kHz sound is measured in a wind driven wave channel. Fluctuations in arrival amplitude are described by the scintillation index (SI) which is a measure of arrival intensity variance. SI initially increases with wind speed but eventually saturates to a value of 0.5 when the root-mean-square (rms) roughness is 0.5 mm. An adjusted scintillation index (SI*) is suggested that accounts for the multiple arrivals and properly saturates to a value of 1. Fluctuations in arrival time do not saturate and increase proportionately to the dominant surface wave component. Forward scattering is modeled at frequencies ranging from 50 to 2000 kHz using the Helmholtz-Kirchhoff integral with surface wave realizations derived from wave gauge data. The amplitude and temporal statistics of the simulated scattering agree well with measured data. Intensity saturation occurs at lower wind speeds for higher frequency sound. Both measured and modeled vhf sound is characterized by many surface arrivals at saturation. Doppler shifts associated with wave motion are expected to vary rapidly for vhf sound however further analysis is required. PMID:27250171
Design and Implementation of High Frequency Ultrasound Pulsed-Wave Doppler Using FPGA
Hu, Chang-hong; Zhou, Qifa; Shung, K. Kirk
2009-01-01
The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA. In this approach, a pulsed-wave Doppler implementation core with reconfigurable and real-time processing capability is achieved. PMID:18986909
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
NASA Astrophysics Data System (ADS)
Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos
2015-04-01
The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole
NASA Astrophysics Data System (ADS)
Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.
2012-06-01
The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.
NASA Astrophysics Data System (ADS)
Ezer, Tal; Heyman, William D.; Houser, Chris; Kjerfve, Björn
2011-05-01
The characteristics and forcing mechanisms of high-frequency flow variations (periods of minutes to days) were investigated near Gladden Spit, a reef promontory off the coast of Belize. Direct field observations and a high-resolution (50-m grid size) numerical ocean model are used to describe the flow variations that impact the initial dispersion of eggs and larvae from this site, which serves as a spawning aggregation site for many species of reef fishes. Idealized sensitivity model experiments isolate the role of various processes, such as internal waves, wind, tides, and large-scale flow variations. The acute horizontal curvature and steep topography of the reef intensify the flow, create small-scale convergence and divergence zones, and excite high-frequency oscillations and internal waves. Although the tides in this area are relatively small (˜10-cm amplitude), the model simulations show that tides can excite significant high-frequency flow variations near the reef, which suggests that the preference of fish to aggregate and spawn in the days following the time of full moon may not be coincidental. Even small variations in remote flows (2-5 cm s-1) due to say, meso-scale eddies, are enough to excite near-reef oscillations. Model simulations and the observations further suggest that the spawning site at the tip of the reef provides initial strong dispersion for eggs, but then the combined influence of the along-isobath flow and the westward wind will transport the eggs and larvae downstream of Gladden Spit toward less turbulent region, which may contribute to enhanced larval survival.
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.
2014-10-01
Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of flute type vortex density structures and interaction of high frequency electromagnetic waves used for surveillance and communication with such structures. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP), and in many other applications. We will present PIC simulation results of EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Two cases will be analyzed. In the first case electromagnetic wave scattering will take place in the ionospheric plasma. In the second case laser probing in a high-beta Z-pinch plasma will be presented. This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE Grant No. DE-FC52-06NA27616 at the University of Nevada at Reno.
Simulations to Usher in the Era of Gravitational Wave Astronomy
NASA Astrophysics Data System (ADS)
Lehner, Luis; Liebling, Steven L.
2013-03-01
A new era of astronomy is near, in which interferometers on Earth and pulsar timing observations will provide an entirely new view of the universe using gravitational waves. These waves will complement the very different images from electromagnetic waves (such as conventional telescopes) and will illuminate systems from which we detect no electromagnetic emission.
Theoretical implications of detecting gravitational waves
NASA Astrophysics Data System (ADS)
Geshnizjani, Ghazal; Kinney, William H.
2015-08-01
This paper is the third in a series of theorems which state how cosmological observations can provide evidence for an early phase of acceleration in the universe. It was demonstrated in [1,2], that the observed power spectrum for scalar perturbations forces all possible alternative theories of inflation to theories other than General Relativity. It was shown that generically, without a phase of accelerated expansion, these alternatives have to break at least one of the following tenets of classical general relativity: the Null Energy Condition (NEC), subluminal signal propagation, or sub-Planckian energy densities. In this paper we prove how detection of primordial gravitational waves at large scales can provide independent evidence to support a phase of accelerated expansion. This proof does not rely on the spectral index for tensor modes but relies on validity of quantum field theory in curved space time and tensor modes being sourced from adiabatic vacuum fluctuations. Our approach, like in the case of scalars, is proof by contradiction: we investigate the possibility of a detectable tensor signal sourced by vacuum fluctuations in a non-accelerating, sub-Planckian universe using cosmological perturbation theory and derive contradictory limits on cosmological dynamics. The contradiction implies that one or more of our axioms for early universe must have been broken. The bound from tensor perturbations is not only independent of, but also stronger than the one obtained from scalar power spectrum.
Red density perturbations and inflationary gravitational waves
Pagano, Luca; Melchiorri, Alessandro; Cooray, Asantha; Kamionkowski, Marc E-mail: acooray@uci.edu E-mail: kamion@tapir.caltech.edu
2008-04-15
We study the implications of recent indications from the Wilkinson Microwave Anisotropy Probe (WMAP) and other cosmological data for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We consider a variety of single-field power-law, chaotic, spontaneous symmetry-breaking and Coleman-Weinberg inflationary potentials which are expected to provide a sizable tensor component and quantify the expected tensor-to-scalar ratio given existing constraints from WMAP on the tensor-to-scalar ratio and the power spectrum tilt. We discuss the ability of the near-future Planck satellite to detect the IGW background in the framework of those models. We find that the proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5{sigma} confidence level. We also provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.
NASA's Gravitational-Wave Mission Concept Study
NASA Astrophysics Data System (ADS)
Stebbins, Robin; Jennrich, Oliver; McNamara, Paul
2012-07-01
With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.
NASA's Gravitational - Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Jennrich, Oliver; McNamara, Paul
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.
Measuring the speed of cosmological gravitational waves
NASA Astrophysics Data System (ADS)
Raveri, Marco; Baccigalupi, Carlo; Silvestri, Alessandra; Zhou, Shuang-Yong
2015-03-01
In general relativity gravitational waves propagate at the speed of light; however, in alternative theories of gravity that might not be the case. We investigate the effects of a modified speed of gravity, cT2, on the B modes of the cosmic microwave background (CMB) anisotropy in polarization. We find that a departure from the light speed value would leave a characteristic imprint on the BB spectrum part induced by tensors, manifesting as a shift in the angular scale of its peaks which allows us to constrain cT without any significant degeneracy with other cosmological parameters. We derive constraints from current data and forecast the accuracy with which cT will be measured by the next generation CMB satellites. In the former case, using the available Planck and BICEP2 data sets, we obtain cT2=1.30 ±0.79 and cT2<2.85 at 95% C.L. by assuming a power law primordial tensor power spectrum and cT2<2.33 at 95% C.L. if the running of the spectral index is allowed. More interestingly, in the latter case we find future CMB satellites capable of constraining cT2 at percent level, comparable with bounds from binary pulsar measurements, largely due to the absence of degeneracy with other cosmological parameters.
The gravitational wave signal from isolated objects
NASA Astrophysics Data System (ADS)
Liu, Jinzhong; Zhang, Yu
2013-02-01
According to the theoretical study, a deformation object (e.g., a spinning non-axisymmetric pulsar star) will radiate a gravitational wave (GW) signal during an accelaration motion process by LIGO science project. These types of disturbance sources with a large bump or dimple on the equator would survive and be identifiable as GW sources. In this work, we aim to provide a method for exploring GW radiation from isolated neutron stars (NSs) with deformation state using some observational results, which can be confirmed by the next LIGO project. Combination with the properties in observation results (e.g., PSR J1748-2446, PSR 1828-11 and Cygnus X-1), based on a binary population synthesis (BPS) approach we give a numerical GW radiation under the assumption that NS should have non-axisymmetric and give the results of energy spectrum. We find that the GW luminosity of LGW can be changed from about 1040 erg/s - 1055 erg/s.
Gravitational wave damping of neutron star wobble
NASA Astrophysics Data System (ADS)
Cutler, Curt; Jones, David Ian
2001-01-01
We calculate the effect of gravitational wave (GW) back reaction on realistic neutron stars (NS's) undergoing torque-free precession. By ``realistic'' we mean that the NS is treated as a mostly fluid body with an elastic crust, as opposed to a rigid body. We find that GW's damp NS wobble on a time scale τθ~2×105 yr [10- 7/(ΔId/I0)]2(kHz/ νs)4, where νs is the spin frequency and ΔId is the piece of the NS's inertia tensor that ``follows'' the crust's principal axis (as opposed to its spin axis). We give two different derivations of this result: one based solely on energy and angular momentum balance, and another obtained by adding the Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long ago by Bertotti and Anile, but their claimed result is wrong. When we convert from their notation to ours, we find that their τθ is too short by a factor of ~105 for the typical cases of interest and even has the wrong sign for ΔId negative. We show where their calculation went astray.
Gravitational wave astrophysics, data analysis and multimessenger astronomy
NASA Astrophysics Data System (ADS)
Lee, Hyung Mok; Le Bigot, Eric-Olivier; Du, ZhiHui; Lin, ZhangXi; Guo, XiangYu; Wen, LinQing; Phukon, Khun Sang; Pandey, Vihan; Bose, Sukanta; Fan, Xi-Long; Hendry, Martin
2015-12-01
This paper reviews gravitational wave sources and their detection. One of the most exciting potential sources of gravitational waves are coalescing binary black hole systems. They can occur on all mass scales and be formed in numerous ways, many of which are not understood. They are generally invisible in electromagnetic waves, and they provide opportunities for deep investigation of Einstein's general theory of relativity. Sect. 1 of this paper considers ways that binary black holes can be created in the universe, and includes the prediction that binary black hole coalescence events are likely to be the first gravitational wave sources to be detected. The next parts of this paper address the detection of chirp waveforms from coalescence events in noisy data. Such analysis is computationally intensive. Sect. 2 reviews a new and powerful method of signal detection based on the GPUimplemented summed parallel infinite impulse response filters. Such filters are intrinsically real time alorithms, that can be used to rapidly detect and localise signals. Sect. 3 of the paper reviews the use of GPU processors for rapid searching for gravitational wave bursts that can arise from black hole births and coalescences. In sect. 4 the use of GPU processors to enable fast efficient statistical significance testing of gravitational wave event candidates is reviewed. Sect. 5 of this paper addresses the method of multimessenger astronomy where the discovery of electromagnetic counterparts of gravitational wave events can be used to identify sources, understand their nature and obtain much greater science outcomes from each identified event.
Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves
NASA Technical Reports Server (NTRS)
Gabriel, G. J.
1977-01-01
Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.
NASA Astrophysics Data System (ADS)
Pokrovskii, Vadim Ya; Zybtsev, Sergey G.; Nikitin, Maksim V.; Gorlova, Irina G.; Nasretdinova, Venera F.; Zaitsev-Zotov, Sergei V.
2013-01-01
Recent results (some previously unpublished) on the physics of charge density waves (CDWs) are reviewed. The synthesis conditions and unique properties of the quasi-one-dimensional compound {NbS_3}, with highly coherent room temperature CDWs, are described. A peculiar type of 'quantization' is discussed, which is observed in micro- and nanosamples of {K_{0.3}MoO_3} and {NbSe_3} due to the discrete nature of CDW wave vector values. The electric-field-induced torsional strain (TS) in quasi-one-dimensional conductors is considered. Research results on the TS of a noise character induced by sliding CDWs are presented, along with those on the inverse effect, the modulation of the voltage induced by externally driven TS. Results on the nonlinear conduction of {TiS_3}, a quasi-one-dimensional compound not belonging to the family of classical Peierls conductors, are also described.
Black Hole Kicks as New Gravitational Wave Observables
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Moore, Christopher J.
2016-07-01
Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ˜500 km s-1 , which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.
Gravitational-Wave Detectors: First, Second, and Third Generation
Mandic, Vuk
2011-11-02
Gravitational waves are predicted by the general theory of relativity to be produced by accelerating mass systems with quadrupole (or higher) moment. The amplitude of gravitational waves is expected to be very small, so the best chance of their direct detection lies with some of the most energetic events in the universe, such as mergers of two neutron stars or black holes, supernova explosions, or the Big Bang itself. Over the past decade several detectors have been built to search for such gravitational-wave sources. This talk will review the current status of these detectors, as well as some of their most recent results, and will cover plans and expectations for the future generations of gravitational wave detectors.
The Science of Gravitational Waves with Space Observatories
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2013-01-01
After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.
Reduced time delay for gravitational waves with dark matter emulators
NASA Astrophysics Data System (ADS)
Desai, S.; Kahya, E. O.; Woodard, R. P.
2008-06-01
We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles.
Black Hole Kicks as New Gravitational Wave Observables.
Gerosa, Davide; Moore, Christopher J
2016-07-01
Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500 km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy. PMID:27419556
Gravitational Wave Search with the Clock Mission (abstract)
NASA Technical Reports Server (NTRS)
Armstrong, J. W.
1996-01-01
Doppler tracking of distant spacecraft is the only method currently available for search for gravitational waves in the low-frequency band. Experiments to date and those planned for the near future all involve.
Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role
NASA Astrophysics Data System (ADS)
Howell, E. J.; Rowlinson, A.; Coward, D. M.; Lasky, P. D.; Kaplan, D. L.; Thrane, E.; Rowell, G.; Galloway, D. K.; Yuan, Fang; Dodson, R.; Murphy, T.; Hill, G. C.; Andreoni, I.; Spitler, L.; Horton, A.
2015-12-01
The first observations by a worldwide network of advanced interferometric gravitational wave detectors offer a unique opportunity for the astronomical community. At design sensitivity, these facilities will be able to detect coalescing binary neutron stars to distances approaching 400 Mpc, and neutron star-black hole systems to 1 Gpc. Both of these sources are associated with gamma-ray bursts which are known to emit across the entire electromagnetic spectrum. Gravitational wave detections provide the opportunity for `multi-messenger' observations, combining gravitational wave with electromagnetic, cosmic ray, or neutrino observations. This review provides an overview of how Australian astronomical facilities and collaborations with the gravitational wave community can contribute to this new era of discovery, via contemporaneous follow-up observations from the radio to the optical and high energy. We discuss some of the frontier discoveries that will be made possible when this new window to the Universe is opened.
Searches for Gravitational Waves Associated with Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Hoak, Daniel; LIGO Scientific Collaboration, Virgo Collaboration
2015-01-01
The central engines of gamma-ray bursts (GRBs) are expected to be bright sources of gravitational waves. Over the past decade, coherent analysis techniques have been applied to search for gravitational-wave signals associated with GRBs, using data from the first generation of the LIGO and Virgo detectors. In these searches, no detection candidates were found, but upper limits were placed on the emission of gravitational waves from the GRB progenitors. The advanced LIGO and Virgo instruments are expected to begin operation in the next few years, and an extrapolation of upper limits from the first generation indicates that joint observations between gamma-ray satellites and gravitational-wave detectors is possible for certain progenitor models and event rates.
Visualization of Merging Black Holes and Gravitational Waves
This visualization shows gravitational waves emitted by two black holes of nearly equal mass as they spiral together and merge. Orange ripples represent distortions of space-time caused by the rapi...
The Gravitational Wave Emission of White Dwarf Dynamical Interactions
NASA Astrophysics Data System (ADS)
Aznar-Siguán, Gabriela; García-Berro, Enrique; Lorén-Aguilar, Pablo
We compute the emission of gravitational waves of white dwarf dynamical interactions and close encounters in dense stellar environments and we compare it with the sensitivity curves of planned space-borne gravitational wave detectors, like eLISA and ALIA. We find that for the three possible outcomes of these interactions—which are the formation of an eccentric binary system, a lateral collision in which several mass transfer episodes occur, and a direct one in which just a single mass transfer episode takes place—only those in which an eccentric binary are formed are likely to be detected by the planned gravitational wave mission eLISA, while ALIA would be able to detect the gravitational wave signal emitted in lateral collisions.
Thermal Noise in Laser Interferometer Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Flaminio, Raffaele
Thermal noise is one of the major limitations to the sensitivity of present and future laser interferometers devoted to gravitational wave detection. According to the fluctuation-dissipation theorem any mechanical oscillator is affected by a motion of thermal origin directly related to its thermodynamic temperature. The mirrors and their suspensions that are used in gravitational wave detectors such as Virgo or LIGO are examples of such mechanical oscillators. As a consequence their position is affected by this thermal vibration and the sensitivity of the gravitational wave detector is thermal noise limited over a wide range of frequencies. After recalling briefly the fluctuation-dissipation theorem and its origins, this chapter describes the main types of thermal noise affecting gravitational wave detectors. In the last part of the chapter a special emphasis is given to the thermal noise due to dissipation in the mirrors optical coatings.
PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves
NASA Astrophysics Data System (ADS)
Marka, Zsuzsa; Marka, Szabolcs
2010-04-01
(The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such
Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves
Gurtug, O.; Halilsoy, M.; Unver, O.
2006-08-15
We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational, and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component {psi}{sub 2} vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a successive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.
The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT
NASA Astrophysics Data System (ADS)
Bryers, C. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.
2013-11-01
We test the existing theories regarding the thresholds for the parametric decay instability (PDI), the oscillating two-steam instability (OTSI), and the thermal parametric instability (TPI) using the European Incoherent Scatter (EISCAT) facility's ionospheric heater. In these processes, the pump wave can couple to various electrostatic waves in the F layer ionosphere, which can be observed using the EISCAT UHF radar (PDI and OTSI) or by HF radar (TPI). On 19 October 2012, the heater power was stepped from ˜0.5 MW to ˜100 MW effective radiated power in seven steps using a 1 min on, 1 min off cycle. We use an electric field model, taking into account D region absorption, to compare theory with our observations. In all three cases, we find good agreement. In addition, the growth of striations formed during the TPI causes anomalous absorption of the heater wave, which we observe as decreased UHF ion line and plasma line backscatter power. We show evidence that heating for a prolonged period of time reduces the UHF ion line intensity throughout the experiment.
High efficiency off-axis current drive by high frequency fast waves
Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.
2014-02-12
Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.
Ang, Kar M; Yeo, Leslie Y; Hung, Yew M; Tan, Ming K
2016-09-21
The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method. PMID:27502324
Alternative derivation of the response of interferometric gravitational wave detectors
Cornish, Neil J.
2009-10-15
It has recently been pointed out by Finn that the long-standing derivation of the response of an interferometric gravitational wave detector contains several errors. Here I point out that a contemporaneous derivation of the gravitational wave response for spacecraft doppler tracking and pulsar timing avoids these pitfalls, and when adapted to describe interferometers, recovers a simplified version of Finn's derivation. This simplified derivation may be useful for pedagogical purposes.
Inflationary gravitational waves and the evolution of the early universe
Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp
2014-01-01
We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.
Gravitational waves from global second order phase transitions
Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu
2012-11-01
Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.
Anisotropies in the gravitational-wave stochastic background
Ölmez, S.; Mandic, V.; Siemens, X. E-mail: mandic@physics.umn.edu
2012-07-01
We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency.
Nanomechanical sensing of gravitational wave-induced Casimir force perturbations
NASA Astrophysics Data System (ADS)
Pinto, Fabrizio
2014-06-01
It is shown by means of the optical medium analogy that the static Casimir force between two conducting plates is modulated by gravitational waves. The magnitude of the resulting force changes within the range of already existing small force metrology. It is suggested to enhance the effects on a Casimir force oscillator by mechanical parametric amplification driven by periodic illumination of interacting semiconducting boundaries. This represents a novel opportunity for the ground-based laboratory detection of gravitational waves on the nanoscale.
Gravitational Wave Science: Challenges for Numerical Relativistic Astrophysics
NASA Technical Reports Server (NTRS)
Cenrella, Joan
2005-01-01
Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.
Effect of Extra Dimensions on Gravitational Waves from Cosmic Strings
O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne
2010-08-20
We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.
The GEO 600 Gravitational Wave Detector: Pulsar Prospects
NASA Astrophysics Data System (ADS)
Woan, G.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Barr, B. W.; Berukoff, S.; Bose, S.; Cagnoli, G.; Casey, M. M.; Churches, D.; Colacino, C. N.; Crooks, D. R. M.; Cutler, C.; Danzmann, K.; Davies, R.; Dupuis, R. J.; Elliffe, E.; Fallnich, C.; Freise, A.; Goßler, S.; Grant, A.; Grote, H.; Heinzel, G.; Hepstonstall, A.; Heurs, M.; Hewitson, M.; Hough, J.; Jennrich, O.; Kawabe, K.; Kötter, K.; Leonhardt, V.; Lück, H.; Malec, M.; McNamara, P. W.; Mossavi, K.; Mohanty, S.; Mukherjee, S.; Nagano, S.; Newton, G. P.; Owen, B. J.; Papa, M. A.; Plissi, M. V.; Quetschke, V.; Robertson, D. I.; Robertson, N. A.; Rowan, S.; Rüdiger, A.; Sathyaprakash, B. S.; Schilling, R.; Schutz, B. F.; Senior, R.; Sintes, A. M.; Skeldon, K. D.; Sneddon, P.; Stief, F.; Strain, K. A.; Taylor, I.; Torrie, C. I.; Vecchio, A.; Ward, H.; Weiland, U.; Welling, H.; Williams, P.; Winkler, W.; Willke, B.; Zawischa, I.
The GEO600 laser-interferometric gravitational wave detector near Hannover, Germany, is one of six such interferometers now close to operation worldwide. The UK/German GEO collaboration uses advanced technologies, including monolithic silica suspensions and signal recycling, to deliver a sensitivity comparable with much larger detectors in their initial configurations. Here we review the design and performance of GEO600 and consider the prospects for a direct detection of continuous gravitational waves from spinning neutron stars.
Effect of extra dimensions on gravitational waves from cosmic strings.
O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne
2010-08-20
We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands. PMID:20868089
Numerical Relativity for Space-Based Gravitational Wave Astronomy
NASA Technical Reports Server (NTRS)
Baker, John G.
2011-01-01
In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.
A Crash Course in using Pulsars to Detect Gravitational Waves
NASA Astrophysics Data System (ADS)
Lommen, Andrea N.; NANOGrav
2014-01-01
A collection of well-timed millisecond pulsars makes a “pulsar timing array”, an “observatory” capable of detecting and characterizing small perturbations in spacetime called gravitational waves. In this 12-minute crash course you will learn how pulsars are timed, how you can use them to detect gravitational waves, who and what telescopes are engaged in this international enterprise, and how you can get involved.
Holographic conformal partial waves as gravitational open Wilson networks
NASA Astrophysics Data System (ADS)
Bhatta, Atanu; Raman, Prashanth; Suryanarayana, Nemani V.
2016-06-01
We propose a method to holographically compute the conformal partial waves in any decomposition of correlation functions of primary operators in conformal field theories using open Wilson network operators in the holographic gravitational dual. The Wilson operators are the gravitational ones where gravity is written as a gauge theory in the first order Hilbert-Palatini formalism. We apply this method to compute the global conformal blocks and partial waves in 2d CFTs reproducing many of the known results.
Exploring the cosmos with gravitational-waves
NASA Astrophysics Data System (ADS)
Taylor, Stephen R.; Gair, Jonathan R.; Mandel, Ilya; Lentati, Lindley; Ellis, Justin
2015-01-01
Gravitational-wave (GW) astronomy will open up a new frontier in astrophysical studies of neutron stars (NSs) and black-holes (BHs). Near-future detections will shed light on the coalescence rate of compact-object binaries, present an independent means of constraining cosmological parameters, and offer a host of other exciting opportunities. My doctoral research has followed two threads, linked by the common goal of mining rich information from near-future GW observations. In the first thread of my dissertation, I developed a technique to probe cosmological parameters with GWs in the absence of any electromagnetic counterparts. This exploits the potential for a network of GW interferometers to extract the distance of each system from the measured gravitational waveform. I use the observed intrinsic narrowness of the NS-NS mass-distribution, along with GW-measured redshifted-masses, to deduce candidate redshift distributions for each system, thereby allowing a probe of the distance-redshift relation. I find that an advanced LIGO-Virgo network can place independent, complementary constraints on the Hubble constant, whilst a third-generation network will be capable of probing the dark energy equation-of-state and the star-formation rate of the NS-NS progenitor population. In the second thread, I studied the potential for high-precision timing of millisecond pulsars to infer the perturbing influence of passing GWs. I developed a robust data-analysis pipeline to constrain the levels of anisotropy in a stochastic nanoHertz GW background using an ensemble of these pulsars. This technique cross-correlates pulse time-of-arrival deviations from many pulsars, leveraging the common influence of a stochastic background against noise sources, and mines the cross-correlation signature for information on the angular distribution of GW-power. Additionally, I developed several rapid inference techniques applicable to pulsar-timing searches for individual supermassive BH binary
NASA Astrophysics Data System (ADS)
Lu, Wangtao; Qian, Jianliang; Burridge, Robert
2016-05-01
In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that the Helmholtz equation can be viewed as an evolution equation in one of the spatial directions. With such applications in mind, starting from Babich's expansion, we develop a new high-order asymptotic method, which we dub the fast Huygens sweeping method, for solving point-source Helmholtz equations in inhomogeneous media in the high-frequency regime and in the presence of caustics. The first novelty of this method is that we develop a new Eulerian approach to compute the asymptotics, i.e. the traveltime function and amplitude coefficients that arise in Babich's expansion, yielding a locally valid solution, which is accurate close enough to the source. The second novelty is that we utilize the Huygens-Kirchhoff integral to integrate many locally valid wavefields to construct globally valid wavefields. This automatically treats caustics and yields uniformly accurate solutions both near the source and remote from it. The third novelty is that the butterfly algorithm is adapted to accelerate the Huygens-Kirchhoff summation, achieving nearly optimal complexity O (Nlog N), where N is the number of mesh points; the complexity prefactor depends on the desired accuracy and is independent of the frequency. To reduce the storage of the resulting tables of asymptotics in Babich's expansion, we use the multivariable Chebyshev series expansion to compress each table by encoding the information into a small number of coefficients. The new method enjoys the following desired features. First, it precomputes the asymptotics in Babich's expansion, such as traveltime and amplitudes. Second, it takes care of caustics automatically. Third, it can compute the point-source Helmholtz solution for many different sources at many frequencies simultaneously. Fourth, for a specified number of points per wavelength, it can construct the wavefield in nearly optimal complexity in terms
Potential damage to dc superconducting magnets due to high frequency electromagnetic waves
NASA Technical Reports Server (NTRS)
Gabriel, G. J.; Burkhart, J. A.
1977-01-01
Studies of a d.c. superconducting magnet coil indicate that the large coil behaves as a straight waveguide structure. Voltages between layers within the coil sometimes exceeded those recorded at terminals where protective resistors are located. Protection of magnet coils against these excessive voltages could be accomplished by impedance matching throughout the coil system. The wave phenomenon associated with superconducting magnetic coils may create an instability capable of converting the energy of a quiescent d.c. superconducting coil into dissipative a.c. energy, even in cases when dielectric breakdown does not take place.
A model for high frequency guided wave inspection of curved shells
NASA Astrophysics Data System (ADS)
Roberts, R.; Pardini, A.; Diaz, A.
2002-05-01
Modeling work is reported in support of the development of an ultrasonic measurement to detect stress corrosion cracking in the shell of a nuclear waste storage tank, where transducer access is restricted to distances of several feet from the suspected flaw location. The measurement uses a 3.5 MHz 70 degree shear wave that propagates from the transducer to flaw site through a series of multiple reflections between the outer and inner walls of the shell. Results are shown which explain experimentally observed complexities in the received signals.
Open questions in astrophysically triggered gravitational wave searches
NASA Astrophysics Data System (ADS)
Márka, S.; LIGO Scientific Collaboration; Virgo Collaboration
2010-08-01
Sources of gravitational waves are often expected to also be observable through several other messengers, such as gamma rays, X-rays, optical, radio, and/or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitudes close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. The paper discusses the status of transient multimessenger detection efforts as well as intriguing questions that might be resolved in the future by advanced and third generation gravitational wave detectors.
Experimental limits on gravitational waves in the MHz frequency range
NASA Astrophysics Data System (ADS)
Lanza, Robert Kingman, Jr.
This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and co-located 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4x10 -21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument's sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.
Wang, Ying; Rezk, Amgad R; Khara, Jasmeet Singh; Yeo, Leslie Y; Ee, Pui Lai Rachel
2016-05-01
Surface acoustic wave (SAW), a nanometer amplitude electroelastic wave generated and propagated on low-loss piezoelectric substrates (such as LiNbO3), is an extremely efficient solid-fluid energy transfer mechanism. The present study explores the use of SAW nebulization as a solution for effective pulmonary peptide delivery. In vitro deposition characteristics of the nebulized peptides were determined using a Next Generation Cascade Impactor. 70% of the peptide-laden aerosols generated were within a size distribution favorable for deep lung distribution. The integrity of the nebulized peptides was found to be retained, as shown via mass spectrometry. The anti-mycobacterial activity of the nebulized peptides was found to be uncompromised compared with their non-nebulized counterparts, as demonstrated by the minimum inhibition concentration and the colony forming inhibition activity. The peptide concentration and volume recoveries for the SAW nebulizer were significantly higher than 90% and found to be insensitive to variation in the peptide sequences. These results demonstrate the potential of the SAW nebulization platform as an effective delivery system of therapeutic peptides through the respiratory tract to the deep lung. PMID:27375820
Lepton asymmetry in the primordial gravitational wave spectrum
Ichiki, Kiyotomo; Yamaguchi, Masahide; Yokoyama, Jun'Ichi
2007-04-15
Effects of neutrino free streaming are evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic stress, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu
2015-04-20
We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less
Theory and simulation of a high-frequency magnetic drift wave
NASA Technical Reports Server (NTRS)
Huba, J. D.
1991-01-01
The equilibrium of a nonneutral plasma in a toroidal vessel with a toroidal magnetic field is analyzed. In the zero inertia limit it is heuristically shown from force balance considerations that there is an electrostatic hoop force and a force due to diamagnetism along the major radius. The problem of equilibrium is formulated in terms of solutions of a 2D partial difference equation. This equation is solved in the large-aspect-ratio limit and a general expression for the shift of the potential axis is obtained which shows that the shift is approximately epsilon and that it depends solely on the internal capacitance of the cloud. The simulation study is based upon the modified MHD equations and the nonlocal nature of the mode is investigated. Applications to sub-Alfvenic plasma expansions, electromagnetic waves in the earth's magnetosphere, and plasma switches are discussed.
Gravitational wave background from binary systems
Rosado, Pablo A.
2011-10-15
Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.
Gravitational waves from Q-ball formation
Chiba, Takeshi; Kamada, Kohei; Yamaguchi, Masahide
2010-04-15
We study the detectability of the gravitational waves (GWs) from the Q-ball formation associated with the Affleck-Dine (AD) mechanism, taking into account both the dilution effects due to Q-ball domination and to finite temperature. The AD mechanism predicts the formation of nontopological solitons, Q-balls, from which GWs are generated. Q-balls with large conserved charge Q can produce a large amount of GWs. On the other hand, the decay rate of such Q-balls is so small that they may dominate the energy density of the Universe, which implies that GWs are significantly diluted and that their frequencies are redshifted during the Q-ball dominated era. Thus, the detectability of the GWs associated with the formation of Q-balls is determined by these two competing effects. We find that there is a finite but small parameter region where such GWs may be detected by future detectors such as DECIGO or BBO, only in the case when the thermal logarithmic potential dominates the potential of the AD field. Otherwise GWs from Q-balls would not be detectable even by these futuristic detectors: {Omega}{sub GW}{sup 0}<10{sup -21}. Unfortunately, for such parameter region the present baryon asymmetry of the Universe can hardly be explained unless one fine-tunes A-terms in the potential. However the detection of such a GW background may give us an information about the early Universe, for example, it may suggest that the flat directions with B-L=0 are favored.
Fast gravitational wave radiometry using data folding
NASA Astrophysics Data System (ADS)
Ain, Anirban; Dalvi, Prathamesh; Mitra, Sanjit
2015-07-01
Gravitational waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground-based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole data set for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and nonstationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.
Newtonian noise and ambient ground motion for gravitational wave detectors
NASA Astrophysics Data System (ADS)
Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.
2012-06-01
Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.
Pulsar timing arrays: the promise of gravitational wave detection.
Lommen, Andrea N
2015-12-01
We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves. PMID:26564968
Cosmic shear from scalar-induced gravitational waves
Sarkar, Devdeep; Serra, Paolo; Cooray, Asantha; Ichiki, Kiyotomo; Baumann, Daniel
2008-05-15
Weak gravitational lensing by foreground density perturbations generates a gradient mode in the shear of background images. In contrast, cosmological tensor perturbations induce a nonzero curl mode associated with image rotations. In this note, we study the lensing signatures of both primordial gravitational waves from inflation and second-order gravitational waves generated from the observed spectrum of primordial density fluctuations. We derive the curl mode for galaxy lensing surveys at redshifts of 1-3 and for lensing of the cosmic microwave background at a redshift of 1100. We find that the curl mode angular power spectrum associated with secondary tensor modes for galaxy lensing surveys dominates over the corresponding signal generated by primary gravitational waves from inflation. However, both tensor contributions to the shear curl mode spectrum are below the projected noise levels of upcoming galaxy and cosmic microwave background lensing surveys and therefore are unlikely to be detectable.
Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen
2016-06-01
Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology. PMID:27087527
Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk
2015-01-01
Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135
NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS
Favata, Marc
2009-05-10
Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z {approx}< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.
Identifying electromagnetic transients related to gravitational-wave emission
NASA Astrophysics Data System (ADS)
Padilla, Cinthia; LIGO Scientific Collaboration; Virgo Collaboration
2011-04-01
Over the past several years the LIGO, Virgo and GEO600 gravitational-wave detectors have operated together as a worldwide network. The combined data from these detectors allows sky localization of astrophysical gravitational-wave sources. By running searches for transient gravitational waves shortly after the data is taken, sky locations can be communicated to electromagnetic observers early enough to allow measurement of any electromagnetic emission in the aftermath of a strong gravitational-wave signal. By measuring both the gravitational and the electromagnetic radiation we can learn a significant amount about their source. Over the past year, electromagnetic images of sky locations corresponding to low-threshold gravitational-wave triggers have been acquired. These are now being analyzed for optical transients. Challenges include unrelated disturbances such as asteroids, satellites, clouds and other objects in space. In this poster we describe the procedure for identifying EM transients with a developed pipeline designed to compare images and sky catalogs to distinguish stars in nearby galaxies and reject background events.
NASA Astrophysics Data System (ADS)
Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.
2012-05-01
In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.
High frequency stability oscillator for surface acoustic wave-based gas sensor
NASA Astrophysics Data System (ADS)
Wang, Wen; He, Shitang; Li, Shunzhou; Pan, Yong
2006-12-01
This paper presents a 158 MHz surface acoustic wave (SAW) oscillator used for a gas sensor. As the oscillator element, a SAW delay line on ST-X quartz substrate with low insertion loss (<8 dB) and single mode selection capability was developed. Low insertion loss was achieved by an electrode width control single phase unidirectional transducer (EWC/SPUDT) configuration. Single mode selection was simply accomplished by a comb transducer which is a means of combining the frequency selectivity of two interdigital transducers (IDTs). Coupling of modes (COM) simulation was performed to predict device performance prior to fabrication. The measured frequency response S12 showed a good agreement with simulated results. The effect of the oscillator circuit system temperature shift upon frequency stability was observed in detail. The experimental results showed that the baseline noise was typically up to ~0.7 × 10-7 in a laboratory environment with temperature control. The oscillator was successfully applied to a gas sensor coated self-assembled composite monolayer as a sensor material for dimethyl-methyl-phosphonate (DMMP). The sensitivity for low DMMP concentration detection was evaluated as ~25 Hz mg-1 m-3, and the threshold detection limit was up to 0.5 mg m-3.
Matouq, Mohammed Abu-Dayeh; Al-Anber, Zaid A
2007-03-01
This article aims at applying the ultrasound technique in the field of clean technology to protect environment. The principle of ultrasound was conducted here to remove and recover ammonia from industrial wastewater. Three different concentrations of ammonia namely 5%, 15% and 25% (vol.%) were used to study the efficiency of removing ammonia from water. These concentrations are exactly similar to what may be found in wastewater resulting from strippers at petroleum refinery. High ultrasound frequency device with 2.4 and 1.7 MHz was conducted to study the effect of waves on the removal of ammonia. It was found that the ultrasound has the ability to remove ammonia with 5% concentration to meet the local standard of treated wastewater within less than 2 h for 0.080 L solution. It was also found that as the concentration of the ammonia increases the removing of ammonia within 2 h decreases, still the concentration of the ammonia meets the standard of the treated wastewater. The ability of the ultrasound to remove the ammonia failed to produce any mist when the height of the liquid solution increased, namely when the height reached (0.0337 m). This is equivalent to liquid volume of 0.150 L. It means that the device capacity to remove ammonia has certain limitations based on liquid heights. The best condition for ammonia removal was obtained at 5% concentration and 0.080 L liquid volume (equivalent to 0.0165 m). PMID:17074524
Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.
2012-05-17
In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.
NASA Astrophysics Data System (ADS)
Miller, Andrew L.; Wickramasinghe, Thulsi
2016-05-01
We focus on understanding the beaming of gravitational radiation from gamma ray bursts (GRBs) by approximating GRBs as linearly accelerated point masses. For accelerated point masses, it is known that gravitational radiation is beamed isotropicly at high speeds, and beamed along the polar axis at low speeds. Aside from this knowledge, there has been very little work done on beaming of gravitational radiation from GRBs, and the impact beaming could have on gravitational wave (GW) detection. We determine the following: (1) the observation angle at which the most power is emitted as a function of speed, (2) the maximum ratio of power radiated away as a function of speed, and (3) the angular distribution of power ratios at relativistic and non-relativistic speeds. Additionally the dependence of the beaming of GW radiation on speed is essentially the opposite of the beaming of electromagnetic (EM) radiation from GRBs. So we investigate why this is the case by calculating the angular EM radiation distribution from a linear electric quadrupole, and compare this distribution to the angular gravitational radiation distribution from a GRB.
Newtorites in bar detectors of gravitational wave
NASA Astrophysics Data System (ADS)
Ronga, F.;
2016-05-01
The detection of particles with only gravitational interactions (Newtorites) in gravitational bar detectors was studied in 1984 by Bernard, De Rujula and Lautrup. The negative results of dark matter searches suggest to look to exotic possibilities like Newtorites. The limits obtained with the Nautilus bar detector will be presented and the possible improvements will be discussed. Since the gravitational coupling is very weak, the possible limits are very far from what is needed for dark matter, but for large masses are the best limits obtained on the Earth. An update of limits for MACRO particles will be given.
Gravitational wave extraction in simulations of rotating stellar core collapse
Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.
2011-03-15
We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar {Psi}{sub 4}, (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by {approx}1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by {approx}5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse
Squeezed states in the theory of primordial gravitational waves
NASA Technical Reports Server (NTRS)
Grishchuk, Leonid P.
1992-01-01
It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.
CMB statistical anisotropy from noncommutative gravitational waves
Shiraishi, Maresuke; Ricciardone, Angelo; Mota, David F.; Arroja, Frederico E-mail: d.f.mota@astro.uio.no E-mail: arroja@pd.infn.it
2014-07-01
Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.
Imprints of relic gravitational waves in cosmic microwave background radiation
NASA Astrophysics Data System (ADS)
Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.
2006-10-01
A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary “tensor modes”. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions CℓXX' for X, X'=T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower ℓ’s must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at ℓ≈30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations.
Simon, Joseph; Polin, Abigail; Lommen, Andrea; Christy, B; Stappers, Ben; Finn, Lee Samuel; Jenet, F. A.
2014-03-20
The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be detectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of Galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolvable above a GW background, assuming that every galaxy has the same probability of containing an SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.
Gravitational waves in viable f(R) models
Yang, Louis; Lee, Chung-Chi; Geng, Chao-Qiang E-mail: geng@phys.nthu.edu.tw
2011-08-01
We study gravitational waves in viable f(R) theories under a non-zero background curvature. In general, an f(R) theory contains an extra scalar degree of freedom corresponding to a massive scalar mode of gravitational wave. For viable f(R) models, since there always exits a de-Sitter point where the background curvature in vacuum is non-zero, the mass squared of the scalar mode of gravitational wave is about the de-Sitter point curvature R{sub d} ∼ 10{sup −66}eV{sup 2}. We illustrate our results in two types of viable f(R) models: the exponential gravity and Starobinsky models. In both cases, the mass will be in the order of 10{sup −33}eV when it propagates in vacuum. However, in the presence of matter density in galaxy, the scalar mode can be heavy. Explicitly, in the exponential gravity model, the mass becomes almost infinity, implying the disappearance of the scalar mode of gravitational wave, while the Starobinsky model gives the lowest mass around 10{sup −24}eV, corresponding to the lowest frequency of 10{sup −9} Hz, which may be detected by the current and future gravitational wave probes, such as LISA and ASTROD-GW.
Observation of Gravitational Waves from a Binary Black Hole Merger
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.
2016-02-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Observation of Gravitational Waves from a Binary Black Hole Merger.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-02-12
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. PMID:26918975
Gravitational waves from a very strong electroweak phase transition
NASA Astrophysics Data System (ADS)
Leitao, Leonardo; Mégevand, Ariel
2016-05-01
We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.
Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen
2016-02-01
The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting. PMID:27382746
NASA Astrophysics Data System (ADS)
Isobe, H.
2007-12-01
The energy source of coronal heating and solar wind acceleration is the interaction of magnetic field and thermal convection in the photosphere. Magnetoconvection has complicated bifurcation structure, and the mode, spectra and power of the waves generated in the photosphere depend on the nature of magnetoconvection in the photosphere. In order to study the relation between magnetoconvection and coronal heating/solar wind acceleration, we performed three-dimensional magnetohydrodynamic simulation of a domain that includes from upper convection zone to the corona. We first ran the simulation without magnetic field until convection developed to quasi-steady state, and then imposed a vertical and uniform magnetic field. We found that, in addition to the well-known fact that vertical magnetic field is swept into the downflow region, small scale horizontal fields as strong as 800G intermittently emerge in the photosphere. Even though the initial magnetic field is vertical and uniform, magnetic field in the convection zone become turbulent, and occasionally a bundle of strong magnetic flux is driven by the upward convection flow and emerges in the photosphere. Such horizontal fields undergo magnetic reconnection with pre-existing magnetic field in the chromosphere (so called "canopy" field), and then emit high-frequency (>0.05mHz) waves into the corona. We discuss the possible role of these processes in heating, acceleration and turbulence of the corona and the solar wind.
The generation of gravitational waves. III - Derivation of bremsstrahlung formulae
NASA Technical Reports Server (NTRS)
Kovacs, S. J.; Thorne, K. S.
1977-01-01
Formulas are derived describing the gravitational waves produced by a stellar encounter of the following type. The two stars have stationary (i.e., nonpulsating) nearly Newtonian structures with arbitrary relative masses; they fly past each other with an arbitrary relative velocity; and their impact parameter is sufficiently large that they gravitationally deflect each other through an angle that is small as compared with 90 deg.
Adding light to the gravitational waves on the null cone
NASA Astrophysics Data System (ADS)
Babiuc, Maria
2014-03-01
Recent interesting astrophysical observations point towards a multi-messenger, multi-wavelength approach to understanding strong gravitational sources, like compact stars or black hole collisions, supernovae explosions, or even the big bang. Gravitational radiation is properly defined only at future null infinity, but usually is estimated at a finite radius, and then extrapolated. Our group developed a characteristic waveform extraction tool, implemented in an open source code, which computes the gravitational waves infinitely far from their source, in terms of compactified null cones, by numerically solving Einstein equation in Bondi space-time coordinates. The goal is extend the capabilities of the code, by solving Einstein-Maxwell's equations together with the Maxwell's equations, to obtain the energy radiated asymptotically at infinity, both in gravitational and electromagnetic waves. The purpose is to analytically derive and numerically calculate both the gravitational waves and the electromagnetic counterparts at infinity, in this characteristic framework. The method is to treat the source of gravitational and electromagnetic radiation as a black box, and therefore the code will be very flexible, with potentially large applicability.
Studying inflation with future space-based gravitational wave detectors
Jinno, Ryusuke; Moroi, Takeo; Takahashi, Tomo E-mail: moroi@phys.s.u-tokyo.ac.jp
2014-12-01
Motivated by recent progress in our understanding of the B-mode polarization of cosmic microwave background (CMB), which provides important information about the inflationary gravitational waves (IGWs), we study the possibility to acquire information about the early universe using future space-based gravitational wave (GW) detectors. We perform a detailed statistical analysis to estimate how well we can determine the reheating temperature after inflation as well as the amplitude, the tensor spectral index, and the running of the inflationary gravitational waves. We discuss how the accuracies depend on noise parameters of the detector and the minimum frequency available in the analysis. Implication of such a study on the test of inflation models is also discussed.
GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS
Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu
2012-06-10
The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.
Stochastic gravitational wave background from cold dark matter halos
Carbone, Carmelita; Baccigalupi, Carlo; Matarrese, Sabino
2006-03-15
The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM) halos possess a nonspherical density profile, implying that cosmic structures can be potential sources of gravitational waves via power transfer from scalar perturbations to tensor metric modes in the nonlinear regime. By means of a previously developed mathematical formalism and a triaxial collapse model, we numerically estimate the stochastic gravitational-wave background generated by CDM halos during the fully nonlinear stage of their evolution. Our results suggest that the energy density associated with this background is comparable to that produced by primordial tensor modes at frequencies {nu}{approx_equal}10{sup -18}-10{sup -17} Hz if the energy scale of inflation is V{sup 1/4}{approx_equal}1-2x10{sup 15} GeV, and that these gravitational waves could give rise to several cosmological effects, including secondary CMB anisotropy and polarization.
Detectability of Gravitational Waves from High-Redshift Binaries
NASA Astrophysics Data System (ADS)
Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto
2016-03-01
Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.
Detectability of Gravitational Waves from High-Redshift Binaries.
Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto
2016-03-11
Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms. PMID:27015470
Massive gravitons as dark matter and gravitational waves
NASA Astrophysics Data System (ADS)
Aoki, Katsuki; Mukohyama, Shinji
2016-07-01
We consider the possibility that the massive graviton is a viable candidate for dark matter in the context of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e., the dark matter particles, is inevitably accompanied by generation of massless gravitons, i.e., the gravitational waves. Therefore, in this scenario some information about dark matter in our Universe is encoded in gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after inflation, then the massive graviton with the mass of ˜0.01 GeV is a candidate for dark matter.
Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2016-03-01
For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.
First upper limits from LIGO on gravitational wave bursts
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, D.; Barker-Patton, C.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Bland-Weaver, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Brozek, S.; Bullington, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cantley, C. A.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D.; Creighton, T. D.; Crooks, D. R.; Csatorday, P.; Cusack, B. J.; Cutler, C.; D'Ambrosio, E.; Danzmann, K.; Davies, R.; Daw, E.; Debra, D.; Delker, T.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Ding, H.; Drever, R. W.; Dupuis, R. J.; Ebeling, C.; Edlund, J.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Fine, M.; Finn, L. S.; Flanagan, E.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V.; Fyffe, M.; Ganezer, K. S.; Giaime, J. A.; Gillespie, A.; Goda, K.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanson, J.; Hardham, C.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ingley, R.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, W. W.; Johnston, W.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Kloevekorn, P.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNamara, P.; Mendell, G.; Meshkov, S.; Messenger, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyoki, S.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mours, B.; Mueller, G.; Mukherjee, S.; Myers, J.; Nagano, S.; Nash, T.; Naundorf, H.; Nayak, R.; Newton, G.; Nocera, F.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Papa, M. A.; Parameswariah, C.; Parameswariah, V.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Pratt, M.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robison, L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Salzman, I.; Sanders, G. H.; Sannibale, V.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schofield, R.; Schrempel, M.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seel, S.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Skeldon, K.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P.; Spero, R.; Stapfer, G.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sutton, P. J.; Sylvestre, J.; Takamori, A.; Tanner, D. B.; Tariq, H.; Taylor, I.; Taylor, R.; Thorne, K. S.; Tibbits, M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traeger, S.; Traylor, G.; Tyler, W.; Ugolini, D.; Vallisneri, M.; van Putten, M.; Vass, S.; Vecchio, A.; Vorvick, C.; Vyachanin, S. P.; Wallace, L.; Walther, H.; Ward, H.; Ware, B.; Watts, K.; Webber, D.; Weidner, A.; Weiland, U.; Weinstein, A.; Weiss, R.; Welling, H.; Wen, L.; Wen, S.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Willems, P. A.; Williams, P. R.; Williams, R.; Willke, B.; Wilson, A.; Winjum, B. J.; Winkler, W.
2004-05-01
We report on a search for gravitational wave bursts using data from the first science run of the Laser Interferometer Gravitational Wave Observatory (LIGO) detectors. Our search focuses on bursts with durations ranging from 4 to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at a 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine Gaussians) as a function of their root-sum-square strain hrss; typical sensitivities lie in the range hrss˜10-19 10-17 strain/√(Hz), depending on the waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.
Gravitational wave science in the high school classroom
NASA Astrophysics Data System (ADS)
Farr, Benjamin; Schelbert, GionMatthias; Trouille, Laura
2012-10-01
This article describes a set of curriculum modifications designed to integrate gravitational wave science into a high school physics or astronomy curriculum. Gravitational wave scientists are on the verge of being able to detect extreme cosmic events, like the merger of two black holes, happening hundreds of millions of light years away. Their work has the potential to propel astronomy into a new era by providing an entirely new means of observing astronomical phenomena. Gravitational wave science encompasses astrophysics, physics, engineering, and quantum optics. As a result, this curriculum exposes students to the interdisciplinary nature of science. It also provides an authentic context for students to learn about astrophysical sources, data analysis techniques, cutting-edge detector technology, and error analysis.
LIGO - The Laser Interferometer Gravitational-Wave Observatory
NASA Technical Reports Server (NTRS)
Abramovici, Alex; Althouse, William E.; Drever, Ronald W. P.; Gursel, Yekta; Kawamura, Seiji; Raab, Frederick J.; Shoemaker, David; Sievers, Lisa; Spero, Robert E.; Thorne, Kip S.
1992-01-01
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics for gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.
Using the HHT to Search for Gravitational Waves
NASA Technical Reports Server (NTRS)
Camp, Jordan
2008-01-01
Gravitational waves are a consequence of Einstein's theory of general relativity applied to the motion of very dense and massive objects such as black holes and neutron stars. Their detection will reveal a wealth of information about these mysterious objects that cannot be obtained with electromagnetic probes. Two projects are underway to attempt the detection of gravitational waves: NASA's Laser Interferometer Space Antenna (LISA), a space based mission being designed to search for waves from supermassive black holes at the centers of galaxies, and the NSF's Laser Interferometer Gravitational Wave Observatory (LIGO), a ground based facility that is now searching for waves from supernovae. pulsars, and the coalescence of black hole and neutron star systems. Because general relativity is an inherently non-linear theory, many of the predicted source waveforms show strong frequency modulation. In addition, the LIGO and LISA detectors are highly sensitive devices that produce a variety of non-linear transient noise features. Thus the unique capabilities of the HHT. the extraction of intrawave modulation and the characterization of non-linear and non-stationary signals, have a natural application to both signal detection and experimental characterization of the detectors. In this talk I will give an overview of the status of the field. including some of the expected sources of gravitational waves, and I will also describe the LISA and LIGO detectors. Then I will describe some applications of the HHT to waveform detection and detector noise characterization.
Discriminating between a stochastic gravitational wave background and instrument noise
Adams, Matthew R.; Cornish, Neil J.
2010-07-15
The detection of a stochastic background of gravitational waves could significantly impact our understanding of the physical processes that shaped the early Universe. The challenge lies in separating the cosmological signal from other stochastic processes such as instrument noise and astrophysical foregrounds. One approach is to build two or more detectors and cross correlate their output, thereby enhancing the common gravitational wave signal relative to the uncorrelated instrument noise. When only one detector is available, as will likely be the case with the Laser Interferometer Space Antenna (LISA), alternative analysis techniques must be developed. Here we show that models of the noise and signal transfer functions can be used to tease apart the gravitational and instrument noise contributions. We discuss the role of gravitational wave insensitive ''null channels'' formed from particular combinations of the time delay interferometry, and derive a new combination that maintains this insensitivity for unequal arm-length detectors. We show that, in the absence of astrophysical foregrounds, LISA could detect signals with energy densities as low as {Omega}{sub gw}=6x10{sup -13} with just one month of data. We describe an end-to-end Bayesian analysis pipeline that is able to search for, characterize and assign confidence levels for the detection of a stochastic gravitational wave background, and demonstrate the effectiveness of this approach using simulated data from the third round of Mock LISA Data Challenges.
The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
MacDonald, Ilana R.
The existence of Gravitational Waves from binary black holes is one of the most interesting predictions of General Relativity. These ripples in space-time should be visible to ground-based gravitational wave detectors worldwide in the next few years. One such detector, the Laser Interferometer Gravitational-wave Observatory (LIGO) is in the process of being upgraded to its Advanced sensitivity which should make gravitational wave detections routine. Even so, the signals that LIGO will detect will be faint compared to the detector noise, and so accurate waveform templates are crucial. In this thesis, we present a detailed analysis of the accuracy of hybrid gravitational waveforms. Hybrids are created by stitching a long post-Newtonian inspiral to the late inspiral, merger, and ringdown produced by numerical relativity simulations. We begin our investigation with a study of the systematic errors in the numerical waveform, and errors due to hybridization and choice of detector noise. For current NR waveforms, the largest source of error comes from the unknown high-order terms in the post-Newtonian waveform, which we first explore for equal-mass, non-spinning binaries, and also for unequal-mass, non-spinning binaries. We then consider the potential reduction in hybrid errors if these higher-order terms were known. Finally, we investigate the possibility of using hybrid waveforms as a detection template bank and integrating NR+PN hybrids into the LIGO detection pipeline.
BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches
NASA Astrophysics Data System (ADS)
Shapiro Key, Joey; Cornish, Neil; Littenberg, Tyson; Kanner, Jonah
2015-01-01
A central challenge in gravitational wave astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. Searches for "un-modeled" transient signals are strongly impacted by the methods used to characterize the noise. The BayesWave algorithm uses a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet basis. This method can be applied to several challenges in gravitational wave astronomy. It can be used to distinguish astrophysical signals from instrumental artifacts; reconstruct the spectrum, waveform, and source location of observed signals; and quickly characterize noise contamination in the data. Currently, the algorithm is being applied to detector characterization studies as well as a wide range of gravitational wave source studies, including generic gravitational wave bursts, supernovae, and compact object mergers.
Detection of massive Gravitational Waves using spherical antenna
NASA Astrophysics Data System (ADS)
Prasia, P.; Kuriakose, V. C.
2014-03-01
The generation of massive Gravitational Waves (GW) from metric f(R) theory of gravity is studied and the sensitivity of a spherical antenna detector towards such a wave is looked into. The energy sensitivity is maximum for the monopole mode of the sphere. Of the five quadrupole modes of a sphere, only three are triggered by a massive wave. Also, the sensitivity of a spherical antenna with mechanical resonators attached to it is studied. The Truncated Icosahedral Gravitational wave Antenna (TIGA), originally proposed for detecting the effect of massless GW on the quadrupole modes of a sphere, has been modified in this paper to get a Modified TIGA, in order to detect the sensitivity of monopole modes towards a massive wave.
BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments
NASA Astrophysics Data System (ADS)
Poisson, Eric
2008-10-01
A superficial introduction to gravitational waves can be found in most textbooks on general relativity, but typically, the treatment hardly does justice to a field that has grown tremendously, both in its theoretical and experimental aspects, in the course of the last twenty years. Other than the technical literature, few other sources have been available to the interested reader; exceptions include edited volumes such as [1] and [2], Weber's little book [3] which happily is still in print, and Peter Saulson's text [4] which appears, unfortunately, to be out of print. In addition to these technical references, the story of gravitational waves was famously told by a sociologist of scientific knowledge [5] (focusing mostly on the experimental aspects) and a historian of science [6] (focusing mostly on the theoretical aspects). The book Gravitational Waves, Volume 1, by Michele Maggiore, is a welcome point of departure. This is, as far as I know, the first comprehensive textbook on gravitational waves. It describes the theoretical foundations of the subject, the known (and anticipated) sources, and the principles of detection by resonant masses and laser interferometers. This book is a major accomplishment, and with the promised volume 2 on astrophysical and cosmological aspects of gravitational waves, the community of all scientists interested in this topic will be well served. Part I of the book is devoted to the theoretical aspects of gravitational waves. In chapter 1 the waves are introduced in usual relativist's fashion, in the context of an approximation to general relativity in which they are treated as a small perturbation of the Minkowski metric of flat spacetime. This is an adequate foundation to study how the waves propagate, and how they interact with freely moving masses making up a detector. The waves are presented in the usual traceless-transverse gauge, but the detection aspects are also worked out in the detector's proper rest frame; this dual
GRB as a counterpart for Gravitational Wave detection in LCGT
NASA Astrophysics Data System (ADS)
Kanda, Nobuyuki
2010-10-01
Short Gamma-ray burst (GRB) progenitors are considered as merger of compact star binaries which consist of neutron stars or blackholes. These compact star binaries will radiate a strong gravitational wave in their coalescence, and gravitational wave detectors aim to detect them. We studied the chance probability of coincidence between GRB and GW detection in LCGT detector. Due to omni-directional acceptance of GW detectors, about 75% of GRB events which closer than cosmological redshift z<0.1 are expected to confirm by GW detection.
Dynamics and gravitational wave signature of collapsar formation.
Ott, C D; Reisswig, C; Schnetter, E; O'Connor, E; Sperhake, U; Löffler, F; Diener, P; Abdikamalov, E; Hawke, I; Burrows, A
2011-04-22
We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation. PMID:21599351
Parameter estimation on gravitational waves from multiple coalescing binaries
Mandel, Ilya
2010-04-15
Future ground-based and space-borne interferometric gravitational-wave detectors may capture between tens and thousands of binary coalescence events per year. There is a significant and growing body of work on the estimation of astrophysically relevant parameters, such as masses and spins, from the gravitational-wave signature of a single event. This paper introduces a robust Bayesian framework for combining the parameter estimates for multiple events into a parameter distribution of the underlying event population. The framework can be readily deployed as a rapid post-processing tool.
The generation of gravitational waves. II - The postlinear formalism revisited
NASA Technical Reports Server (NTRS)
Crowley, R. J.; Thorne, K. S.
1977-01-01
Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not.
Stabilized High Power Laser for Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Willke, B.; Danzmann, K.; Fallnich, C.; Frede, M.; Heurs, M.; King, P.; Kracht, D.; Kwee, P.; Savage, R.; Seifert, F.; Wilhelm, R.
2006-03-01
Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN <= 4×10-9/surdHz) will be presented.
Space-Based Gravitational-wave Mission Concept Studies
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.
2012-01-01
The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).
Gravitational waves from periodic three-body systems.
Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana
2014-09-01
Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values. PMID:25238346
Education and public outreach on gravitational-wave astronomy
NASA Astrophysics Data System (ADS)
Hendry, M.; Bradaschia, C.; Audley, H.; Barke, S.; Blair, D. G.; Christensen, N.; Danzmann, K.; Freise, A.; Gerberding, O.; Knispel, B.; Lieser, M.; Mandel, I.; Moore, T.; Stuver, A.; Whiting, B.
2014-08-01
In this paper we summarise the presentations given during the "Education and Public Outreach on Gravitational-Wave Astronomy" parallel session at the GR-20/Amaldi conference, held in Warsaw, July 2013. The talks presented demonstrate the wide range of education and public outreach activities being undertaken in the field of gravitational-wave astronomy—across science festivals, science education centers, junior schools and high schools, colleges and universities, via both face-to-face delivery and (increasingly) the internet and social media.
The status of laser interferometer gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Raab, F. J.; Ligo Scientific Collaboration
2006-05-01
There has been a rapid advance in the sensitivity of broadband searches for gravitational waves, using an international network of kilometer-scale laser interferometers. The LIGO detectors in North America, the GEO600 detector in Germany and the TAMA300 detector in Japan have conducted searches for gravitational waves covering a frequency range from below 100 Hz up to many kHz. These detectors and the VIRGO detector in Italy are in a mature state of commissioning and technology development for a generation of more advanced detectors is ongoing.
Preparing for LISA in the Gravitational Wave Era
NASA Astrophysics Data System (ADS)
Larson, Shane
2016-03-01
Before the end of the decade, both LIGO and Pulsar Timing Arrays are expected to make the first detections of gravitational waves, and in all likelihood will have started the compilation of the first gravitational wave catalogs. Both LIGO and Pulsar Timing Arrays observe source populations that radiate in the LISA band at other points in their evolutionary history. In this talk, we'll discuss how early detections of supermassive black hole binaries (by PTAs) and ultra-compact binary mergers (by LIGO) will be important players in understanding the scope of LISA science.
Data analysis for space-based gravitational wave detectors
NASA Astrophysics Data System (ADS)
Crowder, Jefferson Osborn
With the launch of the Laser Interferometer Space Antenna (LISA) expected for the next decade, the nascent field of gravitational wave astronomy will be taking a giant leap forward. The data that will be gathered from space-borne gravitational wave detectors such as LISA will provide an expansive look through a new window on the Universe. This dissertation is presented to help open that window by exploring some of the techniques and methods that will be needed to understand the data from these detectors. The first original work presented here investigates the resolution of LISA and follow-on space-based gravitational wave missions. This work presents the methods of measuring the precision of these detectors and gives results for their resolving power for a large class of expected gravitational wave sources. The second original investigation involves the effect that multiple gravitational wave sources will have on the resolution of LISA. Previous results concerning detector resolution were limited to isolated sources of gravitational waves. As LISA is an all-sky detector, it is necessary to understand the role played by concurrent detection of numerous sources. This work derives an extension of the Fisher Information Matrix approach for determining parameter resolution, and applies it to multiple sources for LISA. The next original work is an exploration of the method of genetic algorithms on the problem of extracting the binary parameters of gravitational wave sources from the LISA data stream. These are global algorithms providing a means to cover the entire search space of parameter values. This work describes the basics of and provides the results for such genetic algorithm-based searches, with a focus on improving algorithm efficiency. The last original work included is a study of Markov Chain Monte Carlo (MCMC) methods applied to parameter extraction of gravitational wave sources in the LISA data stream. This work shows how an MCMC approach provides a global
Self-Interacting Gas in a Gravitational Wave Field
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Zimdahl, Winfried
2003-04-01
We investigate a relativistic self-interacting gas in the field of an external pp gravitational wave. Based on symmetry considerations we ask for those forces which are able to compensate the imprint of the gravitational wave on the macroscopic 4-acceleration of the gaseous fluid. We establish an exactly solvable toy model according to which the stationary states which characterize such a situation have negative entropy production and are accompanied by instabilities of the microscopic particle motion. These features are similar to those which one encounters in phenomena of self-organization in many-particle systems.
Revisiting the envelope approximation: Gravitational waves from bubble collisions
NASA Astrophysics Data System (ADS)
Weir, David J.
2016-06-01
We study the envelope approximation and its applicability to first-order phase transitions in the early Universe. We demonstrate that the power laws seen in previous studies exist independently of the nucleation rate. We also compare the envelope approximation prediction to results from large-scale phase transition simulations. For phase transitions where the contribution to gravitational waves from scalar fields dominates over that from the coupled plasma of light particles, the envelope approximation is in agreement, giving a power spectrum of the same form and order of magnitude. In all other cases the form and amplitude of the gravitational wave power spectrum is markedly different and new techniques are required.
Hunting for MHz gravitational waves with the Fermilab Holometer
NASA Astrophysics Data System (ADS)
Kamai, Brittany; The Holometer Collaboration Collaboration
2016-03-01
The highest frequency end of the gravitational wave spectrum remains poorly constrained. Cosmic strings and primordial black holes are potential gravitational waves candidates that could radiate at MHz frequencies. The existence of nearby sources can be tested using the Fermilab Holometer, two nested 40 meter Michelson interferometers. This instrument can achieve strain sensitivity better than 10- 20 / rt .Hz within the 1-10 MHz frequency band. The Holometer is fully operational and has taken long observational campaigns acquiring 100s of hours of science quality data. I will present results of a search for narrow-lined sources and constraints on the stochastic background in the MHz band.
Gravitational wave bursts from cosmic superstrings with Y-junctions
Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.
2009-12-15
Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.
Gravitational waves from first-order cosmological phase transitions
NASA Technical Reports Server (NTRS)
Kosowsky, Arthur; Turner, Michael S.; Watkins, Richard
1992-01-01
A first-order cosmological phase transition that proceeds through the nucleation and collision of true-vacuum bubbles is a potent source of gravitational radiation. Possibilities for such include first-order inflation, grand-unified-theory-symmetry breaking, and electroweak-symmetry breaking. We have calculated gravity-wave production from the collision of two scalar-field vacuum bubbles, and, using an approximation based upon these results, from the collision of 20 to 30 vacuum bubbles. We present estimates of the relic background of gravitational waves produced by a first-order phase transition.
What can we learn about cosmic structure from gravitational waves?
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2003-01-01
Observations of low frequency gravitational waves by the space-based LISA mission will open a new observational window on the early universe and the emergence of structure. LISA will observe the dynamical coalescence of massive black hole binaries at high redshifts, giving an unprecedented look at the merger history of galaxies and the reionization epoch. LISA will also observe gravitational waves from the collapse of supermassive stars to form black holes, and will map the spacetime in the central regions of galaxy cusps at high precision.
Stochastic template placement algorithm for gravitational wave data analysis
Harry, I. W.; Sathyaprakash, B. S.; Allen, B.
2009-11-15
This paper presents an algorithm for constructing matched-filter template banks in an arbitrary parameter space. The method places templates at random, then removes those which are 'too close' together. The properties and optimality of stochastic template banks generated in this manner are investigated for some simple models. The effectiveness of these template banks for gravitational wave searches for binary inspiral waveforms is also examined. The properties of a stochastic template bank are then compared to the deterministically placed template banks that are currently used in gravitational wave data analysis.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J. J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martini, G.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2015-01-01
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω (f )<7.7 ×1 0-4(f /900 Hz )3 , which improves on the previous upper limit by a factor of ˜180 . In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Camp, Jordan B; Gehrels, N.; Kanner, J. B.
2014-01-01
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a nonco- located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460 - 1000Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f) < 7.7 × 10(exp -4)(f/900Hz)(sup 3), which improves on the previous upper limit by a factor of approx. 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
Binary Black Holes, Numerical Relativity, and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA
Cosmic Messengers: Binary Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.
Primordial magnetic seed field amplification by gravitational waves
NASA Astrophysics Data System (ADS)
Betschart, Gerold; Zunckel, Caroline; Dunsby, Peter K. S.; Marklund, Mattias
2005-12-01
Using second-order gauge-invariant perturbation theory, a self-consistent framework describing the nonlinear coupling between gravitational waves and a large-scale homogeneous magnetic field is presented. It is shown how this coupling may be used to amplify seed magnetic fields to strengths needed to support the galactic dynamo. In situations where the gravitational wave background is described by an “almost“ Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology we find that the magnitude of the original magnetic field is amplified by an amount proportional to the magnitude of the gravitational wave induced shear anisotropy and the square of the field’s initial comoving scale. We apply this mechanism to the case where the seed field and gravitational wave background are produced during inflation and find that the magnitude of the gravitational boost depends significantly on the manner in which the estimate of the shear anisotropy at the end of inflation is calculated. Assuming a seed field of 10-34G spanning a comoving scale of about 10 kpc today, the shear anisotropy at the end of inflation must be at least as large as 10-40 in order to obtain a generated magnetic field of the same order of magnitude as the original seed. Moreover, contrasting the weak-field approximation to our gauge-invariant approach, we find that while both methods agree in the limit of high conductivity, their corresponding solutions are otherwise only compatible in the limit of infinitely long-wavelength gravitational waves.
Wunenburger, R; Evesque, P; Chabot, C; Garrabos, Y; Fauve, S; Beysens, D
1999-05-01
We used the liquid-vapor equilibrium of CO2 near its critical point (T(C)-T=1 to 150 mK) in order to study the stability of an interface between a gas and a liquid having close densities rho(L) approximately rho(V) when submitted to high frequency f (3-57.5 Hz) horizontal vibrations (of amplitude a from 0.1 to 2.5 mm). Above a given velocity threshold (2piaf )(0) we observed a "frozen wave," corresponding to an interface profile of sinelike shape which is stationary in the reference frame of the vibrated sample cell. By varying the vibration parameters, the surface tension, and the density difference between the two phases via the temperature, it was found that the wavelength and the amplitude of the stationary profile are both increasing functions of the frequency and of the amplitude of the vibration and that they are proportional to the capillary length. Our measurements are consistent with a model of inviscid and incompressible flow averaging the effect of the vibration over a period and leading to a Kelvin-Helmholtz-like instability mechanism due to the relative motion of the two fluids. PMID:11969523
Gravitational-Wave Cosmology across 29 Decades in Frequency
NASA Astrophysics Data System (ADS)
Lasky, Paul D.; Mingarelli, Chiara M. F.; Smith, Tristan L.; Giblin, John T.; Thrane, Eric; Reardon, Daniel J.; Caldwell, Robert; Bailes, Matthew; Bhat, N. D. Ramesh; Burke-Spolaor, Sarah; Dai, Shi; Dempsey, James; Hobbs, George; Kerr, Matthew; Levin, Yuri; Manchester, Richard N.; Osłowski, Stefan; Ravi, Vikram; Rosado, Pablo A.; Shannon, Ryan M.; Spiewak, Renée; van Straten, Willem; Toomey, Lawrence; Wang, Jingbo; Wen, Linqing; You, Xiaopeng; Zhu, Xingjiang
2016-01-01
Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index nt and the tensor-to-scalar ratio r . Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, ΩGW(f )<2.3 ×10-10 . Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to nt≲5 for a tensor-to-scalar ratio of r =0.11 . However, the combination of all the above experiments limits nt<0.36 . Future Advanced LIGO observations are expected to further constrain nt<0.34 by 2020. When cosmic microwave background experiments detect a nonzero r , our results will imply even more stringent constraints on nt and, hence, theories of the early Universe.
Implications of the gravitational wave event GW150914
NASA Astrophysics Data System (ADS)
Miller, M. Coleman
2016-07-01
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two ˜30 M_⊙ black holes at a distance of {˜ }400 Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.
Implications of the gravitational wave event GW150914
NASA Astrophysics Data System (ADS)
Miller, M. Coleman
2016-07-01
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two {˜ }30 M_⊙ black holes at a distance of {˜ }400 Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.
Gravitating toward Science: Parent-Child Interactions at a Gravitational-Wave Observatory
ERIC Educational Resources Information Center
Szechter, Lisa E.; Carey, Elizabeth J.
2009-01-01
This research examined the nature of parent-child conversations at an informal science education center housed in an active gravitational-wave observatory. Each of 20 parent-child dyads explored an interactive exhibit hall privately, without the distraction of other visitors. Parents employed a variety of strategies to support their children's…
Gravitational scattering of zero-rest-mass plane waves
NASA Technical Reports Server (NTRS)
De Logi, W. K.; Kovacs, S. J., Jr.
1977-01-01
The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.
Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.
Black Hole Mergers and Gravitational Waves: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
The final merger of two black holes produces a powerful burst of gravitational waves, emitting more energy than all the stars in the observable universe combined. Since these mergers take place in the regime of strong dynamical gravity, computing the gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For more than 30 years, scientists tried to simulate these mergers using the methods of numerical relativity. The resulting computer codes were plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past several years, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will highlight these breakthroughs and the resulting 'gold rush' of new results that is revealing the dynamics of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Nanohertz gravitational wave searches with interferometric pulsar timing experiments.
Tinto, Massimo
2011-05-13
We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8)) Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects. PMID:21668135
Laser Development for Gravitational-Wave Interferometry in Space
NASA Astrophysics Data System (ADS)
Numata, K.
2013-01-01
We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.
Colliding gravitational plane waves with noncollinear polarization. II
Ernst, F.J.; Garcia D., A.; Hauser, I.
1987-12-01
A simple criterion for colliding gravitational plane waves is developed. This colliding wave condition is preserved by a new realization of the Geroch group augmented by a Kramer--Neugebauer involution. A three-parameter generalization of a two-parameter family of solutions with noncollinear polarization discovered recently by Ferrari, Ibanez, and Bruni is presented, and two additional solutions are derived that demonstrate that much larger families are likely to be constructed in the near future.
Geodesics in nonexpanding impulsive gravitational waves with Λ, part I
NASA Astrophysics Data System (ADS)
Sämann, Clemens; Steinbauer, Roland; Lecke, Alexander; Podolský, Jiřˇí
2016-06-01
We investigate the geodesics in the entire class of nonexpanding impulsive gravitational waves propagating in an (anti-)de Sitter universe using the distributional form of the metric. Employing a five-dimensional embedding formalism and a general regularisation technique, we prove the existence and uniqueness of the geodesics crossing the wave impulse, leading to a completeness result. We also derive the explicit form of the geodesics, thereby confirming previous results derived in a heuristic approach.
Laser Development for Gravitational-Wave Interferometry in Space
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.
Detection of gravitational waves: a hundred year journey
NASA Astrophysics Data System (ADS)
Mavalvala, Nergis
2016-05-01
In February 2016, scientists announced the first ever detection of gravitational waves from colliding black holes, launching a new era of gravitational wave astronomy and unprecedented tests of Einstein's theory of general relativity. I will describe the science and technology, and also the human story, behind the long quest that led to this discovery. Bio: Nergis Mavalvala is Professor of Physics at the Massachusetts Institute of Technology (MIT). Her research links the world of quantum mechanics, usually apparent only at the atomic scale, with gravitational waves, arising from some of the most powerful, yet elusive, forces in the cosmos. In 2016, she was part of the team that announced the first detection of gravitational waves from colliding black holes. She received a B.A. from Wellesley College in 1990 and a Ph.D. from MIT in 1997. She was a postdoctoral fellow and research scientist at the California Institute of Technology between 1997 and 2002. Since 2002, she has been on the Physics faculty at MIT, and was named a MacArthur Fellow in 2010. She is a Fellow of the American Physical Society and the Optical Society of America.
Formation of black hole and emission of gravitational waves
Nakamura, Takashi
2006-01-01
Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed. PMID:25792793
Comparison of gravitational wave detector network sky localization approximations
NASA Astrophysics Data System (ADS)
Grover, K.; Fairhurst, S.; Farr, B. F.; Mandel, I.; Rodriguez, C.; Sidery, T.; Vecchio, A.
2014-02-01
Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational-wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multimessenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization—timing triangulation and the Fisher information matrix approximations—with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to overestimate the uncertainty in sky localization by a median factor of 4 for a set of signals from nonspinning compact object binaries ranging up to a total mass of 20M⊙, and the overestimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.
Formation of black hole and emission of gravitational waves.
Nakamura, Takashi
2006-12-01
Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed. PMID:25792793
A comprehensive Bayesian approach to gravitational wave astronomy
NASA Astrophysics Data System (ADS)
Littenberg, Tyson Bailey
2009-06-01
The challenge of determining whether data from a gravitational wave detector contains signals which are cosmic in origin is the central problem in gravitational wave astronomy. The "detection problem" is particularly challenging for low amplitude signals embedded in "glitchy" instrument noise. It is imperative that we can robustly distinguish between the data being consistent with instrument noise alone, or noise and a weak gravitational wave signal. In response to this challenge we have set out to develop a robust, general purpose approach that can locate and characterize gravitational wave signals, and provided odds that the signal is of cosmic origin. Our approach employs the Markov Chain Monte Carlo family of algorithms to construct a fully Bayesian solution to the challenge - the Parallel Tempered Markov Chain Monte Carlo (PTMCMC) detection algorithm. The PTMCMC detection algorithm establishes which regions of parameter space contain the highest posterior weight, efficiently explores the posterior distribution function of the model parameters, and calculates the marginalized likelihood, or evidence, for the models under consideration. We illustrate our approach using simulated LISA and LIGO-Virgo data.
Coincidently Searching for Gravitational Waves and Low Frequency Radio Transients
NASA Astrophysics Data System (ADS)
Kavic, Michael; Yancey, C.; Shawhan, P. S.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.
2014-01-01
The transient sky has become an important area of astrophysical study, especially with the appearance of recent fast transients, but little is known about the sources of these transients. One possible approach which can shed light on this area is multi-messenger astronomy using gravitational waves and prompt emission meter-wavelength radio to observe fast transients. This is made possible with gravitational-wave detectors such as LIGO, VIRGO, and GEO (IndIGO and KAGRA proposed or under construction) and phased-array radio-telescopes such LWA, LOFAR, LoFASM, and MWA. This talk presents a method for coincidence of gravitational wave and meter-wavelength radio observations to enable multi-messenger astronomy and discusses the optimization of gravitational-wave and radio sensitivities to attain effective combined observational sensitivities. It is shown that coincidence provides a 52.9% increase to the sensitivity distance for LIGO and a 200% increase to the SNR of radio arrays for particular cases.
Gravitational Wave Detection by Interferometry (Ground and Space)
NASA Astrophysics Data System (ADS)
Pitkin, Matthew; Reid, Stuart; Rowan, Sheila; Hough, James
2011-07-01
Significant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational-wave detectors, such as the Einstein Telescope (ET), will be discussed.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
The Center for Gravitational Wave Astronomy at UTB
NASA Astrophysics Data System (ADS)
Diaz, Mario
2013-03-01
In this talk I will succinctly describe the first ten years of research and educational activity at the Center for Gravitational Wave Astronomy at The University of Texas at Brownsville as a potential model for fostering collaborations between minority serving institutions and major research institutions in the USA.
PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves
NASA Astrophysics Data System (ADS)
Marka, Zsuzsa; Marka, Szabolcs
2010-04-01
(The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such
The gravitational wave spectrum from cosmological B-L breaking
Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K. E-mail: valerie.domcke@desy.de E-mail: kai.schmitz@ipmu.jp
2013-10-01
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω{sub GW}h{sup 2} ∼ 10{sup −13}–10{sup −8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO, ET, BBO and DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation
NASA Astrophysics Data System (ADS)
Obata, Ippei; Soda, Jiro; CLEO Collaboration
2016-06-01
We study inflation driven by a dilaton and an axion, both of which are coupled to a SU(2) gauge field. We find that the inflation driven by the dilaton occurs in the early stage of inflation during which the gauge field grows due to the gauge-kinetic function. When the energy density of magnetic fields catches up with that of electric fields, chromonatural inflation takes over in the late stage of inflation, which we call delayed chromonatural inflation. Thus, the delayed chromonatural inflation driven by the axion and the gauge field is induced by the dilaton. The interesting outcome of the model is the generation of chiral primordial gravitational waves on small scales. Since the gauge field is inert in the early stage of inflation, it is viable in contrast to the conventional chromonatural inflation. We find the parameter region where chiral gravitational waves are generated in a frequency range higher than nHz, which are potentially detectable in future gravitational wave interferometers and pulsar-timing arrays such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), evolved Laser Interferometer Space Antenna (eLISA), and Square Kilometer Array (SKA).
Colliding gravitational plane waves with noncollinear polarization. I
Ernst, F.J.; Garcia D., A.; Hauser, I.
1987-09-01
An Ehlers transformation on the Ernst potential for the Nutku--Halil solution (Phys. Rev. Lett. 39, 1379 (1977)) provides a new solution of the Einstein field equations describing colliding gravitational plane waves with noncollinear polarization, the first of an infinite sequence of solutions that can be generated using techniques described in this paper.
Comment on ''Collision of plane gravitational waves without singularities''
Nutku, Y.
1981-08-15
An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby ''the new exact solution'' of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.
Colliding gravitational plane waves with noncollinear polarization. I
NASA Astrophysics Data System (ADS)
Ernst, Frederick J.; García D., Alberto; Hauser, Isidore
1987-09-01
An Ehlers transformation on the Ernst potential for the Nutku-Halil solution [Phys. Rev. Lett. 39, 1379 (1977)] provides a new solution of the Einstein field equations describing colliding gravitational plane waves with noncollinear polarization, the first of an infinite sequence of solutions that can be generated using techniques described in this paper.
Gravitational wave burst signal from core collapse of rotating stars
Dimmelmeier, Harald; Ott, Christian D.; Marek, Andreas; Janka, H.-Thomas
2008-09-15
We present results from detailed general relativistic simulations of stellar core collapse to a proto-neutron star, using two different microphysical nonzero-temperature nuclear equations of state as well as an approximate description of deleptonization during the collapse phase. Investigating a wide variety of rotation rates and profiles as well as masses of the progenitor stars and both equations of state, we confirm in this very general setup the recent finding that a generic gravitational wave burst signal is associated with core bounce, already known as type I in the literature. The previously suggested type II (or 'multiple-bounce') waveform morphology does not occur. Despite this reduction to a single waveform type, we demonstrate that it is still possible to constrain the progenitor and postbounce rotation based on a combination of the maximum signal amplitude and the peak frequency of the emitted gravitational wave burst. Our models include to sufficient accuracy the currently known necessary physics for the collapse and bounce phase of core-collapse supernovae, yielding accurate and reliable gravitational wave signal templates for gravitational wave data analysis. In addition, we assess the possibility of nonaxisymmetric instabilities in rotating nascent proto-neutron stars. We find strong evidence that in an iron core-collapse event the postbounce core cannot reach sufficiently rapid rotation to become subject to a classical bar-mode instability. However, many of our postbounce core models exhibit sufficiently rapid and differential rotation to become subject to the recently discovered dynamical instability at low rotation rates.
Gamma-ray-burst beaming and gravitational-wave observations.
Chen, Hsin-Yu; Holz, Daniel E
2013-11-01
Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB. PMID:24237502
Towards robust gravitational wave detection with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Cornish, Neil J.; Sampson, Laura
2016-05-01
Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.
Gravitational collapse of dissipative fluid as a source of gravitational waves
NASA Astrophysics Data System (ADS)
Chakraborty, Sanjukta; Chakraborty, Subenoy
2016-01-01
Gravitational collapse of cylindrical anisotropic fluid has been considered in analogy with the work of Misner and Sharp. Using Darmois matching conditions, the interior cylindrical dissipative fluid (in the form of shear viscosity and heat flux) is matched to an exterior vacuum Einstein-Rosen space-time. It is found that on the bounding 3-surface the radial pressure of the anisotropic perfect fluid is linearly related to the shear viscosity and the heat flux of the dissipative fluid on the boundary. This non-zero radial pressure on the bounding surface may be considered as the source of gravitational waves outside the collapsing matter distribution.
Gravitational Wave Astronomy:. AN Experimental Overview
NASA Astrophysics Data System (ADS)
Hammond, Giles
2011-10-01
The current worldwide interferometer network comprises detectors in the US (LIGO) and Europe (GEO600 and VIRGO) as well as advanced facilities in Japan (TAMA, CLIO) and Australia (ACIGA). Detectors currently have the sensitivity to detect neutron star binary coalescences out to approximately 15Mpc (the Virgo supercluster). Furthermore the long baseline instruments (LIGO and VIRGO) will shortly be undergoing upgrades which will see their sensitivity increase by an order of magnitude by 2014. These detectors, together with an upgraded GEO detector, should make routine detections and open up the gravitational window on the universe. In the longer term, 3rd generation detectors operating post 2018 will further increase the sensitivity by an additional order of magnitude and will likely feature underground operation at cryogenic temperatures or operation in space.
Massive gravitational waves in Chern-Simons modified gravity
Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr
2014-10-01
We consider the nondynamical Chern-Simons (nCS) modified gravity, which is regarded as a parity-odd theory of massive gravity in four dimensions. We first find polarization modes of gravitational waves for θ=x/μ in nCS modified gravity by using the Newman-Penrose formalism where the null complex tetrad is necessary to specify gravitational waves. We show that in the Newman–Penrose formalism, the number of polarization modes is one in addition to an unspecified Ψ{sub 4}, implying three degrees of freedom for θ=x/μ. This compares with two for a canonical embedding of θ=t/μ. Also, if one introduces the Ricci tensor formalism to describe a massive graviton arising from the nCS modified gravity, one finds one massive mode after making second-order wave equations, which is compared to five found from the parity-even Einstein–Weyl gravity.
Magnetized Neutron-Star Mergers and Gravitational-Wave Signals
NASA Astrophysics Data System (ADS)
Anderson, Matthew; Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M.; Neilsen, David; Palenzuela, Carlos; Tohline, Joel E.
2008-05-01
We investigate the influence of magnetic fields upon the dynamics of, and resulting gravitational waves from, a binary neutron-star merger in full general relativity coupled to ideal magnetohydrodynamics. We consider two merger scenarios: one where the stars have aligned poloidal magnetic fields and one without. Both mergers result in a strongly differentially rotating object. In comparison to the nonmagnetized scenario, the aligned magnetic fields delay the full merger of the stars. During and after merger we observe phenomena driven by the magnetic field, including Kelvin-Helmholtz instabilities in shear layers, winding of the field lines, and transition from poloidal to toroidal magnetic fields. These effects not only mediate the production of electromagnetic radiation, but also can have a strong influence on the gravitational waves. Thus, there are promising prospects for studying such systems with both types of waves.
Detecting vanishing dimensions via primordial gravitational wave astronomy.
Mureika, Jonas; Stojkovic, Dejan
2011-03-11
Lower dimensionality at higher energies has manifold theoretical advantages as recently pointed out by Anchordoqui et al. [arXiv:1003.5914]. Moreover, it appears that experimental evidence may already exist for it: A statistically significant planar alignment of events with energies higher than TeV has been observed in some earlier cosmic ray experiments. We propose a robust and independent test for this new paradigm. Since (2+1)-dimensional spacetimes have no gravitational degrees of freedom, gravity waves cannot be produced in that epoch. This places a universal maximum frequency at which primordial waves can propagate, marked by the transition between dimensions. We show that this cutoff frequency may be accessible to future gravitational wave detectors such as the Laser Interferometer Space Antenna. PMID:21469781
Maximum gravitational-wave energy emissible in magnetar flares
Corsi, Alessandra; Owen, Benjamin J.
2011-05-15
Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies ({approx}10{sup 49} erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10{sup 48}-10{sup 49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.
Binary Black Holes, Gravitational Waves, and Numerical Relativity
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
This viewgraph presentation reviews the massive black hole (MBH) binaries that are found at the center of most galaxies, "astronomical messenger", gravitational waves (GW), and the use of numerical relativity understand the features of these phenomena. The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity.. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.
Simulating Gravitational Wave Emission from Massive Black Hole Binaries
NASA Technical Reports Server (NTRS)
Centrella, Joan
2008-01-01
The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past few years, this situation has changed dramatically, with a series of amazing breakthroughs. This talk will focus on the recent advances that are revealing these waveforms. highlighting their astrophysical consequences and the dramatic new potential for discovery that arises when merging black holes will be observed using gravitational waves.
Quantum Measurement Theory in Gravitational-Wave Detectors
NASA Astrophysics Data System (ADS)
Danilishin, Stefan L.; Khalili, Farid Ya.
2012-04-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Periodic gravitational waves from small cosmic string loops
NASA Astrophysics Data System (ADS)
Dubath, Florian; Rocha, Jorge V.
2007-07-01
We consider a population of small, high-velocity cosmic string loops. We assume the typical length of these loops is determined by the gravitational radiation scale and use the results of Polchinski and Rocha which pointed out their highly relativistic nature. A study of the gravitational wave emission from such a population is carried out. The large Lorentz boost involved causes the lowest harmonics of the loops to fall within the frequency band of the Laser Interferometer Gravitational Wave Observatory detector. Because of this feature the gravitational waves emitted by such loops can be detected in a periodic search rather than in burst or stochastic analysis. It is shown that, for interesting values of the string tension (10-10≲Gμ≲10-8), the detector can observe loops at reasonably high redshifts and that detection is, in principle, possible. We compute the number of expected observations produced by such a process. For a 10 h search we find that this number is of order O(10-4). This is a consequence of the low effective number density of the loops traveling along the line of sight. However, small probabilities of reconnection and longer observation times can improve the result.