Science.gov

Sample records for high-frequency induction heating

  1. ZCS High Frequency Inverter for Aluminum Vessel Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    Recent induction cooking apparatus are utilized for induction heating of ferromagnetic materials at 20-50kHz with a high efficiency. They can not, however, be applied for non-magnetic materials such as aluminum vessels. Here, we present a voltage-clamp reverse conducting ZCS high frequency inverter of half bridge type for induction heating of an aluminum vessel. The switching devices utilized for this inverter are SITs and its operating frequency is determined as 200kHz. This paper describes its circuit constitution and the obtained experimental results from a practical point of view.

  2. Thermal magnetic characteristic for high frequency induction heating analysis

    NASA Astrophysics Data System (ADS)

    Arita, Hideaki; Todaka, Takashi; Enokizono, Masato

    2002-05-01

    This paper presents results of finite element analysis of induction heating problems considering temperature dependence of material characteristics. In this analysis, we have used the three dimensional finite element method in order to correctly express the induction heating coil's shapes and to make clear its effects on temperature distributions. The heat conducting problem and the eddy current problem are coupled and solved by using step-by-step calculations.

  3. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  4. A Novel Soft Switching PWM Power Frequency Converter with Non DC Smoothing Filter Link for Consumer High Frequency Induction Heating

    NASA Astrophysics Data System (ADS)

    Sugimura, Hisayuki; Muraoka, Hidekazu; Hiraki, Eiji; Hirota, Izuo; Yasui, Kenji; Omori, Hideki; Lee, Hyun-Woo; Nakaoka, Mutsuo

    In this paper, high frequency power converter without DC smoothing electrolytic capacitor filter link which convert the 100V/200Vrms and 60Hz single phase utility frequency AC power into a high frequency AC. This proposed high frequency AC power converter without electrolytic capacitor filter can operate under a principle of soft switching PWM based on a lossless capacitor snubber is proposed and demonstrated for consumer high frequency induction heating (IH). In particular, this high frequency power converter capable of producing a high frequency AC more than 20kHz is developed for consumer IH applications as hot water producer and steamer based on the specially designed spiral type IH-Dual Packs Heater (DPH), which includes the dual mode pulse modulation control scheme based on soft switching PWM for high output power setting and commercial frequency AC zero voltage soft switching pulse density modulation (PDM) for low output power settings. This developed high frequency power frequency converter using trench gate IGBTs is clarified on the basis of experimental and simulation results for its circuit operation of the utility frequency AC to high frequency AC frequency PWM power converter without the electrolytic capacitor bank DC filter link for the IH hot water and IH steamer. These IH appliances are based upon an innovative electromagnetic IH-DPH for fluid heating as heat exchanger in consumer pipeline. Finally, its power regulation characteristics, power conversion efficiency and harmonic current components characteristics including power factor in utility AC grid side are evaluated and discussed from an experimental point of view. The practical effectiveness of this utility frequency AC to high frequency AC soft switching high power frequency converter defined conveniently as high frequency soft switching cyclo-inverter is proved as one of the important products effective for next generation IH application all electricity power utilizations.

  5. Development of ti-coated ferromagnetic needle, adaptable for ablation cancer therapy by high-frequency induction heating.

    PubMed

    Naohara, Takashi; Aono, Hiromichi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Matsutomo, Shinya; Watanabe, Yuji

    2012-03-06

    To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  6. Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Islam, Mohammad; Subhani, Tayyab; Zhu, Yanqiu

    2015-11-01

    In this paper, we present alumina (Al2O3) nanocomposites reinforced with various graphene nanoplatelets (GNPs) concentrations (0.75 and 1.25 wt.%) and fabricated by rapid high frequency-induction heat (HF-IH) sintering route. The influence of the GNP on the microstructures, mechanical properties, and interfacial connections of the resulting nanocomposites were thoroughly investigated. GNPs were synthesized using combined chemical oxidation and thermal exfoliation processes and dispersed homogenously into base Al2O3 ceramic matrix using colloidal chemistry technique. Pressure-assisted HF-IH sintering rapidly consolidated nanocomposites close to theoretical densities (~99%) without damaging the GNP intrinsic nanostructures and electron microscopy revealed firmly bonding of the nanocomposite constituents at interfaces. Nanocomposite samples containing 0.75 wt.% GNP demonstrated 60% finer microstructure with 45% higher fracture toughness ( K IC) and 9% improvement in hardness against benchmarked monolithic Al2O3. However, nanocomposites loaded with higher GNP contents (1.25 wt.%) showed deprived properties due to GNP accumulations. Homogenous dispersions and two-dimensional features allowed GNP to interact wide area of the matrix grains thus refined the microstructure and gave rise the grain anchoring mechanism thereby led nanocomposite to superior mechanical properties following GNP crack-bridging and pull-out toughening mechanisms.

  7. Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron

    NASA Astrophysics Data System (ADS)

    Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.

    2015-12-01

    The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.

  8. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  9. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  10. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  12. Simultaneously rapid synthesis and consolidation of nanostructured Mg0.3Al1.4Ti1.3O5 by high-frequency induction heating

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Su; Du, Song-Lee; Doh, Jung-Mann; Yoon, Jin-Kook; Shon, In-Jin

    2014-05-01

    A one-step synthesis and consolidation of nanostructured Mg0.3Al1.4Ti1.3O5 was achieved by high-frequency induction heating, using the stoichometric mixture of MgO, Al2O3 and TiO2 powders. Before sintering, the powder mixture was high-energy ball milled for 10 h. From the milled powder mixture, a highly dense nanostructured Mg0.3Al1.4Ti1.3O5 compound could be obtained within one minute, under the simultaneous application of 80 MPa pressure and an induced current. The advantage of this process is that it allows an instant densification to the near theoretical density, while sustaining the nanosized microstructure of raw powders. The sintering behavior, microstructure and mechanical properties of Mg0.3Al1.4Ti1.3O5 compound were evaluated.

  13. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  14. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  15. Nonlocal theory for heat transport at high frequencies

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan; Cahill, David G.; Sun, Bo

    2014-11-01

    We develop a nonlocal theory for heat conduction under high-frequency temperature fields and apply the theory to explain reductions of the apparent thermal conductivity observed in recent experiments. Our nonlocal theory is an analytical solution of the Boltzmann transport equation for phonons in a semi-infinite solid, similar to a prior nonlocal theory for heat conduction under a high-temperature gradient but subjected to periodic heating at the surface. The boundary condition of periodic heating, as opposed to prior calculations of heating by a single laser pulse, better mimics time-domain thermoreflectance (TDTR) and broadband frequency-domain thermoreflectance (BB-FDTR) measurements. We find that, except for pure crystals at high frequencies, the effective thermal conductivity derived using the nonlocal theory compares well with calculations of a modified Callaway model that includes an upper limit on the phonon mean-free path at twice the thermal penetration depth. For pure crystals, however, the effective thermal conductivity derived from the out-of-phase calculations are independent of frequency, in agreement with prior TDTR measurements, due to the countereffect of reduced heat flux and diminished relative phase between the heat flux and temperature oscillations at high frequencies. Our results suggest that empirical interpretation of ballistic phonons not contributing to heat conduction is not general and can only be applied to measurements on alloys and not pure crystals, even when a large laser spot size is used in the experiments and the interfacial thermal resistance is negligible.

  16. Quantum inductance and high frequency oscillators in graphene nanoribbons.

    PubMed

    Begliarbekov, Milan; Strauf, Stefan; Search, Christopher P

    2011-04-22

    Here we investigate high frequency AC transport through narrow graphene nanoribbons with top-gate potentials that form a localized quantum dot. We show that as a consequence of the finite dwell time of an electron inside the quantum dot (QD), the QD behaves like a classical inductor at sufficiently high frequencies ω ≥ GHz. When the geometric capacitance of the top-gate and the quantum capacitance of the nanoribbon are accounted for, the admittance of the device behaves like a classical serial RLC circuit with resonant frequencies ω ∼ 100-900 GHz and Q-factors greater than 10(6). These results indicate that graphene nanoribbons can serve as all-electronic ultra-high frequency oscillators and filters, thereby extending the reach of high frequency electronics into new domains.

  17. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  18. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    NASA Astrophysics Data System (ADS)

    El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.

    2014-08-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.

  19. Ultra-high frequency induction energy effects on refractory oxides as applied to processing and immobilization of radioactive waste

    NASA Astrophysics Data System (ADS)

    Roach, Jay A.

    The application of ultra-high frequency induction melting of refractory oxides (i.e. borosilicate glass [BSG]) has been extensively investigated to determine the feasibility of developing and implementing an innovative inductively heated draining technique that is reliable and predictable. The primary purpose is for immobilizing highly radioactive waste streams resulting from reprocessing of spent nuclear fuel. This work has included development and validation of a numerical model, using ANSYS MultiPhysics software, as well as numerous proof-of-concept and pilot-scale experimental tests. The model is a steady state axially-symmetric geometry for a cylindrical water-cooled crucible that includes two separate induction energy sources operating at different frequencies. It accounts for the induction energy interactions, thermal conduction, convection, and radiation effects, as well as hydrodynamic phenomenon due to buoyancy effects. The material property models incorporated into the numerical model include temperature dependence up to 2,000°C of key parameters including density, specific heat, thermal conductivity, and electrical conductivity, which can vary by several orders of magnitude within the temperature variations seen. The model has been experimentally validated, and shown to provide excellent representation of steady state temperature distributions, convection cell configurations, and flow field velocities for molten low conductivity materials. Thus, it provides the capability to conduct parametric studies to understand operational sensitivities and geometry effects that determine the performance of the inductively heated draining device, including scale-up effects. Complementary experimental work has also been conducted to test the model predictions, and iteratively used to improve the model accuracy. However, the primary focus of the experimental efforts was to demonstrate the feasibility of the inductively heated draining technique for application to

  20. Hardening of the surface plasma jet high-frequency induction discharge of low pressure

    NASA Astrophysics Data System (ADS)

    Kashapov, N. F.; Sharifullin, S. N.

    2015-06-01

    The work presents results of research on the hardening surfaces of the products and increase their roughness class of plasma jet of high-frequency induction discharge of low pressure. It is shown that such processing allows to clear at the same time a surface of all types of pollution, to remove a defective layer after its machining, to receive a uniform microstructure, to raise a roughness class on 2 - 3 units.

  1. Induction heating coupler

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Copeland, Carl E. (Inventor); Swaim, Robert J. (Inventor); Coultrip, Robert H. (Inventor); Johnston, David F. (Inventor); Phillips, W. Morris (Inventor); Johnson, Samuel D. (Inventor); Dinkins, James R. (Inventor); Buckley, John D. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece.

  2. Carbon fiber and void detection using high-frequency electromagnetic induction techniques

    NASA Astrophysics Data System (ADS)

    Barrowes, Benjamin E.; Sigman, John B.; Wang, YinLin; O'Neill, Kevin A.; Shubitidze, Fridon; Simms, Janet; Bennett, Hollis J.; Yule, Donald E.

    2016-05-01

    Ultrawide band electromagnetic induction (EMI) instruments have been traditionally used to detect high electric conductivity discrete targets such as metal unexploded ordnance. The frequencies used for this EMI regime have typically been less than 100 kHz. To detect intermediate conductivity objects like carbon fiber, even less conductive saturated salts, and even voids embedded in conducting soils, higher frequencies up to the low megahertz range are required in order to capture characteristic responses. To predict EMI phenomena at frequencies up to 15 MHz, we first modeled the response of intermediate conductivity targets using a rigorous, first-principles approach, the Method of Auxiliary Sources. A newly fabricated benchtop high-frequency electromagnetic induction instrument produced EMI data at frequencies up to that same high limit. Modeled and measured characteristic relaxation signatures compare favorably and indicate new sensing possibilities in a variety of scenarios.

  3. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  4. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere. PMID:15959510

  5. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  6. Analysis the electrical parameters of a high-frequency coreless induction furnace

    NASA Astrophysics Data System (ADS)

    Iagăr, A.; Popa, G. N.; Diniş, C. M.

    2015-06-01

    The paper analyzes the most important electrical parameters of a coreless induction furnace, having a capacity of 7 kg molten iron (i.e. 2.5 kg aluminum). The furnace is supplied by a high-frequency (HF) static converter ITS2 12K20, with the output frequency 5...12 kHz, 600...1200 Vac rated HF voltage, and 20 kW rated HF power. Monitoring of electrical parameters was done for an aluminum charge, using a power quality analyser CA8334. The measurement results showed that induction furnace operation causes unbalance and harmonics in three-phase currents absorbed from the distribution network. Harmonics in the line currents are caused mainly by static converter, and to a lesser extent by furnace load and interaction of eddy currents induced in the charge and the magnetic field of the inductor. To reduce the negative impact of the current harmonics on the distribution network is necessary the design and achievement of electrical filters for odd-order harmonics (5th, 7th, 11th, 13th, 17th, 19th, 23th, 25th).

  7. Calorimetry at high-pressure using high-frequency Joule-heating

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary; Struzhkin, Viktor

    2015-03-01

    Calorimetric measurements of materials at 1 to 100 GPa of pressure would provide intriguing tests of condensed matter theories, sensitive probes of chemical reactions during high-pressure synthesis, and useful inputs for models of the Earth's interior. We present the design and first results of quantitative heat capacity measurements at >10 GPa of pressure. High-frequency AC voltage heats a small metal strip pressed between diamond anvils, creating temperature oscillations whose amplitudes are determined from the higher harmonics of voltage. Thermal models show that frequencies >100 kHz are required to contain heat in the ng-mass samples, while electrical models show that frequencies >100 MHz are not practical. Our experimental results show that the heat capacity of iron and nickel can indeed be measured at high frequencies in diamond anvil cells, paving the way for studies of the energetics of a wide-variety of entropy-driven phase changes at high pressure.

  8. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  9. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  10. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  11. Influence of low- and high-frequency heating on biodegrading microorganisms in soil: microbial degradation.

    PubMed

    Roland, Ulf; Holzer, Frank; Kopinke, Frank-Dieter

    2013-01-01

    The influence of low-frequency (50 Hz) resistive and high-frequency (13.56 MHz, radio-frequency) dielectric heating in comparison to conventional heating on the microbial degradation of pollutants in soil was studied. The investigation of the biodegradation of model substances (benzoic acid, acetic acid, glucose, sodium acetate) added to a standard soil showed no significant influence of the electrical heating methods when compared with samples heated to the same temperature in a water bath. Therefore, a hindrance of the microbial degradation could be excluded as it was done for soil respiration in a previous study. This finding is especially relevant for the application of these electrical heating methods for thermally enhanced soil bioremediation as an option for making in situ or ex situ clean-up processes more efficient.

  12. Numerical Simulation of Flow and Heat Transfer Characteristic of 4k Regenerators at High Frequency

    NASA Astrophysics Data System (ADS)

    Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin

    Regenerator is a key component for all regenerative cryocoolers. 4K regenerative cryocoolers can be applied to provide cooling for low temperature superconductors, space and military infrared detectors, and medical examination etc. Stirling type pulse tube cryocoolers (SPTC), one type of regenerative cryocoolers, operate at high frequencies. As a result, SPTCs have the advantage of compact structure and low weight compared with G-M type pulse tube cryocoolers operating at low frequencies. However, as the frequency increase the thermal penetration depth of helium gas in the regenerator is greatly reduced which makes the heat transfer between the gas and the regenerator worse. In order to improve the heat transfer efficiency, regenerator materials with smaller hydraulic diameters are used. Therefore the flow resistance between the gas and the regenerator material will increase leading to larger pressure drop from the hot end to the cold end of the regenerator. The cooling performance is deteriorated due to the decreased pressure ratio (maximum pressure divided by minimum pressure) at the cold end. Also, behavior of helium at 4K deviates remarkably from that of ideal gas which has a significant influence both the flow and heat transfer characteristic within a regenerator. In this paper numerical simulation on the behavior of a 4K regenerator at high frequency is carried out to provide guidance for the optimization of the flow and heat transfer performance within a regenerator. Thermodynamic analysis of effect of the non-ideal gas behavior of helium at 4K on 4K regenerator at high frequency is investigated.

  13. Optimum Construction of Heating Coil for Domestic Induction Cooker

    NASA Astrophysics Data System (ADS)

    Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai

    2010-10-01

    The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.

  14. Induction heating coupler and annealer

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor); Johnston, David F. (Inventor); Swaim, Robert J. (Inventor); Dinkins, James R. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having- two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardly beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to a magnetic flux passing between the two ends of the pole piece.

  15. High Frequency Low Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2003-01-01

    The operating temperature of a loop heat pipe (LHP) with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a finction of the evaporator power, condenser sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. This paper presents a study on the oscillation of the loop operating temperature with amplitudes on the order of one degree Kelvin and frequencies on the order of 10(exp -1) to 10(exp -2) Hertz. The source of the high frequency temperature oscillation is the fast movement of the vapor front in the condenser section, which usually occurs when the vapor front is near the condenser inlet or the condenser outlet. At these locations, the vapor front is unable to find a stable position for the given operating conditions, and will move back and forth. The movement of the vapor front causes the movement of the liquid in the condenser and the liquid line, leading to oscillations of the CC and the loop temperatures. Factors that affect the vapor front movement include evaporator power, condenser sink temperature, body forces and whether or the CC temperature is actively controlled. As long as there are no large thermal masses attached to the evaporator, the loop can self adjust rather quickly and the vapor front will move rapidly around the condenser inlet or outlet, leading to high frequency temperature oscillations. The amplitude of temperature oscillation is usually the largest in the liquid line, up to 20 degrees Kelvin in many cases, but diminishes to less than one degree Kelvin in the CC. Furthermore, the high frequency temperature oscillation can occur at any CC temperature when the right combination of the evaporator power and condenser sink temperature prevails.

  16. The possible role of high-frequency waves in heating solar coronal loops

    NASA Technical Reports Server (NTRS)

    Porter, Lisa J.; Klimchuk, James A.; Sturrock, Peter A.

    1994-01-01

    We investigate the role of high-frequency waves in the heating of solar active region coronal loops. We assume a uniform background magnetic field, and we introduce a density stratification in a direction perpendicular to this field. We focus on ion compressive viscosity as the damping mechanism of the waves. We incorporate viscosity self-consistently into the equations, and we derive a dispersion relation by adopting a slab model, where the density inside the slab is greater than that outside. Such a configuration supports two types of modes: surface waves and trapped body waves. In order to determine under what conditions these waves may contribute to the heating of active regions, we solve our dispersion relation for a range of densities, temperatures, magnetic field strengths, density ratios, wavevector magnitudes, wavevector ratios, and slab widths. We find that surface waves exhibit very small damping, but body waves can potentially damp at rates needed to balance radiative losses. However, the required frequencies of these body waves are very high. For example, the wave frequency must be at least 5.0/s for a slab density of 10(exp 9,5)/cc, a slab temperature of 10(exp 6,5) K, a field strength of 100 G, and a density ratio of 5. For a slab density of 10(exp 10)/cc, this frequency increases to 8.8/s. Although these frequencies are very high, there in no observational evidence to rule out their existence, and they may be generated both below the corona and at magnetic reconnection sites in the corona. However, we do find that, for slab densities of 10(exp 10)/cc or less, the dissipation of high-frequency waves will be insufficient to balance the radiative losses if the magnetic field strength exceeds roughly 200 G. Because the magnetic field is known to exceed 200 G in many active region loops, particularly low-lying loops and loops emanating from sunspots, it is unlikely that high-frequency waves can provide sufficient heating in these regions.

  17. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    SciTech Connect

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.

  18. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE PAGES

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  19. Heating of ions by high frequency electromagnetic waves in magnetized plasmas

    SciTech Connect

    Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.

    2013-07-15

    The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be

  20. Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere

    SciTech Connect

    Kuo, Spencer P.

    2013-09-15

    Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

  1. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  2. Electron heating in inductive discharges

    NASA Astrophysics Data System (ADS)

    Hagelaar, Gerjan

    2009-10-01

    Radio-frequency inductive discharges are used to sustain plasma in negative ion sources for neutral beam injection [W. Kraus et al 2002 Rev. Sci. Instrum. 73, 1096] currently under development for the ITER fusion experiment. To accompany the experimental development, a comprehensive numerical model is being developed, describing the main physical principles of these sources self-consistently: inductive coupling and electron heating in the source drivers, magnetised plasma transport in the source body, negative ion extraction across a magnetic filter, low-density neutral flow and depletion by the plasma, chemistry of negative ion creation in the volume and at the surface, etc. In this presentation we discuss the principles and modelling of the inductive electron heating in these sources. In particular, we propose a simple method to describe the anomalous skin effect through a fluid equation for electron momentum including a viscosity term with an effective viscosity coefficient. We also discuss the effects of the static and radio-frequency magnetic fields on the inductive coupling and the consequences for the plasma properties.

  3. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  4. Investigation of Global Lightning using Schumann Resonances measured by High Frequency Induction Coil Magnetometers in the UK

    NASA Astrophysics Data System (ADS)

    Beggan, C.; Gabillard, T.; Swan, A.; Flower, S. M.; Thomson, A. W.

    2012-12-01

    In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory, in the Scottish Borders of the United Kingdom. The induction coils permit us to measure the very rapid changes of the magnetic field. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1904) and is located in a rural valley with a quiet magnetic environment. The data output from the induction coils are digitized and logged onsite before being collected once per hour and sent to the Edinburgh office via the Internet. We intend to run the coils as a long term experiment. We present initial results from first five months of data. Analysis of spectrograms and power spectral density plots in the frequency band of 3-40 Hz from the coils show diffuse bands of peak power around 7.8 Hz, 14.3 Hz, 20.8 Hz, 27 Hz, 34 Hz and 39Hz related to the global Schumann resonances. We also detect a strong narrow peak at 25 Hz, which is a harmonic of the UK electrical power system. There are a number of features in the data that we wish to investigate, including the diurnal and seasonal variation of the Schumann resonances. For example, it has been suggested that lightning activity is related to climate variability in the tropics and that perhaps Madden-Julian Oscillations (MJO) or El Niño Southern Oscillation (ENSO)-like correlations are detectable within the data. On longer timescales, we will look for solar cycle and climate variations. We also wish to note that the data is freely available on request to the community.

  5. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; Hull, D.; Thomas, M.; Griep, SK; Jacobsohn, K.; See, WA

    2015-01-01

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology.

  6. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation.

    PubMed

    Patch, S K; Hull, D; Thomas, M; Griep, S K; Jacobsohn, K; See, W A

    2015-01-21

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology.

  7. Inductance of rf-wave-heated plasmas.

    PubMed

    Farshi, E; Todo, Y

    2003-03-14

    The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.

  8. Influence of low- and high-frequency electrical heating on biodegrading microorganisms in soil: soil respiration.

    PubMed

    Roland, Ulf; Holzer, Frank; Kopinke, Frank-Dieter

    2013-01-01

    The influence of electrical heating on microbiological processes in soil has been studied to evaluate the potential for enhancing biodegradation of pollutants by controlling the temperature. A frequency of 50 Hz (power line frequency) was applied for resistive heating. Dielectric heating was realized using a frequency of 13.56 MHz (radio frequency). Both techniques were compared with conventional heating in a water bath. For experiments in laboratory and full scale, a model soil and a contaminated original soil were used. It was shown that under conditions capable for heating soil to 35 degrees C or even 60 degrees C, soil respiration as a measure for microbial activity was not hindered by electrical heating when temperature and moisture content were comparable with conventional heating. The variations of soil respiration were reversible upon temperature changes. Under certain conditions, periodical fluctuations of microbiological activity were observed. Several possible explanations including chronobiology are discussed without being able to provide an unambiguous interpretation for this effect.

  9. High frequency core localized modes in neutral beam heated plasmas on TFTR

    SciTech Connect

    Nazikian, R.; Chang, Z.; Fredrickson, E.D.

    1995-11-01

    A band of high frequency modes in the range 50--150 kHz with intermediate toroidal mode numbers 4 < n < 10 are commonly observed in the core of supershot plasmas on TFTR. Two distinct varieties of MHD modes are identified corresponding to a flute-like mode predominantly appearing around the q = 1 surface and an outward ballooning mode for q > 1. The flute-like modes have nearly equal amplitude on the high field and low field side of the magnetic axis and are mostly observed in moderate performance supershot plasmas with {tau}{sub E} < 2{tau}{sub L} while the ballooning-like modes have enhanced amplitude on the low field side of the magnetic axis and tend to appear in higher performance supershot plasmas with {tau}{sub E} > 2{tau}{sub L}, where {tau}{sub L} is the equivalent L-mode confinement time. The modes propagate in the ion diamagnetic drift direction and are highly localized with radial widths {Delta}r {approximately} 5--10 cm, fluctuation levels {tilde n}/n, {tilde T}{sub e}/T{sub e} < 0.01, and radial displacements {zeta}{sub r} {approximately} 0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR, these modes are typically much weaker, more benign, and may be indicative of kinetic ballooning modes destabilized by resonant circulating neutral beam ions.

  10. Heat generation in an elastic binder system with embedded discrete energetic particles due to high-frequency, periodic mechanical excitation

    NASA Astrophysics Data System (ADS)

    Mares, J. O.; Miller, J. K.; Gunduz, I. E.; Rhoads, J. F.; Son, S. F.

    2014-11-01

    High-frequency mechanical excitation can induce heating within energetic materials and may lead to advances in explosives detection and defeat. In order to examine the nature of this mechanically induced heating, samples of an elastic binder (Sylgard 184) were embedded with inert and energetic particles placed in a fixed spatial pattern and were subsequently excited with an ultrasonic transducer at discrete frequencies from 100 kHz to 20 MHz. The temperature and velocity responses of the sample surfaces suggest that heating due to frictional effects occurred near the particles at excitation frequencies near the transducer resonance of 215 kHz. An analytical solution involving a heat point source was used to estimate heating rates and temperatures at the particle locations in this frequency region. Heating located near the sample surface at frequencies near and above 1 MHz was attributed to viscoelastic effects related to the surface motion of the samples. At elevated excitation parameters near the transducer resonance frequency, embedded particles of ammonium perchlorate and cyclotetramethylene-tetranitramine were driven to chemical decomposition.

  11. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  12. An Induction Heating Method with Traveling Magnetic Field for Long Structure Metal

    NASA Astrophysics Data System (ADS)

    Sekine, Takamitsu; Tomita, Hideo; Obata, Shuji; Saito, Yukio

    A novel dismantlable adhesion method for recycling operation of interior materials is proposed. This method is applied a high frequency induction heating and a thermoplastic adhesive. For an adhesion of interior material to long steel stud, a conventional spiral coil as like IH cooking heater gives inadequateness for uniform heating to the stud. Therefore, we have proposed an induction heating method with traveling magnetic field for perfect long structures bonding. In this paper, we describe on the new adhesion method using the 20kHz, three-phase 200V inverter and linear induction coil. From induction heating characteristics to thin steel plates and long studs, the method is cleared the usefulness for uniform heating to long structures.

  13. A H2 very high frequency capacitively coupled plasma inactivates glyceraldehyde 3-phosphate dehydrogenase(GapDH) more efficiently than UV photons and heat combined

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Lackmann, Jan-Wilm; Buerger, Ines; Bandow, Julia Elisabeth; Awakowicz, Peter

    2014-02-01

    Plasma sterilization is a promising alternative to commonly used sterilization techniques, because the conventional methods suffer from certain limitations, e.g. incompatibility with heat-sensitive materials, or use of toxic agents. However, plasma-based sterilization mechanisms are not fully understood yet. A low-pressure very high frequency capacitively coupled plasma is used to investigate the impact of a hydrogen discharge on the protein glyceraldehyde 3-phosphate dehydrogenase (GapDH). GapDH is an enzyme of glycolysis. As a part of the central metabolism, it occurs in nearly all organisms from bacteria to humans. The plasma is investigated with absolutely calibrated optical emission spectroscopy in order to identify and to quantify plasma components that can contribute to enzyme inactivation. The contribution of UV photons and heat to GapDH inactivation is investigated separately, and neither seems to be a major factor. In order to investigate the mechanisms of GapDH inactivation by the hydrogen discharge, samples are investigated for etching, induction of amino acid backbone breaks, and chemical modifications. While neither etching nor strand breaks are observed, chemical modifications occur at different amino acid residues of GapDH. Deamidations of asparagines as well as methionine and cysteine oxidations are detected after VHF-CCP treatment. In particular, oxidation of the cysteine in the active centre is known to lead to GapDH inactivation.

  14. Study of the generator/motor operation of induction machines in a high frequency link space power system

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Sood, Pradeep K.

    1987-01-01

    Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.

  15. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.

    PubMed

    Wang, Xiaopeng; Chen, Yuyong; Xu, LiJuan; Xiao, Shulong; Kong, Fantao; Woo, Kee Do

    2011-11-01

    A β-type Ti-based composite, Ti-35Nb-2.5Sn-15-hydroxyapatite (HA), has been synthesized by mechanical alloying and powder metallurgy. The effects of milling time on microstructure, mechanical properties and biocompatibility of the sintered composites were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), microhardness tests, compression tests and cells culture. The results revealed when milling time increased, the homogeneity and relative density of the sintered composite increased, but the finished sintering temperature decreased. The compression Young's modulus of sintered composite from 12 h milled powders was about 22 GPa and its compression strength was 877 MPa. The cell culture results indicated cell viability for these sintered composites was very good. These results revealed the Ti-35Nb-2.5Sn-15HA composite could be useful for medical implants. PMID:22098907

  16. High-frequency Propagation through the Ionosphere from the Sura Heating Facility to the Orbiting CASSIOPE/e-POP Payload

    NASA Astrophysics Data System (ADS)

    James, H. G.; Frolov, V. L.; Padokhin, A. M.; Siefring, C. L.

    2015-12-01

    High-frequency pump waves have been transmitted from the Russian heating facility Sura to the Radio Receiver Instrument (RRI) in the e-POP payload on the Canadian small satellite CASSIOPE. This experiment has been carried out 24 times, under a variety of circumstances. In some cases, the ePOP VHF-UHF beacon CERTO was on, and ground receivers near Sura recorded total electron content. Subsequent tomographic processing has allowed the two-dimensional electron density distribution to be determined in the altitude-latitude space between Sura and CASSIOPE. We present some details from a night-time pass on 9 Sept. 2014 when the fixed pump frequency 4.3 MHz was slightly smaller than foF2 above Sura. This was an instance in which conversion between the O and Z cold plasma modes may have been required to achieve transmission. Explanation could be elaborated in terms of underdense, heater-created, field-aligned irregularities that are "artificial radio windows". The Sura heater radiation pattern maximum was tilted 12° south of the vertical, toward the terrestrial magnetic field axis, potentially enhancing the power transmitted through radio windows. The observations are interpreted in the light of competing concepts of transmission.

  17. High frequency inductive measurements of organic conductors with the application of high magnetic fields and low temperatures

    NASA Astrophysics Data System (ADS)

    Winter, Laurel E.

    Organic conductors are interesting to study due to their low dimensionality that leads to a number of competing low temperature ground states. Comprised of a number of different molecules that can be varied by the substitution of one atom for another, organic systems also provide a large number of similar compounds that lend themselves to comparison studies. Two such low-dimensional organic conductors, Per2[Pt(mnt)2] and (TMTSF)2ClO4, which are members of large families of compounds, are the topic of this dissertation. Both materials are considered quasi-one-dimensional and have a number of low temperature transitions, some of which can be studied via changes in the magnetic properties of the systems. The Per2[M(mnt)2] family of compounds provides a system for exploring the similarities and differences of the system's properties when the metal M has a localized spin (M = Pt, Ni, and Fe) versus when the metal is diamagnetic (M = Au, Cu, and Co). In the case of Per2[Pt(mnt)2] - one of the compounds of focus in this dissertation - the metallic perylene chains undergo a metal- insulator transition due to the formation of a charge density wave at Tc ~ 8 K, which also occurs in Per2[Au(mnt)2] at 12 K. However, unlike in the M = Au compound, an additional transition occurs in the M = Pt compound due to the localized Pt spins (S = 1/2) on the insulating Pt(mnt)2 chains - the spin chains of Per2[Pt(mnt)2] undergo a spin-Peierls transition at 8 K. One focus of the experimental work of this dissertation focuses on the magnetic properties of the spin chains in Per2[Pt(mnt)2], via inductive susceptibility measurements at temperatures down to 0.5 K and fields up to 60 T. The experimental results show a coupling of the spin-Peierls and charge density wave states below 8 K and 20 T, above which both states are suppressed. Further measurements show a second spin state transition occurs above 20 T that coincides with a field induced insulating state in the perylene chains. These

  18. Induction Heating of Planetesimals in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, W.

    2011-01-01

    Induction heating is a process originally proposed by Sonett et al. to explain thermal processing of asteroids, some of which were heated to temperatures >1000 K in the solar nebula. In the scenario of Sonett et al., the asteroids were heated during the Sun's T Tauri phase by a dense, fully-ionized solar wind. In their view an asteroid exposed to such a wind would "see” a motional electric field E=-v/c x B, where v is the wind velocity and B is the magnetic field in the wind's rest frame. If correct, the resulting electric polarization of the asteroidal material would produce electrical currents and heating via Ohmic dissipation. We revisit the induction heating mechanism to assess its possible relevance to planetesimals in weakly-ionized protoplanetary disks, where large magnetic fields of 0.1-1 G are predicted on a variety of grounds. Due to the high densities of these disks, we adopt a fluid approach for the plasma. We point out that E=-v/c x B is strictly speaking the electric field far from a planetesimal, where the plasma streams freely. At the planetesimal surface, viscous forces in a shear layer bring the plasma to rest and the motional electric field vanishes. We show that there is nevertheless a nonvanishing electric field produced indirectly via magnetic field perturbations in the shear layer. We calculate these perturbations by solving the equations of nonideal MHD, including Ohmic dissipation, the Hall effect, and ambipolar diffusion. We use these results to find the electric field in- and outside a planetesimal and give quantitative estimates of the rates of heating by Ohmic dissipation, viscous dissipation, and energy dissipation associated with ambipolar diffusion.

  19. Verification and validation for induction heating

    SciTech Connect

    Lam, Kin; Tippetts, Trevor B; Allen, David W

    2008-01-01

    Truchas is a software package being developed at LANL within the Telluride project for predicting the complex physical processes in metal alloy casting. The software was designed to be massively parallel, multi-material, multi-physics, and to run on 3D, fully unstructured meshes. This work describes a Verification and Validation assessment of Truchas for simulating the induction heating phase of a casting process. We used existing data from a simple experiment involving the induction heating of a graphite cylinder, as graphite is a common material used for mold assemblies. Because we do not have complete knowledge of all the conditions and properties in this experiment (as is the case in many other experiments), we performed a parameter sensitivity study, modeled the uncertainties of the most sensitive parameters, and quantified how these uncertainties propagate to the Truchas output response. A verification analysis produced estimates of the numerical error of the Truchas solution to our computational model. The outputs from Truchas runs with randomly sampled parameter values were used for the validation study.

  20. Induction heat treatment as a means of increasing production

    SciTech Connect

    Golovin, G.F.; Shamov, A.N.

    1988-01-01

    The economic effectiveness of induction heat treatment was determined by a number of factors, including: saving energy and resources by substituting surface hardening for bulk or casehardening, improving labor productivity by process automation and including induction heat treatment equipment in the production line. Induction heating was found to be quick, does not require protection from oxidation, makes it possible to mechanize and automate the production process, and improves stabilization properties after annealing.

  1. Simulation of the processes that occur in a high-frequency VChI 11-60/1,76 induction plant for melting of metals and the conservation of radioactive wastes

    NASA Astrophysics Data System (ADS)

    L'vov, E. I.

    2016-06-01

    High-frequency induction plants are widely used to melt high-purity refractory metals and to conserve radioactive wastes in a glassy mass. The regimes of operation of such a plant are simulated, and the optimum conditions of stable energy transfer to a melting crucible are revealed.

  2. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat

    SciTech Connect

    Shintani, Seine A.; Oyama, Kotaro; Fukuda, Norio; Ishiwata, Shin’ichi

    2015-02-06

    Highlights: • We tested the effects of infra-red laser irradiation on cardiac sarcomere dynamics. • A rise in temperature (>∼38 °C) induced high-frequency sarcomeric auto-oscillations. • These oscillations occurred with and without blockade of intracellular Ca{sup 2+} stores. • Cardiac sarcomeres can play a role as a temperature-dependent rhythm generator. - Abstract: In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >∼38 °C induced [Ca{sup 2+}]{sub i}-independent high-frequency (∼5–10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact sarcoplasmic reticular functions, HSOs coexisted with [Ca{sup 2+}]{sub i}-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (∼10 and ∼1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.

  3. A dynamic model for the simulation of induction heating devices

    SciTech Connect

    Nerg, J.; Tolsa, K.; Silventoinen, P.; Partanen, J.; Pyrhoenen, J.

    1999-09-01

    Induction heating is an efficient, easily controlled method for the heating of electrically conductive objects in processes such as metal hardening or annealing. Here, a simulation procedure designed for the dynamic analysis of induction heating systems is described. The procedure starts from the FEM based evaluation of the load impedance. This, as a function of the heating time is transferred to the dynamic model describing the whole induction heating device, i.e., the power supply, its control system, the load and the impedance matching circuit. With the developed model the start-up of the heating process as well as quick transients, e.g., fault situations can be examined. The applicability of the model was tested in the design of the induction heating installation developed for the annealing of aluminium plates. Temperature error less than 5% has been achieved.

  4. Inductively heated particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  5. A Calculation Method of Induction Heating Processes in Magnetic Metals

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    Various phenomena in induction heating of magnetic metals are investigated by using a multi-physics simulation method. A new theoretical treatment of kHz frequency magnetic permeability including the hysteresis characteristics is proposed to calculate the induction heating (IH) processes in magnetic metals. The complex phenomena of skin effects, heat emission, resistivity and magnetization in the heated metals are investigated, where the devised methods are applicable to various magnetic investigations. An estimation method is proposed as the retarded-trace method for analyzing the time dependent B-H characteristics.

  6. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    SciTech Connect

    Menzel, Raymond L.; Roberge, Wayne G. E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  7. Approximating ambient D-region electron densities using dual-beam HF heating experiments at the high-frequency Active Auroral Research Program (HAARP)

    NASA Astrophysics Data System (ADS)

    Agrawal, Divya

    Dual-beam ELF/VLF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are critically compared with the predictions of a newly developed ionospheric high frequency (HF) heating model that accounts for the simultaneous propagation and absorption of multiple HF beams. The dual-beam HF heating experiments presented herein consist of two HF beams transmitting simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere in the extremely low frequency (ELF, 30 Hz to 3 kHz) and/or very low frequency (VLF, 3 kHz to 30 kHz) band while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF/VLF conductivity modulation and thereby the efficiency of ELF/VLF wave generation. Ground-based experimental observations are used together with the predictions of the theoretical model to identify the property of the received ELF/VLF wave that is most sensitive to the effects of multi-beam HF heating, and that property is determined to be the ELF/VLF signal magnitude. The dependence of the generated ELF/VLF wave magnitude on several HF transmission parameters (HF power, HF frequency, and modulation waveform) is then experimentally measured and analyzed within the context of the multi-beam HF heating model. For all cases studied, the received ELF/VLF wave magnitude as a function of transmission parameter is analyzed to identify the dependence on the ambient D-region electron density (Ne) and/or electron temperature ( Te), in turn identifying the HF transmission parameters that provide significant independent information regarding the ambient conditions of the D-region ionosphere. A theoretical analysis is performed to determine the conditions under which the effects of Ne and Te can be decoupled, and the results of this analysis are applied to identify an electron density profile that can reproduce the unusually high level of ELF

  8. Synthesis of Multiwall Carbon Nanotubes by Inductive Heating CCVD

    NASA Technical Reports Server (NTRS)

    Biris, A. R.; Biris, A. S.; Lupu, D.; Trigwell, S.; Rahman, Z. U.; Aldea, N.; Marginean, P.

    2005-01-01

    The CCVD syntheses of MWCNTs from acetylene on Fe:Co:CaCO 3 and Fe:Co:CaO were performed using two different methods of heating: outer furnace and inductive heating. The comparative analysis of the MWCNTs obtained by the two methods show that the tubes grown in inductive heating have smaller diameters (5-25 nm), with fewer walls and aspect ratio of the order of hundreds. The ratio of outer to inner diameter (od/id) is ranging between 2 and 2.5. Inductively assisted CCVD is a very attractive method because of the major advantages that it presents, like low energetic consumption, thinner, well crystallized and more uniform tubes.

  9. Numerical modeling in induction heating for axisymmetric geometries

    SciTech Connect

    Chaboudez, C.; Glardon, R.; Mari, D.; Clain, S.; Rappaz, J.; Swierkosz, M.

    1997-01-01

    Induction heating is widely used in today`s industry, in operations such as metal hardening, preheating for forging operations, or brazing. It is a complex process, involving both electromagnetic and thermal phenomena. Since the design and the investigation of an induction heating system usually relies upon a series of tedious, expensive and long experiments, numerical simulation can be a valuable help in this field. This paper deals with numerical simulation of induction heating for axisymmetric geometries. A mathematical model is presented, together with a numerical scheme based on the Finite Element Method. A numerical simulation code was implemented using the model presented in this paper. A comparison between results given by the code and experimental measurements is provided.

  10. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  11. Wireless induction heating in a microfluidic device for cell lysis.

    PubMed

    Baek, Seung-ki; Min, Junghong; Park, Jung-Hwan

    2010-04-01

    A wireless induction heating system in a microfluidic device was devised for cell lysis to extract DNA and RNA from Escherichia coli. The thermal responses of nickel, iron and copper heating units were studied by applying an alternating magnetic field as a function of geometry of unit, strength of magnetic field, and kind of metal. Heating units were prepared by cutting metal film using a fiber laser, and the units were integrated into a microchannel system using a soft lithographic process. Variation and distribution of temperature on the surface of the heating units was observed using a thermographic camera and temperature labels. The amount of protein released from E. coli by thermal lysis was determined by protein concentration measurement. Hemoglobin released from red blood cells was observed using colorimetric intensity measurement. Extracted DNA was quantified by real-time polymerase chain reaction, and the profile was compared with that of a positive control of ultrasonically disrupted E. coli. The stability of RNA extracted by induction heating was quantified by the measurement of 23S/16S rRNA ratio and comparison with that by normal RNA extraction kit as a gold standard. A solid-shaped nickel structure was selected as the induction heating element in the microfluidic device because of the relatively small influence of geometries and faster thermal response.The amount of protein extracted from E. coli and hemoglobin released from red blood cells by induction heating of the nickel unit in the microfluidic device was proportional to the strength of the applied magnetic field. The lysis of E. coli by induction heating was as effective as lysis of DNA by the ultrasonication method because the threshold cycle values of the sample were compatible with those of the positive control as measured by ultrasonication. Thermal lysis of E. coli by induction heating represents a reasonable alternative to a commercial RNA extraction method as shown by the comparative

  12. Magnetic induction heating of FeCr nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Olivera, J.; Soto-Armañanzas, J.

    2012-06-01

    In this work the thermal effects of magnetic induction heating in (FeCr)73.5Si13.5Cu1B9Nb3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia.

  13. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  14. Graphene synthesis via magnetic inductive heating of copper substrates.

    PubMed

    Piner, Richard; Li, Huifeng; Kong, Xianghua; Tao, Li; Kholmanov, Iskandar N; Ji, Hengxing; Lee, Wi Hyoung; Suk, Ji Won; Ye, Jongpil; Hao, Yufeng; Chen, Shanshan; Magnuson, Carl W; Ismach, Ariel F; Akinwande, Deji; Ruoff, Rodney S

    2013-09-24

    Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed. PMID:23930903

  15. Graphene synthesis via magnetic inductive heating of copper substrates.

    PubMed

    Piner, Richard; Li, Huifeng; Kong, Xianghua; Tao, Li; Kholmanov, Iskandar N; Ji, Hengxing; Lee, Wi Hyoung; Suk, Ji Won; Ye, Jongpil; Hao, Yufeng; Chen, Shanshan; Magnuson, Carl W; Ismach, Ariel F; Akinwande, Deji; Ruoff, Rodney S

    2013-09-24

    Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed.

  16. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  17. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  18. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik; Collins, Ken

    2009-07-15

    Capacitively coupled plasma (CCP) discharges using high frequency (HF) and very high frequency (VHF) sources are widely used for dielectric etching in the semiconductor industry. A two-dimensional fluid plasma model is used to investigate the effects of interelectrode gap on plasma spatial characteristics of both HF and VHF CCPs. The plasma model includes the full set of Maxwell's equations in their potential formulation. The peak in plasma density is close to the electrode edge at 13.5 MHz for a small interelectrode gap. This is due to electric field enhancement at the electrode edge. As the gap is increased, the plasma produced at the electrode edge diffuses to the chamber center and the plasma becomes more uniform. At 180 MHz, where electromagnetic standing wave effects are strong, the plasma density peaks at the chamber center at large interelectrode gap. As the interelectrode gap is decreased, the electron density increases near the electrode edge due to inductive heating and electrostatic electron heating, which makes the plasma more uniform in the interelectrode region.

  19. Induction heating apparatus and methods of operation thereof

    SciTech Connect

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  20. High-frequency furnace. Final technical report

    SciTech Connect

    Zumbrunnen, A.D.

    1985-04-30

    An experimental furnace has been built for the purpose of evaluating a new technique for the high purity melting of certain metals and semiconductors. The melt is contained in a solidified skull of the same material being melted, thus avoiding crucible reactions that are a problem in conventional processing. A number of commercial applications of the invention are discussed, assuming that feasibility can be etablished. These include the melting and crystal growth of silicon, where the avoidance of crucible contamination would improve the energy conversion efficiency of solar cells; and the consolidation of titanium sponge and scrap, where energy savings and other process advantages would be realized. The production of ferrous and non-ferrous, specialty alloys is also discussed. Heating power is derived from the electrical, proximity effect which is used to concentrate a high-frequency (9.6 kHz) current in the melt zone. The power source is a conventional, 50 kW, solid-state inverter of the type used in induction heating practice. All heats were conducted on a cast iron workpiece in argon at atmospheric pressure. The melt temperature of the casting (2100/sup 0/F) was not achieved in any test run; however, the ability of proximity effect to generate localized heating was clearly demonstrated. A maximum temperature of about 1600/sup 0/F was reached at an inverter power output of approximately seventy-five percent. Full power was not obtained because of a poor impedance match between the furnace and power supply. Temperature was further limited because of the absence of heat shielding and other factors which resulted in excessive heat loss from the workpiece. These results are considered to be only preliminary since no attempt has been made to optimize either the electrical or thermal characteristics of the system.

  1. Induction Hardening vs Conventional Hardening of a Heat Treatable Steel

    NASA Astrophysics Data System (ADS)

    Sackl, Stephanie; Leitner, Harald; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2014-11-01

    This study focuses on the comparison of mechanical and microstructural properties of induction and conventionally heat-treated steels in the as-quenched state. The investigated steel is a heat treatable 42CrMo4 steel. In order to characterize the mechanical properties, tensile tests and Vickers hardness tests are performed. The yield strength and hardness of the induction hardened condition turn out to be slightly lower compared to the conventionally hardened one. Light optical and scanning electron microscopy show no differences in the martensitic structure of the induction and conventionally hardened condition. However, electron back scatter diffraction investigations reveal a smaller block size within the conventionally hardened specimen. Carbon mappings by electron probe micro analysis show a homogenous carbon concentration in the conventionally hardened and a non-uniform distribution in the induction-hardened case. The segregation of the carbon exhibits line-type features in the induction hardened condition, lowering the total amount of carbon in the matrix. Therefore, the carbon content in the matrix of the conventionally hardened condition is slightly higher, which causes a smaller block size. The smaller block size is believed to be the reason for the higher hardness and yield strength.

  2. High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv Narashima) by using embryo apex.

    PubMed

    Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Cotton (Gossypium hirsutum L.) is one of the most commercially important fiber crops in the world. Compared with other crops, cotton represents a recalcitrant species for regeneration protocols. The development of efficient and rapid regeneration protocol for elite Indian cotton variety could help improve the quality characteristics and biotic or abiotic stress tolerance. Here we report a novel regeneration protocol in Indian cotton cultivar Narashima. The maximum number of multiple shoots obtained was 16 per explants, performance which has never been achieved in any prior reports. The embryo apex explants were isolated from 2 d old in vitro growing seedlings. Explants were cultured on MS medium containing different plant growth regulator combinations in order to induce multiple shoots. Among the tested combinations, the 2 mg/l of 6-benzylaminopurine (BAP) and 2 mg/l kinetin (KIN) proved to be most suited for achieving the maximum number of multiple shoots. The elongation of multiple shoots was obtained in media supplemented with gibberellic acid (GA3). The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. This method avoids callus tissue, the stage of regeneration which may lead to somaclonal variation. The important feature of the presented method is shortening of regeneration time, as well as the induction of a high number of multiple shoots per explants. The present protocol may provide an efficient and rapid regeneration tool for obtaining more stable transformants from embryo apex explants of Indian cotton cultivar Narashima.

  3. Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment.

    PubMed

    Kerbel, R S; Frost, P; Liteplo, R; Carlow, D A; Elliott, B E

    1984-01-01

    Treatment of a variety of highly tumorigenic mouse lines in vitro with chemical mutagens, such as ethyl methane sulfonate (EMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), can result in extraordinarily high frequencies (sometimes in excess of 90%) of strongly immunogenic clones unable to grow progressively in normal syngeneic hosts. These clones will, however, grow in immunosuppressed hosts and gradually regain tumorigenic ability in normal mice if maintained in long-term (several months-1 year) culture, i.e., they are often phenotypically unstable. These features--phenotypic drift and high frequency--make it unlikely that point mutations are the underlying mechanism involved in the generation of the variants. Results presented here demonstrate that these observations can be reproduced on the same tumor lines using 5-azacytidine--an analogue of cytidine which can be incorporated into DNA causing subsequent extensive hypomethylation of cytosine residues in the absence of any significant mutagenic effects. Furthermore, 5-azacytidine treatment of a nonmetastatic mouse mammary tumor led to the emergence of a small number of heritable but unstable tumor clones capable of spontaneous metastatic spread. Because it is known that DNA hypomethylation can lead to transcriptional activation of normally silent genes, that altered methylation patterns can be somatically replicated with a high but not perfect fidelity, and that mutagens can cause DNA hypomethylation, we propose that DNA hypomethylation followed by de novo methylation represents a plausible mechanism to account not only for the induction of the nontumorigenic variants but for a number of aspects of tumor progression and tumor heterogeneity, as well. In particular, we refer to heritable phenotypic alterations in tumor cell populations which occur at very high frequency but which are not necessarily stable over very long periods of time.

  4. TORO II simulations of induction heating in ferromagnetic materials

    SciTech Connect

    Adkins, D.R.; Gartling, D.K.; Kelley, J.B.; Kahle, P.M.

    1997-09-01

    TORO II is a finite element computer program that is used in the simulation of electric and magnetic fields. This code, which was developed at Sandia National Laboratories, has been coupled with a finite element thermal code, COYOTE II, to predict temperature profiles in inductively heated parts. The development of an effective technique to account for the nonlinear behavior of the magnetic permeability in ferromagnetic parts is one of the more difficult aspects of solving induction heating problems. In the TORO II code, nonlinear, spatially varying magnetic permeability is approximated by an effective permeability on an element-by-element basis that effectively provides the same energy deposition that is produced when the true permeability is used. This approximation has been found to give an accurate estimate of the volumetric heating distribution in the part, and predicted temperature distributions have been experimentally verified using a medium carbon steel and a 10kW industrial induction heating unit. Work on the model was funded through a Cooperative Research and Development Agreement (CRADA) between the Department of Energy and General Motors` Delphi Saginaw Steering Systems.

  5. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique. PMID:25636803

  6. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  7. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  8. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  9. Induction heating and operator exposure to electromagnetic fields.

    PubMed

    Stuchly, M A; Lecuyer, D W

    1985-11-01

    Alternating magnetic fields are used in industry for induction heating of metals and semiconductors. Relatively high power, typically of a few to a few hundred of kW is used, and a frequency of operation ranges from 60 Hz to a few tens of MHz. A survey of the magnetic field strengths to which the operators are exposed has shown that these exposures are, in many instances, high compared with recommended exposure limits.

  10. Extraordinary induction heating effect near the first order Curie transition

    NASA Astrophysics Data System (ADS)

    Barati, M. R.; Selomulya, C.; Sandeman, K. G.; Suzuki, K.

    2014-10-01

    While materials with a 1st order Curie transition (TC) are known for the magnetic cooling effect due to the reversibility of their large entropy change, they also have a great potential as a candidate material for induction heating where a large loss power is required under a limited alternating magnetic field. We have carried out a proof-of-concept study on the induction heating effect in 1st order ferromagnetic materials where the temperature is self-regulated at TC. LaFe11.57Si1.43H1.75, a well-known magnetocaloric material, was employed in this study because TC of this compound (319 K) resides in the ideal temperature range for hyperthermia treatment of cancerous cells. It is found that the hysteresis loss of LaFe11.57Si1.43H1.75 increases dramatically near TC due to the magnetic phase coexistence associated with the 1st order magnetic transition. The spontaneous magnetization (Ms) shows a very abrupt decrease from 110 Am2kg-1 at 316 K to zero at 319 K. This large Ms immediately below TC along with the enhanced irreversibility of the hysteresis curve result in a specific absorption rate as large as 0.5 kWg-1 under a field of 8.8 kAm-1 at 279 kHz. This value is nearly an order of magnitude larger than that observed under the same condition for conventional iron oxide-based materials. Moreover, the large heating effect is self-regulated at the 1st order TC (319 K). This proof-of-concept study shows that the extraordinary heating effect near the 1st order Curie point opens up a novel alloy design strategy for large, self-regulated induction heating.

  11. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  12. Heat-treatment by using induction heating on the Minsk Tractor Plant

    SciTech Connect

    Kosmovich, L.S.; Baranov, V.S.; Koshelenkov, K.N.; Fel'dman, L.Ya.

    1988-01-01

    The Minsk Tractor Plant uses a technique for hardening preceded by induction heating for more than 50% of its heat-treated parts made from 45, 40Kh, 38KhGs, and 33KhS steels. The majority of parts undergo heat-treatment on the machining lines. This method made it possible to develop and put into service an automatic device for strainless hardening of strips in the forced conditions. Improving and introducing this new technological process, equipment, and fittings for heat treatment by induction heating was found to increase the life of the tractor parts, reduce labor costs for their manufacture as well as increase savings in electricity and rolled materials.

  13. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  14. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  15. Physical Aspects of Magnetic Induction Heating in Hyperthermia.

    NASA Astrophysics Data System (ADS)

    Wang, Mann-Tchao

    The technical aspects of the heating of a deep -seated lung tumor by electromagnetic induction have been explored by means of a theoretical model. It was found that frequencies up to 30 MHz can be used without significant losses in magnetic field depth penetration. Steady-state temperature solutions to the bio-heat equation are presented for the heating of a thorax model consisting of a spherical tumor embedded in lung tissue which is layered by muscle and fatty tissue. Analytical solutions are presented for each of the tissue regions along with their numerical evaluations over a range of physical characteristics, including surface cooling effects. A strong dependence of tumor temperature on size and blood perfusion rate is shown to exist and can be used to optimize treatment parameters. Tendencies of the chest muscles and overlaying fatty tissue to overheat, particularly in the case of an obese patient, are discussed along with the alleviating influence of surface cooling. Healthy lung tissue, on the other hand, is shown to be safe from any significant damage in such a heating situation. Transient times required for tumors to achieve thermal equilibrium are computed and shown to depend strongly on tumor size and, to a lesser extent, on blood perfusion rate. The overall results obtained from the model are compared with available clinical data and are found to be in line with those observations. The design and construction of an apparatus which can produce the required induction fields is described. The device consists of a single-turn induction coil with a resonant capacitor and two coupling capacitors. It can be tuned for any patient to represent a 50 ohm matched load at 13.56 MHz. The design is carefully balanced for minimum interference with the thermocouple thermometer, making it possible to make measurements while the radio frequency power is turned on.

  16. High frequency inductive lamp and power oscillator

    DOEpatents

    Kirkpatrick, Douglas A.; Gitsevich, Aleksandr

    2005-09-27

    An oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and a tuning circuit connected to the input of the amplifier, wherein the tuning circuit is continuously variable and consists of solid state electrical components with no mechanically adjustable devices including a pair of diodes connected to each other at their respective cathodes with a control voltage connected at the junction of the diodes. Another oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and transmission lines connected to the input of the amplifier with an input pad and a perpendicular transmission line extending from the input pad and forming a leg of a resonant "T", and wherein the feedback network is coupled to the leg of the resonant "T".

  17. Induction-heated cooking appliance using new quasi-resonant ZVS-PWM with power factor correction

    SciTech Connect

    Wang, S.; Nakaoka, Mutsuo; Izaki, Kiyoshi; Hirota, Izuo; Yamashita, Hidekazu; Omori, Hideki

    1998-07-01

    This paper presents a new prototype of a voltage-fed quasi-load resonant inverter with a constant-frequency variable-power (CFVP) regulation scheme, which is developed for the next-generation high-frequency high-power induction-heated (IH) cooking appliances in household applications. This application-specific high-frequency single-ended push-pull inverter using new-generation specially designed insulated gate bipolar transistors (IGBT`s) can efficiently operate under a principle of zero-voltage switching pulsewidth modulation (ZVS-PWM) strategy. This low-cost soft-switching inverter using reverse-conducting and reverse-blocking IGBT`s is more suitable for multiple-burner-type induction-heating cooking appliances. The operating principle and unique features of a new resonant ZVS-PWM inverter circuit topology is originally described, together with its steady-state power regulation characteristics, which are illustrated on the basis of its computer-aided simulation and experimental results. The ZVS operation condition on power regulation, loss analysis of new IGBT`s incorporated into this inverter, and its active filtering performance are discussed herein for IH cooking appliances.

  18. Heat shock protein induction and induced thermal tolerance are independent in adult salamanders.

    PubMed

    Easton, D P; Rutledge, P S; Spotila, J R

    1987-02-01

    Ectothermic vertebrates become thermally tolerant (heat hardened) after exposure to heat shock. Eukaryotic cells show a similar response. Cellular thermal tolerance is correlated with the induction of heat shock proteins (hsps). We have investigated the relationship between heat hardening in salamanders and the induction of hsps in the tissues of these organisms. Although the synthesis of hsps can be induced in these animals by sublethal heat shocks, conditions required for hsp induction and heat hardening often do not coincide. We conclude that induced thermal tolerance in adult salamanders is independent of hsp induction in their tissues. PMID:3559509

  19. Inductively heated plasma waste treatment for energy recovery.

    PubMed

    Herdrich, G; Schmalzriedt, S; Laufer, R; Dropmann, M; Gabrielli, R

    2014-08-01

    An assessment of a decentralized inductively heated plasma waste treatment system for energy recovery has been done. The modular miniaturized high enthalpy plasma source IPG6 is a reference for the system and has been qualified for inert but also chemically aggressive gas compositions. An identification and review of applications were undertaken. Niches of high environmental and societal importance are considered: hospital waste (threshold countries), shipboard waste and marine litter. The wastes are reviewed deriving relevant parameter for a system analysis aiming for the derivation of energy production and efficiencies. The system analysis shows advantageous constellation due to the wastes' energy leading to self-feeding systems.

  20. A New Approach in Optimizing the Induction Heating Process Using Flux Concentrators: Application to 4340 Steel Spur Gear

    NASA Astrophysics Data System (ADS)

    Barka, Noureddine; Chebak, Ahmed; El Ouafi, Abderrazak; Jahazi, Mohammad; Menou, Abdellah

    2014-09-01

    The beneficial effects of using flux concentrators during induction heat treatment process of spur gears made of 4340 high strength steel is demonstrated using 3D finite element model. The model is developed by coupling electromagnetic field and heat transfer equations and simulated by using Comsol software. Based on an adequate formulation and taking into account material properties and process parameters, the model allows calculating temperature distribution in the gear tooth. A new approach is proposed to reduce the electromagnetic edge effect in the gear teeth which allows achieving optimum hardness profile after induction heat treatment. In the proposed method, the principal gear is positioned in sandwich between two other gears having the same geometry that act as flux concentrators. The gap between the gear and the flux concentrators was optimized by studying temperature variation between the tip and root regions of gear teeth. Using the proposed model, it was possible identifying processing conditions that allow for quasi-uniform final temperature profile in the medium and high frequency conditions during induction hardening of spur gears.

  1. Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article

    SciTech Connect

    Jankowski, Todd A; Johnson, Debra P; Jurney, James D; Freer, Jerry E; Dougherty, Lisa M; Stout, Stephen A

    2009-01-01

    The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.

  2. The expression and induction of heat shock proteins in molluscs.

    PubMed

    Liu, Dongwu; Chen, Zhiwei

    2013-05-01

    Living cells respond to stress stimuli by triggering rapid changes in the protein profiles, and the induction of heat shock proteins (HSPs) plays an important part in this process. HSPs, mainly acting as molecular chaperones, are constitutively expressed in cells and involved in protein folding, assembly, degradation, and intracellular localization. The overexpression of HSPs represents a ubiquitous molecular mechanism to cope with stress. Compared to vertebrates, molluscs have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis. HSPs may play an important role in the survival strategy of molluscs during the biphasic life stages. Since aquatic environments are highly dynamic, molluscs may be subject to a variety of sources of stress and HSPs might play a more important role in the adaptation of these animals. Moreover, the mechanisms of stress tolerance in molluscs can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. The cDNA of HSPs has been cloned from some molluscs, and HSPs can be induced by heat stress, hypoxia, heavy metal contamination, and aestivation, etc. The expression of HSPs was detected in the neuroendocrine system, mollusc development, and reproductive process. Furthermore, the induction of HSPs is related with the phosphorylation of stress-activated p38 mitogen-activated protein kinase (p38 MAPK) and cJun-N-terminal kinases (JNKs) in molluscs.

  3. Induction Heating of Hypervelocity Impact Samples to 2500 Degrees Centigrade

    NASA Technical Reports Server (NTRS)

    Simmons, Joshua; Pardo, Art; Henderson, Don; Rodriguez, Karen

    2014-01-01

    The Remote Hypervelocity Test Laboratory (RHTL) at White Sands Test Facility (WSTF) was asked to heat samples up to 2500 degrees Centigrade (4532 degrees Fahrenheit) to simulate reentry scenarios of crafts where heated shields are impacted with single small particles ranging from 0.2 to 1.0 millimeters (.008 to.039 inches) of various materials. The team decided an electromagnetic induction (induction heater) was the best method to achieve and control the temperatures in a rapid manner. The samples consisted of three-dimensional carbon-carbon and two-dimensional carbon-phenolic, which are both electrically conductive. After several attempts the team was able to achieve over 2500 degrees Centigrade (4532 degrees Fahrenheit) in ambient atmosphere. When the system was moved to the target chamber and the vacuum system evacuated down to 250 millitorr, arcing occurred between the bus bars and tank, the feedthrough fittings that carried the coolant and current, and between the target sample and coil. To overcome this arcing, conformal coatings, room temperature vulcanization (RTV) silicone, and other non-conductive materials were used to isolate the electromagnetic fields.

  4. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  5. Collisionless electron heating in periodic arrays of inductively coupled plasmas

    SciTech Connect

    Czarnetzki, U.; Tarnev, Kh.

    2014-12-15

    A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is presented. In contrast to the well-known case of non-local heating related to the transversal conductivity, when the electrons move perpendicular to the planar coil, we investigate the problem of electrons moving in a plane parallel to the coils. Two types of periodic structures are studied. Resonance velocities where heating is efficient are calculated analytically by solving the Vlasov equation. Certain scaling parameters are identified. The concept is further investigated by a single particle simulation based on the ergodic principle and combined with a Monte Carlo code allowing for collisions with Argon atoms. Resonances, energy exchange, and distribution functions are obtained. The analytical results are confirmed by the numerical simulation. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.

  6. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    NASA Astrophysics Data System (ADS)

    Atherton, L. J.; Martin, R. W.

    1988-09-01

    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.

  7. SIGNAL MEDIATORS AT INDUCTION OF HEAT RESISTANCE OF WHEAT PLANTLETS BY SHORT-TERM HEATING.

    PubMed

    Karpets, Yu V; Kolupaev, Yu E; Yastreb, T O

    2015-01-01

    The effects of functional interplay of calcium ions, reactive oxygen species (ROS) and nitric oxide (NO) in the cells of wheat plantlets roots (Triticum aestivum L.) at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 degrees C during 1 minute) have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium), lanthanum chloride (blocker of calcium channels of various types) and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C). The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate) and NO-synthase (N(G)-nitro-L-arginine methyl ester--L-NAME), and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea). These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets' heat resistance, invoked by hardening heating. The conclusion on calcium's role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made. PMID:27025064

  8. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  9. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  10. Defect characterisation based on heat diffusion using induction thermography testing.

    PubMed

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  11. Defect characterisation based on heat diffusion using induction thermography testing

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  12. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  13. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    SciTech Connect

    Kirichok, A. V. Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-15

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  14. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    NASA Astrophysics Data System (ADS)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  15. Examination of Coil Arrangement for Higher Quality Heating of the Induction Heating Cooker

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Kawata, Kohei; Hara, Takehisa; Ujiie, Satoshi; Joto, Takaya; Masuda, Tadashi

    This paper proposes effective and practical design method of higher quality heating for induction-heating cooker. The IH cooker which has the simple pancake-shaped coil arrangement produces slightly nonuniform temperature distribution along the heating plate. The object of this research is to achieve the better heating performance by adjusting the arrangement of the coil. Easiness of coil winding is added to the evaluation basis. Eddy current analysis is made by the finite element method for calculating the heat distribution of the heating plate. After this, heat transfer analysis is made by the finite element method for calculating the temperature distribution of the heating plate. Multi-objective genetic algorithm is employed for obtaining the optimum arrangement of the coil. The two objectives that mean the uniformity of temperature distribution and the easiness of coil winding are both evaluated. By using the proposed method, we could obtain the expected coil arrangement easily. The temperature distribution approaches closer to uniform distribution by using the obtained coil arrangement which is not difficult to wind.

  16. Method and device for determining bond separation strength using induction heating

    NASA Technical Reports Server (NTRS)

    Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)

    1994-01-01

    An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.

  17. Modeling an RF Cold Crucible Induction Heated Melter with Subsidence

    SciTech Connect

    Grant L. Hawkes

    2004-07-01

    A method to reduce radioactive waste volume that includes melting glass in a cold crucible radio frequency induction heated melter has been investigated numerically. The purpose of the study is to correlate the numerical investigation with an experimental apparatus that in the above mentioned melter. Unique to this model is the subsidence of the glass as it changes from a powder to molten glass and drastically changes density. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melter process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities and magnetic vector potential. Coupled to all of this is a generator that will be used for this lab sized experiment. The coupling with the 60 kW generator occurs with the impedance of the melt as it progresses and changes with time. A power controller has been implemented that controls the primary coil current depending on the power that is induced into the molten glass region.

  18. Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Azuma, Jun-ichi

    2013-06-28

    The stabilities of five neutral monosaccharides (glucose, galactose, mannose, arabinose, and xylose) were kinetically compared after the molecules were submitted to microwave heating (internal heating) and induction heating (external heating) under completely identical thermal histories by employing PID (proportional, integral, and derivative) temperature controlled ovens and homogeneous mixing. By heating in water at 200°C, the rate constants for the decomposition reactions varied from 2.13×10(-4) to 3.87×10(-4)s(-1) for microwave heating; however, the values increased by 1.1- to 1.5-fold for induction heating. Similarly, in a dilute (0.8%) sulfuric acid solution, the decomposition rate constants varied from 0.61×10(-3) to 2.00×10(-3)s(-1) for microwave heating; however, the values increased by 1.5- to 2.2-fold for induction heating. The results show that microwave heating imparts greater stability to neutral monosaccharides than does induction heating. The undesirable decomposition of monosaccharides at the surface boundary of reactor walls may have increased the probability of monosaccharide decomposition during induction heating.

  19. An inductively heated hot cavity catcher laser ion source

    SciTech Connect

    Reponen, M.; Moore, I. D. Pohjalainen, I.; Savonen, M.; Voss, A.; Rothe, S.; Sonnenschein, V.

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  20. An inductively heated hot cavity catcher laser ion source.

    PubMed

    Reponen, M; Moore, I D; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined. PMID:26724021

  1. An inductively heated hot cavity catcher laser ion source

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  2. Design of a superconducting 20 MJ induction heating coil

    SciTech Connect

    Singh, S.K.; Ibrahim, E.A.; Gaberson, P.C.; Eckels, P.W.; Jarabak, A.J.; Rogers, J.D.; Thullen, P.; Walker, M.S.

    1980-01-01

    A pancake-wound, low-loss, superconducting, induction-heating coil has been designed to demonstrate the feasibility of superconducting polaidal system for the Tokamak reactors, to provide confidence in application of superconductivity to actual reactors, and to provide the opportunity to solve specific engineering problems to support the fusion pulsed coil program. the coil is designed to store 20 MJ at 50 kA. The superconductor material is NbTi for a 7.5 tesla maximum field. The coil is designed to survive at least 100,000 cycles of full bipolar half cycle sinusoidal operation from +7.5 tesla to -7.5 telsa fields in one second. The coil is natural convection immersion-cooled at 4.5/sup 0/K in liquid helium bath. The design demonstrates confidence in an advanced design, low-loss, cryostable conductor, along with safety, reliability and the operating life of the coil of more than 100,000 cycles.

  3. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  4. Control of power to an inductively heated part

    DOEpatents

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  5. Control of power to an inductively heated part

    DOEpatents

    Adkins, Douglas R.; Frost, Charles A.; Kahle, Philip M.; Kelley, J. Bruce; Stanton, Suzanne L.

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  6. High frequency integrated MOS filters

    NASA Technical Reports Server (NTRS)

    Peterson, C.

    1990-01-01

    Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous-time filters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters.

  7. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  8. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    SciTech Connect

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  9. Induction of heat-shock protein synthesis in chondrocytes at physiological temperatures

    SciTech Connect

    Madreperla, S.A.; Louwerenburg, B.; Mann, R.W.; Towle, C.A.; Mankin, H.J.; Treadwell, B.V.

    1985-01-01

    Induction of heat-shock protein (HSP) synthesis is demonstrated in cultured calf-chondrocytes at temperatures shown to occur in normal human cartilage during experiments subjecting intact cadaverous hip joints to the parameters of level walking. A 70,000 MW heat-shock protein (HSP-70) is synthesized by chondrocytes at temperatures above 39 degrees C, while induction of synthesis of a 110,000 MW HSP only occurs at temperatures of 45 degrees C or greater. These differences in critical temperatures for induction, and data showing differences in kinetics of induction and repression of synthesis, suggest that there are differences in the mechanism of induction of the two HSPs. The duration of HSP synthesis and inhibition of synthesis of normal cellular proteins is directly proportional to the duration and magnitude of the temperature rise. Possible relationships between these new findings and the initiation and progression of degenerative joint disease are discussed.

  10. Reduced heat pain thresholds after sad-mood induction are associated with changes in thalamic activity.

    PubMed

    Wagner, Gerd; Koschke, Mandy; Leuf, Tanja; Schlösser, Ralf; Bär, Karl-Jürgen

    2009-03-01

    Negative affective states influence pain processing in healthy subjects in terms of augmented pain experience. Furthermore, our previous studies revealed that patients with major depressive disorder showed increased heat pain thresholds on the skin. Potential neurofunctional correlates of this finding were located within the fronto-thalamic network. The aim of the present study was to investigate the neurofunctional underpinnings of the influence of sad mood upon heat pain processing in healthy subjects. For this purpose, we used a combination of the Velten Mood Induction procedure and a piece of music to induce sad affect. Initially we assessed heat pain threshold after successful induction of sad mood outside the MR scanner in Experiment 1. We found a highly significant reduction in heat pain threshold on the left hand and a trend for the right. In Experiment 2, we applied thermal pain stimuli on the left hand (37, 42, and 45 degrees C) in an MRI scanner. Subjects were scanned twice, one group before and after sad-mood induction and another group before and after neutral-mood induction, respectively. Our main finding was a significant group x mood-induction interaction bilaterally in the ventrolateral nucleus of the thalamus indicating a BOLD signal increase after sad-mood induction and a BOLD signal decrease in the control group. We present evidence that induced sad affect leads to reduced heat pain thresholds in healthy subjects. This is probably due to altered lateral thalamic activity, which is potentially associated with changed attentional processes.

  11. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching.

    PubMed

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-12

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  12. Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel

    NASA Astrophysics Data System (ADS)

    Sackl, Stephanie; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2016-07-01

    An induction heat treatment is favorable compared to a conventional one mainly due to significant time and cost savings. Therefore, in this study, the microstructure property relationships during induction and conventional heat treatment of a heat treatable steel 42CrMo4 is investigated. The yield strength and hardness is slightly higher for the conventionally heat-treated steel, whereas the induction heat-treated condition exhibits a roughly 30 J/cm2 higher impact energy. In a previous investigation of the authors, it has been proved that the difference in yield strength originates from the smaller block size of the conventionally heat-treated steel, which was already present after hardening. In the present work, it can be shown that during tempering the martensitic blocks become equi-axed ferrite grains due to recrystallization as revealed by electron back scatter diffraction. Nevertheless, a larger grain size usually is less favorable for the impact toughness of steels. Therefore, another mechanism is responsible for the higher impact energy of the induction hardened and tempered steel. With the aid of transmission electron microscopy a finer distribution of cementite was observed in the induction heat-treated samples. The delay of recovery is the reason for the presence of finer cementite in case of the induction heat-treated steel. Here, the higher heating rates and shorter process times reduce the annihilation of dislocation and as a consequence provide more nucleation sites for precipitation of cementite during tempering. From the obtained experimental results, it is believed that the finer distribution of carbides causes the observed higher impact toughness.

  13. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  14. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  15. Appearance of heat shock proteins during the induction of multiple flagella in Naegleria gruberi.

    PubMed

    Walsh, C

    1980-04-10

    A heat shock to amebae of the amebo-flagellate Naegleria gruberi during differentiation into swimming flagellates results in the induction of heat shock proteins as well as multiple flagella. The principal heat shock proteins migrate on sodium dodecyl sulfate-polyacrylamide gels with apparent molecular weights of 96,000, 77,000, 70,000, and 68,000. These proteins are synthesized preferentially when cells at 25 degrees C are shifted to temperatures above 32 degrees C. The maximal incorporation of methionine into heat shock proteins occurs at 38.2 degrees C, the temperature at which maximal induction of multiple flagella has been reported. Synthesis of heat shock proteins requires new transcription as judged by the ability of actinomycin D to inhibit their synthesis during the first 15 min of heat shock but not thereafter. Although heat shock can induce multiple flagella only when applied during a restricted interval, heat shock proteins are induced at any time cells are shifted to 38.2 degrees C. The response to heat shock of the Naegleria heat shock proteins resembles that of Drosophila heat shock proteins, but the two groups of proteins differ in both size and number. Naegleria heat shock proteins are, however, strikingly similar in size to a group of heat-induced proteins found in chick embryo fibroblast, mouse L, and BHK cells. PMID:7358690

  16. An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements.

    PubMed

    Shinoda, Keiji; Noguchi, Naoki

    2008-01-01

    A new external heating configuration is presented for high-temperature diamond anvil cell instruments. The supporting rockers are thermally excited by induction from an externally mounted copper coil passing a 30 kHz alternating current. The inductive heating configuration therefore avoids the use of breakable wires, yet is capable of cell temperatures of 1100 K or higher. The diamond anvil cell has no resistive heaters, but uses a single-turn induction coil for elevating the temperature. The induction coil is placed near the diamonds and directly heats the tungsten carbide rockers that support the diamond. The temperature in the cell is determined from a temperature-power curve calibrated by the ratio between the intensities of the Stokes and anti-Stokes Raman lines of silicon. The high-pressure transformation of quartz to coesite is successfully observed by micro-Raman spectroscopy using this apparatus. The induction heating diamond anvil cell is thus a useful alternative to resistively heated diamond anvil cells. PMID:18248060

  17. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    PubMed Central

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  18. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating.

    PubMed

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  19. Do asteroids evaporate near pulsars? Induction heating by pulsar waves revisited

    NASA Astrophysics Data System (ADS)

    Kotera, Kumiko; Mottez, Fabrice; Voisin, Guillaume; Heyvaerts, Jean

    2016-07-01

    Aims: We investigate the evaporation of close-by pulsar companions, such as planets, asteroids, and white dwarfs, by induction heating. Methods: Assuming that the outflow energy is dominated by a Poynting flux (or pulsar wave) at the location of the companions, we calculate their evaporation timescales, by applying the Mie theory. Results: Depending on the size of the companion compared to the incident electromagnetic wavelength, the heating regime varies and can lead to a total evaporation of the companion. In particular, we find that inductive heating is mostly inefficient for small pulsar companions, although it is generally considered the dominant process. Conclusions: Small objects like asteroids can survive induction heating for 104 yr at distances as small as 1 R⊙ from the neutron star. For degenerate companions, induction heating cannot lead to evaporation and another source of heating (likely by kinetic energy of the pulsar wind) has to be considered. It was recently proposed that bodies orbiting pulsars are the cause of fast radio bursts; the present results explain how those bodies can survive in the pulsar's highly energetic environment.

  20. Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations

    NASA Astrophysics Data System (ADS)

    Fujita, Hagino; Ishibashi, Kazuhisa

    In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.

  1. Induction hardening: Differences to a conventional heat treatment process and optimization of its parameters

    NASA Astrophysics Data System (ADS)

    Vieweg, A.; Ressel, G.; Prevedel, P.; Raninger, P.; Panzenböck, M.; Marsoner, S.; Ebner, R.

    2016-03-01

    The possibility of obtaining similar mechanical properties with faster heating processes than the conventional ones has been of interest for several years. In the present study, investigations were performed in terms of the influences of such fast heat-treatments on the microstructure and mechanical properties of the material. This investigation compares an inductive with a conventional furnace heat treating process of a 50CrMo4 steel, however only the austenitizing treatment was changed and subsequent quenching and tempering was done in the same way. To this end experiments with a middle frequency generator, using different heating rates and austenitizing temperatures, were conducted and followed by oil quenching of the workpieces. The resulting structures were characterized regarding their microstructures and mechanical properties in order to gather a better understanding of the differences between the inductive and the conventional heat treating process. As a main result it was found, that the fast austenitized samples exhibited worse ductility than the conventional treated material.

  2. Compilation of information on modeling of inductively heated cold crucible melters

    SciTech Connect

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler`s discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE.

  3. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  4. Induction heating and controlled drug release from thermosensitive magnetic microgels

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Bhattarai, S. R.; Sudakar, C.; Wani, A. S.; Cunninghum, R.; Vaishnava, P. P.; Naik, R.; Oupicky, D.; Lawes, G.

    2010-04-01

    Poly-N-isopropyl acrylamide (PNIPAM) is a biocompatible thermosensitive polymer that exhibits reversible volume phase transition from a hydrophilic coil to hydrophobic globule at the lower critical solution temperature (LCST) of 32 ^oC. To stimulate conformational change we introduced magnetite nanoparticles (size ˜12 nm) in the PNIPAM matrix. The PNIPAM/magnetite nanoparticles composite was then exposed to an alternating magnetic field at a frequency of 380 kHz to induce heating in the nanoparticles by Neel and Brownian relaxations. We report in vitro controlled release of anti-cancer drug mitoxantrone which was loaded into PNIPAM/magnetite nanoparticles composite, driven solely by the heating induced by the external magnetic field. We found that the drug released reached 4% in only 4 minutes of heating to 50 ^oC. We also present results on dielectric and magnetic anomalies near the LCST of the PNIPAM-Fe3O4 composite.

  5. Surface modification of graphite and ceramics with metals using induction heating

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Imoto, Akiko; Suzumura, Akio; Katori, Mana; Yamazaki, Takahisa; Sakamoto, Masahiro; Sakimichi, Satoshi

    2014-08-01

    In order to join metals to graphite or ceramics by soldering or brazing, a new surface modification method using induction heating was developed for graphite and ceramics. Such source metals as Cu, Ni, Cr, etc. were induction-heated in vacuum atmosphere and making deposited films on the deposition substrate, or the target substrate; graphite, AlN, Si3N4. The applicability of this method was investigated and the deposited layer was analysed by SEM observation, Auger electron spectrum analysis, X-ray diffractometry, and EPMA. By comparison of ambient vacuum pressure during deposition and the saturated vaopr pressure of source metals, this method was considered to utilize the sublimation phenomenon.

  6. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee

    2015-04-01

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  7. A validated model for induction heating of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Saunders, Robert N.; Boyd, James G.; Hartl, Darren J.; Brown, Jonathan K.; Calkins, Frederick T.; Lagoudas, Dimitris C.

    2016-04-01

    Shape memory alloy (SMA) actuators deliver high forces while being compact and reliable, making them ideal for consideration in aerospace applications. One disadvantage of these thermally driven actuators is their slow cyclic time response compared to conventional actuators. Induction heating has recently been proposed to quickly heat SMA components. However efforts to date have been purely empirical. The present work approachs this problem in a computational manner by developing a finite element model of induction heating in which the time-harmonic electromagnetic equations are solved for the Joule heat power field, the energy equation is solved for the temperature field, and the linear momentum equations are solved to find the stress, displacement, and internal state variable fields. The combined model was implemented in Abaqus using a Python script approach and applied to SMA torque tube and beam actuators. The model has also been used to examine magnetic flux concentrators to improve the induction systems performance. Induction heating experiments were performed using the SMA torque tube, and the model agreed well with the experiments.

  8. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects. PMID:25678063

  9. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects.

  10. Induced electric fields in workers near low-frequency induction heating machines.

    PubMed

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2014-04-01

    Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace.

  11. Induced electric fields in workers near low-frequency induction heating machines.

    PubMed

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2014-04-01

    Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. PMID:24203794

  12. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach. PMID:19736969

  13. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  14. [Identification of hashish samples with inductively coupled high-frequency plasma emission spectrometry and neutron activation analysis and data handling with neuronal networks. 1. Methods for the quantitative determination of characteristic trace elements].

    PubMed

    Lahl, H; Henke, G

    1997-11-01

    Neutron activation analysis (NAA) and inductively coupled plasma emission spectrometry (ICP-AES) were used to quantify the relative contents of Fe, Sc, Ce, Pa, Cr, Co, respectively the absolute contents of Cr, Zn, Mn, Fe, Mg, Al, Cu, Ti, Ca, Sr in hashish samples, seized in different countries. The samples were processed after dry ashing by means of instrumental NAA and after wet mineralization by means of ICP-AES. For determination of the sampling and measurement errors, one of the samples was analyzed repeatedly with both methods. Classifying hashish samples with regard to concentration of certain elements could be done by artificial neural networks with a modified backpropagation algorithm. By this way, identity and non identity of one unknown sample with one of many different samples as data pool can be ascertained, on principle. PMID:9446107

  15. Special Aspects in Designing High - Frequency Betatron

    NASA Astrophysics Data System (ADS)

    Filimonov, A. A.; Kasyanov, S. V.; Kasyanov, V. A.

    2016-01-01

    The article is devoted to designing the high - frequency betatron. In high - frequency betatron most important problem is overheating of the elements of the body radiator unit. In an article some directions of solving this problem are shown.

  16. Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae

    SciTech Connect

    Mitchel, R.E.J.; Morrison, D.P.

    1983-10-01

    When exponentially growing diploid wild type Saccharomyces cervisiae cells were subjected to a sudden rise in temperature (heat shock) they responded by increasing their resistance to the lethal effects of ultraviolet light. We have previously reported heat shock-induced increases in heat and ionizing radiation resistance. The shock-induced rise in resistance to uv light reported here was examined in terms of DNA repair capacity, and we find that the increase is due to induction of the recombinational repair system with no significant response from the uv-excision repair process.

  17. Induction heating to trigger the nickel surface modification by in situ generated 4-carboxybenzene diazonium

    NASA Astrophysics Data System (ADS)

    Arrotin, Bastien; Jacques, Amory; Devillers, Sébastien; Delhalle, Joseph; Mekhalif, Zineb

    2016-05-01

    Nickel is commonly used in numerous applications and is one of the few materials that present strong ferromagnetic properties. These make it a suitable material for induction heating which can be used to activate the grafting of organic species such as diazonium salts onto the material. Diazonium compounds are often used for the modification of metals and alloys thanks to their easy chemical reduction onto the substrates and the possibility to apply a one-step in situ generation process of the diazonium species. This work focuses on the grafting of 4-aminocarboxybenzene on nickel substrates in the context of a spontaneous grafting conducted either at room temperature or by thermal assistance through conventional heating and induction heating. These modifications are also carried out with the goal of maintaining the oxides layer as much as possible unaffected. The benefits of using induction heating with respect to conventional heating are an increase of the grafting rate, a better control of the reaction and a slighter impact on the oxides layer.

  18. Effect of acquisition of improved thermotolerance on the induction of heat shock proteins in broiler chickens.

    PubMed

    Yahav, S; Shamay, A; Horev, G; Bar-Ilan, D; Genina, O; Friedman-Einat, M

    1997-10-01

    The role of heat shock proteins (HSP) in the protection of cells from heat stress is well established. However, very little is known about their contribution to thermotolerance in the complexity of a whole homeotherm animal. Here we report on the analysis of protein synthesis in lung and heart muscle tissues of broiler chickens following exposure to high ambient temperature. Half of the flock was treated by an early age exposure to heat (conditioning), to improve thermotolerance. In contrast to what has been expected, lower levels of HSP induction was observed in the treated chickens. We suggest that 1) the induction of HSP in the heart and lung tissues of the whole animal correlates with the body temperature and 2) HSP response does not represent a part of the long-term mechanism that is evoked by the early age conditioning. PMID:9316120

  19. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  20. Heated allergens and induction of tolerance in food allergic children.

    PubMed

    Netting, Merryn; Makrides, Maria; Gold, Michael; Quinn, Patrick; Penttila, Irmeli

    2013-06-05

    Food allergies are one of the first manifestations of allergic disease and have been shown to significantly impact on general health perception, parental emotional distress and family activities. It is estimated that in the Western world, almost one in ten children have an IgE-mediated allergy. Cow's milk and egg allergy are common childhood allergies. Until recently, children with food allergy were advised to avoid all dietary exposure to the allergen to which they were sensitive, in the thought that consumption would exacerbate their allergy. However, recent publications indicate that up to 70% of children with egg allergy can tolerate egg baked in a cake or muffin without apparent reaction. Likewise, up to 75% of children can tolerate baked goods containing cow's milk, and these children demonstrate IgE and IgG4 profiles indicative of tolerance development. This article will review the current literature regarding the use of heated food allergens as immunotherapy for children with cow's milk and egg allergy.

  1. Heated Allergens and Induction of Tolerance in Food Allergic Children

    PubMed Central

    Netting, Merryn; Makrides, Maria; Gold, Michael; Quinn, Patrick; Penttila, Irmeli

    2013-01-01

    Food allergies are one of the first manifestations of allergic disease and have been shown to significantly impact on general health perception, parental emotional distress and family activities. It is estimated that in the Western world, almost one in ten children have an IgE-mediated allergy. Cow’s milk and egg allergy are common childhood allergies. Until recently, children with food allergy were advised to avoid all dietary exposure to the allergen to which they were sensitive, in the thought that consumption would exacerbate their allergy. However, recent publications indicate that up to 70% of children with egg allergy can tolerate egg baked in a cake or muffin without apparent reaction. Likewise, up to 75% of children can tolerate baked goods containing cow’s milk, and these children demonstrate IgE and IgG4 profiles indicative of tolerance development. This article will review the current literature regarding the use of heated food allergens as immunotherapy for children with cow’s milk and egg allergy. PMID:23739144

  2. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  3. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    PubMed

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  4. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao; Rigby, Wayne; Wallace, John

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  5. Heat treatment of pipes with thickened ends in an induction installation

    SciTech Connect

    Zgura, A.A.; Tyazhel'nikov, A.I.

    1986-03-01

    The authors determined the operating parameters of an industrial induction installation for the purpose of working out recommendations for devising better installations of a similar type. A diagram of the installation is shown and consists of two independent lines: the hardening and the tempering lines. The total capacity of the induction equipment of the hardening line by output frequency is 3 MW. Investigations were carried out with heat treatment of an experimental batch of pipes of steel 28Kh2MFBD. The authors calculated the heatengineering indicators of the installation, which are presented.

  6. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  7. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  8. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    NASA Astrophysics Data System (ADS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-06-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable.

  9. Design, Fabrication and Testing of Two Different Laboratory Prototypes of CSI-based Induction Heating Units

    NASA Astrophysics Data System (ADS)

    Roy, M.; Sengupta, M.

    2012-09-01

    Induction heating is a non-contact heating process which became popular due to its energy efficiency. Current source inverter (CSI) based induction heating units are commonly used in the industry. Most of these CSIs are thyristor based, since thyristors of higher ratings are easily available. These being load commutated apparatus a start-up circuit is needed to initiate commutation. In this paper the design and fabrication of two laboratory prototypes have been presented. The first one, a SCR-based CSI fed controlled induction heating unit (IHU), has been tested with two different types of start-up procedures. Thereafter the fabrication and performance of another IGBT-based CSI is compared with the thyristor-based CSI for a 2 kW, 10 kHz application. These two types of CSIs are fully fabricated in laboratory along with the IHU. Performance analysis and simulation of two different CSIs has been done by using SequelGUI2. The triggering pulses for the inverter devices (for both CSI devices as well as auxilliary thyristor of start-up circuit) have been generated and closed-loop control has been done in FPGA platform built around an Altera make cyclone EPIC12Q240C processor which can be programmed using Quartus II software. Close agreement between simulated and experimental results highlight the accuracy of the experimental work.

  10. Time constant measurement for control of induction heating processes for thixoforming

    NASA Astrophysics Data System (ADS)

    Gerlach, O.; Lechler, A.; Verl, A.

    2015-02-01

    In controlling induction heating systems, several measurement methods exist for controlled heating of metal billets into the semi-solid state for thixoforming. The most common approach is to measure the billet temperature, which suffers from various drawbacks leading to difficulties in process stability. The main disadvantages are the small temperature range of the process window and the alloy composition dependency of the correlation between temperature and liquid fraction. An alternative is to determine the liquid fraction of the billet by measuring the time constant of the load. Although time constant measurement is not affected by the mentioned problems, it is difficult to use it as a controlled variable. This paper shows that disturbances affecting time constant measurement are mainly caused by semiconductor losses inside the inverter. A method is introduced to compensate these losses. This method was implemented and tested in the embedded system of an induction heating unit, thereby showing that it is possible to use time constant measurement to determine the liquid fraction of a billet during induction heating.

  11. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  12. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  13. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology... of High Frequency (HF) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology... in the January 17, 2008, issue of the Federal Register (73 FR 3316). Background and Purpose...

  14. High Frequency Stable Oscillate boiling

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, Silvestre Roberto; Ohl, Claus Dieter

    2015-11-01

    We present an unexpected regime of resonant bubble oscillations on a thin metal film submerged in water, which is continuously heated with a focused CW laser. The oscillatory bubble dynamics reveals a remarkably stable frequency of several 100 kHz and is resolved from the side using video recordings at 1 million frames per second. The emitted sound is measured simultaneously and shows higher harmonics. Once the laser is switched on the water in contact with the metal layer is superheated and an explosively expanding cavitation bubble is generated. However, after the collapse a microbubble is nucleated from the bubble remains which displays long lasting oscillations. Generally, pinch-off from of the upper part of the microbubble is observed generating a continuous stream of small gas bubbles rising upwards. The cavitation expansion, collapse, and the jetting of gas bubbles are detected by the hydrophone and are correlated to the high speed video. We find the bubble oscillation frequency is dependent on the bubble size and surface tension. A preliminary model based on Marangoni flow and heat transfer can explain the high flow velocities observed, yet the origin of bubble oscillation is currently not well understood.

  15. Closed loop control of the induction heating process using miniature magnetic sensors

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  16. Gas nitriding of Ti-6Al-4V by induction heating

    SciTech Connect

    Grosch, J.; Saglitz, M.

    1995-12-31

    The usually poor wear behavior of titanium materials can be improved by thermochemical surface heat treatment. In contrast to conventional procedures, which necessitate prolonged treatment, it is possible to reduce the heat treatment period considerably by means of HF induction. Serving as an example in this context is a Ti-6Al-4V titanium alloy that is to demonstrate the possibilities of induction gas nitriding. Temperature variations between 900 C and 1,600 C have resulted in homogeneous surface structures whose microstructures can basically be explained by the titanium-nitrogen diagram. In particular with the 1,600 C variant, the wear resistance has been improved, compared with the untreated titanium material there is a seventyfold increase in wear resistance.

  17. Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Crisbasan, A.; Chaumont, D.; Sacilotti, M.; Crisan, A.; Lazar, A. M.; Ciobanu, I.; Lacroute, Y.; Chassagnon, R.

    2015-12-01

    Nanostructures of TiO2 were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO2 nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  18. Induction heat treatment and technique of bioceramic coatings production on medical titanium alloys

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Fomina, Marina A.; Poshivalova, Elena Y.; Krasnikov, Aleksandr V.; Petrova, Natalia N.; Zakharevich, Andrey M.; Skaptsov, Alexander A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2015-03-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, physico-mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  19. Performance of annular high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  20. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  1. Viscous effects on motion and heating of electrons in inductively coupled plasma reactors

    SciTech Connect

    Chang, C.H.; Bose, D.

    1999-10-01

    A transport model is developed for nonlocal effects on motion and heating of electrons in inductively coupled plasma reactors. The model is based on the electron momentum equation derived from the Boltzmann equation, retaining anisotropic stress components which in fact are viscous stresses. The resulting model consists of transport equations for the magnitude of electron velocity oscillation and terms representing energy dissipation due to viscous stresses in the electron energy equation. In this model, electrical current is obtained in a nonlocal manner due to viscous effects, instead of Ohm's law or the electron momentum equation without viscous effects, while nonlocal heating of electrons is represented by the viscous dissipation. Computational results obtained by two-dimensional numerical simulations show that nonlocal determination of electrical current indeed is important, and viscous dissipation becomes an important electron heating mechanism at low pressures. It is suspected that viscous dissipation in inductively coupled plasma reactors in fact represents stochastic heating of electrons, and this possibility is exploited by discussing physical similarities between stochastic heating and energy dissipation due to the stress tensor.

  2. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    SciTech Connect

    Buckley, P; Mckinley, G; Wilson, T; Small, W; Benett, W; Bearinger, J; McElfresh, M; Maitland, D

    2005-09-06

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  3. Electromagnetic induction heating of an orthopaedic nickel--titanium shape memory device.

    PubMed

    Müller, Christian W; Pfeifer, Ronny; El-Kashef, Tarek; Hurschler, Christof; Herzog, Dirk; Oszwald, Markus; Haasper, Carl; Krettek, Christian; Gösling, Thomas

    2010-12-01

    Shape memory orthopaedic implants made from nickel-titanium (NiTi) might allow the modulation of fracture healing, changing their cross-sectional shape by employing the shape memory effect. We aimed to show the feasibility and safety of contact-free electromagnetic induction heating of NiTi implants in a rat model. A water-cooled generator-oscillator combination was used. Induction characteristics were determined by measuring the temperature increase of a test sample in correlation to generator power and time. In 53 rats, NiTi implants were introduced into the right hind leg. The animals were transferred to the inductor, and the implant was electromagnetically heated to temperatures between 40 and 60°C. Blood samples were drawn before and 4 h after the procedure. IL-1, IL-4, IL-10, TNF-α, and IFN-γ were measured. Animals were euthanized at 3 weeks. Histological specimens from the hind leg and liver were retrieved and examined for inflammatory changes, necrosis, and corrosion pits. Cytokine measurements and histological specimens showed no significant differences among the groups. We concluded that electromagnetic induction heating of orthopedic NiTi implants is feasible and safe in a rat model. This is the first step in the development of new orthopedic implants in which stiffness or rigidity can be modified after implantation to optimize bone-healing.

  4. High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating.

    PubMed

    Adnane, L; Williams, N; Silva, H; Gokirmak, A

    2015-10-01

    We have developed an automated setup for simultaneous measurement of Seebeck coefficient S(T) and electrical resistivity ρ(T) of thin film samples from room temperature to ∼650 °C. S and ρ are extracted from current-voltage (I-V) measurements obtained using a semiconductor parameter analyzer and temperature measurements obtained using commercial thermocouples. The slope and the x-axis intercept of the I-V characteristics represent the sample conductance G and the Seebeck voltage, respectively. The measured G(T) can be scaled to ρ(T) by the geometry factor obtained from the room temperature resistivity measurement of the film. The setup uses resistive or inductive heating to control the temperature and temperature gradient on the sample. Inductive heating is achieved with steel plates that surround the test area and a water cooled copper pipe coil underneath that generates an AC magnetic field. The measurements can be performed using resistive heating only or inductive heating only, or a combination of both depending on the desired heating ranges. Inductive heating provides a more uniform heating of the test area, does not require contacts to the sample holder, can be used up to the Curie temperature of the particular magnetic material, and the temperature gradients can be adjusted by the relative positions of the coil and sample. Example results obtained for low doped single-crystal silicon with inductive heating only and with resistive heating only are presented. PMID:26520996

  5. Lightning protection devices for high frequencies equipments

    SciTech Connect

    Pierre, J.

    1983-01-01

    Contents: Mechanism of a Lightning Stroke from Antenna to Ground; Principles of Protection Devices for Feeders; Electrical Characteristics of H.F. Protection Devices; Calculation of H.F. Protection Devices; Catalogue Devices for High Frequency Protection; Some Measurement Results for Tees; Measurement Results for Decoupling Line Devices; Installation of High Frequency Devices.

  6. Molecular responses of Escherichia coli caused by heat stress and recombinant protein production during temperature induction.

    PubMed

    Valdez-Cruz, Norma A; Ramírez, Octavio T; Trujillo-Roldán, Mauricio A

    2011-01-01

    In a recent review, we discussed the extensively used temperature-inducible expression system, based on the pL and/or pR phage lambda promoters that are finely regulated by the thermo-labile cI857 repressor. In this system, an increase in temperature induces the heterologous protein production and activates the heat shock response, as well as the stringent and SOS responses. The same responses are activated just by the overproduction of recombinant protein. All such responses result in a metabolic burden to the cells, a decrease in the specific growth rate, and alterations in the central carbon metabolism. Altogether, these effects can alter the quantity and quality of the produced foreign protein. Here, we compare and discuss the transcription of selected genes, and the concomitant synthesis of heat-shock proteins (hsp) soon after thermal induction, in relation to the responses that occur in other expression systems that also trigger the heat-shock response.

  7. [Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids].

    PubMed

    Kolupaev, Yu E; Vayner, A A; Yastreb, T O; Oboznyi, A I; Khripach, V A

    2015-01-01

    The involvement of Ca2+ into the signal transduction of exogenous brassinosteroids (BS) (24-epi-brassinolide-24-EBL and 24-epicastasterone-24-ECS) causing the increase of heat resistance of the cells of wheat (Triticum aestivum L.) coleoptiles was investigated using calcium chelator EGTA and inhibitor of phosphatidylinositol-specific phospholipase C--neomycin. Twenty-four-hour treatment of coleoptile segments with 10 nM solutions of 24-EBL and 24-ECS led to a transient increase in the generation of superoxide anion radical by cell surface and the subsequent activation of superoxide dismutase and catalase. Pretreatment of coleoptiles with EGTA and neomycin depressed to a considerable extent these effects and leveled the increase in heat resistance of wheat coleoptiles that were caused by BS. Possible mechanisms of involvement of calcium signaling into the formation of reactive oxygen species in plant cells and induction of heat resistance of plant cells by the action of exogenous BS have been discussed.

  8. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia.

    PubMed

    Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang

    2016-01-01

    Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.

  9. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology...) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No... less than two weeks; however, for environmental disasters such as the Deepwater Horizon oil...

  10. Propagation of high frequencies in Scandinavia

    SciTech Connect

    Bame, D.

    1989-04-01

    To determine if seismic signals at frequencies up to 50 Hz are useful for detecting events and discriminating between earthquakes and explosions, approximately 180 events from the three-component high-frequency seismic element (HFSE) installed at the center of the Norwegian Regional Seismic Array (NRSA) have been analyzed. The attenuation of high-frequency signals in Scandinavia varies with distance, azimuth, magnitude, and source effects. Most of the events were detected with HFSE, although detections were better on the NRSA where signal processing techniques were used. Based on a preliminary analysis, high-frequency data do not appear to be a useful discriminant in Scandinavia. 21 refs., 29 figs., 3 tabs.

  11. Impact of Stationary Direct Current in the Central Solenoidal Coil on Tokamak Plasma Formation by Non-induction Heating

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu

    2016-09-01

    Stationary direct current in the central solenoidal coil (DCCS) of tokamak devices can reduce the non-induction heating energy necessary for tokamak plasma formation. The magnetic field energy in the inner region of the central solenoidal coil (CS region) is expelled during the tokamak plasma formation, because the vertical magnetic field intensity generated by the central solenoidal coil and poloidal field coils is partly cancelled by the increase in the toroidal plasma current. Because this magnetic field energy expelled from the CS region is distributed to the tokamak plasma in accordance with the mutual inductance, this expelled energy can drive the toroidal plasma current inductively. This energy expulsion in the CS region can be enhanced by the DCCS without the modification of the tokamak plasma configuration, when the CS coil current has negligible leakage magnetic field in the plasma area. Because the drive of the toroidal plasma current by non-induction heating can be assisted by this inductive current drive mechanism, the non-induction heating energy necessary for the tokamak plasma formation can be reduced by the DCCS. If the non-induction heating is constant, the tokamak plasma formation time can be shorted by the DCCS.

  12. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures.

  13. Electromagnetic interference with a bipolar pacemaker by an induction heating (IH) rice cooker.

    PubMed

    Nagatomo, Toshihisa; Abe, Haruhiko; Kohno, Ritsuko; Toyoshima, Takeshi; Fujimoto, Hiroshi; Kondo, Shoichi; Kabashima, Narutoshi; Takeuchi, Masaaki; Tamura, Masahito; Okazaki, Masahiro; Otsuji, Yutaka

    2009-01-01

    Electromagnetic fields may interfere with normal pacemaker function. Despite new device designs and bipolar leads, electromagnetic interference (EMI) remains a concern when pacemaker recipients are exposed to various household appliances. We report the observation of EMI by an induction heating (IH) rice cooker in a patient with sick sinus syndrome who was the recipient of a bipolar dual chamber-pacing system. Stored electrograms revealed episodes of inappropriate ventricular pacing, all coinciding with the opening of an IH rice cooker. Recipients of implantable medical devices must be warned to handle IH rice cookers with caution.

  14. Ibogaine blocked methamphetamine-induced hyperthermia and induction of heat shock protein in mice.

    PubMed

    Yu, X; Imam, S Z; Newport, G D; Slikker, W; Ali, S F

    1999-03-27

    Body temperature changes and heat shock protein (HSP-72) induction in the caudate nucleus were studied in female C57BL/6N mice pretreated with ibogaine (50 mg/kg) and sacrificed 48 h. after a single dose of methamphetamine (20 mg/kg). Methamphetamine injection resulted in hyperthermia and induced HSP-72 expression, whereas treatment with ibogaine alone produced hypothermia. The ibogaine followed by methamphetamine injection showed no hyperthermia and decreased HSP-72 expression. These data indicate that pretreatment with ibogaine can completely block methamphetamine-induced hyperthermia and HSP-72 expression in the striatum.

  15. Magneto-inductive heating of water-based iron oxide ferrofluids

    NASA Astrophysics Data System (ADS)

    Novoselova, Iu. P.; Safronov, A. P.; Samatov, O. M.; Kurlyandskaya, G. V.

    2016-09-01

    Spherical magnetic nanoparticles (MNPs) of iron oxide were fabricated by laser target evaporation technique. Water-based ferrofluids were prepared on the basis of obtained MNPs. Their structure and magnetic properties were studied by a number of methods including transmission electron microscopy, X-ray diffraction, SQUID-magnetometry and magnetic relaxation losses measurements. Magneto-inductive heating experiment showed the specific power loss value of 2 W/g for 1.8 kA/m alternating magnetic field of 214 kHz frequency. These parameters indicate that LTE MNPs are perspective materials for biomedical applications such as hyperthermia.

  16. Historical Review of Electric Household Appliances using Induction-Heating and Future Challenging Trends

    NASA Astrophysics Data System (ADS)

    Hirota, Izuo; Yamashita, Hidekazu; Omori, Hideki; Nakaoka, Mutsuo

    This paper presents historical progress on technology evolution of the electric and electronic household appliances using the inverter, especially for Induction-Heating applications, which have been put in practical use as the desk-top cooker for the first time at home in 1974 until being applied to the rice cooker and the multi-burner cooking heater. It also describes the future innovative evolution of the power semiconductor switching devices and the inverter circuit topologies supporting its progressive developments. Looking back its progress, the future trends on consumer power electronics is discussed on the practical problem in the future.

  17. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  18. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  19. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  20. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  1. Application of Annular Linear Induction Pumps Technology for Waste Heat Rejection and Power Conversion

    SciTech Connect

    Adkins, Harold E.

    2005-03-16

    The U.S.-sponsored Jupiter Icy Moons Orbiter (JIMO) program will require a light weight, efficient, and reliable power generation system capable of a 20+ year lifespan. This requirement has renewed interest in orbiter technological development. Sub-components of the orbiter system are the primary and secondary power conversion/heat rejection systems for both the proposed nuclear reactors and Brayton cycle heat engines. Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. The conversion/rejection systems for these components typically utilize pumped molten metal as the heat transfer medium. Electromagnetic (EM) Annular Linear Induction Pumps (ALIPs) are ideal for this purpose as they can operate at moderate to high efficiency, at elevated temperature, do not involve moving parts (solid-state; long life), and require no bearings or seals. A parametric study was performed to develop a suite of ALIP preliminary designs capable of providing specified pressure and mass flow rate ranges for the proposed NaK(78) Brayton-cycle heat rejection loop. A limited study was also performed for the proposed lithium-cooled nuclear reactor heat transport loops; however, the design of these units is still in its infancy. Both studies were conducted by Pacific Northwest National Laboratory (PNNL) with the MHD Systems’ ALIP Design Code. The studies focused on designing ALIPs that displayed reasonably high efficiency and low source voltages as well as low mass and smallest geometric envelope.

  2. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment

    NASA Astrophysics Data System (ADS)

    Clos, Joachim; Rabindran, Sridhar; Wisniewski, Jan; Wu, Carl

    1993-07-01

    HEAT shock factor (HSF)1,2, the transcriptional activator of eukaryotic heat shock genes, is induced to bind DNA by a monomer to trimer transition involving leucine zipper interactions3,4. Although this mode of regulation is shared among many eukaryotic species, there is variation in the temperature at which HSF binding activity is induced. We investigated the basis of this variation by analysing the response of a human HSF expressed in Drosophila cells and Drosophila HSF expressed in human cells. We report here that the temperature that induces DNA binding and trimerization of human HSF in Drosophila was decreased by ~10 °C to the induction temperature for the host cell, whereas Drosophila HSF expressed in human cells was constitutively active. The results indicate that the activity of HSF in vivo is not a simple function of the absolute environmental temperature.

  3. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  4. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress.

    PubMed

    Weller, Andrew S; Linnane, Denise M; Jonkman, Anna G; Daanen, Hein A M

    2007-12-01

    Compared with the induction of heat acclimation (HA), studies investigating the decay and re-induction of HA (RA) are relatively sparse and have yielded conflicting results. Therefore, 16 semi-nude men were acclimated to dry-heat by undertaking an exercise protocol in a hot chamber (dry-bulb temperature 46.1 +/- 0.1 degrees C; relative humidity 17.9 +/- 0.1%) on 10 consecutive days (HA1-10) in winter UK. Thereafter, the subjects were divided into two groups and re-exposed to the work-in-heat tests after 12 and 26 days until RA was attained (RA(12), n = 8; RA(26), n = 8). The exercise protocol consisted of 60 min of treadmill walking (1.53 m s(-1)) at an incline individually set to induce a rectal temperature (T (re)) of approximately 38.5 degrees C during HA1 (equating to 45 +/- 4% peak oxygen uptake), followed by 10 min of rest and 40 min of further treadmill exercise, the intensity of which was increased across HA to maintain T(re )at approximately 38.5 degrees C. T(re), mean skin temperature, heart rate and rate of total water loss measured at 60 min did not change after HA7, and HA was taken as the mean of the responses during HA8-10. For both groups, there was no decay in T(re) and for all measured variables RA was attained after 2 and 4 days in RA(12) and RA(26), respectively. It is concluded that once adaptation to heat has been attained, the time that individuals may spend in cooler conditions before returning to a hot environment could be as long as one month, without the need for extensive re-adaptation to heat. PMID:17891541

  5. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    SciTech Connect

    Mitchel, R.E.J.; Morrison, D.P.

    1983-10-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho/sup 0/ strain) were used to assess the role of O/sub 2/, mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho/sup 0/ yeast grown and heat shocked in either the presence or absence of O/sub 2/ are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O/sub 2/, mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes.

  6. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  7. Role of ATP in the sensitivity to heat and the induction of apoptosis in mammalian cells.

    PubMed

    Miyazaki, N; Kurihara, K; Nakano, H; Shinohara, K

    2002-01-01

    Heat-induced cell death and apoptosis were studied with respect to intracellular ATP. Studies on the relationship between hyperthermic cell-killing at 44 degrees C and cellular ATP levels in four cell lines grown as monolayers and six cell lines grown in suspension showed good correlations between cellular ATP levels and the sensitivity to heat. D(0) values (the dose required to reduce survival in the linear portion of the response by 63%) linearly increased with an increase in cellular ATP levels. No such changes in sensitivity to heat were observed between the cells cultured at different cell densities, regardless of the change in the cellular ATP level. These results suggest that cellular intrinsic ability to supply ATP rather than the level of pooled ATP per se is responsible for the thermal response. Heat-induced apoptosis in L5178Y cells was observed following treatment at 42 degrees C for 70 min, 44 degrees C for 20 min or 47 degrees C for 3 min, which corresponded to surviving fractions of 25, 0.6 and 0.8%, respectively, but not at 47 degrees C for 20 min, indicating that mild heat shock induced apoptosis. 2-deoxyglucose (2DG) and 2,4-dinitrophenol (DNP) increased the sensitivity to heat and affected the mode of cell death. Cells treated with 2DG and DNP (2DG/DNP) were heated at 42 degrees C for 20 min, and then incubated at 37 degrees C for up to 2h in the presence or absence of 2DG/DNP. In the absence of 2DG/DNP, the cellular ATP level recovered to 76% of the control level and DNA ladder formation was observed, whereas in the presence of 2DG/DNP, the cellular ATP level was further decreased (3-7% of the control) and no DNA fragmentation was detected. These results suggest that the inhibition of ATP synthesis is closely associated with the enhancement of sensitivity to heat and that ATP is required for the induction of apoptosis.

  8. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor.

    PubMed

    Tsai, Wen-Tien; Chang, Jeng-Hung; Hsien, Kuo-Jung; Chang, Yuan-Ming

    2009-01-01

    With the application of induction-heating, the pyrolytic experiments have been carried out for three sewage sludges from the food processing factories in an externally heated fixed-bed reactor. The thermochemical characteristics of sludge samples were first analyzed. The results indicated that the calorific value had about 15 MJ/kg on an average, suggesting that it had a potential for biomass energy source. However, its nitrogen concentration was relatively high. From the thermogravimetric analysis (TGA) curves, it showed that the pyrolysis reaction can be almost finished in the temperature range of 450-750 degrees C. The yields of resulting liquid and char products from the pyrolysis of sewage sludge were discussed for examining the effects of pyrolysis temperature (500-800 degrees C), heating rate (200-500 degrees C/min), and holding time (1-8 min). Overall, the variation of yield was not so significant in the experimental conditions for three sewage sludges. All results of the resulting liquid products analyzed by elemental analyzer, pH meter, Karl-Fischer moisture titrator and bomb calorimeter were in consistence with those analyses by FTIR spectroscopy. Furthermore, the pyrolysis liquid products contained large amounts of water (>73% by weight) mostly derived from the bound water in the biosludge feedstocks and the condensation reactions during the pyrolysis reaction, and fewer contents of oxygenated hydrocarbons composing of carbonyl and nitrogen-containing groups, resulting in low pH and low calorific values. PMID:18656347

  9. Heat Induction of Cyclic Electron Flow around Photosystem I in the Symbiotic Dinoflagellate Symbiodinium.

    PubMed

    Aihara, Yusuke; Takahashi, Shunichi; Minagawa, Jun

    2016-05-01

    Increases in seawater temperature impair photosynthesis (photoinhibition) in the symbiotic dinoflagellate Symbiodinium within cnidarian hosts, such as corals and sea anemones, and may destroy their symbiotic relationship. Although the degree of photoinhibition in Symbiodinium under heat stress differs among strains, the differences in their responses to increased temperatures, including cyclic electron flow (CEF), which sustains photoprotective thermal energy dissipation, have not been investigated. Here, we examined CEF in cultured Symbiodinium cells or those in an endosymbiotic relationship within a cnidarian host. The light-dependent reduction of the primary electron donor photosystem I, i.e. P700(+), was enhanced in any Symbiodinium cell by increasing temperatures, indicating CEF was induced by heat, which was accompanied by thermal energy dissipation activation. The critical temperatures for inducing CEF were different among Symbiodinium strains. The clade A strains with greater susceptibility to photoinhibition, OTcH-1 and Y106, exhibited higher CEF activities under moderate heat stress than a more phototolerant clade B strain Mf1.05b, suggesting that the observed CEF induction was not a preventive measure but a stress response in Symbiodinium. PMID:26951432

  10. Advanced Synthesis of Spinnable MWCNT Forests by RF-Induction Heating Enhanced CVD Process

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar; Holmes, William; UTD Solarno Team; Solarno UTD Team

    2015-03-01

    We demonstrate here an advanced method to effectively grow tall multi-wall carbon nanotubes (MWCNT) vertically oriented forests which are highly spinnable. Heating of the Fe catalyst is achieved extremely fast by RF induction heating using coils outside the quartz tube. This method and the new apparatus designed and presented in this paper allow separate control over the temperature of the substrate and the temperature of the incoming gases. In addition to temperature control, the fast T-ramping of the substrate preserves the catalyst nanoclusters from Ostwald ripening and other growth quenching effects such as carbon overgrowth of the catalyst. We show that the parametric sweet spot or bell curve of substrate spinnability can be increased significantly with this improved RF-CVD method. The catalyst nanoclusters also show a wide band of density arrangements that very positively effect spinnability and the drawing ratio. Drawing ratios can vary from 2 meters to 12 meters of sheets drawn from only 1cm of forest. RF-CVD method allows to grow fast (in several minuts) higher CNT forests at higher temperature of synthesis up to 800 K, and obtain dry-spinable CNTs, Characterization results of the samples created in the newRF-CVD system will be presented and compared to previous CNT sheet samples by conventional three-zone resistive heating CVD to measure the extent of property improvements of the CNT sheets and forests. Specifics of the experimental system will be addressed in detail and future property improvements and applications explored.

  11. New alloys and multilayer configuration of them to get self-regulated temperature cookware (SRTC) in induction heating

    NASA Astrophysics Data System (ADS)

    Waeckerlé, Thierry; Fraissé, Herve; Boulogne, Bruno; Spire, Sjean Luc

    2006-09-01

    It is pointed out in this paper that the concept of self-regulating temperature cookware is valid for cooking by induction heating. This provides no overheating, improved heating rate, self-adjusted cooking temperature and further improved energy efficiency. To succeed in this, a 3-ply cladded metallic structure made of an inner stainless steel layer, a thick aluminium layer in the centre part, and an outer dedicated low-Curie-point layer made of a new FeNiCr alloy is used. The magnetic coupling between induction heater and the new structure is discussed.

  12. High frequency III–V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III–V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  13. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  14. Transponder System for High-Frequency Ranging

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L.; Shores, P. W.; Kobayashi, H. S.

    1986-01-01

    Transponder system uses phase difference between transmitted and reflected high-frequency radio waves to measure distance to target. To suppress spurious measurements of reflections from objects near target at transmitted frequency and its harmonics, transponder at target generates return signal at half transmitted frequency. System useful in such applications as surveying, docking of ships, and short-range navigation.

  15. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  16. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  17. High frequency III-V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  18. Accelerated carbide spheroidisation of 1.2343 tool steel by induction heating

    NASA Astrophysics Data System (ADS)

    Dlouhý, J.; Kövér, M.

    2015-12-01

    Tool steels undergo spheroidisation or soft annealing to enhance machinability and cold formability. Conventional soft annealing takes several hours. The final microstructure is composed of globular carbides in a ferritic matrix. We present an alternative process of carbide spheroidisation and steel softening. Accelerated carbide spheroidisation and refinement (ASR) was achieved by induction heating at temperatures close to the A1 temperature. The spheroidised structure was obtained in less than 5 minutes. The carbide particles that formed during the ASR were significantly finer than for the conventional soft annealing. The hardness after ASR was higher than the hardness after soft annealing because of the dispersion strengthening by finer and more densely distributed carbide particles. On the other hand, the fine structure is favourable for hardening. It enables smaller austenite grains and martensite laths to be obtained.

  19. Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys

    PubMed Central

    Calabro, Joshua D.; Huang, Xu; Lewis, Brian G.; Ramirez, Ainissa G.

    2010-01-01

    Fundamental to the development of three-dimensional microelectronic fabrication is a material that enables vertical geometries. Here we show low-melting-point metal alloys containing iron dispersions that can be remotely manipulated by magnetic fields to create vertical geometries and thus enable novel three-dimensional assemblies. These iron dispersions enhance the mechanical properties needed for strong, reliable interconnects without significantly altering the electrical properties of the alloys. Additionally, these iron dispersions act as susceptors for magnetic induction heating, allowing the rapid melting of these novel alloys at temperatures lower than those usually reported for conventional metal alloys. By localizing high temperatures and by reducing temperature excursions, the materials and methods described have potential in a variety of device fabrication applications. PMID:20194786

  20. Vitrification of HLW inside sealed low-temperature disposal canisters by inductive heating

    SciTech Connect

    Powell, J.; Reich, M.; Barletta, R.

    1996-12-31

    A new approach to the vitrification and disposal of high-level nuclear wastes (HLW) is proposed in this paper. The current approach is to melt the HLW solids and frit material in large high-temperature melters. The melt is then poured into small ({approximately}1-m{sup 3}) disposal canisters, where it solidifies and cools. Problems with the current approach include the following: (1) system vulnerability to failure of the large melter (2) ability of the melter and liner to hold high-temperature (e.g., {approximately}1100{degrees}C) molten glass for many years (3) long-time capability for controlled pouring and avoidance of plugging (4) radioactive emissions and contamination from volatilized components (e.g., cesium) (5) maintenance, repair, and decommissioning of large, complex, highly radioactive process equipment. The proposed SMILE (small module inductively loaded energy) approach would eliminate the large high-temperature melter. Instead, HLW solids and frit would melt inside the final closed disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE process is designed so that the outer stainless can of the module remains at low temperature during the process cycle.

  1. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  2. Induction of a heat shock puff by hypoxia in polytene foot pad chromosomes of Sarcophaga bullata.

    PubMed

    Bultmann, H

    1986-01-01

    The single large heat-responsive puff (hs puff) in polytene foot pad cells of fly pupae (Sarcophaga bullata) is shown to be inducible by oxygen deprivation but not, as in other systems, by reoxygenation following an hypoxic treatment. The ambient oxygen concentration must drop below 2% for the hs puff to be maximally induced but the puff is fully inducible and transcriptionally active even in the complete absence of oxygen. Lack of oxygen is also compatible with continued transport of puff materials (formation and dissipation of puff droplets at the hs locus). Hypoxia-induced hs puffs persist indefinitely (greater than 2 days) at maximal or intermediate size and only regress completely after oxygen is resupplied. The induction of the hs puff during hypoxia is highly specific and does not seem to involve activation of any other chromosomal loci, yet the reaction is not confined to the giant foot pad cells or to specific developmental stages. Azide poisoning of cultured foot pads simulates the in vivo effects of hypoxia. The induction of the hs puff by azide, heat, or other means is inhibited by sulfhydryl reagents (iodoacetamide, arsenite) and fluoride, but not by an inhibitor of substrate-linked phosphorylation (arsenate). Instead, arsenate, like other uncouplers (2,4-dinitrophenol) is an inducer of the hs locus. The hs puff can be fully induced by hypoxia at any temperature between 2 degrees and 45 degrees C. The rate of puff expansion is strictly temperature dependent and the temperature characteristics of this process are remarkably similar to those of a promoter RNA polymerase association.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82

    SciTech Connect

    Szent-Gyorgyi, C.

    1995-12-01

    This report seeks to characterize the activation of meiotic gene in terms of cis-acting DNA elements and their associated factors in Saccharomyces cerevisiae. It was found that vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element with a nearby bipartite repression element. The experiments described explore how two different regulatory pathways induce transcription by stimulating a single classical activation element, a nonspecific heat shock element. 81 refs., 10 figs., 1 tab.

  4. Induction of mycobacterial proteins during phagocytosis and heat shock: a time interval analysis.

    PubMed

    Alavi, M R; Affronti, L F

    1994-05-01

    Mycobacterium tuberculosis survives macrophage bactericidal activities by mechanisms that may include induction of stress proteins. We sought to determine whether the synthesis of any mycobacterial proteins is increased during phagocytosis and whether any of these proteins are also up-regulated during heat shock. Protein synthesis by M. tuberculosis H37Ra during phagocytosis by the mouse macrophage cell line IC-21, and during heat shock at 45 and 48 degrees C, was monitored at various time intervals using 35S-labeled methionine/cysteine and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our data suggest the existence of certain common elements in the stress response of mycobacteria to the three stress stimuli. This apparent similarity was best characterized by the up-regulation of a 25-kDa protein after exposure to each of the stress conditions. Furthermore, this 25-kDa protein and a 37-kDa protein that was also synthesized during phagocytosis appeared to be extracellular because they were preferentially solubilized when infected macrophages were lysed with 0.5% NP-40. PMID:8182341

  5. A power-efficient thermocycler based on induction heating for DNA amplification by polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Pal, Debjani; Venkataraman, V.; Mohan, K. Naga; Chandra, H. Sharat; Natarajan, Vasant

    2004-09-01

    We have built a thermocycler based on the principles of induction heating for polymerase chain reaction (PCR) of target sequences in DNA samples of interest. The cycler has an average heating rate of ˜0.8 °C/s and a cooling rate of ˜0.5 °C/s, and typically takes ˜4 h to complete a 40-cycle PCR protocol. It is power-efficient (˜6 W per reaction tube), micro-processor controlled, and can be adapted for battery operation. Using this instrument, we have successfully amplified a 350 bp segment from a plasmid and SRY, the human sex determining gene, which occurs as a single-copy sequence in genomic DNA of human males. The PCR products from this thermocycler are comparable to those obtained by the use of commercially available machines. Its easy front-end operation, low-power design, portability and low cost makes it suitable for diagnostic field applications of PCR.

  6. Brazed Diamond Micropowder Bur Fabricated by Supersonic Frequency Induction Heating for Precision Machining

    NASA Astrophysics Data System (ADS)

    Ma, Bojiang; Lou, Jianpeng; Pang, Qian

    2014-04-01

    The common brazed diamond micropowder bur fabricated in a vacuum furnace produces an even brazing alloy surface. The small brazed diamond grits show low outcropping from the brazing alloy surface, and the chip space between them is small. The bur shows a low grinding efficiency and poor heat dissipation. In this study, a brazed diamond micropowder bur was fabricated by supersonic frequency induction heating. The method afforded a fluctuant surface on the brazing alloy. The brazed diamond grits with an outcropping height distributed uniformly on the fluctuant surface. The fluctuant surface showed a certain chip space. These characteristics of the tool increased the grinding efficiency and decreased the temperature of the grinding arc area. The roughness R a of the ceramic tile surface trimmed by the tool cylinder was between 0.09 and 0.12 μm. In the first 90 min, the decrease in the weight of the ceramic tile ground by the tool cylinder was higher than that ground by the tool fabricated in a vacuum furnace. When the ceramic tile was cylindrically ground, the temperature of the grinding arc area measured using a thermocouple remained below 70 °C.

  7. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  8. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  9. Radome structures for high frequency applications

    NASA Astrophysics Data System (ADS)

    Hager, W.

    The optimization of radome structures for high-frequency applications is examined for the cases of thin-walled radomes, thick-walled radomes, sandwich radomes, and multilayer radomes. Examples of applications are briefly described, including radomes in an ECM-pod of a Tornado aircraft, a radome for a mobile two-dimensional radar installation, and a radome for a millimeter wave search radar.

  10. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  11. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  12. Two-Stage Soft-Switching High-Frequency Inverter with Simple PFC Function for Consumer IH Cooking Appliances

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Hiraki, Eiji; Tanaka, Toshihiko; Sadakata, Hideki; Fujita, Atsushi; Omori, Hideki; Nakaoka, Mutsuo

    In recent years, consumer induction-heating (IH) cooking appliances have grown increasingly popular because of their easy cleaning, high efficiency, safety, and controllability. IH food cooking system for consumer home use are indispensable to heat various metallic pans, such as aluminum, copper, stainless steel, and iron cast for further diffusing. Furthermore, these appliances have to satisfy the utility AC grid harmonics regulations of IEC61000-3-2. To meet these requirements, this paper proposes a two-stage soft-switching high-frequency inverter with simple PFC function that is suitable for consumer IH cooking appliances. The proposed system comprises a soft-switching chopper based boost PFC converter with passive snubber and phase-shifted PWM controlled ZVZCS high-frequency inverter. In order to satisfy the utility AC grid current harmonic regulations, a simple PFC control technique with discontinuous current mode is introduced. This technique as well as the fundamental operating performances of the proposed IH system is tested. The effectiveness of proposed IH system is substantially proved from a practical point of view on the basis of the experimental results.

  13. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor

    PubMed Central

    Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi

    1999-01-01

    Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722

  14. Online induction heating for determination of isotope composition of woody stem water with laser spectrometry: A methods assessment

    USGS Publications Warehouse

    Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.

    2016-01-01

    Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.

  15. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron. PMID:20192343

  16. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source

    SciTech Connect

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Sato, Fuminobu; Iida, Toshiyuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu

    2010-02-15

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4}-10{sup -3} Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  17. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  18. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  19. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  20. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  1. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    NASA Astrophysics Data System (ADS)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  2. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  3. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb. PMID:27370472

  4. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  5. Optical generation of narrowband high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Hung, Shi-Yao; Hsieh, Bao-Yu; Li, Pai-Chi

    2014-03-01

    We propose a multilayer film structure to generate high frequency and narrowband ultrasound. It consists of three light-absorbing layers and two light-transmittance layers. The amplitude is tunable by adjusting the optical absorption coefficient of light-absorbing layers. The delay can be adjusted by changing thicknesses of light-transmittance layers. In one example, the generated high frequency narrowband ultrasound signal has a center frequency of 18.4MHz and 32.6% fractional bandwidth using the proposed multilayer structure. Compared with this result, the single layer structure produces a center frequency of 20.2MHz and 125.7% fractional bandwidth. In addition, a single laser pulse was employed to generate US on the multilayer film as an US source and PA signals of the high optical absorption region of the phantom at the same time. Because the spectral characteristics of the ultrasound signals generated by the multi-layer film are tunable, it can be designed such that the US echo and PA echo are spectrally separable, thus enabling simultaneous US/PA imaging using only a single laser pulse. Feasibility of this proposed method was demonstrated by imaging of a cyst-like phantom.

  6. Investigating Sonothrombolysis with High Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Wright, Cameron; Hynynen, Kullervo; Goertz, David

    2009-04-01

    Despite a significant body of work establishing the feasibility of ultrasound mediated thrombolysis in vitro, in vivo, and in clinical settings, there remains considerable uncertainty about the specific mechanisms involved in this process. This motivates further work to elucidate these mechanisms, which will be central to optimizing safe and effective operating conditions, and to guide the development of novel approaches and instrumentation. In this study, we investigate the use of high frequency ultrasound as a means of gaining mechanistic insight into sonothrombolysis. A high frequency ultrasound (20-50 MHz) instrument is employed which provides the ability to conduct volumetric clot imaging as well as pulsed-wave Doppler to monitor hemodynamics within vessels and clots. With modifications, it is enabled to perform the acquisition of RF data to assess the displacement of clots and vessel walls subjected to therapeutic pulses. Additional modifications were made to perform nonlinear imaging of micron to submicron sized bubbles, which are of interest in enhancing clot lysis. Experiments were performed on in vitro clots, and in vivo using a rabbit femoral artery clot model initiated by the injection of thrombin. Therapeutic pulses are provided by a single element spherically focused air backed transducer with transmit frequencies of 1.68 MHz. Clear visualization of the clots, displacements, and presence or absence of flow within these vessels is shown to be feasible, indicating the potential of this approach as a tool for providing insight into sonothrombolysis.

  7. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  8. High frequency ultrasonic scattering by biological tissues

    NASA Astrophysics Data System (ADS)

    Shung, K. Kirk; Maruvada, Subha

    2002-05-01

    High frequency (HF) diagnostic ultrasonic imaging devices at frequencies higher than 20 MHz have found applications in ophthalmology, dermatology, and vascular surgery. To be able to interpret these images and to further the development of these devices, a better understanding of ultrasonic scattering in biological tissues such as blood, liver, myocardium in the high frequency range is crucial. This work has previously been hampered by the lack of suitable transducers. With the availability of HF transducers going to 90 MHz, HF attenuation and backscatter experiments have been made on porcine red blood cell (RBC) suspensions, for which much data on attenuation and backscatter can be found in the literature in the lower frequency range for frequencies, from 30 to 90 MHz and on bovine tissues for frequencies from 10 to 30 MHz using a modified substitution method that allow the utilization of focused transducers. These results will be reviewed in this talk along with relevant theoretical models that could be applied to interpreting them. The relevance of the parameter that has been frequently used in the biomedical ultrasound literature to describe backscattering, the backscattering coefficient, will be critically examined.

  9. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  10. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    excitation and sustainment of the discharge. As the pressure decreases the discharge operates in so-called 'alpha-mode' where the sheath expansion is responsible for discharge sustainment. Decreasing the pressure towards the limit of operation (below 1 Pa) the discharge operates in a regime where kinetic effects dominate plasma sustainment. Wave particle interactions resulting from the flux of highly energetic electrons interacting with thermal bulk electrons give rise to a series of oscillations in the electron excitation phase space at the sheath edge. This instability is responsible for a significant energy deposit in the plasma when so-called 'ohmic heating' is no longer efficient. In addition to this an interesting electron acceleration mechanism occurs during the sheath collapse. The large sheath width, due to low plasma densities at the lower pressure, and electron inertia allows the build up of a local electric field accelerating electrons towards the electrode. Multi-frequency plasmas, provide additional process control for technological applications, and through investigating the excitation dynamics in such discharges the limitations of functional separation is observed. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. In an alpha-operated discharge the sheath edge velocity governs the excitation and ionisation within the plasma, and it will be shown that this is determined by the time varying sheath width. The nature of the coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are also observed and will be discussed.

  11. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  12. High-frequency micromechanical columnar resonators

    NASA Astrophysics Data System (ADS)

    Kehrbusch, Jenny; Ilin, Elena A.; Bozek, Peter; Radzio, Bernhard; Oesterschulze, Egbert

    2009-06-01

    High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10-6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately -173 Hz °C- 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency.

  13. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  14. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  15. Oxide-bioceramic coatings obtained on titanium items by the induction heat treatment and modified with hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fomina, Marina A.; Rodionov, Igor V.; Koshuro, Vladimir A.; Petrova, Natalia V.; Skaptsov, Aleksandr A.; Atkin, Vsevolod S.

    2015-06-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from cp-titanium and medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  16. Eddy current pulsed phase thermography considering volumetric induction heating for delamination evaluation in carbon fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2015-06-01

    Anisotropy and inhomogeneity of carbon fiber reinforced polymers (CFRPs) result in that many traditional non-destructive inspection techniques are inapplicable on the delamination evaluation. This letter introduces eddy current pulsed phase thermography (ECPPT) for CFRPs evaluation considering volumetric induction heating due to small electrical conductivity, abnormal thermal wave propagation, and Fourier analysis. The proposed methods were verified through experimental studies under transmission and reflection modes. Using ECPPT, the influence of the non-uniform heating effect and carbon fiber structures can be suppressed, and then delamination detectability can be improved dramatically over eddy current pulsed thermography.

  17. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Huang, Li-Ying; Yang, Ming-Chien; Liu, Ting-Yu; Tsai, Sung-Chen; Yang, Chih-Yung; Kuo, Chih-Yu; Chan, Tzu-Yi; Zou, Hui-Ming; Lian, Wei-Nan; Lin, Chi-Hung

    2014-09-01

    In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.

  18. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

    PubMed Central

    2014-01-01

    In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. PMID:25246875

  19. Radio spectra of High Frequency Peakers

    NASA Astrophysics Data System (ADS)

    Dallacasa, D.; Orienti, M.

    2016-02-01

    New radio spectra of High Frequency Peakers (HFP) obtained from the Jansky Very Large Array (JVLA) show that variability is common among this class of sources. A subsample of sources have been observed with a nearly continuous spectral sampling between 1 and 10 GHz. The observed HFP sources were previously classified as F (flat), H (HFP profile with little or no flux density variability) and V (variable, but preserving a peaked spectrum). In general, sources classified as V and H show a decrease of the flux density measured in the optically thin part of the spectrum, while there is a moderate increment in the optically thick region, resulting into a progressive shift of the spectral peak to lower frequencies. This is consistent with the idea of an expanding bubble of radio plasma. The sources with an F classification instead show substantial variability, both in spectral shape and in time evolution. In these HFP sources an irregular production of energy is best observed since the radio emission is dominated by recently generated relativistic plasma, and the contribution of mini lobes, in which old plasma accumulates, is marginal if not absent at all, given the short radiative life of electrons in strong magnetic fields (tens of mG) found in these objects.

  20. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  1. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  2. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  3. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  4. High frequency stimulation can block axonal conduction.

    PubMed

    Jensen, Alicia L; Durand, Dominique M

    2009-11-01

    High frequency stimulation (HFS) is used to control abnormal neuronal activity associated with movement, seizure, and psychiatric disorders. Yet, the mechanisms of its therapeutic action are not known. Although experimental results have shown that HFS suppresses somatic activity, other data has suggested that HFS could generate excitation of axons. Moreover it is unclear what effect the stimulation has on tissue surrounding the stimulation electrode. Electrophysiological and computational modeling literature suggests that HFS can drive axons at the stimulus frequency. Therefore, we tested the hypothesis that unlike cell bodies, axons are driven by pulse train HFS. This hypothesis was tested in fibers of the hippocampus both in-vivo and in-vitro. Our results indicate that although electrical stimulation could activate and drive axons at low frequencies (0.5-25 Hz), as the stimulus frequency increased, electrical stimulation failed to continuously excite axonal activity. Fiber tracts were unable to follow extracellular pulse trains above 50 Hz in-vitro and above 125 Hz in-vivo. The number of cycles required for failure was frequency dependent but independent of stimulus amplitude. A novel in-vitro preparation was developed, in which, the alveus was isolated from the remainder of the hippocampus slice. The isolated fiber tract was unable to follow pulse trains above 75 Hz. Reversible conduction block occurred at much higher stimulus amplitudes, with pulse train HFS (>150 Hz) preventing propagation through the site of stimulation. This study shows that pulse train HFS affects axonal activity by: (1) disrupting HFS evoked excitation leading to partial conduction block of activity through the site of HFS; and (2) generating complete conduction block of secondary evoked activity, as HFS amplitude is increased. These results are relevant for the interpretation of the effects of HFS for the control of abnormal neural activity such as epilepsy and Parkinson's disease. PMID

  5. A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans.

    PubMed

    Maman, Moria; Carvalhal Marques, Filipa; Volovik, Yuli; Dubnikov, Tatyana; Bejerano-Sagie, Michal; Cohen, Ehud

    2013-04-01

    In the nematode Caenorhabditis elegans, the heat shock response (HSR) is regulated at the organismal level by a network of thermosensory neurons that senses elevated temperatures and activates the HSR in remote tissues. Which neuronal receptors are required for this signaling mechanism and in which neurons they function are largely unanswered questions. Here we used worms that were engineered to exhibit RNA interference hypersensitivity in neurons to screen for neuronal receptors that are required for the activation of the HSR and identified a putative G-protein coupled receptor (GPCR) as a novel key component of this mechanism. This gene, which we termed GPCR thermal receptor 1 (gtr-1), is expressed in chemosensory neurons and has no role in heat sensing but is critically required for the induction of genes that encode heat shock proteins in non-neural tissues upon exposure to heat. Surprisingly, the knock-down of gtr-1 by RNA interference protected worms expressing the Alzheimer's-disease-linked aggregative peptide Aβ3-42 from proteotoxicity but had no effect on lifespan. This study provides several novel insights: (1) it shows that chemosensory neurons play important roles in the nematode's HSR-regulating mechanism, (2) it shows that lifespan and heat stress resistance are separable, and (3) it strengthens the emerging notion that the ability to respond to heat comes at the expense of protein homeostasis (proteostasis). PMID:23554491

  6. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    SciTech Connect

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A.; Austin, M. E.; Diem, S. J.; Kaufman, M. C.; Ryan, P. M.; Doyle, E. J.; Zeng, L.; Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G.; Maggiora, R.; Milanesio, D.; Porkolab, M.; Turco, F.

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

  7. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  8. Utilization of Induction Bonding for Automated Fabrication of TIGR

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Johnston, Norman J.; Hulcher, A. Bruce; Marchello, Joseph M.; Messier, Bernadette C.

    1999-01-01

    A laboratory study of magnetic induction heat bonding of titanium foil and graphite fiber reinforced polymer prepreg tape, TiGr, demonstrated that the process is a viable candidate for low cost fabrication of aircraft structure made of this new material form. Data were obtained on weld bonding of PIXA and PETI-5 prepreg to titanium. Both the foil and honeycomb forms of titanium were investigated. The process relies on magnetic susceptor heating of titanium, not on high frequency heating of graphite fiber. The experiments showed that with a toroid magnet configuration, good weld bonds might be obtained with heating times of a few seconds. These results suggest the potential is good for the induction heating process to achieve acceptable commercial production rates.

  9. Improved magnetic induction heating of nanoferrites for hyperthermia applications: Correlation with colloidal stability and magneto-structural properties

    NASA Astrophysics Data System (ADS)

    Khot, V. M.; Salunkhe, A. B.; Ruso, J. M.; Pawar, S. H.

    2015-06-01

    Nanoferrites with compositions Mn0.4Zn0.6Fe2O4, Co0.4Zn0.6Fe2O4, Ni0.4Zn0.6Fe2O4 (MZF, CZF and NZF respectively) coated with polyethylene glycol (PEG) were prepared in a single step. These nanoparticles are highly water dispersible with zeta potential values between 14 and 21 mV. Magnetic induction heating characteristics of these NPs have been studied as a function of magnetic field amplitude from 6.7 to 26.7 kA m-1 (at fixed frequency 265 kHz) and concentration of nanoparticles. Notable enhancement in specific absorption rate (334.5 W g-1) by CZF nanoparticles has been observed. This enhanced induction heating properties have been studied and correlated with colloidal stability and magnetostructural properties such as tuned magnetic anisotropy arising from zinc substitution. Cytotoxicity of synthesized mixed ferrites has been evaluated in vitro on HeLa cell lines using MTT assay to explore their use as heating agents in magnetic hyperthermia.

  10. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis.

    PubMed

    Kurtz, S; Rossi, J; Petko, L; Lindquist, S

    1986-03-01

    Every eukaryotic and prokaryotic organism tested to date synthesizes a small number of heat-shock proteins in response to heat and other forms of stress. A particular pattern of heat-shock gene expression was observed during ascospore development in Saccharomyces: heat-shock proteins hsp26 and hsp84 were strongly induced nor inducible by heat shock. Instead, two proteins related to hsp70 were induced. A strikingly similar pattern of expression occurs during oogenesis in Drosophila, suggesting that it may be one of the earliest developmental pathways to evolve in eukaryotic cells.

  11. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  12. Heat shock protein induction by certain chemical stressors is correlated with their cytotoxicity, lipophilicity and protein-denaturing capacity.

    PubMed

    Neuhaus-Steinmetz, U; Rensing, L

    1997-12-01

    Seven agents were analyzed with respect to their ability to induce heat shock protein (HSP) synthesis in C6 rat glioma cells. Induction of HSP synthesis was correlated with cytotoxicity and lipophilicity of the substances. In addition to the first four n-alcohols (methanol, ethanol, propanol and butanol) and phenol, whose capacity to induce HSP was analyzed earlier (Neuhaus-Steinmetz et al., 1994. Mol. Pharmacol. 45, 36-41), isopropanol, 1,4-dinitrophenol (DNP), diethylstilbestrol (DES), carbonylcyanide-m-chlorophenylhydrazone (CCCP), rotenone, paracetamol and acetyl salicylic acid (ASA) induced HSP synthesis after a 1-h incubation at a substance-specific concentration. The maximal induction of HSPs was closely correlated with the cytotoxicity of all substances and occurred when cell viability was reduced to 75 +/- 11% of the controls. Cytotoxicity and the ability to induce HSP were correlated with the lipophilicity of the alcohols, phenol, rotenone and paracetamol. Calculation of the hypothetical membrane concentrations of these compounds yielded a nearly equal value (0.54 +/- 0.13 M), indicating that interaction of substances with lipophilic cellular compounds, such as membranes or lipophilic core regions of proteins, is a critical step leading to HSP induction. This assumption is supported by a correlation between HSP induction and protein denaturation by the different alcohols (Herskovits et al., 1970. J. Biol. Chem. 245, 2588-2598). We assume that the amount of misfolded proteins induced by these lipophilic agents is responsible for the induction of HSP synthesis. ASA, DNP and CCCP induced HSP at lower concentrations than substances with a similar lipophilicity, which may be due to effects which add to the misfolding of proteins or to other signal pathways.

  13. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    NASA Astrophysics Data System (ADS)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  14. Improved high power/high frequency inductor

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1990-01-01

    A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.

  15. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  16. Advances to Dynamic Mechanical Analysis: High Frequencies and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Foreman, Jonathon

    2002-03-01

    In dynamic mechanical analysis (DMA) the sample is deformed and released sinusoidally providing information about the modulus and damping behaviors with respect to temperature, time, oscillation frequency and amplitude of motion. It offers exceptional sensitivity to glass transitions and secondary relaxations. Recent developments have increased the frequency range up to 1000 Hz, which allow properties measurements under actual end-use conditions. Furthermore high frequencies enhance the ability to determine the kinetics of viscoelastic relaxations. Another recent development allows DMA measurements while samples are immersed in fluids or enveloped in gases. Most significant is the ability to alter the furnace control parameters to account for the thermal properties of the environment used. This configuration allows temperature-controlled measurements (both heating and isothermal profiles) on a wide range of sample shapes and sizes. Environmental DMA is easier to interpret than standard DMA (in air or inert gas) on preconditioned samples because such samples often lose the conditioning solvent or gas during the measurement. Examples will show real-time property changes from the interaction of unconditioned materials with conditioning environments and experiments on pre-conditioned materials that are heated while immersed in conditioning environments. -------------------------------------------------------------

  17. Curing of a bisphenol E based cyanate ester using magnetic nanoparticles as an internal heat source through induction heating.

    PubMed

    Hubbard, Jeremiah W; Orange, François; Guinel, Maxime J-F; Guenthner, Andrew J; Mabry, Joseph M; Sahagun, Christopher M; Rinaldi, Carlos

    2013-11-13

    We report on the control of cyclotrimerization forming a polycyanurate polymer using magnetic iron oxide nanoparticles in an alternating-current (ac) field as an internal heat source, starting from a commercially available monomer. Magnetic nanoparticles were dispersed in the monomer and catalytic system using sonication, and the mixture was subjected to an alternating magnetic field, causing the magnetic nanoparticles to dissipate the energy of the magnetic field in the form of heat. Internal heating of the particle/monomer/catalyst system was sufficient to start and sustain the polymerization reaction, producing a cyanate ester network with conversion that compared favorably to polymerization through heating in a conventional laboratory oven. The two heating methods gave similar differential scanning calorimetry temperature profiles, conversion rates, and glass transition temperatures when using the same temperature profile. The ability of magnetic nanoparticles in an ac field to drive the curing reaction should allow for other reactions forming high-temperature thermosetting polymers and for innovative ways to process such polymers.

  18. Rapidly solidified Fe-6.5%Si alloy powders for high frequency use (abstract)

    NASA Astrophysics Data System (ADS)

    Duk Choi, Seung; Jin Yang, Choong

    1996-04-01

    Fe-(3˜6.5%) Si alloy powders having a high magnetic induction (Bs) and a low core loss value for high frequency use were obtained by an extractive melt spinning as well as a centrifugal atomization technique. Sintered core rings made by the rapidly solidified Fe-6.5% Si powders exhibited the high frequency electromagnetic properties: saturated induction (B8) of 1.23 T, coercivity (Hc) of 9.5 A/m, relative permeability (μa) of 6321, and core loss (W10/50) of 1.27 W/kg from the rings of 1.1 mm thick. The saturated induction values were found to be almost identical to those of nonoriented Fe-3% Si steel sheet and 6.5% Si sheet prepared by the CVD technique. The high frequency core loss values were measured not to be changed much up to 10 kHz (W1/10k=55 W/kg) in applied ac frequency.

  19. Different types of thermoconditional clear plaque-mutants and prophage induction by heat or cold of Serratia phage kappa.

    PubMed

    Schimff, W; Steiger, H; Hoerschelmann, D V

    1975-01-01

    Phage kappa of Seratia marcescens was treated with different mutagens to induce thermoconditional clear plaque-mutants. 176 mutants obtained were analysed by crosses and found to be located in clear plaque-region III. Two types resembling the mutants t2 and t1 of phage lambda were identified. Lysogens for the mutant 126 can be induced by heat and even by cold whereas they are scarcely inducible by uv. Nevertheless, a 126 prophage like a uv inducible ct 163 prophage can be sensitized to thermoinduction by short preirradiation if the cells are incubated for 30 to 45 min between uv exposure and heating. With ct 163 this time corresponds to the minimum extension of latent period after uv induction compared with infection at low moi. A mutant of clear plaque-region II, c154, shows an inverted thermoconditional behaviour forming clear plaques at 30 degrees C and turbid plaques due to lysogenization at 37 degrees C.

  20. Effects of core/shell structure on magnetic induction heating promotion in Fe3O4/γ-Fe2O3 magnetic nanoparticles for hyperthermia

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chi; Fu, Chao-Ming; Chang, Fu-Hsiung

    2013-10-01

    Fe3O4/γ-Fe2O3 core-shell magnetic nanoparticles have demonstrated superior heating efficiency by applying the alternating magnetic field. The magnetic induction heating properties of core-shell magnetic nanoparticles were analyzed by the rate-dependent hysteresis model, taken into account the magnetic anisotropies and actual size distribution of particles. The analyzed results have disclosed the significance of magnetic anisotropies and shell-thickness to the promotion of magnetic induction heating performance. Further experiments about the cancer cells with uptake of these core-shell magnetic nanoparticles conjugated biocompatible cationic liposomes have achieved in vitro intracellular magnetically induced hyperthermia under a weak alternating magnetic field.

  1. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  2. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  3. Assessment of Heat Shock Protein 70 Induction by Heat in Alfalfa Varieties and Constitutive Overexpression in Transgenic Plants

    PubMed Central

    Ferradini, Nicoletta; Iannacone, Rina; Capomaccio, Stefano; Metelli, Alessandra; Armentano, Nadia; Semeraro, Lucia; Cellini, Francesco; Veronesi, Fabio; Rosellini, Daniele

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock. PMID:25951604

  4. Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants.

    PubMed

    Ferradini, Nicoletta; Iannacone, Rina; Capomaccio, Stefano; Metelli, Alessandra; Armentano, Nadia; Semeraro, Lucia; Cellini, Francesco; Veronesi, Fabio; Rosellini, Daniele

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock. PMID:25951604

  5. Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants.

    PubMed

    Ferradini, Nicoletta; Iannacone, Rina; Capomaccio, Stefano; Metelli, Alessandra; Armentano, Nadia; Semeraro, Lucia; Cellini, Francesco; Veronesi, Fabio; Rosellini, Daniele

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock.

  6. Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney

    NASA Astrophysics Data System (ADS)

    Jones, S. K.; Winter, J. G.

    2001-02-01

    It is known that significant heating can be generated by magnetic hysteresis effects in small ferromagnetic particles exposed to a rapidly alternating magnetic field. If such particles can be made to infiltrate the vascular bed surrounding a tumour by intravascular infusion then it may be possible to generate sufficient heating to destroy the tumour by hyperthermia. One of the constraints on such a technique is the limited amount of magnetic material that can be delivered to a tumour via the intravascular route and the consequent heating that can be induced by this material. Here, we report on a series of experiments in which doses of microspheres containing different amounts of ferromagnetic material were infused into rabbit kidneys via the renal artery with the aim of testing whether adequate tissue heating could be achieved using realistic concentrations of the embolised material. Heating rates were measured for each infused quantity under similar conditions with the animal alive and dead to examine the role of blood flow in the heating process. The results show that tissue temperatures above the therapeutic threshold of 42 °C can be readily achieved using this method with clinically relevant concentrations of microspheres in living tissue.

  7. Why high-frequency pulse tubes can be tipped

    SciTech Connect

    Swift, Gregory W092710; Backhaus, Scott N

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  8. Effects of a Hypnotic Induction and an Unpleasantness-Focused Analgesia Suggestion on Pain Catastrophizing to an Experimental Heat Stimulus: A Preliminary Study.

    PubMed

    Adachi, Tomonori; Nakae, Aya; Sasaki, Jun

    2016-01-01

    Pain catastrophizing is associated with greater levels of pain. While many studies support the efficacy of hypnosis for pain, the effect on pain catastrophizing remains unclear. The present study evaluated the effect of hypnosis on pain catastrophizing using experimental heat stimulation. Twenty-two pain patients engaged in 3 conditions: baseline (no suggestion), hypnotic induction, and hypnotic induction plus analgesia suggestion. Participants with higher baseline pain showed a significant reduction in rumination following hypnotic induction plus analgesia suggestion and significant reductions in pain due to both the hypnotic induction alone and the hypnotic induction plus analgesia suggestion. The findings suggest that unpleasantness-focused hypnotic analgesia reduces pain via its effect on the rumination component of pain catastrophizing. PMID:27585727

  9. An experiment on induction of triploidy in Eriocheir japonicus hepuensis Dai by heat treatment

    NASA Astrophysics Data System (ADS)

    Lu, Renhou; Zhang, Jing; Liu, Xiangyu; Yu, Hongjun

    1993-03-01

    Temperature treatment to inhibit extrusion of the polar body of the egg was first used on a lower crustacean, Artemia salina (Gross, 1932), and then was used for inducing triploids of amphibian (Frankhauser and Griffiths, 1939), fish (Svardson, 1945), and mammal (Beatly and Fishchberg, 1949). So far, induction of triploidy has been extensively used to obtain sterile or quick-growth individuals in fish (Swarup, 1956; Lincoln, and Scott, 1983 and Thorgaard, 1986) and mollusk (Stanley et al., 1984), but similar work has not been reported on crab, a higher crustancean.

  10. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  11. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  12. Haemodynamic changes during high frequency oscillation for respiratory distress syndrome.

    PubMed Central

    Laubscher, B.; van Melle, G.; Fawer, C. L.; Sekarski, N.; Calame, A.

    1996-01-01

    In a crossover trial left ventricular output (LVO), cerebral blood flow velocity (CBFV), and resistance index (RI) of the anterior cerebral artery were compared using Doppler ultrasonography, in eight preterm infants with respiratory distress syndrome (RDS) during conventional mechanical ventilation and high frequency oscillation. LVO was 14% to 18% lower with high frequency oscillation. There were no significant changes in CBFV. On the first day of life there was a trend towards lower RI on high frequency oscillation; the fall in LVO on high frequency oscillation was not related to lung hyperinflation. Changes in ventilation type (from conventional mechanical ventilation to high frequency oscillation, or vice versa) can induce significant LVO changes in preterm infants with RDS. PMID:8777679

  13. E-H heating mode transition in inductive discharges with different antenna sizes

    SciTech Connect

    Lee, Hyo-Chang Chung, Chin-Wook

    2015-05-15

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas of 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.

  14. Performance testing of a high frequency link converter for Space Station power distribution system

    NASA Technical Reports Server (NTRS)

    Sul, S. K.; Alan, I.; Lipo, T. A.

    1989-01-01

    The testing of a brassboard version of a 20-kHz high-frequency ac voltage link prototype converter dynamics for Space Station application is presented. The converter is based on a three-phase six-pulse bridge concept. The testing includes details of the operation of the converter when it is driving an induction machine source/load. By adapting a field orientation controller (FOC) to the converter, four-quadrant operation of the induction machine from the converter has been achieved. Circuit modifications carried out to improve the performance of the converter are described. The performance of two 400-Hz induction machines powered by the converter with simple V/f regulation mode is reported. The testing and performance results for the converter utilizing the FOC, which provides the capability for rapid torque changes, speed reversal, and four-quadrant operation, are reported.

  15. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  16. Development of injection gas heating system for introducing large droplets to inductively coupled plasma.

    PubMed

    Kaburaki, Yuki; Nomura, Akito; Ishihara, Yukiko; Iwai, Takahiro; Miyahara, Hidekazu; Okino, Akitoshi

    2013-01-01

    We developed an injection gas heating system for introducing large droplets, because we want to effectively to measure elements in a single cell. This system was applied to ICP-atomic emission spectrometry (ICP-AES), to evaluate it performance. To evaluate the effect of the emission intensity, the emission intensity of Ca(II) increased to a maximum of tenfold at 147°C and the peak was shifted upstream of the plasma. To investigate in detail the effect of an injection gas heating system, we studied different conditions of the injection gas temperature and droplet volume. When the injection gas temperature was 89°C, smaller droplets were easily ionized. At 147°C, the emission intensity ratio and the absolute amount of the sample including the droplet exhibited close agreement. These results show the advantages of the injection gas heating system for large droplet introduction, and the sufficient reduction in the solvent load. The solvent load could be reduced by heating to 147°C using the system.

  17. Engineering techniques to obtain uniform heating of spherical metal objects in an induction furnace

    SciTech Connect

    Wilson, D.M.; Bishop, D.O.; Green, R.A.; Teruya, A.T.

    1993-08-01

    This report discusses the design, construction, and operation of furnace for the purpose of uniformly heating spherical metal test objects to temperatures near 1200{degree}C. This is accomplished while maintaining overall object temperature uniformity of <10{degree}C.

  18. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  19. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  20. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis.

    PubMed

    Tsai, Wen-Tien; Lee, Mei-Kuei; Chang, Jeng-Hung; Su, Ting-Yi; Chang, Yuan-Ming

    2009-05-01

    In this study, gas chromatography-mass spectrometry (GC-MS) was used to analyze the pyrolytic bio-oils and gas fractions derived from the pyrolysis of industrial sewage sludges using induction-heating technique. The liquid products were obtained from the cryogenic condensation of the devolatilization fraction in a nitrogen atmosphere using a heating rate of 300 degrees C/min ranging from 25 to 500 degrees C. The analytical results showed that the pyrolysis bio-oils were very complex mixtures of organic compounds and contained a lot of nitrogenated and/or oxygenated compounds such as aliphatic hydrocarbons, phenols, pyridines, pyrroles, amines, ketones, and so on. These organic hydrocarbons containing nitrogen and/or oxygen should originate from the protein and nucleic acid textures of the microbial organisms present in the sewage sludge. The non-condensable devolatilization fractions were also composed of nitrogenated and oxygenated compounds, but contained small fractions of phenols, 1H-indoles, and fatty carboxylic acids. On the other hand, the compositions in the non-condensable gas products were principally carbon dioxide, carbon monoxide and methane analyzed by gas chromatography-thermal conductivity detector (GC-TCD).

  1. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  2. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  3. A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating.

    PubMed

    Evans, Michael N

    2008-07-01

    A reactor for converting cellulose into carbon monoxide for subsequent oxygen isotopic analysis via continuous flow isotope ratio mass spectrometry is described. The system employs an induction heater to produce temperatures >or=1500 degrees C within a molybdenum foil crucible positioned by boron nitride (BN) spacers within a quartz outer sleeve. For samples of a homogeneous working standard cellulose between 300 and 400 microg in size, the blank/signal ratio is <5%, and the long-term precision is 0.30 per thousand (N = 232). For samples of 30 to 100 microg in size, a gas pressure sintered silicon nitride (Si(3)N(4)) outer sleeve replaces the quartz sleeve, the BN spacers are not used, and 6.0-grade carrier He must be used to minimize the blank signal. With these modifications a blank/sample ratio of <5% and long-term precision of 0.30 per thousand (N = 144) are obtained. These results are similar to those achieved using standard high-temperature furnaces, but the reactor is simpler to pack, the system is more economical to run, and samples as small as 30 microg cellulose may be measured. For both reactors memory is significant in the subsequent sample and is believed to be due to exchange with reactor oxygen at temperatures above 1000 degrees C. Further applications might include online preparation of other materials requiring temperatures of 1500-2600 degrees C.

  4. Comparative studies on temperature threshold for heat shock protein 70 induction in young and adult Murrah buffaloes.

    PubMed

    Haque, N; Ludri, A; Hossain, S A; Ashutosh, M

    2012-10-01

    To know the temperature threshold for heat shock protein 70 (HSP70) induction in lymphocytes and to assess physiological changes, if any, in relation to HSP70 induction in young and adult Murrah buffaloes, this study was divided into two parts: I. In vivo study: where assay of HSP70 was performed in blood samples collected from acutely exposed young and adult Murrah buffaloes (n = 6) inside a climatic chamber at 40, 42 and 45 °C for 4 h and thermoneutral temperature (22 °C). Physiological parameters viz., rectal temperature, respiratory rate, pulse rate and skin temperature of different body parts were monitored to assess magnitude of stress in the animals owing to thermal exposure II. For in vitro study, equal numbers of lymphocyte cells were separated from blood collected from young and adult buffaloes and were subjected to four temperature treatments (38, 40, 42 and 45 °C) for 4 h. A significant increase (p < 0.05) in all the physiological parameters in both young and adult buffaloes was observed after exposure to 40, 42 and 45 °C for 4 h as compared to 38 °C. The average plasma HSP70 concentrations (ng/ml) were significantly higher (p < 0.05) at 40, 42 and 45 °C as compared to 38 °C in both young and adult and were higher in young than adult buffaloes at 38 and 45 °C. Heat shock protein 70 level in lymphocyte lysate showed highest concentration after 3-h exposure to all temperatures (40, 42 and 45 °C) in both young and adult buffaloes. The intensity of changes of all physiological parameters was more in young animals than in the adults indicating the greater susceptibility of younger animals to heat stress and was found to be changed at around 40 °C when animals were exposed to different temperatures, indicating the possibility that HSP70 production may be initiated at this temperature which is 2 or 3 °C higher than core body temperature.

  5. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  6. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  7. High frequency single mode traveling wave structure for particle acceleration

    NASA Astrophysics Data System (ADS)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  8. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  9. Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; El-Sayed, H. M.; Rasly, M.; Nasr, M. I.

    2012-11-01

    An investigation of the synthesis of Fe3O4 nanopowders by the co-precipitation method is reported from aqueous and ethanol mediums. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer are utilized to study the effect of variation of synthesis conditions on the crystal structure, crystallite size, microstructure and magnetic properties of the formed powders. The XRD analysis showed that the crystalline Fe3O4 phase was formed at Fe3+/Fe2+ molar ratio 2.0 prepared at room temperature for 1 h at pH 10. The crystallite size was in the range between 8 and 11 nm. TEM micrographs showed that the particles appeared as nanospheres. Superparamagnetic nanoparticles with low coercivity and remanence magnetization were achieved. Heating properties of the nanosphere samples in an alternating magnetic field at 160 KHz were evaluated. An excellent heating efficiency for the sample prepared in ethanol medium is a result of more relaxation losses occurring due to its small particle size.

  10. Generation Of High Non-inductive Plasma Current Fraction H-mode Discharges By High-harmonic Last Wave Heating In The National Spherical Torus Experiment

    SciTech Connect

    Taylor, G; Kessel, C E; LeBlanc, B P; Mueller, D; Phillips, D K; Valeo, E J; Wilson, J R; Ryan, P M; Bonoli, P T; Wright, J C

    2012-02-13

    1.4 MW of 30 MHz high-harmonic fast wave (HHFW) heating, with current drive antenna phasing, has generated a Ip = 300kA, BT (0) = 0.55T deuterium H-mode plasma in the National Spherical Torus Experiment that has a non-inductive plasma current fraction, fNI = 0.7-1. Seventy-five percent of the non-inductive current was generated inside an internal transport barrier that formed at a normalized minor radius, r/a {approx} 0.4 . Three quarters of the non-inductive current was bootstrap current and the remaining non-inductive current was generated directly by HHFW power inside r/a {approx} 0.2.

  11. High Non-inductive Fraction H-mode Discharges Generated by High-harmonic Fast Wave Heating and Current Drive in the National Spherical Torus Experiment

    SciTech Connect

    Taylor, G.; Hosea, J.; Kessel, C. E.; LeBlanc, B; Mueller, D.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.; Ryan, Philip Michael; Bonoli, P.; Harvey, R. W.

    2012-01-01

    A deuterium H-mode discharge with a plasma current of 300 kA, an axial toroidal magnetic field of 0.55 T, and a calculated non-inductive plasma current fraction of 0.7 1 has been generated in the National Spherical Torus Experiment by 1.4MW of 30MHz high-harmonic fast wave (HHFW) heating and current drive. Seventy-five percent of the non-inductive current was generated inside an internal transport barrier that formed at a normalized minor radius 0.4. Three quarters of the non-inductive current was bootstrap current, and the remaining non-inductive current was generated directly by HHFW power inside a normalized minor radius 0.2. VC 2012 American Institute of Physics.

  12. Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source

    SciTech Connect

    Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.

    2012-11-06

    Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

  13. Solution of high frequency variations of ERP from VLBI observations

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Li, J. L.; Wang, G. L.; Zhao, M.

    2005-01-01

    In the astrometric and geodetic VLBI data analysis software CALC/SOLVE, the high frequency variations of the Earth Rotation Parameters (ERP) are determined by a constrained continuous piecewise linear model. The ERP rate within two epoch nodes is constrained to be smaller than a limitation setting, and the ERP is forced to be continuous at epoch nodes. Observation analysis shows that when the data points are not very dense the constraint and the continuation requirement are helpful to the improvement in the stability of the solution, but degrade the independence of ERP solutions at epoch nodes as well. By using the Userpartial entry of CALC/SOLVE a direct solution module of the high frequency variations of ERP is realized without any constraint on the rate nor the requirement of continuation at nodes. It is shown from real observation reduction that the direct solution mode is feasible. In the solution of high frequency variations of ERP from VLBI observations with long period coverage, the model errors of the precession and nutation (celestial pole offset) should be taken into consideration. A corresponding module is realized and global solutions of the high frequency variation of ERP are successfully performed on the VLBI observations from 1979 to 2003. Comparison of the solutions shows that with the consideration of the pole offsets the precision of parameters could be improved obviously. In the solution of high frequency variation of ERP from VLBI observations, the direct solution mode with the consideration of the pole offsets is accordingly recommended.

  14. The effect of metal-contacts on carbon nanotube for high frequency interconnects and devices

    SciTech Connect

    Chimowa, George; Bhattacharyya, Somnath

    2014-08-15

    High frequency characterisation of platinum and tungsten contacts on individual multi-walled carbon nanotubes (MWNT) is performed from 10 MHz to 50 GHz. By measuring the scattering parameters of aligned individual MWNTs, we show that metal contacts enhance an inductive response due to the improved MWNT-electrode coupling reducing the capacitive effect. This behaviour is pronounced in the frequency below 10 GHz and strong for tungsten contacts. We explain the inductive response as a result of the interaction of stimulus current with the localized (or defects) states present at the contact region resulting in the current lagging behind the voltage. The results are further supported by direct current measurements that show tungsten to significantly increase carbon nanotube-electrode coupling. The immediate consequence is the reduction of the contact resistance, implying a reduction of electron tunnelling barrier from the electrode to the carbon nanotube.

  15. A method for computerised recording and analysis of high frequency biopotentials (oscillometry).

    PubMed

    Mendanha, R E

    2008-01-01

    Oscillometry records the high frequency electrical activity on the skin surface. These are induced by external ambient electromagnetic radiations, and generated internally by physiological processes. The existence of these surface A.C. oscillations is fundamental to the existence of an electromagnetic field around the human body. Unfiltered electrical and inductive signals are digitally recorded using the computer sound card and audio analysis software. The power and frequency content of the signal is measured. A sound card with a sample rate of 96 KHz enables FFT from 0 to 45 KHz. It can be used to study the electrical response of the body to externally administered electromagnetic radiations. Some of the responses seen during yoga practices are capable of inductive influences. PMID:19585757

  16. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.

  17. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  18. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia.

    PubMed

    Zhao, Dong-Lin; Zhang, Hai-Long; Zeng, Xian-Wei; Xia, Qi-Sheng; Tang, Jin-Tian

    2006-12-01

    The magnetite (Fe(3)O(4)) nanoparticles were prepared by coprecipitation of Fe(3+) and Fe(2+) with an aqueous NaOH solution. The Fe(3)O(4)/polyaniline (PANI) magnetic composite nanoparticles with a core-shell structure with a diameter of 30-50 nm were prepared via an in situ polymerization of aniline in an aqueous solution containing the Fe(3)O(4) magnetic fluid. The inductive heat property of Fe(3)O(4)/PANI composite nanoparticles in an alternating current (ac) magnetic field was investigated. The potential of Fe(3)O(4)/PANI nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization, M(s), and coercivity, H(c), are 50.05 emu g(-1) and 137 Oe for Fe(3)O(4) nanoparticles and 26.34 emu g(-1) and 0 Oe for Fe(3)O(4)/PANI composite nanoparticles, respectively. Exposed in the ac magnetic field for 29 min, the temperatures of physiological saline suspensions containing Fe(3)O(4) nanoparticles or Fe(3)O(4)/PANI composite nanoparticles are 63.6 degrees C and 52.4 degrees C, respectively. The Fe(3)O(4)/PANI composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers. PMID:18458406

  19. Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees

    PubMed Central

    2008-01-01

    Foraging honey bees frequently leave the hive to gather pollen and nectar for the colony. This period of their lives is marked by periodic extremes of body temperature, metabolic expenditure, and flight muscle activity. Following ecologically relevant episodes of hyperthermia between 33°C and 50°C, heat shock protein 70 (Hsp70) expression and hsp70/hsc70-4 activity in brains of nonflying laboratory-held bees increased by only two to three times baseline at temperatures 46–50°C. Induction was undetectable in thoracic–flight muscles. Yet, thorax hsp70 mRNA (but not hsc70-4 mRNA) levels were up to ten times higher in flight-capable hive bees and foraging bees compared to 1-day-old, flight-incapable bees, while brain hsp70/hsc70-4 mRNA levels were low and varied little among behavioral groups. These data suggest honey bee tissues, especially flight muscles, are extremely thermotolerant. Furthermore, Hsp70 expression in the thoraces of flight-capable bees is probably flight-induced by oxidative and mechanical damage to flight muscle proteins rather than temperature. PMID:18696260

  20. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna.

    PubMed

    Pauwels, K; Stoks, R; de Meester, L

    2005-07-01

    Although predation is a strong selection pressure, little is known about the molecular mechanisms to cope with predator stress. This is crucial to understanding of the mechanisms and constraints involved in the evolution of antipredator traits. We quantified the expression of heat-shock protein 60 (Hsp60), a potential marker for predator stress, in four clones of the water flea Daphnia magna, when exposed to fish kairomones. Expression of Hsp60 induction increased after 6 h and returned to base levels after 24 h of predator stress. This suggests that it is a costly transient mechanism to temporarily cope with novel predator stress, before other defences are induced. We found genetic variation in the fixed levels and in the fish-induced levels of Hsp60, which seemed to be linked to each clone's history of fish predation. Our data suggest that Hsp60 can be considered part of a multiple-trait antipredator defence strategy of Daphnia clones to cope with predator stress. PMID:16033558

  1. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins

    SciTech Connect

    Tsuji, Takayuki Kato, Akihiko; Yasuda, Hideo; Miyaji, Takehiko; Luo, Jinghui; Sakao, Yukitoshi; Ito, Hideaki; Fujigaki, Yoshihide; Hishida, Akira

    2009-01-15

    Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p < 0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular c0010el.

  2. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  3. Bench test assessment of mainstream capnography during high frequency oscillatory ventilation.

    PubMed

    Hartdorff, Caroline M; van Heerde, Marc; Markhorst, Dick G

    2014-02-01

    To assess the feasibility, stability and predictability of pCO2 measurement (PETCO2) using a main stream capnograph in a high frequency oscillatory ventilation circuit. A commercially available capnograph was mounted into a high frequency oscillatory ventilator patient circuit, adjustable CO2 flow was introduced into an artificial lung and the output of the CO2 sensor assessed under varying ventilator settings. Influence of oxygen content, pressures, heat and moisture were recorded. A linear relationship between CO2 flow rate and PETCO2 was found. Varying ventilator settings influenced the measurements, but the results for PETCO2 remained within a range of 1.5 mmHg above or under then mean measurement value. Measurements remained stable despite humidification, heat, pressure amplitudes or mean airway pressure changes. From this bench test, we conclude it is feasible to measure PETCO2 using a main stream capnograph during high frequency oscillatory conditions, these measurements were stable during the experiment. Changes in CO2 production or output can be detected. The system may prove to be of clinical value, but further in vivo measurements are warranted. PMID:23974630

  4. Microfabrication of electrode patterns for high-frequency ultrasound transducer arrays.

    PubMed

    Bernassau, Anne L; García-Gancedo, Luis; Hutson, David; Démoré, Christine E M; McAneny, Jim J; Button, Tim W; Cochran, Sandy

    2012-08-01

    High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-μm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 μm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques. PMID:22899129

  5. Microfabrication of electrode patterns for high-frequency ultrasound transducer arrays.

    PubMed

    Bernassau, Anne L; García-Gancedo, Luis; Hutson, David; Démoré, Christine E M; McAneny, Jim J; Button, Tim W; Cochran, Sandy

    2012-08-01

    High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-μm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 μm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques.

  6. High Frequency Haplotypes are Expected Events, not Historical Figures.

    PubMed

    Guillot, Elsa G; Cox, Murray P

    2015-01-01

    Cultural transmission of reproductive success states that successful men have more children and pass this raised fecundity to their offspring. Balaresque and colleagues found high frequency haplotypes in a Central Asian Y chromosome dataset, which they attribute to cultural transmission of reproductive success by prominent historical men, including Genghis Khan. Using coalescent simulation, we show that these high frequency haplotypes are consistent with a neutral model, where they commonly appear simply by chance. Hence, explanations invoking cultural transmission of reproductive success are statistically unnecessary.

  7. High Frequency Haplotypes are Expected Events, not Historical Figures

    PubMed Central

    Guillot, Elsa G.; Cox, Murray P.

    2016-01-01

    Cultural transmission of reproductive success states that successful men have more children and pass this raised fecundity to their offspring. Balaresque and colleagues found high frequency haplotypes in a Central Asian Y chromosome dataset, which they attribute to cultural transmission of reproductive success by prominent historical men, including Genghis Khan. Using coalescent simulation, we show that these high frequency haplotypes are consistent with a neutral model, where they commonly appear simply by chance. Hence, explanations invoking cultural transmission of reproductive success are statistically unnecessary. PMID:26834987

  8. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  9. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  10. Induced and Form Birefringence in High-Frequency Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Martinez-Ponce, Geminiano; Solano, Cristina

    2001-08-01

    High-frequency phase polarization gratings are fabricated holographically in dichromated gelatin dyed with malachite green. It is observed that the intensity of the -1 diffracted beam is a sinusoidal function of the incident polarization angle. In addition, we analyze the dependence of the diffracted order polarization on grating frequency. It is evident from our results that form birefringence becomes significant when the grating period is smaller than the illumination wavelength, thus modifying the optically induced birefringence. Then, in polarization hologram reconstruction, it is not possible to obtain the polarization distribution at the recording step for high-frequency objects.

  11. Induction of the heat shock regulon of Escherichia coli markedly increases production of bacterial viruses at high temperatures.

    PubMed Central

    Wiberg, J S; Mowrey-McKee, M F; Stevens, E J

    1988-01-01

    Production of bacteriophages T2, T4, and T6 at 42.8 to 44 degrees C was increased from 8- to 260-fold by adapting the Escherichia coli host (grown at 30 degrees C) to growth at the high temperature for 8 min before infection; this increase was abolished if the host htpR (rpoH) gene was inactive. Others have shown that the htpR protein increases or activates the synthesis of at least 17 E. coli heat shock proteins upon raising the growth temperature above a certain level. At 43.8 to 44 degrees C in T4-infected, unadapted cells, the rates of RNA, DNA, and protein synthesis were about 100, 70, and 70%, respectively, of those in T4-infected, adapted cells. Production of the major processed capsid protein, gp23, was reduced significantly more than that of most other T4 proteins in unadapted cells relative to adapted cells. Only 4.6% of the T4 DNA made in unadapted cells was resistant to micrococcal nuclease, versus 50% in adapted cells. Thus, defective maturation of T4 heads appears to explain the failure of phage production in unadapted cells. Overproduction of the heat shock protein GroEL from plasmids restored T4 production in unadapted cells to about 50% of that seen in adapted cells. T4-infected, adapted E. coli B at around 44 degrees C exhibited a partial tryptophan deficiency; this correlated with reduced uptake of uracil that is probably caused by partial induction of stringency. Production of bacteriophage T7 at 44 degrees C was increased two- to fourfold by adapting the host to 44 degrees C before infection; evidence against involvement of the htpR (rpoH) gene is presented. This work and recent work with bacteriophage lambda (C. Waghorne and C.R. Fuerst, Virology 141:51-64, 1985) appear to represent the first demonstrations for any virus that expression of the heat shock regulon of a host is necessary for virus production at high temperature. Images PMID:2446014

  12. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2016-09-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  13. Induction heating apparatus and methods for selectively energizing an inductor in response to a measured electrical characteristic that is at least partially a function of a temperature of a material being heated

    DOEpatents

    Richardson, John G.; Morrison, John L.; Hawkes, Grant L.

    2006-07-04

    An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.

  14. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism. PMID:26519092

  15. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  16. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  17. Disappearance of high frequency modes in polymer dilute solution viscoelasticity

    NASA Astrophysics Data System (ADS)

    Larson, Ronald; Jain, Semant

    2009-03-01

    We address the problem of the ``missing modes'' in the high frequency rheology of dilute polymer solutions. According to the Rouse-Zimm theory, the slow viscoelastic response of dilute polymers is dominated by the collective motion of the chain, as described by a bead-spring model. However, one expects this description to break down at high frequencies at which chain motion on scales too small to be represented by beads and springs should be evident; this motion should be controlled by rotations of individual backbone bonds of the polymer. The viscoelastic response produced by these ``local modes'' is observable in polymer melts; however, for dilute polymer solutions, the ``local modes'' are absent from viscoelastic spectra, as shown by Schrag and coworkers (Peterson, et al., J. Polym. Sci. B, 39:2860 (2001)). Here we address this problem by directly simulating single polymer chains using Brownian dynamics simulations, with realistic bending and torsional potentials. We show using these simulations that the ``missing modes'' result from barriers to bond rotation that make the chain ``dynamically rigid'' at high frequencies. As a result, the ``dynamical Kuhn length'' of the chain exceeds the static one, and the chain at high frequencies is not able to explore local conformations as fast as would be needed for their relaxation to contribute to the mechanical relaxation spectrum.

  18. Pulsating fireballs with high-frequency sheath-plasma instabilities

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Gruenwald, J.; Ionita, C.; Schrittwieser, R.

    2011-08-01

    High-frequency instabilities are observed in connection with unstable fireballs. Fireballs are discharge phenomena near positively biased electrodes in discharge plasmas. They are bounded by a double layer whose potential is of order of the ionization potential. Fireballs become unstable when plasma losses and plasma production are not in balance, resulting in periodic fireball pulses. High-frequency instabilities in the range of the electron plasma frequency have been observed. These occur between fireball pulses, hence are not due to electron beam-plasma instabilities since there are no beams without double layers. The instability has been identified as a sheath-plasma instability. Electron inertia creates a phase shift between high-frequency current and electric fields which destabilizes the sheath-plasma resonance. High-frequency signals are observed in the current to the electrode and on probes near the sheath of the electrode. Waveforms and spectra are presented, showing bursty emissions, phase shifts, frequency jumps, beat phenomena between two sheaths, and nonlinear effects such as amplitude clipping. These reveal many interesting properties of sheaths with periodic ionization phenomena.

  19. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    ERIC Educational Resources Information Center

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  20. High frequency excitation of Earth rotation parameters (ERP) from atmosphere.

    NASA Astrophysics Data System (ADS)

    Xie, Boquan; Zheng, Dawei

    1996-06-01

    The data sets of Earth rotation parameters measured by space geodetic techniques and atmospheric angular momentum reduced by the global meteorological data from 1983 through 1992 are used to analyze and study the high frequency excitations of Earth rotation parameters for the length of day and polar motion up to the monthly time scale from the atmosphere. The main results are given.

  1. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism.

  2. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  3. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  4. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  5. Structural and chemical transformations on zirconium surface during machining and electrotechnological treatment with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomina, Marina A.; Fomin, Aleksandr A.; Koshuro, Vladimir A.; Rodionov, Igor V.; Fedoseev, Maksim E.; Voyko, Aleksey V.; Palkanov, Pavel A.; Atkin, Vsevolod S.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.

    2016-04-01

    Research results on the chemical composition and surface morphological characteristics of zirconium products after machining and treatment with high-frequency currents are described. It was established that at the temperature range from 600 to 1200 °C and duration of heat treatment from 30 to 300 seconds oxide coatings consisting of nano-grains are formed.

  6. Induction of heat shock protein HSPA6 (HSP70B') upon HSP90 inhibition in cancer cell lines.

    PubMed

    Kuballa, Petric; Baumann, Anna-Lena; Mayer, Klaus; Bär, Ute; Burtscher, Helmut; Brinkmann, Ulrich

    2015-06-01

    Genome-wide transcript profiling to elucidate responses to HSP90 inhibition revealed strong induction of HSPA6 in MCF-7 cells treated with 17-AAG. Time- and dose dependent induction of HSPA6 (confirmed by qPCR and Western Blots) occurred also upon treatment with Radicicol, another HSP90 inhibitor. HSPA6 was not detectable in untreated cells or cells treated with toxins that do not inhibit HSP90, or upon applying oxidative stress. Thus, HSPA6 induction is not a general response to cytotoxic insults. Modulation of HSPA6 levels by siRNA-mediated inhibition or recombinant expression did not influence 17-AAG mediated cell death. HSPA6 induction as a consequence of HSP90 inhibition occurs in various (but not all) cell lines and may be a more specific marker for HSP90 inhibition than induction of other HSP70 proteins.

  7. Experimental research of high frequency standing wave thermoacoustic refrigerator driven by loudspeaker

    NASA Astrophysics Data System (ADS)

    Chunping, Zhang; Wei, Liu; Zhichun, Yang; Zhengyu, Li; Xiaoqing, Zhang; Feng, Wu

    2012-05-01

    A small size standing wave thermoacoustic refrigerator driven by a high frequency loudspeaker has been experimentally studied. Instead of water cooling, the cold heat exchanger of the refrigerator was cooled by air through fins on it. By working at 600-700 Hz and adjusting the position of the thermoacoustic core components including the stack and adjacent exchangers, the influences of it on the capability of refrigeration were experimentally investigated. The lowest temperature of 4.1 °C in the cold heat exchanger with the highest temperature difference of 21.5 °C between two heat exchangers were obtained. And the maximum cooling power of 9.7 W has been achieved.

  8. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  9. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  10. Transformation ray method: controlling high frequency elastic waves (L).

    PubMed

    Chang, Zheng; Liu, Xiaoning; Hu, Gengkai; Hu, Jin

    2012-10-01

    Elastic ray theory is a high frequency asymptotic approximation of solution of elastodynamic equation, and is widely used in seismology. In this paper, the form invariance under a general spatial mapping and high frequency wave control have been examined by transformation method. It is showed that with the constraint of major and minor symmetry of the transformed elastic tensor, the eikonal equation keeps its form under a general mapping, however, the transport equation loses its form except for conformal mapping. Therefore, the elastic ray path can be controlled in an exact manner by a transformation method, whereas energy distribution along the ray is only approximately controlled. An elastic rotator based on ray tracing method is also provided to illustrate the method and to access the approximation. PMID:23039561

  11. Clustered Desynchronization from High-Frequency Deep Brain Stimulation.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2015-12-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson's disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  12. High-frequency oscillations and the neurobiology of schizophrenia.

    PubMed

    Uhlhaas, Peter J; Singer, Wolf

    2013-09-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.

  13. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  14. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  15. Imaging Observations of a Very High Frequency Type II Burst

    NASA Astrophysics Data System (ADS)

    White, S. M.; Mercier, C.; Bradley, R.; Bastian, T.; Kerdraon, A.; Pick, M.

    2006-05-01

    A remarkable Type II burst was detected by the high-frequency system of the Green Bank Solar Radio Burst Spectrometer on 2005 November 14. The harmonic branch of the Type II extended up to 800 MHz, making it one of the highest frequency Type II bursts ever detected, but it failed to propagate to heights corresponding to frequencies below 100 MHz. At such high frequencies, it implies the formation of a shock relatively low in the corona. No coronal mass ejection was evident in the LASCO data for this east limb event. It is one of the few Type II bursts to be observable at every frequency of observation of the Nancay Radio Heliograph (164-432 MHz). Here we present analysis of images of the event, including simultaneous imaging of the fundamental and harmonic branches.

  16. Clustered Desynchronization from High-Frequency Deep Brain Stimulation

    PubMed Central

    Wilson, Dan; Moehlis, Jeff

    2015-01-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  17. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  18. High frequency vibration analysis by the complex envelope vectorization.

    PubMed

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  19. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  20. High-frequency audibility: benefits for hearing-impaired listeners.

    PubMed

    Hogan, C A; Turner, C W

    1998-07-01

    The present study was a systematic investigation of the benefit of providing hearing-impaired listeners with audible high-frequency speech information. Five normal-hearing and nine high-frequency hearing-impaired listeners identified nonsense syllables that were low-pass filtered at a number of cutoff frequencies. As a means of quantifying audibility for each condition, Articulation Index (AI) was calculated for each condition for each listener. Most hearing-impaired listeners demonstrated an improvement in speech recognition as additional audible high-frequency information was provided. In some cases for more severely impaired listeners, increasing the audibility of high-frequency speech information resulted in no further improvement in speech recognition, or even decreases in speech recognition. A new measure of how well hearing-impaired listeners used information within specific frequency bands called "efficiency" was devised. This measure compared the benefit of providing a given increase in speech audibility to a hearing-impaired listener to the benefit observed in normal-hearing listeners for the same increase in speech audibility. Efficiencies were calculated using the old AI method and the new AI method (which takes into account the effects of high speech presentation levels). There was a clear pattern in the results suggesting that as the degree of hearing loss at a given frequency increased beyond 55 dB HL, the efficacy of providing additional audibility to that frequency region was diminished, especially when this degree of hearing loss was present at frequencies of 4000 Hz and above. A comparison of analyses from the "old" and "new" AI procedures suggests that some, but not all, of the deficiencies of speech recognition in these listeners was due to high presentation levels.

  1. [Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings].

    PubMed

    Kolupaev, Iu E; Oboznyĭ, A I

    2012-01-01

    The influence of one-minute hardening heating at 42 degrees C on the dynamics of hydrogen peroxide generation and activity of antioxidant enzymes in roots of winter wheat seedlings has been investigated. It was shown that the content of hydrogen peroxide increased within the first 30 minutes after heat influence, whereupon it approached the level of control variant. The activity of superoxide dismutase (SOD) increased significantly within 10 min after heating and was maintained at a high level during 24 hours of observation. The activity of ascorbate peroxidase and guaiacol peroxidase increased after 3-6 hours after the hardening and reached its maximum after 24 hours, when there was the most significant increase in heat resistance of seedlings. The short-term increase in hydrogen peroxide content caused by hardening heating was suppressed by treatment of seedlings with H2O2 scavenger dimethylthiourea, inhibitors of NADPH-oxidase (imidazole) and SOD (sodium diethyldithiocarbamate). All these effectors levelled the increase of activity of ascorbate peroxidase and guaiacol peroxidase and significantly inhibited the development of heat resistance of seedlings. The conclusion was made about the role of hydrogen peroxide produced with the participation of NADPH-oxidase and SOD in the induction of antioxidant system by heat hardening of wheat seedlings.

  2. [Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings].

    PubMed

    Kolupaev, Iu E; Oboznyĭ, A I

    2012-01-01

    The influence of one-minute hardening heating at 42 degrees C on the dynamics of hydrogen peroxide generation and activity of antioxidant enzymes in roots of winter wheat seedlings has been investigated. It was shown that the content of hydrogen peroxide increased within the first 30 minutes after heat influence, whereupon it approached the level of control variant. The activity of superoxide dismutase (SOD) increased significantly within 10 min after heating and was maintained at a high level during 24 hours of observation. The activity of ascorbate peroxidase and guaiacol peroxidase increased after 3-6 hours after the hardening and reached its maximum after 24 hours, when there was the most significant increase in heat resistance of seedlings. The short-term increase in hydrogen peroxide content caused by hardening heating was suppressed by treatment of seedlings with H2O2 scavenger dimethylthiourea, inhibitors of NADPH-oxidase (imidazole) and SOD (sodium diethyldithiocarbamate). All these effectors levelled the increase of activity of ascorbate peroxidase and guaiacol peroxidase and significantly inhibited the development of heat resistance of seedlings. The conclusion was made about the role of hydrogen peroxide produced with the participation of NADPH-oxidase and SOD in the induction of antioxidant system by heat hardening of wheat seedlings. PMID:23387278

  3. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  4. The Origin of High-Frequency Hearing in Whales.

    PubMed

    Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H

    2016-08-22

    Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. PMID:27498568

  5. High-frequency hearing loss among mobile phone users.

    PubMed

    Velayutham, P; Govindasamy, Gopala Krishnan; Raman, R; Prepageran, N; Ng, K H

    2014-01-01

    The objective of this study is to assess high frequency hearing (above 8 kHz) loss among prolonged mobile phone users is a tertiary Referral Center. Prospective single blinded study. This is the first study that used high-frequency audiometry. The wide usage of mobile phone is so profound that we were unable to find enough non-users as a control group. Therefore we compared the non-dominant ear to the dominant ear using audiometric measurements. The study was a blinded study wherein the audiologist did not know which was the dominant ear. A total of 100 subjects were studied. Of the subjects studied 53% were males and 47% females. Mean age was 27. The left ear was dominant in 63%, 22% were dominant in the right ear and 15% did not have a preference. This study showed that there is significant loss in the dominant ear compared to the non-dominant ear (P < 0.05). Chronic usage mobile phone revealed high frequency hearing loss in the dominant ear (mobile phone used) compared to the non dominant ear.

  6. Source of high-frequency oscillations in oblique saccade trajectory.

    PubMed

    Ghasia, Fatema F; Shaikh, Aasef G

    2014-04-01

    Most common eye movements, oblique saccades, feature rapid velocity, precise amplitude, but curved trajectory that is variable from trial-to-trial. In addition to curvature and inter-trial variability, the oblique saccade trajectory also features high-frequency oscillations. A number of studies proposed the physiological basis of the curvature and inter-trial variability of the oblique saccade trajectory, but kinematic characteristics of high-frequency oscillations are yet to be examined. We measured such oscillations and compared their properties with orthogonal pure horizontal and pure vertical oscillations generated during pure vertical and pure horizontal saccades, respectively. We found that the frequency of oscillations during oblique saccades ranged between 15 and 40 Hz, consistent with the frequency of orthogonal saccadic oscillations during pure horizontal or pure vertical saccades. We also found that the amplitude of oblique saccade oscillations was larger than pure horizontal and pure vertical saccadic oscillations. These results suggest that the superimposed high-frequency sinusoidal oscillations upon the oblique saccade trajectory represent reverberations of disinhibited circuit of reciprocally innervated horizontal and vertical burst generators.

  7. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-01

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo. PMID:25948257

  8. High-frequency ultrasound in parotid gland disease.

    PubMed

    Onkar, Prashant Madhukar; Ratnaparkhi, Chetana; Mitra, Kajal

    2013-12-01

    Parotid gland is involved in many inflammatory and neoplastic conditions. Many a times, it is difficult to ascertain the type of swelling by clinical examination. The anatomy and various abnormalities of the glands are very easily visualized by high-frequency ultrasound. Ultrasound can confirm the presence of the mass with sensitivity up to 100%. It can demonstrate whether a lesion is located in the parotid gland or outside. It can help in differentiating benign from malignant neoplasms and local staging of the mass in malignant lesions. In addition, ultrasound can identify those entities that may not need surgical intervention. The glands appear enlarged and show altered echopattern in acute inflammation and may be normal or reduce in size in chronic inflammation. Other pathologies that involve salivary glands are sialolithiasis and various benign and malignant neoplasms. Ultrasound many times suggests final diagnosis or supplies important differential diagnosis. In this article, the use of high-frequency ultrasound in parotid disease is discussed, and sonographic features of different parotid pathologies are reviewed with examples illustrated. High-frequency ultrasound is the first and many a times the only imaging investigation done for evaluation of parotid glands.

  9. Characteristics of high-frequency consumers of prescription psychoactive drugs.

    PubMed

    Chambers, C D; White, O Z

    1980-01-01

    Two cohorts of white middle-class housewives who reported themselves as high-frequency consumers of prescription sedatives, tranquilizers, and stimulants have been studied and their characteristics have been reported. One group of these women are residents of a Midwestern state, and the other in a Southern state. These women can best be described as follows: Most reported their primary physician as being a general practitioner (60%), and most reported they had consulted two or more separate physicians during the last year (78%). More than a third (36%) had seen at least three different physicians. Interestingly, while most of these women were consulting general practitioners and/or internists, almost a third were presenting them with general psychological complaints. The self-reported high-frequency users most frequently used the relaxants/minor tranquilizers (64%), followed by sedatives (41%), stimulants (31%), and major tranquilizers (7%). Almost half of all these high-frequency medicine consumers were also regular drinkers (47%), and some 13 to 17% could be considered as heavy drinkers. The majority of the relaxant/minor tranquilizer users had been taking the medications daily or several times a week for at least six months. Less than half of these users, however, felt their "condition" had gotten "better." The majority of the sedative users had also been taking the medications daily or several times a week for at least six months. Less than a third of these users felt the condition that precipitated the prescription had improved during this period of use. Of major importance, only a minority of these long-term high-frequency users of sedatives and relaxants/minor tranquilizers believe these drugs to be habit-forming or to have any potential for physical or psychological harm. Although the stimulant-users were also found to be high-frequency consumers, stimulant-users were found to have been using these drugs for a shorter period of time. There also appears to

  10. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    NASA Astrophysics Data System (ADS)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  11. High frequency seismic waves and slab structures beneath Italy

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Miller, Meghan S.; Piana Agostinetti, Nicola; Asimow, Paul D.; Li, Dunzhu

    2014-04-01

    Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in

  12. Modeling of power control schemes in induction cooking devices

    NASA Astrophysics Data System (ADS)

    Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone

    2005-06-01

    In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.

  13. High-Frequency Excitation of a Plane Wake

    NASA Technical Reports Server (NTRS)

    Cain, Alan B.; Rogers, Michael M.

    2000-01-01

    In the early 1990's, Glezer and his co-workers at Georgia Tech made a startling discovery. They found that forcing at frequencies too high to directly affect the production scales led to a dramatic alteration in the development of a turbulent shear layer. An experimental study of this phenomenon is presented in Wiltse and Glezer. They used piezoelectric actuators located near the jet exit plane to force the shear layers of a square low-speed jet. The actuators were driven at a high frequency in the Kolmogorov inertial subrange, much higher than the frequencies associated with the large-scale motion (where the turbulent energy is produced and located) but much lower than those associated with the Kolmogorov scale (where the turbulent energy is dissipated). Measurements of the shear-layer turbulence showed that direct excitation of small-scale motion by high-frequency forcing led to an increase in the turbulent dissipation of more than an order of magnitude in the initial region of the shear layer! The turbulent dissipation gradually decreased with downstream distance but remained above the corresponding level for the unforced flow at all locations examined. The high-frequency forcing increased the turbulent kinetic energy in the initial region near the actuators, but the kinetic energy decreased quite rapidly with downstream distance, dropping to levels that were a small fraction of the level for the unforced case. Perhaps most importantly from the present standpoint, the high-frequency forcing significantly decreased the energy in the large-scale motion, increasingly so with downstream distance. Wiltse and Glezer interpreted this behavior as an enhanced transfer of energy from the large scales to the small scales. The initial work by Wiltse and Glezer has expanded into other applications. To explore the potential of high-frequency forcing for active acoustic suppression, in 1998 the first author proposed a set of experiments involving an edge tone shear layer and

  14. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-15

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  15. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-01

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  16. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  17. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  18. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    PubMed

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed. PMID:26548080

  19. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    PubMed

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.

  20. Boosting brain excitability by transcranial high frequency stimulation in the ripple range

    PubMed Central

    Moliadze, Vera; Antal, Andrea; Paulus, Walter

    2010-01-01

    Alleviating the symptoms of neurological diseases by increasing cortical excitability through transcranial stimulation is an ongoing scientific challenge. Here, we tackle this issue by interfering with high frequency oscillations (80–250 Hz) via external application of transcranial alternating current stimulation (tACS) over the human motor cortex (M1). Twenty-one subjects participated in three different experimental studies and they received on separate days tACS at three frequencies (80 Hz, 140 Hz and 250 Hz) and sham stimulation in a randomized order. tACS with 140 Hz frequency increased M1 excitability as measured by transcranial magnetic stimulation-generated motor evoked potentials (MEPs) during and for up to 1 h after stimulation. Control experiments with sham and 80 Hz stimulation were without any effect, and 250 Hz stimulation was less efficient with a delayed excitability induction and reduced duration. After-effects elicited by 140 Hz stimulation were robust against inversion of test MEP amplitudes seen normally under activation. Stimulation at 140 Hz reduced short interval intracortical inhibition, but left intracortical facilitation, long interval cortical inhibition and cortical silent period unchanged. Implicit motor learning was not facilitated by 140 Hz stimulation. High frequency stimulation in the ripple range is a new promising non-invasive brain stimulation protocol to increase human cortical excitability during and after the end of stimulation. PMID:20962008

  1. Abnormal High-Frequency Burst Firing of Cerebellar Neurons in Rapid-Onset Dystonia-Parkinsonism

    PubMed Central

    Fremont, Rachel; Calderon, D. Paola; Maleki, Sara

    2014-01-01

    Loss-of-function mutations in the α3 isoform of the Na+/K+ ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12. PMID:25164667

  2. Boosting brain excitability by transcranial high frequency stimulation in the ripple range.

    PubMed

    Moliadze, Vera; Antal, Andrea; Paulus, Walter

    2010-12-15

    Alleviating the symptoms of neurological diseases by increasing cortical excitability through transcranial stimulation is an ongoing scientific challenge. Here, we tackle this issue by interfering with high frequency oscillations (80–250 Hz) via external application of transcranial alternating current stimulation (tACS) over the human motor cortex (M1). Twenty-one subjects participated in three different experimental studies and they received on separate days tACS at three frequencies (80 Hz, 140 Hz and 250 Hz) and sham stimulation in a randomized order. tACS with 140 Hz frequency increased M1 excitability as measured by transcranial magnetic stimulation-generated motor evoked potentials (MEPs) during and for up to 1 h after stimulation. Control experiments with sham and 80 Hz stimulation were without any effect, and 250 Hz stimulation was less efficient with a delayed excitability induction and reduced duration. After-effects elicited by 140 Hz stimulation were robust against inversion of test MEP amplitudes seen normally under activation. Stimulation at 140 Hz reduced short interval intracortical inhibition, but left intracortical facilitation, long interval cortical inhibition and cortical silent period unchanged. Implicit motor learning was not facilitated by 140 Hz stimulation. High frequency stimulation in the ripple range is a new promising non-invasive brain stimulation protocol to increase human cortical excitability during and after the end of stimulation.

  3. Temperature-variable high-frequency dynamic modeling of PIN diode

    NASA Astrophysics Data System (ADS)

    Shangbin, Ye; Jiajia, Zhang; Yicheng, Zhang; Yongtao, Yao

    2016-04-01

    The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at a wide range of temperature. In this paper, a temperature-variable high frequency dynamic model for the PIN diode is built, which is based on the Laplace-transform analytical model at constant temperature. The relationship between model parameters and temperature is expressed as temperature functions by analyzing the physical principle of these parameters. A fast recovery power diode MUR1560 is chosen as the test sample and its dynamic performance is tested under inductive load by a temperature chamber experiment, which is used for model parameter extraction and model verification. Results show that the model proposed in this paper is accurate for reverse recovery simulation with relatively small errors at the temperature range from 25 to 120 °C. Project supported by the National High Technology and Development Program of China (No. 2011AA11A265).

  4. Heat treatment of samples improve the performance of the Nijmegen-Bethesda assay in hemophilia A patients undergoing immune tolerance induction.

    PubMed

    de Lima Montalvão, Silmara Aparecida; Tucunduva, Alini Camargo; de Almeida Sambo, Andrea Luísa; De Paula, Erich Vinicius; de Souza Medina, Samuel; Ozelo, Margareth Castro

    2015-12-01

    Nijmegen-Bethesda assay is the gold standard to assess inhibitory antibodies against factor (F) VIII. This method has some limitations, including high coefficient of variation and possible interference of residual endogenous or exogenous factor VIII. Heat-treatment of samples at 56 °C for 30 min could be a strategy to improve the sensitivity of this test. The aim of this study was to compare inhibitor quantification in hemophilia patients with and without inhibitor performed in previously heated and non-heated samples. A total of 109 analyses from 46 patients with severe hemophilia A were performed. Patients were divided into three groups: 20 patients with no history of inhibitor, recently and not recently exposed to FVIII (group I), 21 patients with history of inhibitor not exposed to FVIII (group II), and 5 patients (68 samples) undergoing an immune tolerance induction (ITI) protocol (group III). For patients with no history of inhibitor, heat-treatment did not modify the results (p=0.24). However, differences in inhibitor levels between heated and non-heated samples were observed in patients with history of inhibitor (group II, p<0.05) and in patients in ITI (group III, p<0.001). In 11 samples, inhibitor quantification shifted from negative to positive. Additionally, a longitudinal evaluation of each ITI patient showed similar trend line for the results of heated and non-heated samples. In this study, we demonstrated that heating samples increase sensitivity of Nijmegen-Bethesda assay, with no shift from negative to positive results in patients with no history of inhibitor. Furthermore, this procedure has an important role to patients undergoing an ITI protocol. PMID:26344704

  5. Analysis And Modeling Of Interconnections And Propagation Structures In High Speed And High Frequency Circuits

    NASA Astrophysics Data System (ADS)

    Tripathi, V. K.; Hill, A.

    1988-09-01

    The analysis and circuit modeling of multiple coupled strips which are used to model interconnections in a general layered high speed digital or high frequency analog circuit is presented. The structures are analyzed in terms of their self and mutual capacitance, inductance, conductance and resistance matrices per unit length and the normal mode parameters of the coupled system. These normal mode parameters are derived from the line constant matrices for the quasi-TEM case and directly by solving for the eigenvalues, eigenvectors and eigenfunctions for the general full wave-dynamic case. Techniques to synthesize equivalent circuits compatible with CAD programs (e.g., SPICE) are presented with examples of single and coupled lines. Finally examples and results for the normal mode parameters equivalent circuit models and step response of multiple coupled lines are included to demonstrate the frequency dependence of these parameters and the signal propagation characteristics and crosstalk in multiple parallel interconnects.

  6. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  7. High-frequency P wave spectra from explosions and earthquakes

    NASA Astrophysics Data System (ADS)

    Walter, William R.; Priestley, Keith F.

    Two explosion P wave spectral models [Sharpe, 1942; Mueller-Murphy, 1971] and two earthquake P wave spectral models [Archambeau, 1968, 1972; modified Brune 1970, 1971] are reviewed to assess their implications for high-frequency (>1 Hz) seismic discrimination between earthquakes and explosions. The importance of the corner frequency scaling, particularly for models with the same high-frequency spectral decay rate, is demonstrated by calculating source spectral ratios (a potentially important regional discriminant) for these models. We compare North American events and a limited data set of Central Asian events with these spectral models. We find North American earthquakes are consistent with a constant stress drop modified Brune model between 10 and 30 Hz. Shallow (<700 m depth) Pahute Mesa explosions at the Nevada Test Site have a high-frequency spectral decay between 10 and 30 Hz greater than the ω-2 predicted by the explosion models. Near regional recordings of the Soviet Joint Verification Experiment (JVE) explosion show a higher corner frequency and lower 1 to 4 Hz spectral ratios than predicted by either explosion model. The higher corner frequency of the Soviet JVE appears not to be due to attenuation, or receiver effects, and may represent a need for different corner frequency scaling, or result from source complications such as spall and tectonic release. A regional recording of the Soviet JVE (NEIC mb = 6.1) is shown to have a lower 1 to 4 Hz spectral ratio than a smaller earthquake (NEIC mb = 4.6) recorded on a nearly reciprocal path.

  8. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  9. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed. PMID:26387636

  10. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  11. High frequency columnar silicon microresonators for mass detection

    SciTech Connect

    Kehrbusch, J.; Ilin, E. A.; Hullin, M.; Oesterschulze, E.

    2008-07-14

    A simple but effective technological scheme for the fabrication of high frequency silicon columnar microresonators is presented. With the proposed technique the dimensions of the microresonators are controlled on a scale of at least 1 {mu}m. Characterization of the mechanical properties of silicon columns gave resonant frequencies of the lowest flexural mode of 3-7 MHz with quality factors of up to 2500 in air and {approx}8800 under vacuum condition. Columnar microresonators were operated as mass balance with a sensitivity of 1 Hz/fg. A mass detection limit of 25 fg was deduced from experiments.

  12. External high-frequency control of combustion instability

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Kozar, A. N.

    2016-01-01

    The article presents the results of experimental studies of combustion instability in the pulse combustor. Propane-air mixture is burned in the chamber with the flame holder. It was experimentally found that feeding high-frequency sound vibrations into the combustion chamber causes the suppression of pulsating combustion. The oscillation frequency ranges in 870 to 1400 Hz. This corresponds to 9-12 resonance frequencies of oscillations in the combustor. The physical mechanism of the observed phenomenon consists in changing the conditions of formation and destruction of fuel jets in the vortex zone behind the flame holder.

  13. Dynamics and sensitivity analysis of high-frequency conduction block

    NASA Astrophysics Data System (ADS)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  14. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  15. High-frequency nonreciprocal reflection from magnetic films with overlayers

    SciTech Connect

    Wang, Ying; Nie, Yan; Camley, R. E.

    2013-11-14

    We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80 GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

  16. HIGH FREQUENCY ULTRASOUND OF ARMOR-GRADE ALUMINA CERAMICS

    SciTech Connect

    Bottiglieri, S.; Haber, R. A.

    2009-03-03

    Different lots of high density, commercial, armor-grade alumina (Al{sub 2}O{sub 3}) were tested using high frequency ultrasound in order to determine any correlation between measured properties and ballistic performance. C-scan images were taken using a 15 MHz ultrasonic transducer in order to form attenuation coefficient and elastic property maps. These samples were further characterized by using quantitative analysis. The results indicate that attenuation coefficient values appear to have the strongest correlation, of every property measured, to ballistic classifications.

  17. Acoustic trapping with a high frequency linear phased array

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-11-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  18. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Horny, Nicolas; Chirtoc, Mihai; Fleming, Austin; Hamaoui, Georges; Ban, Heng

    2016-07-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  19. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  20. [A new method of high-frequency electrosurgery (coblation technology)].

    PubMed

    Sergeev, V N; Belov, S V

    2003-01-01

    A new method of electrosurgical intervention, i.e. a high-frequency cold-plasma ablation or coblation-technology, is presented in the article. The method is based on an ionic "bombardment" of the biological tissue at the intervention site, which leads to ruptures of intermolecular cohesions. The method has been widely used in arthrosurgery, cardiosurgery, otorhinolaryngology, spinal surgery and cosmetology. The "ArthroCare" Company (USA) was the first to start developing the discussed method. As for Russia, the Research Institute for Medical Instrument-Making of the Russian Academy of Medical Sciences and Stavropol State Medical Academy are the leaders in promoting the technology in question.

  1. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  2. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  3. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  4. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  5. High frequency chest compression therapy: a case study.

    PubMed

    Butler, S; O'Neill, B

    1995-01-01

    A new device, the ThAIRapy Bronchial Drainage System, enables patients with cystic fibrosis to self-administer the technique of high frequency chest compression (HFCC) to assist with mucociliary clearance. We review the literature on HFCC and outline a case study of a patient currently using the ThAIRapy Bronchial Drainage System. While mucociliary clearance and lung function may be enhanced by HFCC therapy, more research is needed to determine its efficacy, cost benefits, and optimum treatment guidelines. Although our initial experience with the patient using this device has been positive, we were unable to accurately evaluate the ThAIRapy Bronchial Drainage System.

  6. Fluctuation patterns in high-frequency financial asset returns

    NASA Astrophysics Data System (ADS)

    Preis, T.; Paul, W.; Schneider, J. J.

    2008-06-01

    We introduce a new method for quantifying pattern-based complex short-time correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for a random walk time series. When we apply this method to high-frequency time series data of the German DAX future, we find clear correlations on short time scales. In order to subtract trivial autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity of this stochastic process from the original data, remaining pattern-based correlations can be observed.

  7. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants.

    PubMed

    Pnueli, Lilach; Liang, Hongjian; Rozenberg, Mira; Mittler, Ron

    2003-04-01

    The accumulation of hydrogen peroxide (H2O2) in plants is typically associated with biotic or abiotic stresses. However, H2O2 is continuously produced in cells during normal metabolism. Yet, little is known about how H2O2 accumulation will affect plant metabolism in the absence of pathogens or abiotic stress. Here, we report that a deficiency in the H2O2-scavenging enzyme, cytosolic ascorbate peroxidase (APX1), results in the accumulation of H2O2 in Arabidopsis plants grown under optimal conditions. Knockout-Apx1 plants were characterized by suppressed growth and development, altered stomatal responses, and augmented induction of heat shock proteins during light stress. The inactivation of Apx1 resulted in the induction of several transcripts encoding signal transduction proteins. These were not previously linked to H2O2 signaling during stress and may belong to a signal transduction pathway specifically involved in H2O2 sensing during normal metabolism. Surprisingly, the expression of transcripts encoding H2O2 scavenging enzymes, such as catalase or glutathione peroxidase, was not elevated in knockout-Apx1 plants. The expression of catalase, two typical plant peroxidases, and several different heat shock proteins was however elevated in knockout-Apx1 plants during light stress. Our results demonstrate that in planta accumulation of H2O2 can suppress plant growth and development, interfere with different physiological processes, and enhance the response of plants to abiotic stress conditions. Our findings also suggest that at least part of the induction of heat shock proteins during light stress in Arabidopsis is mediated by H2O2 that is scavenged by APX1.

  8. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  9. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  10. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  11. High frequency dielectrophoretic response of microalgae over time

    PubMed Central

    Hadady, Hanieh; Wong, Johnson J.; Hiibel, Sage R.; Redelman, Doug; Geiger, Emil J.

    2015-01-01

    The high frequency dielectrophoresis (>20 MHz) response of microalgae cells with different lipid content was monitored over time. Chlamydomonas reinhardtii was cultured in regular medium and under nitrogen-depleted conditions in order to produce populations of cells with low and high lipid content, respectively. The electrical conductivity (EC) of the culture media was also monitored over the same time. The upper crossover frequency (UCOF) decreased for high-lipid cells over time. The single-shell model predicts that the upper crossover frequency is dictated primarily by the dielectric properties of the cytoplasm. The high frequency DEP response of the high-lipid cells’ cytoplasm was changed by lipid accumulation. DEP response of the low-lipid cells also varied with the conductivity of the culture media due to nutrient consumption. Relative lipid content was estimated with BODIPY 505/515 dye by calculating the area-weighted intensity average of fluorescent images. Finally, microalgae cells were successfully separated based on lipid content at 41 MHz and DEP media conductivity 106 ± 1 µS/cm. PMID:25229637

  12. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  13. High-frequency ultrasound imaging for breast cancer biopsy guidance.

    PubMed

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W; Hovanessian-Larsen, Linda J; Lang, Julie E; Sener, Stephen F; Vallone, John; Martin, Sue E; Kirk Shung, K

    2015-10-01

    Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  14. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  15. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  16. High-Frequency Oscillations as a New Biomarker in Epilepsy

    PubMed Central

    Zijlmans, Maeike; Jiruska, Premysl; Zelmann, Rina; Leijten, Frans S.S.; Jefferys, John G.R.; Gotman, Jean

    2013-01-01

    The discovery that electroencephalography (EEG) contains useful information at frequencies above the traditional 80Hz limit has had a profound impact on our understanding of brain function. In epilepsy, high-frequency oscillations (HFOs, >80Hz) have proven particularly important and useful. This literature review describes the morphology, clinical meaning, and pathophysiology of epileptic HFOs. To record HFOs, the intracranial EEG needs to be sampled at least at 2,000Hz. The oscillatory events can be visualized by applying a high-pass filter and increasing the time and amplitude scales, or EEG time-frequency maps can show the amount of high-frequency activity. HFOs appear excellent markers for the epileptogenic zone. In patients with focal epilepsy who can benefit from surgery, invasive EEG is often required to identify the epileptic cortex, but current information is sometimes inadequate. Removal of brain tissue generating HFOs has been related to better postsurgical outcome than removing the seizure onset zone, indicating that HFOs may mark cortex that needs to be removed to achieve seizure control. The pathophysiology of epileptic HFOs is challenging, probably involving populations of neurons firing asynchronously. They differ from physiological HFOs in not being paced by rhythmic inhibitory activity and in their possible origin from population spikes. Their link to the epileptogenic zone argues that their study will teach us much about the pathophysiology of epileptogenesis and ictogenesis. HFOs show promise for improving surgical outcome and accelerating intracranial EEG investigations. Their potential needs to be assessed by future research. PMID:22367988

  17. High-Frequency Dynamics of Ultrasound Contrast Agents

    PubMed Central

    Sun, Yang; Kruse, Dustin E.; Dayton, Paul A.; Ferrara, Katherine W.

    2006-01-01

    Ultrasound contrast agents enhance echoes from the microvasculature and enable the visualization of flow in smaller vessels. Here, we optically and acoustically investigate microbubble oscillation and echoes following insonation with a 10 MHz center frequency pulse. A high-speed camera system with a temporal resolution of 10 ns, which provides two-dimensional (2-D) frame images and streak images, is used in optical experiments. Two confocally aligned transducers, transmitting at 10 MHz and receiving at 5 MHz, are used in acoustical experiments in order to detect subharmonic components. Results of a numerical evaluation of the modified Rayleigh-Plesset equation are used to predict the dynamics of a microbubble and are compared to results of in vitro experiments. From the optical observations of a single microbubble, nonlinear oscillation, destruction, and radiation force are observed. The maximum bubble expansion, resulting from insonation with a 20-cycle, 10-MHz linear chirp with a peak negative pressure of 3.5 MPa, has been evaluated. For an initial diameter ranging from 1.5 to 5 μm, a maximum diameter less than 8 μm is produced during insonation. Optical and acoustical experiments provide insight into the mechanisms of destruction, including fragmentation and active diffusion. High-frequency pulse transmission may provide the opportunity to detect contrast echoes resulting from a single pulse, may be robust in the presence of tissue motion, and may provide the opportunity to incorporate high-frequency ultrasound into destruction-replenishment techniques. PMID:16422410

  18. Optoacoustics for high-frequency ultrasonic imaging and manipulation

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew; Buma, Takashi

    2001-05-01

    Pulsed lasers can generate ultrasound through thermoelastic expansion of a thin optical absorber. By carefully designing the optical absorbing structure, efficient transduction is possible for a number of biomedical applications including high-frequency imaging, microfluidics, and sensing. The major key for efficient optoacoustic transduction in biomedical applications is to engineer a nearly perfect optical absorber possessing a large coefficient of thermal expansion with acoustic properties well matched to a water medium. We have obtained an optoacoustic efficiency increase of over 20 dB compared to conventional approaches using a thin, optically absorbing layer consisting of polydimethylsiloxane (PDMS) and carbon black spin coated onto a clear PDMS substrate. This structure has been extensively analyzed both experimentally and analytically and seems to provide opportunities for a wide range of optoacoustic devices. In this talk we show how PDMS-based optoacoustic transduction can be used for high-frequency imaging using longitudinal waves and acoustic tweezing using Lamb waves. The basic mechanism of optoacoustic transduction will be described, and specific devices will be presented.

  19. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  20. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  1. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  2. Advantages of polymer transducers in high frequency inspections

    SciTech Connect

    Samari, S.; Stanton, M.

    1993-12-31

    Since the discovery of piezoelectricity in PVDF in 1969 the polymer transducers have now emerged as a significant tool in many ultrasonic inspections that otherwise would have been very difficult or impossible for conventional ceramic transducers. The major advantage, of Polymer transducers is in their inherent broadband characteristics in immersion applications which leads to their superior resolution and improved signal to noise ration over conventional ceramic transducers. This paper will show empirical results of high frequency polymer transducer in inspection of different materials including engineering materials such as ceramics. Other advantages of the polymer transducers are their low acoustic impedance as well as the compliance of the plastic material during construction. The compliance of the plastic PVDF film allows the manufacture of the high frequency polymer transducers without the use of permanent delays which can interfere with ultrasonic measurements. This paper will also give experimental results that will show how polymer transducers are instrument dependent, and how an operator can achieve optimum results by using an impedance matching network between the instrument and the polymer transducer.

  3. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  4. Regulation of heat-shock genes: a DNA sequence upstream of Drosophila hsp70 genes is essential for their induction in monkey cells.

    PubMed

    Mirault, M E; Southgate, R; Delwart, E

    1982-01-01

    Heat-shock genes coding for heat-shock protein 70 (HSP70) in Drosophila melanogaster were subcloned into an SV40/plasmid recombinant capable of replication in permissive monkey COS cells. Following transfection of COS cells, no significant amount of Drosophila hsp70 RNA was detected at 37 degrees C. In contrast, a heat-shock at 43 degrees C or arsenite poisoning at 37 degrees C induced the massive production of Drosophila hsp70 RNA of correct size and faithful 5' ends. After heat-shock, the efficiency of hsp70 transcription in COS cells containing 2-4 X 10(4) gene copies was found to be 15-30% of that measured in Drosophila, on a per gene basis. By testing a series of 5' deletion mutants in this inducible transcription assay it was found that a sequence less than 70 bp long, directly upstream of the hsp70 gene, was essential for the heat or arsenite induction of transcription.

  5. Inaudible high-frequency sounds affect brain activity: hypersonic effect.

    PubMed

    Oohashi, T; Nishina, E; Honda, M; Yonekura, Y; Fuwamoto, Y; Kawai, N; Maekawa, T; Nakamura, S; Fukuyama, H; Shibasaki, H

    2000-06-01

    Although it is generally accepted that humans cannot perceive sounds in the frequency range above 20 kHz, the question of whether the existence of such "inaudible" high-frequency components may affect the acoustic perception of audible sounds remains unanswered. In this study, we used noninvasive physiological measurements of brain responses to provide evidence that sounds containing high-frequency components (HFCs) above the audible range significantly affect the brain activity of listeners. We used the gamelan music of Bali, which is extremely rich in HFCs with a nonstationary structure, as a natural sound source, dividing it into two components: an audible low-frequency component (LFC) below 22 kHz and an HFC above 22 kHz. Brain electrical activity and regional cerebral blood flow (rCBF) were measured as markers of neuronal activity while subjects were exposed to sounds with various combinations of LFCs and HFCs. None of the subjects recognized the HFC as sound when it was presented alone. Nevertheless, the power spectra of the alpha frequency range of the spontaneous electroencephalogram (alpha-EEG) recorded from the occipital region increased with statistical significance when the subjects were exposed to sound containing both an HFC and an LFC, compared with an otherwise identical sound from which the HFC was removed (i.e., LFC alone). In contrast, compared with the baseline, no enhancement of alpha-EEG was evident when either an HFC or an LFC was presented separately. Positron emission tomography measurements revealed that, when an HFC and an LFC were presented together, the rCBF in the brain stem and the left thalamus increased significantly compared with a sound lacking the HFC above 22 kHz but that was otherwise identical. Simultaneous EEG measurements showed that the power of occipital alpha-EEGs correlated significantly with the rCBF in the left thalamus. Psychological evaluation indicated that the subjects felt the sound containing an HFC to be more

  6. Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide Tempo and heat shock in human leukemia U937 cells.

    PubMed

    Zhao, Qing-Li; Fujiwara, Yoshisada; Kondo, Takashi

    2010-10-01

    We have shown that heat stress or a superoxide dismutase mimic nitroxide, Tempo, induces apoptosis, while their combination causes nonapoptotic cell death; however, the underlying mechanism for this switch remains unclear. Here we identified for the first time that 10 mM Tempo present during heating at 44°C for 30 min rapidly induced autophagy in U937 leukemic cells in spite of Bax activation and mitochondrial outer membrane (MOM) permeabilization. This co-treatment inhibited the processing of heat-activated procaspases-2, -8, -9 and -3 into active small subunits, leading to the inhibition of caspase-dependent apoptosis, and instead caused the induction of autophagy. The inactivation of caspases, a key event, could result from oxidation of active-site-CysSH of all caspases by a prooxidant oxo-ammonium cation, an intermediate derived Tempo during dismutation of heat-induced superoxide anion. In addition, the co-treatment caused mitochondrial calcium overloads, the mitochondrial inner membrane permeabilization, profound mitochondrial dysfunction, and liberation of Beclin 1 from the Bcl-2/Beclin 1 complex, all of which contributed to induction of autophagy. These autophagic cells underwent propidium iodide-positive necrosis in a delayed fashion, leading to the complete proliferative inhibition. Remarkably, ruthenium red and BAPTA, which interfere with mitochondrial calcium uptake, facilitated autophagic necrotic death. Cyclosporin A, which binds to cyclophilin D, had a similar necrotic effect. 3-Methyladenine facilitated the necrosis of autophagic cells. In contrast, 5 mM Tempo-44°C/10 min or 44°C/30 min induced Bax-mediated MOM permeabilization and caspase-dependent apoptosis more potently than Tempo alone. Thus, Tempo is a unique thermosensitizer to synergistically induce apoptosis and autophagic cell death.

  7. Inhibitory effects of sesquiterpenes from bay leaf on nitric oxide production in lipopolysaccharide-activated macrophages: structure requirement and role of heat shock protein induction.

    PubMed

    Matsuda, H; Kagerura, T; Toguchida, I; Ueda, H; Morikawa, T; Yoshikawa, M

    2000-04-21

    The methanolic extract from the leaves of Laurus nobilis (bay leaf, laurel) was found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse peritoneal macrophages. Through bioassay-guided separation, fourteen known sesquiterpenes were isolated from the active fraction and were examined for ability to inhibit the NO production. Seven sesquiterpene lactones (costunolide, dehydrocostus lactone, eremanthine, zaluzanin C, magnolialide, santamarine and spirafolide) potently inhibited LPS-induced NO production (IC50 = 1.2 approximately 3.8 microM). Other sesquiterpene constituents also showed the inhibitory activity (IC50 > or = 21 microM), but their inhibitory activities were less than those of sesquiterpene lactones. Alpha-methylene-gamma-butyrolactone also showed inhibitory activity (IC50 = 9.6 microM), while mokko lactone and watsonol A etc., reductants of the alpha-methylene-gamma-butyrolactone moiety by NaBH4 or DIBAL, and a 2-mercaptoethanol adduct of dehydrocostus lactone showed little activity (IC50 > or = 18 microM). These results indicated that the alpha-methylene-gamma-butyrolactone moiety is important for the activity. Furthermore, costunolide and dehydrocostus lactone inhibited inducible nitric oxide synthase (iNOS) induction in accordance with induction of heat shock protein 72 (HSP 72). These results suggested that, as one of their mechanisms of action, sesquiterpene lactones induce HSP 72 thereby preventing nuclear factor-kappaB activation followed by iNOS induction.

  8. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading

    NASA Astrophysics Data System (ADS)

    Alghafir, M. N.; Dunne, J. F.

    2012-02-01

    A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.

  9. ICD lead failure detection through high frequency impedance.

    PubMed

    Kollmann, Daniel T; Swerdlow, Charles D; Kroll, Mark W; Seifert, Gregory J; Lichter, Patrick A

    2014-01-01

    Abrasion-induced insulation breach is a common failure mode of silicone-body, transvenous, implantable cardioverter defibrillator leads. It is caused either by external compression or internal motion of conducting cables. The present method of monitoring lead integrity measures low frequency conductor impedance. It cannot detect insulation failures until both the silicone lead body and inner fluoropolymer insulation have been breached completely, exposing conductors directly to blood or tissue. Thus the first clinical presentation may be either failure to deliver a life-saving shock or painful, inappropriate shocks in normal rhythm. We present a new method for identifying lead failure based on high frequency impedance measurements. This method was evaluated in 3D electromagnetic simulation and bench testing to identify insulation defects in the St. Jude Medical Riata® lead, which is prone to insulation breach.

  10. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  11. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  12. High-Frequency Wave Propagation by the Segment Projection Method

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin

    2002-05-01

    Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.

  13. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approximately 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  14. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approx. 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  15. High frequency properties of YBCO bridges fabricated by MOCVD

    SciTech Connect

    Chen, J.; Yamoshita, T. ); Suzuki, H.; Kurosawa, H. ); Yamane, H.; Hirai, T. . Inst. for Materials Research)

    1991-03-01

    This paper reports on the high frequency properties of YBCO bridges at 4.2% and 77K. The YBCO films were prepared by MOCVD. For small bridges with the width(w) of about 1 {mu}m and thickness(t) of less than 0.5{mu}m, the constant voltage steps at integral multiples of {phi}{sub 0}fr = 20 {mu}V were observed up to 1 mV, which is much higher than the IcR{sub N} ({lt}0.13 mV) product of these bridges at 77K. The magnitudes of the current steps as functions of the rf current at 4.2K and 77K were in quantitative agreement with the theoretical results based on the RSJ model.

  16. High frequency activity correlates of robust movement in humans.

    PubMed

    Kerr, Matthew S D; Kahn, Kevin; Hyun-Joo Park; Thompson, Susan; Hao, Stephanie; Bulacio, Juan; Gonzalez-Martinez, Jorge A; Gale, John; Sarma, Sridevi V

    2014-01-01

    The neural circuitry underlying fast robust human motor control is not well understood. In this study we record neural activity from multiple stereotactic encephalograph (SEEG) depth electrodes in a human subject while he/she performs a center-out reaching task holding a robotic manipulandum that occasionally introduces an interfering force field. Collecting neural data from humans during motor tasks is rare, and SEEG provides an unusual opportunity to examine neural correlates of movement at a millisecond time scale in multiple brain regions. Time-frequency analysis shows that high frequency activity (50-150 Hz) increases significantly in the left precuneus and left hippocampus when the subject is compensating for a perturbation to their movement. These increases in activity occur with different durations indicating differing roles in the motor control process.

  17. Convective mixing mechanisms in high frequency intermittent jet ventilation.

    PubMed

    Scherer, P W; Muller, W J; Raub, J B; Haselton, F R

    1989-01-01

    A liquid flow visualization technique was used to identify the location of neutrally buoyant bead clouds injected into airway models during flows simulating high frequency intermittent jet ventilation (HFIJV) in neonatal lungs. The motions of these bead clouds show that the convective or bulk mixing that occurs during HFIJV is made up of two parts; a turbulent convective exchange with the atmosphere caused by the jet in the trachea and a streaming motion along the airways driven by an interaction between the jet and the expansion and contraction of the airways due to their compliance. These convective streaming motions combine with molecular diffusion to produce augmented diffusion which transports O2 and CO2 between the trachea and the peripheral alveoli. Optimizing HFIJV (as well as other forms of HFV) depends on maximizing these airway convective streaming flows which depend on many more lung and fluid mechanical parameters than are necessary to describe conventional mechanical ventilation.

  18. High-frequency extensions of magnetorotational instability in astrophysical plasmas

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Pustovitov, V. D.; Erokhin, N. N.; Tsypin, V. S.; Galvao, R. M. O.

    2008-08-15

    High-frequency extensions of magnetorotational instability driven by the Velikhov effect beyond the standard magnetohydrodynamic (MHD) regime are studied. The existence of the well-known Hall regime and a new electron inertia regime is demonstrated. The electron inertia regime is realized for a lesser plasma magnetization of rotating plasma than that in the Hall regime. It includes the subregime of nonmagnetized electrons. It is shown that, in contrast to the standard MHD regime and the Hall regime, magnetorotational instability in this subregime can be driven only at positive values of dln{Omega}/dlnr, where {Omega} is the plasma rotation frequency and r is the radial coordinate. The permittivity of rotating plasma beyond the standard MHD regime, including both the Hall regime and the electron inertia regime, is calculated.

  19. High Frequency Monitoring Reveals Aftershocks in Subcritical Crack Growth

    NASA Astrophysics Data System (ADS)

    Stojanova, M.; Santucci, S.; Vanel, L.; Ramos, O.

    2014-03-01

    By combining direct imaging and acoustic emission measurements, the subcritical propagation of a crack in a heterogeneous material is analyzed. Both methods show that the fracture proceeds through a succession of discrete events. However, the macroscopic opening of the fracture captured by the images results from the accumulation of more-elementary events detected by the acoustics. When the acoustic energy is cumulated over large time scales corresponding to the image acquisition rate, a similar statistics is recovered. High frequency acoustic monitoring reveals aftershocks responsible for a time scale dependent exponent of the power law energy distributions. On the contrary, direct imaging, which is unable to resolve these aftershocks, delivers a misleading exponent value.

  20. Recording and analysis techniques for high-frequency oscillations

    PubMed Central

    Worrell, G.A.; Jerbi, K.; Kobayashi, K.; Lina, J.M.; Zelmann, R.; Le Van Quyen, M.

    2013-01-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions. PMID:22420981

  1. Disruption of microalgal cells using high-frequency focused ultrasound.

    PubMed

    Wang, Meng; Yuan, Wenqiao; Jiang, Xiaoning; Jing, Yun; Wang, Zhuochen

    2014-02-01

    The objective of this study was to evaluate the effectiveness of high-frequency focused ultrasound (HFFU) in microalgal cell disruption. Two microalgal species including Scenedesmus dimorphus and Nannochloropsis oculata were treated by a 3.2-MHz, 40-W focused ultrasound and a 100-W, low-frequency (20kHz) non-focused ultrasound (LFNFU). The results demonstrated that HFFU was effective in the disruption of microalgal cells, indicated by significantly increased lipid fluorescence density, the decrease of cell sizes, and the increase of chlorophyll a fluorescence density after treatments. Compared with LFNFU, HFFU treatment was more energy efficient. The combination of high and low frequency treatments was found to be even more effective than single frequency treatment at the same processing time, indicating that frequency played a critical role in cell disruption. In both HFFU and LFNFU treatments, the effectiveness of cell disruption was found to be dependent on the cell treated. PMID:24374364

  2. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  3. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  4. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  5. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  6. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.

  7. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied. PMID:27387370

  8. Spectroscopic measurements of high frequency plasma in supercritical carbon dioxide

    SciTech Connect

    Maehara, T.; Mukasa, S.; Takemori, T.; Watanabe, T.; Kurokawa, K.; Toyota, H.; Nomura, S.; Kawashima, A.; Iwamae, A.

    2009-03-15

    Spectroscopic measurements of high frequency (hf) plasma were performed under high pressure conditions (5 and 7 MPa) and supercritical (sc) CO{sub 2} conditions (8-20 MPa). Temperature evaluated from C{sub 2} Swan bands (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) increased from 3600 to 4600 K with an increase in pressure. The first observation of broadening and shifting of the O I line profile (3p {sup 5} P{sub 3,2,1}{yields}3s {sup 5} S{sub 2}{sup 0}) of hf plasma under sc CO{sub 2} conditions was carried out. However, the origin of broadening and the shifting cannot be understood because the present theory explaining them is not valid for such high pressure conditions.

  9. High frequency ultrasonic characterization of sintered SiC

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Generazio, Edward R.; Kiser, James D.

    1987-01-01

    High frequency (60 to 160 MHz) ultrasonic nondestructive evaluation was used to characterize variations in density and microstructural constituents of sintered SiC bars. Ultrasonic characterization methods included longitudinal velocity, reflection coefficient, and precise attenuation measurements. The SiC bars were tailored to provide bulk densities ranging from 90 to 98 percent of theoretical, average grain sizes ranging from 3.0 to 12.0 microns, and average pore sizes ranging from 1.5 to 4.0 microns. Velocity correlated with specimen bulk density irrespective of specimen average grain size, average pore size, and average pore orientation. Attenuation coefficient was found to be sensitive to both density and average pore size variations, but was not affected by large differences in average grain size.

  10. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  11. Improve predictive maintenance with HFE monitoring. [High Frequency Envelope

    SciTech Connect

    Page, E.A. ); Berggren, C. )

    1994-01-01

    New on-line machine vibration monitoring systems are offering substantially lower costs and simpler installation requirement. By incorporating high-frequency envelope (HFE) spectrum analysis, these systems can provide earlier and more reliable fault detection. These new capabilities are spurring a transition to on-line predictive monitoring of even noncritical machinery. These condition-monitoring systems automatically perform both conventional vibration analysis and HFE spectrum analysis. Conventional low-frequency spectrum analysis, between 0 to 10 kHz, is widely acknowledged as the most effective means of detecting imbalance, misalignment, mechanical resonances and looseness on machinery. HFE spectrum analysis, above 15 kHz, is now accepted as the most effective method for detecting machine faults, such as pitting or cracking in bearings and gears, insufficient lubrication, shaft rubbing and pump cavitation. The performance and economics of this method is discussed.

  12. High-frequency health data and spline functions.

    PubMed

    Martín-Rodríguez, Gloria; Murillo-Fort, Carlos

    2005-03-30

    Seasonal variations are highly relevant for health service organization. In general, short run movements of medical magnitudes are important features for managers in this field to make adequate decisions. Thus, the analysis of the seasonal pattern in high-frequency health data is an appealing task. The aim of this paper is to propose procedures that allow the analysis of the seasonal component in this kind of data by means of spline functions embedded into a structural model. In the proposed method, useful adaptions of the traditional spline formulation are developed, and the resulting procedures are capable of capturing periodic variations, whether deterministic or stochastic, in a parsimonious way. Finally, these methodological tools are applied to a series of daily emergency service demand in order to capture simultaneous seasonal variations in which periods are different.

  13. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  14. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  15. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  16. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  17. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  18. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  19. Electrokinetic particle-electrode interactions at high frequencies.

    PubMed

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the "bounded" configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent "unbounded" model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω>1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω(-2)) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  20. Trans-Ionospheric High Frequency Signal Ray Tracing

    NASA Astrophysics Data System (ADS)

    Wright, S.; Gillespie, R. J.

    2012-09-01

    All electromagnetic radiation undergoes refraction as it propagates through the atmosphere. Tropospheric refraction is largely governed by interaction of the radiation with bounded electrons; ionospheric refraction is primarily governed by free electron interactions. The latter phenomenon is important for propagation and refraction of High Frequency (HF) through Extremely High Frequency (EHF) signals. The degree to which HF to EHF signals are bent is dependent upon the integrated refractive effect of the ionosphere: a result of the signal's angle of incidence with the boundaries between adjacent ionospheric regions, the magnitude of change in electron density between two regions, as well as the frequency of the signal. In the case of HF signals, the ionosphere may bend the signal so much that it is directed back down towards the Earth, making over-the-horizon HF radio communication possible. Ionospheric refraction is a major challenge for space-based geolocation applications, where the ionosphere is typically the biggest contributor to geolocation error. Accurate geolocation requires an algorithm that accurately reflects the physical process of a signal transiting the ionosphere, and an accurate specification of the ionosphere at the time of the signal transit. Currently implemented solutions are limited by both the algorithm chosen to perform the ray trace and by the accuracy of the ionospheric data used in the calculations. This paper describes a technique for adapting a ray tracing algorithm to run on a General-Purpose Graphics Processing Unit (GPGPU or GPU), and using a physics-based model specifying the ionosphere at the time of signal transit. This technique allows simultaneous geolocation of significantly more signals than an equivalently priced Central Processing Unit (CPU) based system. Additionally, because this technique makes use of the most widely accepted numeric algorithm for ionospheric ray tracing and a timely physics-based model of the ionosphere

  1. Normal saline versus colloid solutions for induction of hypothermia: the effect of specific heat capacity on cooling.

    PubMed

    Idelchik, Gary M; Varon, Joseph

    2014-03-18

    The prevention of ischemic injury to preserve both end-organ function and improve neurological recovery by the implementation of therapeutic hypothermia has been well established in the literature. However, not only the means by which body temperature is cooled but also the rate by which target temperature is attained remains an area of continued interest and research. The induction of therapeutic hypothermia to begin the process of body temperature lowering through the infusion of a cold solution intravenously into the body may be one variable that influences not only rapidity of cooling but also subsequent clinical outcome. In a recent issue of Critical Care, Skulec and colleagues compared the induction of therapeutic hypothermia by cold normal saline versus cold colloid solution containing hydroxyethyl starch in a porcine animal model of cardiac arrest, assessing both the rate of temperature change and target temperature achieved, in addition to changes in intracranial pressure.

  2. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming.

    PubMed

    Bergmann, Nina; Winters, Gidon; Rauch, Gisep; Eizaguirre, Christophe; Gu, Jenny; Nelle, Peter; Fricke, Birgit; Reusch, Thorsten B H

    2010-07-01

    Summer heat waves have already resulted in mortality of coastal communities, including ecologically important seagrass meadows. Gene expression studies from controlled experiments can provide important insight as to how species/genotypes react to extreme events that will increase under global warming. In a common stress garden, we exposed three populations of eelgrass, Zostera marina, to extreme sea surface temperatures, simulating the 2003-European heat wave. Populations came from locations widely differing in their thermal regime, two northern European locations [Ebeltoft (Kattegat), Doverodde (Limfjord, Baltic Sea)], and one southern population from Gabicce Mare (Adriatic Sea), allowing to test for population specificity in the response to a realistic heat stress event. Eelgrass survival and growth as well as the expression of 12 stress associated candidate genes were assessed during and after the heat wave. Contrary to expectations, all populations suffered equally from 3 weeks of heat stress in terms of shoot loss. In contrast, populations markedly differed in multivariate measures of gene expression. While the gene expression profiles converged to pre-stress values directly after the heat wave, stress correlated genes were upregulated again 4 weeks later, in line with the observed delay in shoot loss. Target genes had to be selected based on functional knowledge in terrestrial plants, nevertheless, 10/12 genes were induced relative to the control treatment at least once during the heat wave in the fully marine plant Z. marina. This study underlines the importance of realistic stress and recovery scenarios in studying the impact of predicted climate change.

  3. High Frequency Resolution TOA Analysis for ELF/VLFWave Generation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Ruddle, J. D.; Moore, R. C.

    2014-12-01

    Modulated HF heating of the ionosphere in the presence of natural ionospheric current sources has been used as a method to generate electromagnetic ELF/VLF waves since the 1970's. In the ~1-5 kHz band, the amplitude and phase of the received ELF/VLF signal depends on the amplitude and phase of the conductivity modulation generated throughout the HF-heated ionospheric body, as well as on the signal propagation parameters (i.e., the attenuation and phase constants) between each of the current sources and the receiver. Recent signal processing advances have produced an accurate ELF/VLF time-of-arrival (TOA) analysis technique that differentiates line-of-sight and ionospherically-reflected signal components, determining the amplitude and phase of each component observed at the receiver. This TOA method requires a wide bandwidth (> 2.5 kHz) and therefore is relatively insensitive to the frequency-dependent nature of ELF/VLF wave propagation. In this paper, we present an improved ELF/VLF TOA method that is capable of providing high frequency resolution. The new analysis technique is applied to experimental observations of ELF/VLF signals generated by modulated heating at HAARP. We present measurements of the amplitude and phase of the received ELF/VLF signal as a function of frequency and compare the results with the predictions of an HF heating model.

  4. Optimization of the high frequency magneto-impedance effect in Co-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Ortiz, V.; Eggers, T.; Phan, M. H.

    The magnetic field dependence of the impedance, known as magneto-impedance (MI), was measured as a function of excitation frequency in Co-based amorphous ribbons. An optimization of the MI profile on the high frequency regime (100 MHz - 1000 MHz) was attempted through annealing techniques. Current annealing was performed with different annealing amplitudes ranging from 200 mA up to 1 A. Field annealing was also performed by raising the temperature of the sample through Joule heating and applying an external magnetic field of 55 Oe transversal to the ribbon. It was found that annealing at low current improved the MI response at lower frequencies, between 100 MHz and 300 MHz. On the other hand annealing at higher amplitude, past the Curie temperature (Tc) favored higher frequencies. These findings provide good guidance toward the optimization of the MI response of Co-based amorphous ribbons for high-frequency sensor applications. This project is supported by the NSF REU Grant # DMR - 1263066: REU Site in Applied Physics at USF.

  5. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  6. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  7. The comparison of three high-frequency chest compression devices.

    PubMed

    Lee, Yong W; Lee, Jongwon; Warwick, Warren J

    2008-01-01

    High-frequency chest compression (HFCC) is shown to enhance clearance of pulmonary airway secretions. Several HFCC devices have been designed to provide this therapy. Standard equipment consists of an air pulse generator attached by lengths of tubing to an adjustable, inflatable vest/jacket (V/J) garment. In this study, the V/Js were fitted over a mannequin. The three device air pulse generators produced characteristic waveform patterns. The variations in the frequency and pressure setting of devices were consistent with specific device design features. These studies suggest that a better understanding of the effects of different waveform, frequency, and pressure combinations may improve HFCC therapeutic efficacy of three different HFCC machines. The V/J component of HFCC devices delivers the compressive pulses to the chest wall to produce both airflow through and oscillatory effects in the airways. The V/J pressures of three HFCC machines were measured and analyzed to characterize the frequency, pressure, and waveform patterns generated by each of three device models. The dimensions of all V/Js were adjusted to a circumference of approximately 110% of the chest circumference. The V/J pressures were measured, and maximum, minimum, and mean pressure, pulse pressure, and root mean square of three pulse generators were calculated. Jacket pressures ranged between 2 and 34 mmHg. The 103 and 104 models' pulse pressures increased with the increase in HFCC frequency at constant dial pressure. With the ICS the pulse pressure decreased when the frequency increased. The waveforms of models 103 and 104 were symmetric sine wave and asymmetric sine wave patterns, respectively. The ICS had a triangular waveform. At 20 Hz, both the 103 and 104 were symmetric sine waveform but the ICS remained triangular. Maximum crest factors emerged in low-frequency and high-pressure settings for the ICS and in the high-frequency and low-pressure settings for models 103 and 104. Recognizing the

  8. Advantages of high-frequency Pulse-tube technology and its applications in infrared sensing

    NASA Astrophysics Data System (ADS)

    Arts, R.; Willems, D.; Mullié, J.; Benschop, T.

    2016-05-01

    The low-frequency pulse-tube cryocooler has been a workhorse for large heat lift applications. However, the highfrequency pulse tube has to date not seen the widespread use in tactical infrared applications that Stirling cryocoolers have had, despite significant advantages in terms of exported vibrations and lifetime. Thales Cryogenics has produced large series of high-frequency pulse-tube cryocoolers for non-infrared applications since 2005. However, the use of Thales pulse-tube cryocoolers for infrared sensing has to date largely been limited to high-end space applications. In this paper, the performances of existing available off-the-shelf pulse-tube cryocoolers are examined versus typical tactical infrared requirements. A comparison is made on efficiency, power density, reliability, and cost. An outlook is given on future developments that could bring the pulse-tube into the mainstream for tactical infrared applications.

  9. THE RELATION OF FREQUENCY TO THE PHYSIOLOGICAL EFFECTS OF ULTRA-HIGH FREQUENCY CURRENTS.

    PubMed

    Christie, R V; Loomis, A L

    1929-01-31

    1. Biological effects of electromagnetic waves emitted by a vacuum tube oscillator have been studied at frequencis ranging from 8,300,000 to 158,000,000 cycles per second (1.9 to 38 meters wave-length). 2. The effects produced on animals can be fully explained on the basis of the heat generated by high frequency currents which are induced in them. 3. No evidence was obtained to support the theory that certain wave-lengths have a specific action on living cells. 4. At frequencies below 50,000,000 cycles, the effect of these radiations on animals is proportionate to the intensity of the electro-magnetic field. As the frequency is increased beyond this point, the amount of induced current is diminished and the apparent lethality of the radiation is decreased. This can be explained by changes occurring in the dielectric properties of tissues at low wave-lengths.

  10. Hydrodynamic description of a vibrofluidized granular bed driven at high frequency

    NASA Astrophysics Data System (ADS)

    Sheikh, Nadeem A.; Manzoor, Shehryar; Mahabat Khan, Muhammad; Ali, Muzaffar

    2016-08-01

    Results are reported for a dry granular bed vertically excited at high and low frequencies with constant peak base velocity. Previous experimental data sets using Nuclear Magnetic Resonance are used for comparison at low (~38 Hz) and high (~11 kHz) vibration frequencies. Packing fractions and granular temperatures are compared against hydrodynamic and molecular dynamics simulation models. At low frequency hydrodynamic and MD simulations results show the presence of a heat wave. Whilst at high frequencies soft sphere potential based MD simulations highlight the role of finite duration collisions between particles and the vibrating wall. In this region the timescales of vibration and collision duration are not well separated, as observed in experimental results.

  11. High frequency electrical conduction block of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin; Gustafson, Kenneth J.

    2006-06-01

    A reversible electrical block of the pudendal nerves may provide a valuable method for restoration of urinary voiding in individuals with bladder-sphincter dyssynergia. This study quantified the stimulus parameters and effectiveness of high frequency (HFAC) sinusoidal waveforms on the pudendal nerves to produce block of the external urethral sphincter (EUS). A proximal electrode on the pudendal nerve after its exit from the sciatic notch was used to apply low frequency stimuli to evoke EUS contractions. HFAC at frequencies from 1 to 30 kHz with amplitudes from 1 to 10 V were applied through a conforming tripolar nerve cuff electrode implanted distally. Sphincter responses were recorded with a catheter mounted micro-transducer. A fast onset and reversible motor block was obtained over this range of frequencies. The HFAC block showed three phases: a high onset response, often a period of repetitive firing and usually a steady state of complete or partial block. A complete EUS block was obtained in all animals. The block thresholds showed a linear relationship with frequency. HFAC pudendal nerve stimulation effectively produced a quickly reversible block of evoked urethral sphincter contractions. The HFAC pudendal block could be a valuable tool in the rehabilitation of bladder-sphincter dyssynergia.

  12. [Use of high frequency jet ventilation in extracorporeal shockwave lithotripsy].

    PubMed

    Schulte am Esch, J; Kochs, E; Meyer, W H

    1985-06-01

    High frequency jet ventilation (HFJV) was used in 68 patients which were treated with extracorporal shock wave lithotripsy (ESWL) because of stone diseases in the upper urinary tract. The question was whether HFJV in combination with a semiclosed conventional circle system offered a practicable and safe technique to minimize the oscillations which are proportional to the applied tidal volume and to the diaphragmatic movements. With IPPV the mean distance of the stone movement was 32 mm, whereas with the application of HFJV the stones oscillated around their resting position within limits of 2 to 3 mm (ventilation frequency: 200-300/min, driving pressure: 0.6-1.1 bar, tidal volume: 3-8 1/min). The effectiveness of HFJV was monitored by the end-tidal carbon dioxide tension (PeCO2) during intermittently conventional ventilation with "adequate" tidal volumes (TV 15 ml/kg bw). The correlation between PeCO2 and simultaneous measured PaCO2 was r = 0,91. The application of HFJV enhances the efficiency of ESWL. So the treatment of stones of the upper urinary tract can be varied by more subtle dosage of the incoming shock wave energy and by stabilisation of the stones in the underlying ellipsoid of the energy focus.

  13. High-Frequency Stimulation of Excitable Cells and Networks

    PubMed Central

    Weinberg, Seth H.

    2013-01-01

    High-frequency (HF) stimulation has been shown to block conduction in excitable cells including neurons and cardiac myocytes. However, the precise mechanisms underlying conduction block are unclear. Using a multi-scale method, the influence of HF stimulation is investigated in the simplified FitzhHugh-Nagumo and biophysically-detailed Hodgkin-Huxley models. In both models, HF stimulation alters the amplitude and frequency of repetitive firing in response to a constant applied current and increases the threshold to evoke a single action potential in response to a brief applied current pulse. Further, the excitable cells cannot evoke a single action potential or fire repetitively above critical values for the HF stimulation amplitude. Analytical expressions for the critical values and thresholds are determined in the FitzHugh-Nagumo model. In the Hodgkin-Huxley model, it is shown that HF stimulation alters the dynamics of ionic current gating, shifting the steady-state activation, inactivation, and time constant curves, suggesting several possible mechanisms for conduction block. Finally, we demonstrate that HF stimulation of a network of neurons reduces the electrical activity firing rate, increases network synchronization, and for a sufficiently large HF stimulation, leads to complete electrical quiescence. In this study, we demonstrate a novel approach to investigate HF stimulation in biophysically-detailed ionic models of excitable cells, demonstrate possible mechanisms for HF stimulation conduction block in neurons, and provide insight into the influence of HF stimulation on neural networks. PMID:24278435

  14. High frequency MoS2 nanomechanical resonators.

    PubMed

    Lee, Jaesung; Wang, Zenghui; He, Keliang; Shan, Jie; Feng, Philip X-L

    2013-07-23

    Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.

  15. Challenges in graphene integration for high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  16. Spatial characterization of interictal high frequency oscillations in epileptic neocortex

    PubMed Central

    Trevelyan, A. J.; Schroeder, C. E.; Goodman, R. R.; McKhann, G.; Emerson, R. G.

    2009-01-01

    Interictal high frequency oscillations (HFOs), in particular those with frequency components in excess of 200 Hz, have been proposed as important biomarkers of epileptic cortex as well as the genesis of seizures. We investigated the spatial extent, classification and distribution of HFOs using a dense 4 × 4 mm2 two dimensional microelectrode array implanted in the neocortex of four patients undergoing epilepsy surgery. The majority (97%) of oscillations detected included fast ripples and were concentrated in relatively few recording sites. While most HFOs were limited to single channels, ∼10% occurred on a larger spatial scale with simultaneous but morphologically distinct detections in multiple channels. Eighty per cent of these large-scale events were associated with interictal epileptiform discharges. We propose that large-scale HFOs, rather than the more frequent highly focal events, are the substrates of the HFOs detected by clinical depth electrodes. This feature was prominent in three patients but rarely seen in only one patient recorded outside epileptogenic cortex. Additionally, we found that HFOs were commonly associated with widespread interictal epileptiform discharges but not with locally generated ‘microdischarges’. Our observations raise the possibility that, rather than being initiators of epileptiform activity, fast ripples may be markers of a secondary local response. PMID:19745024

  17. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    PubMed

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory. PMID:27343804

  18. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  19. Theory of High Frequency Rectification by Silicon Crystals

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  20. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  1. Turbofan Noise Propagation and Radiation at High Frequencies

    NASA Technical Reports Server (NTRS)

    Koch, Danielle (Technical Monitor); Eversman, Walter

    2003-01-01

    This report summarizes progress on NASA Glenn Research Center Grant NAG3-2718 to the University of Missouri at Rolla This grant was awarded on February 22, 2002 and this report covers the performance period to September 30, 2002. There is considerable overlap in research effort with previous NASA Glenn Grant NAG3-2340, as the current effort represents a continuation and extension of this previous grant, which with a no cost supplement terminated on January 31, 2002. This report outlines progress on each task in the original proposal. In addition to progress on several of the specifically proposed tasks, considerable progress has been made in FEM algorithm development with the intent of introducing computational efficiencies required to model high frequency propagation and radiation and to open the possibility of expanding the scope of the modeling capability to three dimensional duct and nacelle geometries. Appended to this document is a paper presented at the 8th AIAA/CEAS Aeroacoustics Conference in June 2002. This paper overlaps the present grant and the previous grant identified above, and it is noted that this paper has also been appended to the final report for NAG3-2304.

  2. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  3. High-frequency electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Young, T. S. T.

    1973-01-01

    High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.

  4. High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.; Lang, R. H.; Seker, S. S.

    1982-01-01

    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section.

  5. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  6. Very high frequency plasma reactant for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  7. Extremely high-frequency micro-Doppler measurements of humans

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  8. High-Frequency Gravitational Wave Induced Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio; Baker, Robert M. L.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely — even inside solid materials.

  9. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes

    PubMed Central

    Weed, Scott A.

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  10. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  11. High-frequency ultrasonic arrays for ocular imaging

    NASA Astrophysics Data System (ADS)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  12. High-frequency techniques for RCS prediction of plate geometries

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.

    1991-01-01

    Radar cross section (RCS) prediction of several rectangular plate geometries is discussed using high-frequency techniques such as the Uniform Theory of Diffraction (UTD) for perfectly conducting and impedance wedges and the Method of Equivalent Currents (MEC). Previous reports have presented detailed solutions to the principal-plane scattering by a perfectly conducting and a coated rectangular plate and nonprincipal-plane scattering by a perfectly conducting plate. These solutions are briefly reviewed and a modified model is presented for the coated plate. Theoretical and experimental data are presented for the perfectly conducting geometries. Agreement between theory and experiment is very good near and at normal incidence. In regions near and at grazing incidence, the disagreement between the data vary according to diffraction distances and angles involved. It is these areas of disagreement which are of extreme interest as an explanation for the disagreement will yield invaluable insight into scattering mechanisms which are not yet identified as major contributors near and at grazing incidence. Areas of disagreement between theory and experiment are identified and examined in an attempt to better understand and predict near-grazing incidence, grazing incidence, and nonprincipal-plane diffractions.

  13. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  14. High-Frequency Gravitational Wave Induced Nuclear Fusion

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-30

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

  15. High-frequency nano-optomechanical disk resonators in liquids.

    PubMed

    Gil-Santos, E; Baker, C; Nguyen, D T; Hease, W; Gomez, C; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  16. Protection Circuits for Very High Frequency Ultrasound Systems

    PubMed Central

    Shung, K. Kirk

    2014-01-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (−1.0 dB), THD (−69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications. PMID:24682684

  17. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  18. High frequency chest compression effects heart rate variability.

    PubMed

    Lee, Jongwon; Lee, Yong W; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) supplies a sequence of air pulses through a jacket worn by a patient to remove excessive mucus for the treatment or prevention of lung disease patients. The air pulses produced from the pulse generator propagates over the thorax delivering the vibration and compression energy. A number of studies have demonstrated that the HFCC system increases the ability to clear mucus and improves lung function. Few studies have examined the change in instantaneous heart rate (iHR) and heart rate variability (HRV) during the HFCC therapy. The purpose of this study is to measure the change of HRV with four experimental protocols: (a) without HFCC, (b) during Inflated, (c)HFCC at 6Hz, and (d) HFCC at 21Hz. The nonlinearity and regularity of HRV was assessed by approximate entropy (ApEn), a method used to quantify the complexities and randomness. To compute the ApEn, we sectioned with a total of eight epochs and displayed the ApEn over the each epoch. Our results show significant differences in the both the iHR and HRV between the experimental protocols. The iHR was elevated at both the (c) 6Hz and (d) 21Hz condition from without HFCC (10%, 16%, respectively). We also found that the HFCC system tends to increase the HRV. Our study suggests that monitoring iHR and HRV are very important physiological indexes during HFCC therapy.

  19. High-frequency chest compression: a summary of the literature.

    PubMed

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  20. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.

    PubMed

    Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059